ctree.c 142.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16
#include "qgroup.h"
17

18 19
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
20 21 22
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
23
static int push_node_left(struct btrfs_trans_handle *trans,
24
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26 27 28
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static const struct btrfs_csums {
	u16		size;
	const char	*name;
} btrfs_csums[] = {
	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
};

int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
	u16 t = btrfs_super_csum_type(s);
	/*
	 * csum type is validated at mount time
	 */
	return btrfs_csums[t].size;
}

const char *btrfs_super_csum_name(u16 csum_type)
{
	/* csum type is validated at mount time */
	return btrfs_csums[csum_type].name;
}

C
Chris Mason 已提交
54
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
55
{
56
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
57 58
}

59 60 61 62 63 64 65 66
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 68
		if (!p->nodes[i] || !p->locks[i])
			continue;
69 70 71 72 73 74 75
		/*
		 * If we currently have a spinning reader or writer lock this
		 * will bump the count of blocking holders and drop the
		 * spinlock.
		 */
		if (p->locks[i] == BTRFS_READ_LOCK) {
			btrfs_set_lock_blocking_read(p->nodes[i]);
76
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
77 78
		} else if (p->locks[i] == BTRFS_WRITE_LOCK) {
			btrfs_set_lock_blocking_write(p->nodes[i]);
79
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
80
		}
81 82 83
	}
}

C
Chris Mason 已提交
84
/* this also releases the path */
C
Chris Mason 已提交
85
void btrfs_free_path(struct btrfs_path *p)
86
{
87 88
	if (!p)
		return;
89
	btrfs_release_path(p);
C
Chris Mason 已提交
90
	kmem_cache_free(btrfs_path_cachep, p);
91 92
}

C
Chris Mason 已提交
93 94 95 96 97 98
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
99
noinline void btrfs_release_path(struct btrfs_path *p)
100 101
{
	int i;
102

C
Chris Mason 已提交
103
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
104
		p->slots[i] = 0;
105
		if (!p->nodes[i])
106 107
			continue;
		if (p->locks[i]) {
108
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
109 110
			p->locks[i] = 0;
		}
111
		free_extent_buffer(p->nodes[i]);
112
		p->nodes[i] = NULL;
113 114 115
	}
}

C
Chris Mason 已提交
116 117 118 119 120 121 122 123 124 125
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
126 127 128
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
129

130 131 132 133 134 135
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
136
		 * it was COWed but we may not get the new root node yet so do
137 138 139 140 141 142 143 144 145 146
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
147 148 149
	return eb;
}

C
Chris Mason 已提交
150 151 152 153
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
154 155 156 157
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
158
	while (1) {
159 160
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
161
		if (eb == root->node)
162 163 164 165 166 167 168
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

169 170 171 172
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
173
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
174 175 176 177 178 179 180 181 182 183 184 185 186 187
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
188 189 190 191
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
192 193
static void add_root_to_dirty_list(struct btrfs_root *root)
{
194 195
	struct btrfs_fs_info *fs_info = root->fs_info;

196 197 198 199
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

200
	spin_lock(&fs_info->trans_lock);
201 202
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
203
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
204
			list_move_tail(&root->dirty_list,
205
				       &fs_info->dirty_cowonly_roots);
206 207
		else
			list_move(&root->dirty_list,
208
				  &fs_info->dirty_cowonly_roots);
209
	}
210
	spin_unlock(&fs_info->trans_lock);
211 212
}

C
Chris Mason 已提交
213 214 215 216 217
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
218 219 220 221 222
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
223
	struct btrfs_fs_info *fs_info = root->fs_info;
224 225 226
	struct extent_buffer *cow;
	int ret = 0;
	int level;
227
	struct btrfs_disk_key disk_key;
228

229
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
230
		trans->transid != fs_info->running_transaction->transid);
231 232
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
233 234

	level = btrfs_header_level(buf);
235 236 237 238
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
239

240 241
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
242
	if (IS_ERR(cow))
243 244
		return PTR_ERR(cow);

245
	copy_extent_buffer_full(cow, buf);
246 247
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
248 249 250 251 252 253 254
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
255

256
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
257

258
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
259
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
260
		ret = btrfs_inc_ref(trans, root, cow, 1);
261
	else
262
		ret = btrfs_inc_ref(trans, root, cow, 0);
263

264 265 266 267 268 269 270 271
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
289
	u64 logical;
290
	u64 seq;
291 292 293 294 295 296 297 298 299 300 301 302 303
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
304 305 306 307
	struct {
		int dst_slot;
		int nr_items;
	} move;
308 309 310 311 312

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

313
/*
J
Josef Bacik 已提交
314
 * Pull a new tree mod seq number for our operation.
315
 */
J
Josef Bacik 已提交
316
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
317 318 319 320
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

321 322 323 324 325 326 327 328 329 330
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
331
{
332
	write_lock(&fs_info->tree_mod_log_lock);
333
	spin_lock(&fs_info->tree_mod_seq_lock);
334
	if (!elem->seq) {
J
Josef Bacik 已提交
335
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
336 337
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
338
	spin_unlock(&fs_info->tree_mod_seq_lock);
339
	write_unlock(&fs_info->tree_mod_log_lock);
340

J
Josef Bacik 已提交
341
	return elem->seq;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
360
	elem->seq = 0;
361 362

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
363
		if (cur_elem->seq < min_seq) {
364 365 366 367 368
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
369 370
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
371 372 373 374
			}
			min_seq = cur_elem->seq;
		}
	}
375 376
	spin_unlock(&fs_info->tree_mod_seq_lock);

377 378 379 380
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
381
	write_lock(&fs_info->tree_mod_log_lock);
382 383 384
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
385
		tm = rb_entry(node, struct tree_mod_elem, node);
386
		if (tm->seq > min_seq)
387 388 389 390
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
391
	write_unlock(&fs_info->tree_mod_log_lock);
392 393 394 395
}

/*
 * key order of the log:
396
 *       node/leaf start address -> sequence
397
 *
398 399 400
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
401 402 403 404 405 406 407 408
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
409

410 411
	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);

J
Josef Bacik 已提交
412
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
413 414 415 416

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
417
		cur = rb_entry(*new, struct tree_mod_elem, node);
418
		parent = *new;
419
		if (cur->logical < tm->logical)
420
			new = &((*new)->rb_left);
421
		else if (cur->logical > tm->logical)
422
			new = &((*new)->rb_right);
423
		else if (cur->seq < tm->seq)
424
			new = &((*new)->rb_left);
425
		else if (cur->seq > tm->seq)
426
			new = &((*new)->rb_right);
427 428
		else
			return -EEXIST;
429 430 431 432
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
433
	return 0;
434 435
}

436 437 438 439
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
440
 * write unlock fs_info::tree_mod_log_lock.
441
 */
442 443 444 445 446
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
447 448
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
449

450
	write_lock(&fs_info->tree_mod_log_lock);
451
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
452
		write_unlock(&fs_info->tree_mod_log_lock);
453 454 455
		return 1;
	}

456 457 458
	return 0;
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
475
{
476
	struct tree_mod_elem *tm;
477

