vmalloc.c 93.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48 49 50 51
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

52 53 54 55 56 57 58 59 60 61 62
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
63 64 65 66
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
67 68
}

N
Nick Piggin 已提交
69
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
70

L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79 80 81
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
82
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
83 84 85 86 87 88 89
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
90 91
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
92 93 94 95 96 97
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

98
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
99 100 101 102
{
	pud_t *pud;
	unsigned long next;

103
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
104 105
	do {
		next = pud_addr_end(addr, end);
106 107
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
108 109 110 111 112 113
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
130
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
131 132 133 134 135 136 137 138 139 140
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
141
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
142 143 144 145
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
146
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
147 148 149
{
	pte_t *pte;

N
Nick Piggin 已提交
150 151 152 153 154
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
155
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
156 157 158
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
159 160 161 162 163
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
164 165
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
166
		(*nr)++;
L
Linus Torvalds 已提交
167 168 169 170
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
171 172
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
173 174 175 176 177 178 179 180 181
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
182
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
183 184 185 186 187
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

188
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
189
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
190 191 192 193
{
	pud_t *pud;
	unsigned long next;

194
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
195 196 197 198
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
199
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
200 201 202 203 204
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
222 223 224 225 226 227
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
228 229
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
230 231 232
{
	pgd_t *pgd;
	unsigned long next;
233
	unsigned long addr = start;
N
Nick Piggin 已提交
234 235
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
236 237 238 239 240

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
241
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
242
		if (err)
243
			return err;
L
Linus Torvalds 已提交
244
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
245 246

	return nr;
L
Linus Torvalds 已提交
247 248
}

249 250 251 252 253 254 255 256 257 258
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

259
int is_vmalloc_or_module_addr(const void *x)
260 261
{
	/*
262
	 * ARM, x86-64 and sparc64 put modules in a special place,
263 264 265 266 267 268 269 270 271 272 273
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

274
/*
275
 * Walk a vmap address to the struct page it maps.
276
 */
277
struct page *vmalloc_to_page(const void *vmalloc_addr)
278 279
{
	unsigned long addr = (unsigned long) vmalloc_addr;
280
	struct page *page = NULL;
281
	pgd_t *pgd = pgd_offset_k(addr);
282 283 284 285
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
286

287 288 289 290
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
291
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
292

293 294 295 296 297 298
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
299 300 301 302 303 304 305 306 307 308 309

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
310 311
		return NULL;
	pmd = pmd_offset(pud, addr);
312 313
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
314 315 316 317 318 319 320
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
321
	return page;
322
}
323
EXPORT_SYMBOL(vmalloc_to_page);
324 325

/*
326
 * Map a vmalloc()-space virtual address to the physical page frame number.
327
 */
328
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
329
{
330
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
331
}
332
EXPORT_SYMBOL(vmalloc_to_pfn);
333

N
Nick Piggin 已提交
334 335 336

/*** Global kva allocator ***/

337
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
338
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
339

N
Nick Piggin 已提交
340 341

static DEFINE_SPINLOCK(vmap_area_lock);
342
static DEFINE_SPINLOCK(free_vmap_area_lock);
343 344
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
345
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
346
static struct rb_root vmap_area_root = RB_ROOT;
347
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

375 376 377 378 379 380 381
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

382 383 384 385 386 387 388 389 390 391 392 393 394 395
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
396

397 398 399 400 401 402 403 404 405 406 407
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

408 409
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
410 411 412 413

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
414

415 416 417 418 419 420 421
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
422
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
423
{
N
Nick Piggin 已提交
424 425 426 427 428 429 430 431
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
432
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
433 434 435 436 437 438 439 440
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
462

463 464 465 466 467 468 469
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
470

471 472 473 474 475 476 477 478 479 480 481
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
482 483
		else
			BUG();
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
520 521
	}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
542

543 544
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
545 546
}

547 548 549
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
550 551
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
552

553 554 555 556 557 558 559 560
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
561 562
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
654 655 656 657

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
694
static __always_inline struct vmap_area *
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

756 757
			if (merged)
				unlink_va(va, root);
758 759 760

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
761 762 763 764

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
765 766 767 768 769 770 771 772
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
773 774

	return va;
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
836
			 * OK. We roll back and find the first right sub-tree,
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
934
	struct vmap_area *lva = NULL;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
972 973 974 975 976 977 978 979 980 981 982 983 984
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
985 986 987 988 989 990 991 992 993 994 995 996 997
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
998 999 1000 1001 1002
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1021
		if (lva)	/* type == NE_FIT_TYPE */
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1035
	unsigned long vstart, unsigned long vend)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1065 1066 1067 1068
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1069 1070
	return nva_start_addr;
}
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1101
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1102
	unsigned long addr;
N
Nick Piggin 已提交
1103
	int purged = 0;
1104
	int ret;
N
Nick Piggin 已提交
1105

N
Nick Piggin 已提交
1106
	BUG_ON(!size);
1107
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1108
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1109

1110 1111 1112
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1113
	might_sleep();
1114
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1115

1116
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1117 1118 1119
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1120 1121 1122 1123
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1124
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1125

N
Nick Piggin 已提交
1126
retry:
1127
	/*
1128 1129 1130 1131 1132 1133
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1134 1135 1136
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1137 1138
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1139
	 *
1140
	 * Set "pva" to NULL here, because of "retry" path.
1141
	 */
1142
	pva = NULL;
1143

1144 1145 1146 1147 1148 1149
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1150
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1151

1152
	spin_lock(&free_vmap_area_lock);
1153 1154 1155

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1156

1157
	/*
1158 1159
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1160
	 */
1161
	addr = __alloc_vmap_area(size, align, vstart, vend);
1162 1163
	spin_unlock(&free_vmap_area_lock);

1164
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1165
		goto overflow;
N
Nick Piggin 已提交
1166 1167 1168

	va->va_start = addr;
	va->va_end = addr + size;
1169
	va->vm = NULL;
1170

1171

1172 1173
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1174 1175
	spin_unlock(&vmap_area_lock);

1176
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1177 1178 1179
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1180 1181 1182 1183 1184 1185
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1186
	return va;
N
Nick Piggin 已提交
1187 1188 1189 1190 1191 1192 1193

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1204
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1205 1206
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1207 1208

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1209
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1210 1211
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1257
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1258

1259 1260 1261 1262 1263
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1264
static DEFINE_MUTEX(vmap_purge_lock);
1265

1266 1267 1268
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1269 1270 1271 1272 1273 1274
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1275
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1276 1277
}

N
Nick Piggin 已提交
1278 1279 1280
/*
 * Purges all lazily-freed vmap areas.
 */
1281
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1282
{
1283
	unsigned long resched_threshold;
1284
	struct llist_node *valist;
N
Nick Piggin 已提交
1285
	struct vmap_area *va;
1286
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1287

1288
	lockdep_assert_held(&vmap_purge_lock);
1289

1290
	valist = llist_del_all(&vmap_purge_list);
1291 1292 1293
	if (unlikely(valist == NULL))
		return false;

1294 1295 1296 1297
	/*
	 * First make sure the mappings are removed from all page-tables
	 * before they are freed.
	 */
J
Joerg Roedel 已提交
1298
	vmalloc_sync_unmappings();
1299

1300 1301 1302 1303
	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1304
	llist_for_each_entry(va, valist, purge_list) {
1305 1306 1307 1308
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1309 1310
	}

1311
	flush_tlb_kernel_range(start, end);
1312
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1313

1314
	spin_lock(&free_vmap_area_lock);
1315
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1316
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1317 1318
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1319

1320 1321 1322 1323 1324
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1325 1326 1327 1328 1329 1330
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1331

1332
		atomic_long_sub(nr, &vmap_lazy_nr);
1333

1334
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1335
			cond_resched_lock(&free_vmap_area_lock);
1336
	}
1337
	spin_unlock(&free_vmap_area_lock);
1338
	return true;
N
Nick Piggin 已提交
1339 1340
}

N
Nick Piggin 已提交
1341 1342 1343 1344 1345 1346
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1347
	if (mutex_trylock(&vmap_purge_lock)) {
1348
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1349
		mutex_unlock(&vmap_purge_lock);
1350
	}
N
Nick Piggin 已提交
1351 1352
}

N
Nick Piggin 已提交
1353 1354 1355 1356 1357
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1358
	mutex_lock(&vmap_purge_lock);
1359 1360
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1361
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1362 1363 1364
}

/*
1365 1366 1367
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1368
 */
1369
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1370
{
1371
	unsigned long nr_lazy;
1372

1373 1374 1375 1376
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1377 1378
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1379 1380 1381 1382 1383

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1384
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1385 1386
}

1387 1388 1389 1390 1391 1392
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1393
	unmap_vmap_area(va);
1394
	if (debug_pagealloc_enabled_static())
1395 1396
		flush_tlb_kernel_range(va->va_start, va->va_end);