478 479
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
480
		return NULL;
481

482
	tm->logical = eb->start;
483 484 485 486 487 488 489
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
490
	RB_CLEAR_NODE(&tm->node);
491

492
	return tm;
493 494
}

495 496
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
497
{
498 499 500
	struct tree_mod_elem *tm;
	int ret;

501
	if (!tree_mod_need_log(eb->fs_info, eb))
502 503 504 505 506 507
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

508
	if (tree_mod_dont_log(eb->fs_info, eb)) {
509
		kfree(tm);
510
		return 0;
511 512
	}

513
	ret = __tree_mod_log_insert(eb->fs_info, tm);
514
	write_unlock(&eb->fs_info->tree_mod_log_lock);
515 516
	if (ret)
		kfree(tm);
517

518
	return ret;
519 520
}

521 522
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
523
{
524 525 526
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
527
	int i;
528
	int locked = 0;
529

530
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
531
		return 0;
532

533
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
534 535 536
	if (!tm_list)
		return -ENOMEM;

537
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
538 539 540 541 542
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

543
	tm->logical = eb->start;
544 545 546 547 548 549 550
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
551
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
552 553 554 555 556 557
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

558
	if (tree_mod_dont_log(eb->fs_info, eb))
559 560 561
		goto free_tms;
	locked = 1;

562 563 564 565 566
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
567
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
568
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
569 570
		if (ret)
			goto free_tms;
571 572
	}

573
	ret = __tree_mod_log_insert(eb->fs_info, tm);
574 575
	if (ret)
		goto free_tms;
576
	write_unlock(&eb->fs_info->tree_mod_log_lock);
577
	kfree(tm_list);
J
Jan Schmidt 已提交
578

579 580 581 582
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
583
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
584 585 586
		kfree(tm_list[i]);
	}
	if (locked)
587
		write_unlock(&eb->fs_info->tree_mod_log_lock);
588 589
	kfree(tm_list);
	kfree(tm);
590

591
	return ret;
592 593
}

594 595 596 597
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
598
{
599
	int i, j;
600 601 602
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
603 604 605 606 607 608 609
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
610
	}
611 612

	return 0;
613 614
}

615 616
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
617
{
618
	struct btrfs_fs_info *fs_info = old_root->fs_info;
619 620 621 622 623
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
624

625
	if (!tree_mod_need_log(fs_info, NULL))
626 627
		return 0;

628 629
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
630
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
631
				  GFP_NOFS);
632 633 634 635 636 637
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
638
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
639 640 641 642 643 644
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
645

646
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
647 648 649 650
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
651

652
	tm->logical = new_root->start;
653 654 655 656 657
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

658 659 660 661 662 663 664 665
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

666
	write_unlock(&fs_info->tree_mod_log_lock);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
682 683 684 685 686 687 688 689 690 691 692
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

693
	read_lock(&fs_info->tree_mod_log_lock);
694 695 696
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
697
		cur = rb_entry(node, struct tree_mod_elem, node);
698
		if (cur->logical < start) {
699
			node = node->rb_left;
700
		} else if (cur->logical > start) {
701
			node = node->rb_right;
702
		} else if (cur->seq < min_seq) {
703 704 705 706
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
707
				BUG_ON(found->seq > cur->seq);
708 709
			found = cur;
			node = node->rb_left;
710
		} else if (cur->seq > min_seq) {
711 712
			/* we want the node with the smallest seq */
			if (found)
713
				BUG_ON(found->seq < cur->seq);
714 715 716 717 718 719 720
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
721
	read_unlock(&fs_info->tree_mod_log_lock);
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

749
static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
750
		     struct extent_buffer *src, unsigned long dst_offset,
751
		     unsigned long src_offset, int nr_items)
752
{
753
	struct btrfs_fs_info *fs_info = dst->fs_info;
754 755 756
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
757
	int i;
758
	int locked = 0;
759

760 761
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
762

763
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
764 765
		return 0;

766
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
767 768 769
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
770

771 772
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
773
	for (i = 0; i < nr_items; i++) {
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
800
	}
801

802
	write_unlock(&fs_info->tree_mod_log_lock);
803 804 805 806 807 808 809 810 811 812 813
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
814
		write_unlock(&fs_info->tree_mod_log_lock);
815 816 817
	kfree(tm_list);

	return ret;
818 819
}

820
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
821
{
822 823 824 825 826 827 828 829
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

830
	if (!tree_mod_need_log(eb->fs_info, NULL))
831 832 833
		return 0;

	nritems = btrfs_header_nritems(eb);
834
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
835 836 837 838 839 840 841 842 843 844 845 846
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

847
	if (tree_mod_dont_log(eb->fs_info, eb))
848 849
		goto free_tms;

850
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
851
	write_unlock(&eb->fs_info->tree_mod_log_lock);
852 853 854 855 856 857 858 859 860 861 862 863
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
864 865
}

866 867 868 869 870 871 872
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
873
	 * Tree blocks not in reference counted trees and tree roots
874 875 876 877
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
878
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
879 880 881 882 883
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
884

885 886 887 888 889 890
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
891 892
				       struct extent_buffer *cow,
				       int *last_ref)
893
{
894
	struct btrfs_fs_info *fs_info = root->fs_info;
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
919
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
920 921
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
922 923
		if (ret)
			return ret;
924 925
		if (refs == 0) {
			ret = -EROFS;
926
			btrfs_handle_fs_error(fs_info, ret, NULL);
927 928
			return ret;
		}
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
946
			ret = btrfs_inc_ref(trans, root, buf, 1);
947 948
			if (ret)
				return ret;
949 950 951

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
952
				ret = btrfs_dec_ref(trans, root, buf, 0);
953 954
				if (ret)
					return ret;
955
				ret = btrfs_inc_ref(trans, root, cow, 1);
956 957
				if (ret)
					return ret;
958 959 960 961 962 963
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
964
				ret = btrfs_inc_ref(trans, root, cow, 1);
965
			else
966
				ret = btrfs_inc_ref(trans, root, cow, 0);
967 968
			if (ret)
				return ret;
969 970
		}
		if (new_flags != 0) {
971 972
			int level = btrfs_header_level(buf);

973
			ret = btrfs_set_disk_extent_flags(trans,
974 975
							  buf->start,
							  buf->len,
976
							  new_flags, level, 0);
977 978
			if (ret)
				return ret;
979 980 981 982 983
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
984
				ret = btrfs_inc_ref(trans, root, cow, 1);
985
			else
986
				ret = btrfs_inc_ref(trans, root, cow, 0);
987 988
			if (ret)
				return ret;
989
			ret = btrfs_dec_ref(trans, root, buf, 1);
990 991
			if (ret)
				return ret;
992
		}
993
		btrfs_clean_tree_block(buf);
994
		*last_ref = 1;
995 996 997 998
	}
	return 0;
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
					  u64 empty_size)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
				     hint, empty_size);
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
1041
/*
C
Chris Mason 已提交
1042 1043 1044 1045
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1046 1047 1048
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1049 1050 1051
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1052
 */
C
Chris Mason 已提交
1053
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1054 1055 1056 1057
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1058
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1059
{
1060
	struct btrfs_fs_info *fs_info = root->fs_info;
1061
	struct btrfs_disk_key disk_key;
1062
	struct extent_buffer *cow;
1063
	int level, ret;
1064
	int last_ref = 0;
1065
	int unlock_orig = 0;
1066
	u64 parent_start = 0;
1067