1397
	free_vmap_area_noflush(va);
1398 1399
}

N
Nick Piggin 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1434 1435 1436 1437
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1450
	unsigned long dirty_min, dirty_max; /*< dirty range */
1451 1452
	struct list_head free_list;
	struct rcu_head rcu_head;
1453
	struct list_head purge;
N
Nick Piggin 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1496
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1497 1498
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1499 1500 1501 1502 1503 1504
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1505
	void *vaddr;
N
Nick Piggin 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1517
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1518
		kfree(vb);
J
Julia Lawall 已提交
1519
		return ERR_CAST(va);
N
Nick Piggin 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1529
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1530 1531
	spin_lock_init(&vb->lock);
	vb->va = va;
1532 1533 1534
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1535
	vb->dirty = 0;
1536 1537
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1549
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1550
	spin_unlock(&vbq->lock);
1551
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1552

1553
	return vaddr;
N
Nick Piggin 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1567
	free_vmap_area_noflush(vb->va);
1568
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1569 1570
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1588 1589
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1614 1615 1616 1617
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1618
	void *vaddr = NULL;
N
Nick Piggin 已提交
1619 1620
	unsigned int order;

1621
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1622
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1623 1624 1625 1626 1627 1628 1629 1630
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1631 1632 1633 1634 1635
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1636
		unsigned long pages_off;
N
Nick Piggin 已提交
1637 1638

		spin_lock(&vb->lock);
1639 1640 1641 1642
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1643

1644 1645
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1646 1647 1648 1649 1650 1651
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1652

1653 1654
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1655
	}
1656

1657
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1658 1659
	rcu_read_unlock();

1660 1661 1662
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1663

1664
	return vaddr;
N
Nick Piggin 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1674
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1675
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1676 1677 1678

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1679 1680 1681
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1682
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1683 1684 1685 1686 1687 1688 1689

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1690 1691
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

1692
	if (debug_pagealloc_enabled_static())
1693 1694 1695
		flush_tlb_kernel_range((unsigned long)addr,
					(unsigned long)addr + size);

N
Nick Piggin 已提交
1696
	spin_lock(&vb->lock);
1697 1698 1699 1700

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1701

N
Nick Piggin 已提交
1702 1703
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1704
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1705 1706 1707 1708 1709 1710
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1711
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1712 1713 1714
{
	int cpu;

1715 1716 1717
	if (unlikely(!vmap_initialized))
		return;

1718 1719
	might_sleep();

N
Nick Piggin 已提交
1720 1721 1722 1723 1724 1725 1726
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1727 1728
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1729
				unsigned long s, e;
1730

1731 1732
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1733

1734 1735
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1736

1737
				flush = 1;
N
Nick Piggin 已提交
1738 1739 1740 1741 1742 1743
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1744
	mutex_lock(&vmap_purge_lock);
1745 1746 1747
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1748
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1749
}
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1780
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1781
	unsigned long addr = (unsigned long)mem;
1782
	struct vmap_area *va;
N
Nick Piggin 已提交
1783

1784
	might_sleep();
N
Nick Piggin 已提交
1785 1786 1787
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1788
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1789

1790 1791
	kasan_poison_vmalloc(mem, size);

1792
	if (likely(count <= VMAP_MAX_ALLOC)) {
1793
		debug_check_no_locks_freed(mem, size);
N
Nick Piggin 已提交
1794
		vb_free(mem, size);
1795 1796 1797 1798 1799
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1800 1801
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1802
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1812
 *
1813 1814 1815 1816 1817 1818
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1819
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1820 1821 1822
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1823
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1842 1843 1844

	kasan_unpoison_vmalloc(mem, size);

N
Nick Piggin 已提交
1845 1846 1847 1848 1849 1850 1851 1852
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1853
static struct vm_struct *vmlist __initdata;
1854

N
Nicolas Pitre 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1881 1882 1883
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1884
 * @align: requested alignment
1885 1886 1887 1888 1889 1890 1891 1892
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1893
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1894 1895
{
	static size_t vm_init_off __initdata;
1896 1897 1898 1899
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1900

1901
	vm->addr = (void *)addr;
1902

N
Nicolas Pitre 已提交
1903
	vm_area_add_early(vm);
1904 1905
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1947 1948
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1949 1950
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1951 1952
	int i;

1953 1954 1955 1956 1957
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1958 1959
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1960
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1961 1962 1963 1964

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1965 1966 1967
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1968
	}
1969

I
Ivan Kokshaysky 已提交
1970 1971
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1972 1973 1974 1975
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
1976 1977
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1978
		va->vm = tmp;
1979
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1980
	}
1981

1982 1983 1984 1985
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1986
	vmap_initialized = true;
N
Nick Piggin 已提交
1987 1988
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
2032
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
2033 2034 2035 2036 2037 2038 2039 2040 2041