1068 1069 1070
	if (*cow_ret == buf)
		unlock_orig = 1;

1071
	btrfs_assert_tree_locked(buf);
1072

1073
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1074
		trans->transid != fs_info->running_transaction->transid);
1075 1076
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1077

1078
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1079

1080 1081 1082 1083 1084
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1085 1086
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1087

1088 1089
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
					   level, search_start, empty_size);
1090 1091
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1092

1093 1094
	/* cow is set to blocking by btrfs_init_new_buffer */

1095
	copy_extent_buffer_full(cow, buf);
1096
	btrfs_set_header_bytenr(cow, cow->start);
1097
	btrfs_set_header_generation(cow, trans->transid);
1098 1099 1100 1101 1102 1103 1104
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1105

1106
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1107

1108
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1109
	if (ret) {
1110
		btrfs_abort_transaction(trans, ret);
1111 1112
		return ret;
	}
Z
Zheng Yan 已提交
1113

1114
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1115
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1116
		if (ret) {
1117
			btrfs_abort_transaction(trans, ret);
1118
			return ret;
1119
		}
1120
	}
1121

C
Chris Mason 已提交
1122
	if (buf == root->node) {
1123
		WARN_ON(parent && parent != buf);
1124 1125 1126
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1127

1128
		extent_buffer_get(cow);
1129 1130
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1131
		rcu_assign_pointer(root->node, cow);
1132

1133
		btrfs_free_tree_block(trans, root, buf, parent_start,
1134
				      last_ref);
1135
		free_extent_buffer(buf);
1136
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1137
	} else {
1138
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1139
		tree_mod_log_insert_key(parent, parent_slot,
1140
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1141
		btrfs_set_node_blockptr(parent, parent_slot,
1142
					cow->start);
1143 1144
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1145
		btrfs_mark_buffer_dirty(parent);
1146
		if (last_ref) {
1147
			ret = tree_mod_log_free_eb(buf);
1148
			if (ret) {
1149
				btrfs_abort_transaction(trans, ret);
1150 1151 1152
				return ret;
			}
		}
1153
		btrfs_free_tree_block(trans, root, buf, parent_start,
1154
				      last_ref);
C
Chris Mason 已提交
1155
	}
1156 1157
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1158
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1159
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1160
	*cow_ret = cow;
C
Chris Mason 已提交
1161 1162 1163
	return 0;
}

J
Jan Schmidt 已提交
1164 1165 1166 1167
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1168 1169
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1170 1171 1172
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1173
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1174 1175 1176
	int looped = 0;

	if (!time_seq)
1177
		return NULL;
J
Jan Schmidt 已提交
1178 1179

	/*
1180 1181 1182 1183
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1184 1185
	 */
	while (1) {
1186
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1187 1188
						time_seq);
		if (!looped && !tm)
1189
			return NULL;
J
Jan Schmidt 已提交
1190
		/*
1191 1192 1193
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1194
		 */
1195 1196
		if (!tm)
			break;
J
Jan Schmidt 已提交
1197

1198 1199 1200 1201 1202
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1203 1204 1205 1206 1207 1208 1209 1210
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1211 1212 1213 1214
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1215 1216 1217 1218 1219
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1220
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1221 1222 1223
 * time_seq).
 */
static void
1224 1225
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1235
	read_lock(&fs_info->tree_mod_log_lock);
1236
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1237 1238 1239 1240 1241 1242 1243 1244
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1245
			/* Fallthrough */
1246
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1247
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1248 1249 1250 1251
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1252
			n++;
J
Jan Schmidt 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1262
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1263 1264 1265
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1266 1267 1268
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1286
		tm = rb_entry(next, struct tree_mod_elem, node);
1287
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1288 1289
			break;
	}
1290
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1291 1292 1293
	btrfs_set_header_nritems(eb, n);
}

1294
/*
1295
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1296 1297 1298 1299 1300
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1301
static struct extent_buffer *
1302 1303
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1318
	btrfs_set_path_blocking(path);
1319
	btrfs_set_lock_blocking_read(eb);
1320

J
Jan Schmidt 已提交
1321 1322
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1323
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1324
		if (!eb_rewin) {
1325
			btrfs_tree_read_unlock_blocking(eb);
1326 1327 1328
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1329 1330 1331 1332
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1333
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1334 1335
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1336
		if (!eb_rewin) {
1337
			btrfs_tree_read_unlock_blocking(eb);
1338 1339 1340
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1341 1342
	}

1343
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1344 1345
	free_extent_buffer(eb);

1346
	btrfs_tree_read_lock(eb_rewin);
1347
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1348
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1349
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1350 1351 1352 1353

	return eb_rewin;
}

1354 1355 1356 1357 1358 1359 1360
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1361 1362 1363
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1364
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1365
	struct tree_mod_elem *tm;
1366 1367
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1368
	u64 eb_root_owner = 0;
1369
	struct extent_buffer *old;
1370
	struct tree_mod_root *old_root = NULL;
1371
	u64 old_generation = 0;
1372
	u64 logical;
1373
	int level;
J
Jan Schmidt 已提交
1374

1375
	eb_root = btrfs_read_lock_root_node(root);
1376
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1377
	if (!tm)
1378
		return eb_root;
J
Jan Schmidt 已提交
1379

1380 1381 1382 1383
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1384
		level = old_root->level;
1385
	} else {
1386
		logical = eb_root->start;
1387
		level = btrfs_header_level(eb_root);
1388
	}
J
Jan Schmidt 已提交
1389

1390
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1391
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1392 1393
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1394
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1395 1396 1397
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1398 1399 1400
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1401
		} else {
1402 1403
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1404 1405
		}
	} else if (old_root) {
1406
		eb_root_owner = btrfs_header_owner(eb_root);
1407 1408
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1409
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1410
	} else {
1411
		btrfs_set_lock_blocking_read(eb_root);
1412
		eb = btrfs_clone_extent_buffer(eb_root);
1413
		btrfs_tree_read_unlock_blocking(eb_root);
1414
		free_extent_buffer(eb_root);
1415 1416
	}

1417 1418 1419
	if (!eb)
		return NULL;
	btrfs_tree_read_lock(eb);
1420
	if (old_root) {
J
Jan Schmidt 已提交
1421 1422
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1423
		btrfs_set_header_owner(eb, eb_root_owner);
1424 1425
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1426
	}
1427
	if (tm)
1428
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1429 1430
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1431
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1432 1433 1434 1435

	return eb;
}

J
Jan Schmidt 已提交
1436 1437 1438 1439
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1440
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1441

1442
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1443 1444 1445
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1446
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1447
	}
1448
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1449 1450 1451 1452

	return level;
}

1453 1454 1455 1456
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1457
	if (btrfs_is_testing(root->fs_info))
1458
		return 0;
1459