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2042 2043 2044
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2045 2046

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
2047 2048 2049
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
2050
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
2051

2052
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
2053 2054
{
	unsigned long addr = (unsigned long)area->addr;
2055
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
2056 2057
	int err;

2058
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
2059

2060
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
2061 2062 2063
}
EXPORT_SYMBOL_GPL(map_vm_area);

2064 2065
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2066 2067 2068 2069 2070
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2071
	va->vm = vm;
2072 2073 2074 2075 2076 2077 2078
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2079
	spin_unlock(&vmap_area_lock);
2080
}
2081

2082
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2083
{
2084
	/*
2085
	 * Before removing VM_UNINITIALIZED,
2086 2087 2088 2089
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2090
	vm->flags &= ~VM_UNINITIALIZED;
2091 2092
}

N
Nick Piggin 已提交
2093
static struct vm_struct *__get_vm_area_node(unsigned long size,
2094
		unsigned long align, unsigned long flags, unsigned long start,
2095
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2096
{
2097
	struct vmap_area *va;
N
Nick Piggin 已提交
2098
	struct vm_struct *area;
2099
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2100

2101
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2102
	size = PAGE_ALIGN(size);
2103 2104
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2105

2106 2107 2108 2109
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2110
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2111 2112 2113
	if (unlikely(!area))
		return NULL;

2114 2115
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2116

N
Nick Piggin 已提交
2117 2118 2119 2120
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2121 2122
	}

2123
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2124

2125
	setup_vmalloc_vm(area, va, flags, caller);
2126

L
Linus Torvalds 已提交
2127 2128 2129
	return area;
}

C
Christoph Lameter 已提交
2130 2131 2132
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
2133 2134
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
2135
}
2136
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
2137

2138 2139
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2140
				       const void *caller)
2141
{
D
David Rientjes 已提交
2142 2143
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2144 2145
}

L
Linus Torvalds 已提交
2146
/**
2147 2148 2149
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2150
 *
2151 2152 2153
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2154 2155
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2156 2157 2158
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2159
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2160 2161
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2162 2163 2164
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2165
				const void *caller)
2166
{
2167
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2168
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2169 2170
}

2171
/**
2172 2173
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2174
 *
2175 2176 2177
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2178 2179
 *
 * Return: pointer to the found area or %NULL on faulure
2180 2181
 */
struct vm_struct *find_vm_area(const void *addr)
2182
{
N
Nick Piggin 已提交
2183
	struct vmap_area *va;
2184

N
Nick Piggin 已提交
2185
	va = find_vmap_area((unsigned long)addr);
2186 2187
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2188

2189
	return va->vm;
L
Linus Torvalds 已提交
2190 2191
}

2192
/**
2193 2194
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2195
 *
2196 2197 2198
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2199 2200
 *
 * Return: pointer to the found area or %NULL on faulure
2201
 */
2202
struct vm_struct *remove_vm_area(const void *addr)
2203
{
N
Nick Piggin 已提交
2204 2205
	struct vmap_area *va;

2206 2207
	might_sleep();

2208 2209
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2210
	if (va && va->vm) {
2211
		struct vm_struct *vm = va->vm;
2212

2213 2214 2215
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2216
		kasan_free_shadow(vm);
2217 2218
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2219 2220
		return vm;
	}
2221 2222

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2223
	return NULL;
2224 2225
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2241
	int flush_dmap = 0;
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2265 2266
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2267
			start = min(addr, start);
2268
			end = max(addr + PAGE_SIZE, end);
2269
			flush_dmap = 1;
2270 2271 2272 2273 2274 2275 2276 2277 2278
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2279
	_vm_unmap_aliases(start, end, flush_dmap);
2280 2281 2282
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2283
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2284 2285 2286 2287 2288 2289
{
	struct vm_struct *area;

	if (!addr)
		return;

2290
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2291
			addr))
L
Linus Torvalds 已提交
2292 2293
		return;

2294
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2295
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2296
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2297 2298 2299 2300
				addr);
		return;
	}

2301 2302
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2303

2304
	kasan_poison_vmalloc(area->addr, area->size);
2305

2306 2307
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2308 2309 2310 2311
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2312 2313 2314
			struct page *page = area->pages[i];

			BUG_ON(!page);
2315
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2316
		}
2317
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2318

D
David Rientjes 已提交
2319
		kvfree(area->pages);
L
Linus Torvalds 已提交
2320 2321 2322 2323 2324
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2341 2342
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2343
 *
2344 2345
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2358 2359 2360 2361 2362 2363 2364 2365
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2366
/**
2367 2368
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2369
 *
2370 2371 2372
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2373
 *
2374 2375 2376
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2377
 *
2378
 * May sleep if called *not* from interrupt context.
2379
 *
2380
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2381
 */
2382
void vfree(const void *addr)
L
Linus Torvalds 已提交
2383
{
2384
	BUG_ON(in_nmi());
2385 2386 2387