1460 1461
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1462 1463 1464 1465 1466 1467 1468 1469

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1470
	 *    when we create snapshot during committing the transaction,
1471
	 *    after we've finished copying src root, we must COW the shared
1472 1473
	 *    block to ensure the metadata consistency.
	 */
1474 1475 1476
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1477
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1478
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1479 1480 1481 1482
		return 0;
	return 1;
}

C
Chris Mason 已提交
1483 1484
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1485
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1486 1487
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1488
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1489 1490
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1491
		    struct extent_buffer **cow_ret)
1492
{
1493
	struct btrfs_fs_info *fs_info = root->fs_info;
1494
	u64 search_start;
1495
	int ret;
C
Chris Mason 已提交
1496

1497 1498 1499 1500
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1501
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1502
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1503
		       trans->transid,
1504
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1505

1506
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1507
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1508
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1509

1510
	if (!should_cow_block(trans, root, buf)) {
1511
		trans->dirty = true;
1512 1513 1514
		*cow_ret = buf;
		return 0;
	}
1515

1516
	search_start = buf->start & ~((u64)SZ_1G - 1);
1517 1518

	if (parent)
1519 1520
		btrfs_set_lock_blocking_write(parent);
	btrfs_set_lock_blocking_write(buf);
1521

1522 1523 1524 1525 1526 1527 1528
	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1529
	ret = __btrfs_cow_block(trans, root, buf, parent,
1530
				 parent_slot, cow_ret, search_start, 0);
1531 1532 1533

	trace_btrfs_cow_block(root, buf, *cow_ret);

1534
	return ret;
1535 1536
}

C
Chris Mason 已提交
1537 1538 1539 1540
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1541
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1542
{
1543
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1544
		return 1;
1545
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1546 1547 1548 1549
		return 1;
	return 0;
}

1550 1551 1552
/*
 * compare two keys in a memcmp fashion
 */
1553 1554
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1555 1556 1557 1558 1559
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1560
	return btrfs_comp_cpu_keys(&k1, k2);
1561 1562
}

1563 1564 1565
/*
 * same as comp_keys only with two btrfs_key's
 */
1566
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1582

C
Chris Mason 已提交
1583 1584 1585 1586 1587
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1588
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1589
		       struct btrfs_root *root, struct extent_buffer *parent,
1590
		       int start_slot, u64 *last_ret,
1591
		       struct btrfs_key *progress)
1592
{
1593
	struct btrfs_fs_info *fs_info = root->fs_info;
1594
	struct extent_buffer *cur;
1595
	u64 blocknr;
1596
	u64 gen;
1597 1598
	u64 search_start = *last_ret;
	u64 last_block = 0;
1599 1600 1601 1602 1603
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1604
	int parent_level;
1605 1606
	int uptodate;
	u32 blocksize;
1607 1608
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1609

1610 1611
	parent_level = btrfs_header_level(parent);

1612 1613
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1614

1615
	parent_nritems = btrfs_header_nritems(parent);
1616
	blocksize = fs_info->nodesize;
1617
	end_slot = parent_nritems - 1;
1618

1619
	if (parent_nritems <= 1)
1620 1621
		return 0;

1622
	btrfs_set_lock_blocking_write(parent);
1623

1624
	for (i = start_slot; i <= end_slot; i++) {
1625
		struct btrfs_key first_key;
1626
		int close = 1;
1627

1628 1629 1630 1631 1632
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1633
		blocknr = btrfs_node_blockptr(parent, i);
1634
		gen = btrfs_node_ptr_generation(parent, i);
1635
		btrfs_node_key_to_cpu(parent, &first_key, i);
1636 1637
		if (last_block == 0)
			last_block = blocknr;
1638

1639
		if (i > 0) {
1640 1641
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1642
		}
1643
		if (!close && i < end_slot) {
1644 1645
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1646
		}
1647 1648
		if (close) {
			last_block = blocknr;
1649
			continue;
1650
		}
1651

1652
		cur = find_extent_buffer(fs_info, blocknr);
1653
		if (cur)
1654
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1655 1656
		else
			uptodate = 0;
1657
		if (!cur || !uptodate) {
1658
			if (!cur) {
1659 1660 1661
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1662 1663 1664
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1665
					free_extent_buffer(cur);
1666
					return -EIO;
1667
				}
1668
			} else if (!uptodate) {
1669 1670
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1671 1672 1673 1674
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1675
			}
1676
		}
1677
		if (search_start == 0)
1678
			search_start = last_block;
1679

1680
		btrfs_tree_lock(cur);
1681
		btrfs_set_lock_blocking_write(cur);
1682
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1683
					&cur, search_start,
1684
					min(16 * blocksize,
1685
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1686
		if (err) {
1687
			btrfs_tree_unlock(cur);
1688
			free_extent_buffer(cur);
1689
			break;
Y
Yan 已提交
1690
		}
1691 1692
		search_start = cur->start;
		last_block = cur->start;
1693
		*last_ret = search_start;
1694 1695
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1696 1697 1698 1699
	}
	return err;
}

C
Chris Mason 已提交
1700
/*
1701 1702 1703
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1704 1705 1706 1707 1708 1709
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1710
static noinline int generic_bin_search(struct extent_buffer *eb,
1711 1712
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1713
				       int max, int *slot)
1714 1715 1716 1717 1718
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1719
	struct btrfs_disk_key *tmp = NULL;
1720 1721 1722 1723 1724
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1725
	int err;
1726

1727 1728 1729 1730 1731 1732 1733 1734
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1735
	while (low < high) {
1736
		mid = (low + high) / 2;
1737 1738
		offset = p + mid * item_size;

1739
		if (!kaddr || offset < map_start ||
1740 1741
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1742 1743

			err = map_private_extent_buffer(eb, offset,
1744
						sizeof(struct btrfs_disk_key),
1745
						&kaddr, &map_start, &map_len);
1746 1747 1748 1749

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1750
			} else if (err == 1) {
1751 1752 1753
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1754 1755
			} else {
				return err;
1756
			}
1757 1758 1759 1760 1761

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1777 1778 1779 1780
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1781 1782
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1783
{
1784
	if (level == 0)
1785 1786
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1787
					  sizeof(struct btrfs_item),
1788
					  key, btrfs_header_nritems(eb),
1789
					  slot);
1790
	else
1791 1792
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1793
					  sizeof(struct btrfs_key_ptr),
1794
					  key, btrfs_header_nritems(eb),
1795
					  slot);
1796 1797
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1814 1815 1816
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1817 1818
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
					   int slot)
1819
{
1820
	int level = btrfs_header_level(parent);
1821
	struct extent_buffer *eb;
1822
	struct btrfs_key first_key;
1823

1824 1825
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1826 1827 1828

	BUG_ON(level == 0);

1829
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1830
	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1831 1832
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1833 1834 1835
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1836 1837 1838
	}

	return eb;
1839 1840
}

C
Chris Mason 已提交
1841 1842 1843 1844 1845
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1846
static noinline int balance_level(struct btrfs_trans_handle *trans,
1847 1848
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1849
{
1850
	struct btrfs_fs_info *fs_info = root->fs_info;
1851 1852 1853 1854
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1855 1856 1857 1858
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1859
	u64 orig_ptr;
1860