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2388 2389
	might_sleep_if(!in_interrupt());

2390 2391
	if (!addr)
		return;
2392 2393

	__vfree(addr);
L
Linus Torvalds 已提交
2394 2395 2396 2397
}
EXPORT_SYMBOL(vfree);

/**
2398 2399
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2400
 *
2401 2402
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2403
 *
2404
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2405
 */
2406
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2407 2408
{
	BUG_ON(in_interrupt());
2409
	might_sleep();
2410 2411
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2412 2413 2414 2415
}
EXPORT_SYMBOL(vunmap);

/**
2416 2417 2418 2419 2420 2421 2422 2423
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2424 2425
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2426 2427
 */
void *vmap(struct page **pages, unsigned int count,
2428
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2429 2430
{
	struct vm_struct *area;
2431
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2432

2433 2434
	might_sleep();

2435
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2436 2437
		return NULL;

2438 2439
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2440 2441
	if (!area)
		return NULL;
2442

2443
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2444 2445 2446 2447 2448 2449 2450 2451
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2452 2453 2454
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2455
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2456
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2457 2458 2459
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2460
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2461 2462 2463 2464
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2465

2466
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2467 2468 2469
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2470
	if (array_size > PAGE_SIZE) {
2471
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2472
				PAGE_KERNEL, node, area->caller);
2473
	} else {
2474
		pages = kmalloc_node(array_size, nested_gfp, node);
2475
	}
2476 2477

	if (!pages) {
L
Linus Torvalds 已提交
2478 2479 2480 2481 2482
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2483 2484 2485
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2486
	for (i = 0; i < area->nr_pages; i++) {
2487 2488
		struct page *page;

J
Jianguo Wu 已提交
2489
		if (node == NUMA_NO_NODE)
2490
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2491
		else
2492
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2493 2494

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2495 2496
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2497
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2498 2499
			goto fail;
		}
2500
		area->pages[i] = page;
2501
		if (gfpflags_allow_blocking(gfp_mask))
2502
			cond_resched();
L
Linus Torvalds 已提交
2503
	}
2504
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2505

2506
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2507 2508 2509 2510
		goto fail;
	return area->addr;

fail:
2511
	warn_alloc(gfp_mask, NULL,
2512
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2513
			  (area->nr_pages*PAGE_SIZE), area->size);
2514
	__vfree(area->addr);
L
Linus Torvalds 已提交
2515 2516 2517 2518
	return NULL;
}

/**
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2533 2534
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2535
 */
2536 2537
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2538 2539
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2540 2541
{
	struct vm_struct *area;
2542 2543
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2544 2545

	size = PAGE_ALIGN(size);
2546
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2547
		goto fail;
L
Linus Torvalds 已提交
2548

2549
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2550
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2551
	if (!area)
2552
		goto fail;
L
Linus Torvalds 已提交
2553

2554
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2555
	if (!addr)
2556
		return NULL;
2557

2558
	/*
2559 2560
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2561
	 * Now, it is fully initialized, so remove this flag here.
2562
	 */
2563
	clear_vm_uninitialized_flag(area);
2564

2565
	kmemleak_vmalloc(area, size, gfp_mask);
2566 2567

	return addr;
2568 2569

fail:
2570
	warn_alloc(gfp_mask, NULL,
2571
			  "vmalloc: allocation failure: %lu bytes", real_size);
2572
	return NULL;
L
Linus Torvalds 已提交
2573 2574
}

2575 2576 2577 2578 2579 2580 2581 2582 2583
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2584
/**
2585 2586 2587 2588 2589 2590 2591
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2592
 *
2593 2594 2595
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2596
 *
2597 2598
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2599
 *
2600 2601
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2602 2603
 *
 * Return: pointer to the allocated memory or %NULL on error
2604
 */
2605
static void *__vmalloc_node(unsigned long size, unsigned long align,
2606
			    gfp_t gfp_mask, pgprot_t prot,
2607
			    int node, const void *caller)
2608 2609
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2610
				gfp_mask, prot, 0, node, caller);
2611 2612
}

C
Christoph Lameter 已提交
2613 2614
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2615
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2616
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2617
}
L
Linus Torvalds 已提交
2618 2619
EXPORT_SYMBOL(__vmalloc);

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2634
/**
2635 2636 2637 2638 2639
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2640
 *
2641 2642
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2643 2644
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2645 2646 2647
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2648
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2649
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2650 2651 2652
}
EXPORT_SYMBOL(vmalloc);

2653
/**
2654 2655 2656 2657 2658 2659 2660 2661 2662
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2663 2664
 *
 * Return: pointer to the allocated memory or %NULL on error
2665 2666 2667
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2668
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2669
				GFP_KERNEL | __GFP_ZERO);
2670 2671 2672
}
EXPORT_SYMBOL(vzalloc);

2673
/**
2674 2675
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2676
 *
2677 2678
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2679 2680
 *
 * Return: pointer to the allocated memory or %NULL on error
2681 2682 2683
 */
void *vmalloc_user(unsigned long size)
{
2684 2685 2686 2687
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2688 2689 2690
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2691
/**
2692 2693 2694
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2695
 *
2696 2697
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2698
 *
2699 2700
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2701 2702
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2703 2704 2705
 */
void *vmalloc_node(unsigned long size, int node)
{
2706
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2707
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2708 2709 2710
}
EXPORT_SYMBOL(vmalloc_node);

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2722 2723
 *
 * Return: pointer to the allocated memory or %NULL on error
2724 2725 2726 2727
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2728
			 GFP_KERNEL | __GFP_ZERO);
2729 2730 2731
}
EXPORT_SYMBOL(vzalloc_node);

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
/**
 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
 * @size: allocation size
 * @node: numa node
 * @flags: flags for the page level allocator
 *
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
 *
 * Return: pointer to the allocated memory or %NULL on error
 */
void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
{
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    flags | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, node,
				    __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_user_node_flags);

L
Linus Torvalds 已提交
2752
/**
2753 2754
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2755
 *
2756 2757 2758
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2759
 *
2760 2761
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2762 2763
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2764 2765 2766
 */
void *vmalloc_exec(unsigned long size)
{
2767 2768 2769
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2770 2771
}

2772
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2773
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2774
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2775
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2776
#else
2777 2778 2779 2780 2781
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2782 2783
#endif

L
Linus Torvalds 已提交
2784
/**
2785 2786
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2787
 *
2788 2789
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2790 2791
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2792 2793 2794
 */
void *vmalloc_32(unsigned long size)
{
2795
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2796
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2797 2798 2799
}
EXPORT_SYMBOL(vmalloc_32);

2800
/**
2801
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2802
 * @size:	     allocation size
2803 2804 2805
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2806 2807
 *
 * Return: pointer to the allocated memory or %NULL on error
2808 2809 2810
 */
void *vmalloc_32_user(unsigned long size)
{
2811 2812 2813 2814
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2815 2816 2817
}
EXPORT_SYMBOL(vmalloc_32_user);

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2831
		offset = offset_in_page(addr);
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2848
			void *map = kmap_atomic(p);
2849
			memcpy(buf, map + offset, length);
2850
			kunmap_atomic(map);
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2870
		offset = offset_in_page(addr);
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2887
			void *map = kmap_atomic(p);
2888
			memcpy(map + offset, buf, length);
2889
			kunmap_atomic(map);
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2917
 * any information, as /dev/kmem.
2918 2919 2920 2921
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2922
 */
L
Linus Torvalds 已提交
2923 2924
long vread(char *buf, char *addr, unsigned long count)
{
2925 2926
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2927
	char *vaddr, *buf_start = buf;
2928
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933 2934
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2935 2936 2937 2938 2939
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2940
		if (!va->vm)
2941 2942 2943 2944
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2945
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2955
		n = vaddr + get_vm_area_size(vm) - addr;
2956 2957
		if (n > count)
			n = count;
2958
		if (!(vm->flags & VM_IOREMAP))
2959 2960 2961 2962 2963 2964
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2965 2966
	}
finished:
2967
	spin_unlock(&vmap_area_lock);
2968 2969 2970 2971 2972 2973 2974 2975

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2976 2977
}

2978
/**
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2996
 * any information, as /dev/kmem.
2997 2998 2999 3000
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
3001
 */
L
Linus Torvalds 已提交
3002 3003
long vwrite(char *buf, char *addr, unsigned long count)
{
3004 3005
	struct vmap_area *va;
	struct vm_struct *vm;
3006 3007 3008
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
3009 3010 3011 3012

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
3013
	buflen = count;
L
Linus Torvalds 已提交
3014