1861
	ASSERT(level > 0);
1862

1863
	mid = path->nodes[level];
1864

1865 1866
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1867 1868
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1869
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1870

L
Li Zefan 已提交
1871
	if (level < BTRFS_MAX_LEVEL - 1) {
1872
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1873 1874
		pslot = path->slots[level + 1];
	}
1875

C
Chris Mason 已提交
1876 1877 1878 1879
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1880 1881
	if (!parent) {
		struct extent_buffer *child;
1882

1883
		if (btrfs_header_nritems(mid) != 1)
1884 1885 1886
			return 0;

		/* promote the child to a root */
1887
		child = btrfs_read_node_slot(mid, 0);
1888 1889
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1890
			btrfs_handle_fs_error(fs_info, ret, NULL);
1891 1892 1893
			goto enospc;
		}

1894
		btrfs_tree_lock(child);
1895
		btrfs_set_lock_blocking_write(child);
1896
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1897 1898 1899 1900 1901
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1902

1903 1904
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1905
		rcu_assign_pointer(root->node, child);
1906

1907
		add_root_to_dirty_list(root);
1908
		btrfs_tree_unlock(child);
1909

1910
		path->locks[level] = 0;
1911
		path->nodes[level] = NULL;
1912
		btrfs_clean_tree_block(mid);
1913
		btrfs_tree_unlock(mid);
1914
		/* once for the path */
1915
		free_extent_buffer(mid);
1916 1917

		root_sub_used(root, mid->len);
1918
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1919
		/* once for the root ptr */
1920
		free_extent_buffer_stale(mid);
1921
		return 0;
1922
	}
1923
	if (btrfs_header_nritems(mid) >
1924
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1925 1926
		return 0;

1927
	left = btrfs_read_node_slot(parent, pslot - 1);
1928 1929 1930
	if (IS_ERR(left))
		left = NULL;

1931
	if (left) {
1932
		btrfs_tree_lock(left);
1933
		btrfs_set_lock_blocking_write(left);
1934
		wret = btrfs_cow_block(trans, root, left,
1935
				       parent, pslot - 1, &left);
1936 1937 1938 1939
		if (wret) {
			ret = wret;
			goto enospc;
		}
1940
	}
1941

1942
	right = btrfs_read_node_slot(parent, pslot + 1);
1943 1944 1945
	if (IS_ERR(right))
		right = NULL;

1946
	if (right) {
1947
		btrfs_tree_lock(right);
1948
		btrfs_set_lock_blocking_write(right);
1949
		wret = btrfs_cow_block(trans, root, right,
1950
				       parent, pslot + 1, &right);
1951 1952 1953 1954 1955 1956 1957
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1958 1959
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1960
		wret = push_node_left(trans, left, mid, 1);
1961 1962
		if (wret < 0)
			ret = wret;
1963
	}
1964 1965 1966 1967

	/*
	 * then try to empty the right most buffer into the middle
	 */
1968
	if (right) {
1969
		wret = push_node_left(trans, mid, right, 1);
1970
		if (wret < 0 && wret != -ENOSPC)
1971
			ret = wret;
1972
		if (btrfs_header_nritems(right) == 0) {
1973
			btrfs_clean_tree_block(right);
1974
			btrfs_tree_unlock(right);
1975
			del_ptr(root, path, level + 1, pslot + 1);
1976
			root_sub_used(root, right->len);
1977
			btrfs_free_tree_block(trans, root, right, 0, 1);
1978
			free_extent_buffer_stale(right);
1979
			right = NULL;
1980
		} else {
1981 1982
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1983 1984 1985
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1986 1987
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1988 1989
		}
	}
1990
	if (btrfs_header_nritems(mid) == 1) {
1991 1992 1993 1994 1995 1996 1997 1998 1999
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
2000 2001
		if (!left) {
			ret = -EROFS;
2002
			btrfs_handle_fs_error(fs_info, ret, NULL);
2003 2004
			goto enospc;
		}
2005
		wret = balance_node_right(trans, mid, left);
2006
		if (wret < 0) {
2007
			ret = wret;
2008 2009
			goto enospc;
		}
2010
		if (wret == 1) {
2011
			wret = push_node_left(trans, left, mid, 1);
2012 2013 2014
			if (wret < 0)
				ret = wret;
		}
2015 2016
		BUG_ON(wret == 1);
	}
2017
	if (btrfs_header_nritems(mid) == 0) {
2018
		btrfs_clean_tree_block(mid);
2019
		btrfs_tree_unlock(mid);
2020
		del_ptr(root, path, level + 1, pslot);
2021
		root_sub_used(root, mid->len);
2022
		btrfs_free_tree_block(trans, root, mid, 0, 1);
2023
		free_extent_buffer_stale(mid);
2024
		mid = NULL;
2025 2026
	} else {
		/* update the parent key to reflect our changes */
2027 2028
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
2029 2030 2031
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
2032 2033
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2034
	}
2035

2036
	/* update the path */
2037 2038 2039
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2040
			/* left was locked after cow */
2041
			path->nodes[level] = left;
2042 2043
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2044 2045
			if (mid) {
				btrfs_tree_unlock(mid);
2046
				free_extent_buffer(mid);
2047
			}
2048
		} else {
2049
			orig_slot -= btrfs_header_nritems(left);
2050 2051 2052
			path->slots[level] = orig_slot;
		}
	}
2053
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2054
	if (orig_ptr !=
2055
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2056
		BUG();
2057
enospc:
2058 2059
	if (right) {
		btrfs_tree_unlock(right);
2060
		free_extent_buffer(right);
2061 2062 2063 2064
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2065
		free_extent_buffer(left);
2066
	}
2067 2068 2069
	return ret;
}

C
Chris Mason 已提交
2070 2071 2072 2073
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2074
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2075 2076
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2077
{
2078
	struct btrfs_fs_info *fs_info = root->fs_info;
2079 2080 2081 2082
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2083 2084 2085 2086 2087 2088 2089 2090
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2091
	mid = path->nodes[level];
2092
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2093

L
Li Zefan 已提交
2094
	if (level < BTRFS_MAX_LEVEL - 1) {
2095
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2096 2097
		pslot = path->slots[level + 1];
	}
2098

2099
	if (!parent)
2100 2101
		return 1;

2102
	left = btrfs_read_node_slot(parent, pslot - 1);
2103 2104
	if (IS_ERR(left))
		left = NULL;
2105 2106