3015 3016 3017 3018 3019
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

3020
		if (!va->vm)
3021 3022 3023 3024
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
3025
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
3026 3027 3028 3029 3030 3031 3032 3033
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
3034
		n = vaddr + get_vm_area_size(vm) - addr;
3035 3036
		if (n > count)
			n = count;
3037
		if (!(vm->flags & VM_IOREMAP)) {
3038 3039 3040 3041 3042 3043
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
3044 3045
	}
finished:
3046
	spin_unlock(&vmap_area_lock);
3047 3048 3049
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
3050
}
3051 3052

/**
3053 3054 3055 3056 3057
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
 * @size:		size of map area
3058
 *
3059
 * Returns:	0 for success, -Exxx on failure
3060
 *
3061 3062 3063 3064
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3065
 *
3066
 * Similar to remap_pfn_range() (see mm/memory.c)
3067
 */
3068 3069
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
3070 3071 3072
{
	struct vm_struct *area;

3073 3074 3075
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3076 3077
		return -EINVAL;

3078
	area = find_vm_area(kaddr);
3079
	if (!area)
N
Nick Piggin 已提交
3080
		return -EINVAL;
3081

3082
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3083
		return -EINVAL;
3084

3085
	if (kaddr + size > area->addr + get_vm_area_size(area))
N
Nick Piggin 已提交
3086
		return -EINVAL;
3087 3088

	do {
3089
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3090 3091
		int ret;

3092 3093 3094 3095 3096
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3097 3098 3099
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3100

3101
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3102

N
Nick Piggin 已提交
3103
	return 0;
3104
}
3105 3106 3107
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3108 3109 3110 3111
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3112
 *
3113
 * Returns:	0 for success, -Exxx on failure
3114
 *
3115 3116 3117
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3118
 *
3119
 * Similar to remap_pfn_range() (see mm/memory.c)
3120 3121 3122 3123 3124 3125 3126 3127
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
3128 3129
EXPORT_SYMBOL(remap_vmalloc_range);

3130
/*
J
Joerg Roedel 已提交
3131 3132
 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
 * not to have one.
3133 3134 3135
 *
 * The purpose of this function is to make sure the vmalloc area
 * mappings are identical in all page-tables in the system.
3136
 */
J
Joerg Roedel 已提交
3137
void __weak vmalloc_sync_mappings(void)
3138 3139
{
}
3140

J
Joerg Roedel 已提交
3141 3142 3143
void __weak vmalloc_sync_unmappings(void)
{
}
3144

3145
static int f(pte_t *pte, unsigned long addr, void *data)
3146
{
3147 3148 3149 3150 3151 3152
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3153 3154 3155 3156
	return 0;
}

/**
3157 3158 3159
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3160
 *
3161
 * Returns:	NULL on failure, vm_struct on success
3162
 *
3163 3164 3165
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3166
 *
3167 3168
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3169
 */
3170
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3171 3172 3173
{
	struct vm_struct *area;

3174 3175
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3176 3177 3178 3179 3180 3181 3182 3183
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3184
				size, f, ptes ? &ptes : NULL)) {
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3201

3202
#ifdef CONFIG_SMP
3203 3204
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3205
	return rb_entry_safe(n, struct vmap_area, rb_node);
3206 3207 3208
}

/**
3209 3210
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3211
 *
3212 3213 3214 3215
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3216
 */
3217 3218
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3219
{
3220 3221 3222 3223 3224
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3225 3226

	while (n) {
3227 3228 3229 3230 3231 3232
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3233
			n = n->rb_right;
3234 3235 3236
		} else {
			n = n->rb_left;
		}
3237 3238
	}

3239
	return va;
3240 3241 3242
}

/**
3243 3244 3245 3246 3247
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3248
 *
3249
 * Returns: determined end address within vmap_area
3250
 */
3251 3252
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3253
{
3254
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3255 3256
	unsigned long addr;

3257 3258 3259 3260 3261 3262 3263
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3264 3265
	}

3266
	return 0;
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3281 3282 3283 3284
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3285
 *
3286 3287 3288 3289 3290 3291
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3292 3293 3294
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3295
				     size_t align)
3296 3297 3298
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3299
	struct vmap_area **vas, *va;
3300 3301
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3302
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3303
	bool purged = false;
3304
	enum fit_type type;
3305 3306

	/* verify parameters and allocate data structures */
3307
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3320
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3321 3322 3323
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3324
			BUG_ON(start2 < end && start < end2);
3325 3326 3327 3328 3329 3330 3331 3332 3333
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3334 3335
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3336
	if (!vas || !vms)
3337
		goto err_free2;
3338 3339

	for (area = 0; area < nr_vms; area++) {
3340
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3341
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3342 3343 3344 3345
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3346
	spin_lock(&free_vmap_area_lock);
3347 3348 3349 3350 3351 3352

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3353 3354
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3355 3356 3357 3358 3359 3360