	/* first, try to make some room in the middle buffer */
2107
	if (left) {
2108
		u32 left_nr;
2109 2110

		btrfs_tree_lock(left);
2111
		btrfs_set_lock_blocking_write(left);
2112

2113
		left_nr = btrfs_header_nritems(left);
2114
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2115 2116
			wret = 1;
		} else {
2117
			ret = btrfs_cow_block(trans, root, left, parent,
2118
					      pslot - 1, &left);
2119 2120 2121
			if (ret)
				wret = 1;
			else {
2122
				wret = push_node_left(trans, left, mid, 0);
2123
			}
C
Chris Mason 已提交
2124
		}
2125 2126 2127
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2128
			struct btrfs_disk_key disk_key;
2129
			orig_slot += left_nr;
2130
			btrfs_node_key(mid, &disk_key, 0);
2131 2132 2133
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2134 2135 2136 2137
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2138 2139
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2140
				btrfs_tree_unlock(mid);
2141
				free_extent_buffer(mid);
2142 2143
			} else {
				orig_slot -=
2144
					btrfs_header_nritems(left);
2145
				path->slots[level] = orig_slot;
2146
				btrfs_tree_unlock(left);
2147
				free_extent_buffer(left);
2148 2149 2150
			}
			return 0;
		}
2151
		btrfs_tree_unlock(left);
2152
		free_extent_buffer(left);
2153
	}
2154
	right = btrfs_read_node_slot(parent, pslot + 1);
2155 2156
	if (IS_ERR(right))
		right = NULL;
2157 2158 2159 2160

	/*
	 * then try to empty the right most buffer into the middle
	 */
2161
	if (right) {
C
Chris Mason 已提交
2162
		u32 right_nr;
2163

2164
		btrfs_tree_lock(right);
2165
		btrfs_set_lock_blocking_write(right);
2166

2167
		right_nr = btrfs_header_nritems(right);
2168
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2169 2170
			wret = 1;
		} else {
2171 2172
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2173
					      &right);
2174 2175 2176
			if (ret)
				wret = 1;
			else {
2177
				wret = balance_node_right(trans, right, mid);
2178
			}
C
Chris Mason 已提交
2179
		}
2180 2181 2182
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2183 2184 2185
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2186 2187 2188
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2189 2190 2191 2192 2193
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2194 2195
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2196
					btrfs_header_nritems(mid);
2197
				btrfs_tree_unlock(mid);
2198
				free_extent_buffer(mid);
2199
			} else {
2200
				btrfs_tree_unlock(right);
2201
				free_extent_buffer(right);
2202 2203 2204
			}
			return 0;
		}
2205
		btrfs_tree_unlock(right);
2206
		free_extent_buffer(right);
2207 2208 2209 2210
	}
	return 1;
}

2211
/*
C
Chris Mason 已提交
2212 2213
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2214
 */
2215
static void reada_for_search(struct btrfs_fs_info *fs_info,
2216 2217
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2218
{
2219
	struct extent_buffer *node;
2220
	struct btrfs_disk_key disk_key;
2221 2222
	u32 nritems;
	u64 search;
2223
	u64 target;
2224
	u64 nread = 0;
2225
	struct extent_buffer *eb;
2226 2227 2228
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2229

2230
	if (level != 1)
2231 2232 2233
		return;

	if (!path->nodes[level])
2234 2235
		return;

2236
	node = path->nodes[level];
2237

2238
	search = btrfs_node_blockptr(node, slot);
2239 2240
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2241 2242
	if (eb) {
		free_extent_buffer(eb);
2243 2244 2245
		return;
	}

2246
	target = search;
2247

2248
	nritems = btrfs_header_nritems(node);
2249
	nr = slot;
2250

C
Chris Mason 已提交
2251
	while (1) {
2252
		if (path->reada == READA_BACK) {
2253 2254 2255
			if (nr == 0)
				break;
			nr--;
2256
		} else if (path->reada == READA_FORWARD) {
2257 2258 2259
			nr++;
			if (nr >= nritems)
				break;
2260
		}
2261
		if (path->reada == READA_BACK && objectid) {
2262 2263 2264 2265
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2266
		search = btrfs_node_blockptr(node, nr);
2267 2268
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2269
			readahead_tree_block(fs_info, search);
2270 2271 2272
			nread += blocksize;
		}
		nscan++;
2273
		if ((nread > 65536 || nscan > 32))
2274
			break;
2275 2276
	}
}
2277

2278
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2279
				       struct btrfs_path *path, int level)
2280 2281 2282 2283 2284 2285 2286 2287 2288
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2289
	parent = path->nodes[level + 1];
2290
	if (!parent)
J
Josef Bacik 已提交
2291
		return;
2292 2293

	nritems = btrfs_header_nritems(parent);
2294
	slot = path->slots[level + 1];
2295 2296 2297 2298

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2299
		eb = find_extent_buffer(fs_info, block1);
2300 2301 2302 2303 2304 2305
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2306 2307 2308
			block1 = 0;
		free_extent_buffer(eb);
	}
2309
	if (slot + 1 < nritems) {
2310 2311
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2312
		eb = find_extent_buffer(fs_info, block2);
2313
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2314 2315 2316
			block2 = 0;
		free_extent_buffer(eb);
	}
2317

J
Josef Bacik 已提交
2318
	if (block1)
2319
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2320
	if (block2)
2321
		readahead_tree_block(fs_info, block2);
2322 2323 2324
}


C
Chris Mason 已提交
2325
/*
C
Chris Mason 已提交
2326 2327 2328 2329
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2330
 *
C
Chris Mason 已提交
2331 2332 2333
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2334
 *
C
Chris Mason 已提交
2335 2336
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2337
 */
2338
static noinline void unlock_up(struct btrfs_path *path, int level,
2339 2340
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2341 2342 2343
{
	int i;
	int skip_level = level;
2344
	int no_skips = 0;
2345 2346 2347 2348 2349 2350 2351
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2352
		if (!no_skips && path->slots[i] == 0) {
2353 2354 2355
			skip_level = i + 1;
			continue;
		}
2356
		if (!no_skips && path->keep_locks) {
2357 2358 2359
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2360
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2361 2362 2363 2364
				skip_level = i + 1;
				continue;
			}
		}
2365 2366 2367
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2368
		t = path->nodes[i];
2369
		if (i >= lowest_unlock && i > skip_level) {
2370
			btrfs_tree_unlock_rw(t, path->locks[i]);
2371
			path->locks[i] = 0;
2372 2373 2374 2375 2376
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2377 2378 2379 2380
		}
	}
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2394
	if (path->keep_locks)
2395 2396 2397 2398
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2399
			continue;
2400
		if (!path->locks[i])
2401
			continue;
2402
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2403 2404 2405 2406
		path->locks[i] = 0;
	}
}

2407 2408 2409 2410 2411 2412 2413 2414 2415
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2416 2417
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2418
		      const struct btrfs_key *key)
2419
{
2420
	struct btrfs_fs_info *fs_info = root->fs_info;
2421 2422 2423 2424
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2425
	struct btrfs_key first_key;
2426
	int ret;
2427
	int parent_level;
2428 2429 2430

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2431 2432
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2433

2434
	tmp = find_extent_buffer(fs_info, blocknr);
2435
	if (tmp) {
2436
		/* first we do an atomic uptodate check */
2437
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2438 2439 2440 2441 2442
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
2443
			if (btrfs_verify_level_key(tmp,
2444 2445 2446 2447
					parent_level - 1, &first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2461
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2462 2463 2464
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2465
		}
2466 2467 2468
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2469 2470 2471 2472 2473
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2474 2475 2476
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2477
	 */
2478 2479 2480
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2481
	if (p->reada != READA_NONE)
2482
		reada_for_search(fs_info, p, level, slot, key->objectid);
2483

2484
	ret = -EAGAIN;
2485
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2486
			      &first_key);
2487
	if (!IS_ERR(tmp)) {
2488 2489 2490 2491 2492 2493
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2494
		if (!extent_buffer_uptodate(tmp))
2495
			ret = -EIO;
2496
		free_extent_buffer(tmp);
2497 2498
	} else {
		ret = PTR_ERR(tmp);
2499
	}
2500 2501

	btrfs_release_path(p);
2502
	return ret;
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2517 2518
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2519
{
2520
	struct btrfs_fs_info *fs_info = root->fs_info;
2521
	int ret;
2522

2523
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2524
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2525 2526
		int sret;

2527 2528 2529 2530 2531 2532
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2533
		btrfs_set_path_blocking(p);
2534
		reada_for_balance(fs_info, p, level);
2535 2536 2537 2538 2539 2540 2541 2542 2543
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2544
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2545 2546
		int sret;

2547 2548 2549 2550 2551 2552
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2553
		btrfs_set_path_blocking(p);
2554
		reada_for_balance(fs_info, p, level);
2555 2556 2557 2558 2559 2560 2561 2562
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2563
			btrfs_release_path(p);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2576
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2577 2578 2579
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2580
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2581 2582 2583 2584 2585 2586 2587 2588
		return *prev_cmp;
	}

	*slot = 0;

	return 0;
}

2589
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2590 2591 2592 2593 2594 2595
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2596 2597

	ASSERT(path);
2598
	ASSERT(found_key);
2599 2600 2601 2602 2603 2604

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2605
	if (ret < 0)
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2647
			down_read(&fs_info->commit_root_sem);
2648
			b = btrfs_clone_extent_buffer(root->commit_root);
2649
			up_read(&fs_info->commit_root_sem);
2650 2651 2652 2653 2654 2655 2656 2657
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
			extent_buffer_get(b);
		}
		level = btrfs_header_level(b);
2658 2659 2660 2661 2662
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2674 2675
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2676
	 */
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2709
/*
2710 2711
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2712
 *
2713 2714 2715 2716 2717 2718 2719 2720
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2721
 *
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2733
 */
2734 2735 2736
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2737
{
2738
	struct extent_buffer *b;
2739 2740
	int slot;
	int ret;
2741
	int err;
2742
	int level;
2743
	int lowest_unlock = 1;
2744 2745
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2746
	u8 lowest_level = 0;
2747
	int min_write_lock_level;
2748
	int prev_cmp;
2749

2750
	lowest_level = p->lowest_level;
2751
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2752
	WARN_ON(p->nodes[0] != NULL);
2753
	BUG_ON(!cow && ins_len);
2754

2755
	if (ins_len < 0) {
2756
		lowest_unlock = 2;
2757

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2774
	if (cow && (p->keep_locks || p->lowest_level))
2775 2776
		write_lock_level = BTRFS_MAX_LEVEL;

2777 2778
	min_write_lock_level = write_lock_level;

2779
again:
2780
	prev_cmp = -1;
2781
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2782 2783 2784 2785
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2786

2787
	while (b) {
2788
		level = btrfs_header_level(b);
2789 2790 2791 2792 2793

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2794
		if (cow) {
2795 2796
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2797 2798 2799 2800 2801
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2802 2803
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2804
				goto cow_done;
2805
			}
2806

2807 2808 2809 2810
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2811 2812 2813 2814
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2815 2816 2817 2818 2819
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2820
			btrfs_set_path_blocking(p);
2821 2822 2823 2824 2825 2826 2827
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2828 2829
			if (err) {
				ret = err;
2830
				goto done;
2831
			}
C
Chris Mason 已提交
2832
		}
2833
cow_done:
2834
		p->nodes[level] = b;
L
Liu Bo 已提交
2835 2836 2837 2838
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2839 2840 2841 2842 2843 2844 2845

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2846 2847 2848 2849
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2850
		 */
2851 2852 2853 2854 2855 2856 2857 2858
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2859

2860
		ret = key_search(b, key, level, &prev_cmp, &slot);
2861 2862
		if (ret < 0)
			goto done;
2863

2864
		if (level != 0) {
2865 2866 2867
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2868
				slot -= 1;
2869
			}
2870
			p->slots[level] = slot;
2871
			err = setup_nodes_for_search(trans, root, p, b, level,
2872
					     ins_len, &write_lock_level);
2873
			if (err == -EAGAIN)
2874
				goto again;
2875 2876
			if (err) {
				ret = err;
2877
				goto done;
2878
			}
2879 2880
			b = p->nodes[level];
			slot = p->slots[level];
2881

2882 2883 2884 2885 2886 2887
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2888
			if (slot == 0 && ins_len &&
2889 2890 2891 2892 2893 2894
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2895 2896
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2897

2898
			if (level == lowest_level) {
2899 2900
				if (dec)
					p->slots[level]++;
2901
				goto done;
2902
			}
2903

2904
			err = read_block_for_search(root, p, &b, level,
2905
						    slot, key);
2906
			if (err == -EAGAIN)
2907
				goto again;
2908 2909
			if (err) {
				ret = err;
2910
				goto done;
2911
			}
2912

2913
			if (!p->skip_locking) {
2914 2915 2916 2917 2918 2919 2920 2921 2922
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2923
					err = btrfs_tree_read_lock_atomic(b);
2924 2925 2926 2927 2928
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2929
				}
2930
				p->nodes[level] = b;
2931
			}
2932 2933
		} else {
			p->slots[level] = slot;
2934
			if (ins_len > 0 &&
2935
			    btrfs_leaf_free_space(b) < ins_len) {
2936 2937 2938 2939 2940 2941
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2942
				btrfs_set_path_blocking(p);
2943 2944
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2945

2946 2947 2948
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2949 2950
					goto done;
				}
C
Chris Mason 已提交
2951
			}
2952
			if (!p->search_for_split)
2953
				unlock_up(p, level, lowest_unlock,
2954
					  min_write_lock_level, NULL);
2955
			goto done;
2956 2957
		}
	}
2958 2959
	ret = 1;
done:
2960 2961 2962 2963
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2964 2965
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2966
	if (ret < 0 && !p->skip_release_on_error)
2967
		btrfs_release_path(p);
2968
	return ret;
2969 2970
}

J
Jan Schmidt 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2982
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2983 2984
			  struct btrfs_path *p, u64 time_seq)
{
2985
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2986 2987 2988 2989 2990 2991 2992
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2993
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
3005 3006 3007 3008
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