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3361 3362
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3363 3364

		/*
3365
		 * Fitting base has not been found.
3366
		 */
3367 3368
		if (va == NULL)
			goto overflow;
3369

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
		/*
		 * If required width exeeds current VA block, move
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3380
		/*
3381
		 * If this VA does not fit, move base downwards and recheck.
3382
		 */
3383
		if (base + start < va->va_start) {
3384 3385
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3397

3398 3399
		start = offsets[area];
		end = start + sizes[area];
3400
		va = pvm_find_va_enclose_addr(base + end);
3401
	}
3402

3403 3404
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3405
		int ret;
3406

3407 3408
		start = base + offsets[area];
		size = sizes[area];
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3429

3430
	spin_unlock(&free_vmap_area_lock);
3431

3432 3433 3434 3435 3436 3437 3438 3439 3440
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3441
	/* insert all vm's */
3442 3443 3444 3445 3446
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3447
				 pcpu_get_vm_areas);
3448 3449
	}
	spin_unlock(&vmap_area_lock);
3450 3451 3452 3453

	kfree(vas);
	return vms;

3454
recovery:
3455 3456 3457 3458 3459 3460
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3461
	while (area--) {
3462 3463 3464 3465 3466 3467
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
3468 3469 3470 3471
		vas[area] = NULL;
	}

overflow:
3472
	spin_unlock(&free_vmap_area_lock);
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3491 3492
err_free:
	for (area = 0; area < nr_vms; area++) {
3493 3494 3495
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3496
		kfree(vms[area]);
3497
	}
3498
err_free2:
3499 3500 3501
	kfree(vas);
	kfree(vms);
	return NULL;
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3541
#endif	/* CONFIG_SMP */
3542 3543 3544

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3545
	__acquires(&vmap_purge_lock)
3546
	__acquires(&vmap_area_lock)
3547
{
3548
	mutex_lock(&vmap_purge_lock);
3549
	spin_lock(&vmap_area_lock);
3550

3551
	return seq_list_start(&vmap_area_list, *pos);
3552 3553 3554 3555
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3556
	return seq_list_next(p, &vmap_area_list, pos);
3557 3558 3559
}

static void s_stop(struct seq_file *m, void *p)
3560
	__releases(&vmap_purge_lock)
3561
	__releases(&vmap_area_lock)
3562
{
3563
	mutex_unlock(&vmap_purge_lock);
3564
	spin_unlock(&vmap_area_lock);
3565 3566
}

E
Eric Dumazet 已提交
3567 3568
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3569
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3570 3571 3572 3573 3574
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3575 3576
		if (v->flags & VM_UNINITIALIZED)
			return;
3577 3578
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3579

E
Eric Dumazet 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3607 3608
static int s_show(struct seq_file *m, void *p)
{
3609
	struct vmap_area *va;
3610 3611
	struct vm_struct *v;

3612 3613
	va = list_entry(p, struct vmap_area, list);

3614
	/*
3615 3616
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3617
	 */
3618
	if (!va->vm) {
3619
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3620
			(void *)va->va_start, (void *)va->va_end,
3621
			va->va_end - va->va_start);
3622

3623
		return 0;
3624
	}
3625 3626

	v = va->vm;
3627

K
Kees Cook 已提交
3628
	seq_printf(m, "0x%pK-0x%pK %7ld",
3629 3630
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3631 3632
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3633

3634 3635 3636 3637
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3638
		seq_printf(m, " phys=%pa", &v->phys_addr);
3639 3640

	if (v->flags & VM_IOREMAP)
3641
		seq_puts(m, " ioremap");
3642 3643

	if (v->flags & VM_ALLOC)
3644
		seq_puts(m, " vmalloc");
3645 3646

	if (v->flags & VM_MAP)
3647
		seq_puts(m, " vmap");
3648 3649

	if (v->flags & VM_USERMAP)
3650
		seq_puts(m, " user");
3651

3652 3653 3654
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3655
	if (is_vmalloc_addr(v->pages))
3656
		seq_puts(m, " vpages");
3657

E
Eric Dumazet 已提交
3658
	show_numa_info(m, v);
3659
	seq_putc(m, '\n');
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3670 3671 3672
	return 0;
}

3673
static const struct seq_operations vmalloc_op = {
3674 3675 3676 3677 3678
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3679 3680 3681

static int __init proc_vmalloc_init(void)
{
3682
	if (IS_ENABLED(CONFIG_NUMA))
3683
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3684 3685
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3686
	else
3687
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3688 3689 3690
	return 0;
}
module_init(proc_vmalloc_init);
3691

3692
#endif