3024
		/*
3025
		 * Since we can unwind ebs we want to do a real search every
3026 3027 3028
		 * time.
		 */
		prev_cmp = -1;
3029
		ret = key_search(b, key, level, &prev_cmp, &slot);
3030 3031
		if (ret < 0)
			goto done;
J
Jan Schmidt 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3048
			err = read_block_for_search(root, p, &b, level,
3049
						    slot, key);
J
Jan Schmidt 已提交
3050 3051 3052 3053 3054 3055 3056 3057
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3058
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3059 3060 3061 3062
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
			}
3063
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3064 3065 3066 3067
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3099 3100 3101
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3136 3137 3138 3139 3140
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3141 3142 3143
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3144
				return 0;
3145
			}
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3157 3158 3159 3160 3161 3162
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3163 3164 3165 3166 3167 3168
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3169
 *
C
Chris Mason 已提交
3170
 */
3171
static void fixup_low_keys(struct btrfs_path *path,
3172
			   struct btrfs_disk_key *key, int level)
3173 3174
{
	int i;
3175
	struct extent_buffer *t;
3176
	int ret;
3177

C
Chris Mason 已提交
3178
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3179
		int tslot = path->slots[i];
3180

3181
		if (!path->nodes[i])
3182
			break;
3183
		t = path->nodes[i];
3184 3185 3186
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3187
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3188
		btrfs_mark_buffer_dirty(path->nodes[i]);
3189 3190 3191 3192 3193
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3194 3195 3196 3197 3198 3199
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3200 3201
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3202
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3223 3224 3225
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3237 3238 3239 3240 3241 3242
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3243
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3244 3245
}

C
Chris Mason 已提交
3246 3247
/*
 * try to push data from one node into the next node left in the
3248
 * tree.
C
Chris Mason 已提交
3249 3250 3251
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3252
 */
3253
static int push_node_left(struct btrfs_trans_handle *trans,
3254
			  struct extent_buffer *dst,
3255
			  struct extent_buffer *src, int empty)
3256
{
3257
	struct btrfs_fs_info *fs_info = trans->fs_info;
3258
	int push_items = 0;
3259 3260
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3261
	int ret = 0;
3262

3263 3264
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3265
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3266 3267
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3268

3269
	if (!empty && src_nritems <= 8)
3270 3271
		return 1;

C
Chris Mason 已提交
3272
	if (push_items <= 0)
3273 3274
		return 1;

3275
	if (empty) {
3276
		push_items = min(src_nritems, push_items);
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3289

3290
	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3291
	if (ret) {
3292
		btrfs_abort_transaction(trans, ret);
3293 3294
		return ret;
	}
3295 3296 3297
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3298
			   push_items * sizeof(struct btrfs_key_ptr));
3299

3300
	if (push_items < src_nritems) {
3301
		/*
3302 3303
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3304
		 */
3305 3306 3307 3308 3309 3310 3311 3312 3313
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3314

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3327 3328 3329
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3330
{
3331
	struct btrfs_fs_info *fs_info = trans->fs_info;
3332 3333 3334 3335 3336 3337
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3338 3339 3340
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3341 3342
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3343
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3344
	if (push_items <= 0)
3345
		return 1;
3346

C
Chris Mason 已提交
3347
	if (src_nritems < 4)
3348
		return 1;
3349 3350 3351

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3352
	if (max_push >= src_nritems)
3353
		return 1;
Y
Yan 已提交
3354

3355 3356 3357
	if (max_push < push_items)
		push_items = max_push;

3358 3359
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3360 3361 3362 3363
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3364

3365 3366
	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
				   push_items);
3367
	if (ret) {
3368
		btrfs_abort_transaction(trans, ret);
3369 3370
		return ret;
	}
3371 3372 3373
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3374
			   push_items * sizeof(struct btrfs_key_ptr));
3375

3376 3377
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3378

3379 3380
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3381

C
Chris Mason 已提交
3382
	return ret;
3383 3384
}

C
Chris Mason 已提交
3385 3386 3387 3388
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3389 3390
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3391
 */
C
Chris Mason 已提交
3392
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3393
			   struct btrfs_root *root,
3394
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3395
{
3396
	struct btrfs_fs_info *fs_info = root->fs_info;
3397
	u64 lower_gen;
3398 3399
	struct extent_buffer *lower;
	struct extent_buffer *c;
3400
	struct extent_buffer *old;
3401
	struct btrfs_disk_key lower_key;
3402
	int ret;
C
Chris Mason 已提交
3403 3404 3405 3406

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3407 3408 3409 3410 3411 3412
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3413 3414
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
					 root->node->start, 0);
3415 3416
	if (IS_ERR(c))
		return PTR_ERR(c);
3417

3418
	root_add_used(root, fs_info->nodesize);
3419

3420 3421
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3422
	btrfs_set_node_blockptr(c, 0, lower->start);
3423
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3424
	WARN_ON(lower_gen != trans->transid);
3425 3426

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3427

3428
	btrfs_mark_buffer_dirty(c);
3429

3430
	old = root->node;
3431 3432
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3433
	rcu_assign_pointer(root->node, c);
3434 3435 3436 3437

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3438
	add_root_to_dirty_list(root);
3439 3440
	extent_buffer_get(c);
	path->nodes[level] = c;
3441
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3442 3443 3444 3445
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3446 3447 3448
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3449
 *
C
Chris Mason 已提交
3450 3451 3452
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3453
static void insert_ptr(struct btrfs_trans_handle *trans,
3454
		       struct btrfs_path *path,
3455
		       struct btrfs_disk_key *key, u64 bytenr,
3456
		       int slot, int level)
C
Chris Mason 已提交
3457
{
3458
	struct extent_buffer *lower;
C
Chris Mason 已提交
3459
	int nritems;
3460
	int ret;
C
Chris Mason 已提交
3461 3462

	BUG_ON(!path->nodes[level]);
3463
	btrfs_assert_tree_locked(path->nodes[level]);
3464 3465
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3466
	BUG_ON(slot > nritems);
3467
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
C
Chris Mason 已提交
3468
	if (slot != nritems) {
3469 3470
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3471
					nritems - slot);
3472 3473
			BUG_ON(ret < 0);
		}
3474 3475 3476
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3477
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3478
	}
3479
	if (level) {
3480 3481
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3482 3483
		BUG_ON(ret < 0);
	}
3484
	btrfs_set_node_key(lower, key, slot);
3485
	btrfs_set_node_blockptr(lower, slot, bytenr);
3486 3487
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3488 3489
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3490 3491
}

C
Chris Mason 已提交
3492 3493 3494 3495 3496 3497
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3498 3499
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3500
 */
3501 3502 3503
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3504
{
3505
	struct btrfs_fs_info *fs_info = root->fs_info;
3506 3507 3508
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3509
	int mid;
C
Chris Mason 已提交
3510
	int ret;
3511
	u32 c_nritems;
3512

3513
	c = path->nodes[level];
3514
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3515
	if (c == root->node) {
3516
		/*
3517 3518
		 * trying to split the root, lets make a new one
		 *
3519
		 * tree mod log: We don't log_removal old root in
3520 3521 3522 3523 3524
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3525
		 */
3526
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3527 3528
		if (ret)
			return ret;
3529
	} else {
3530
		ret = push_nodes_for_insert(trans, root, path, level);
3531 3532
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3533
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3534
			return 0;
3535 3536
		if (ret < 0)
			return ret;
3537
	}
3538

3539
	c_nritems = btrfs_header_nritems(c);
3540 3541
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3542

3543 3544
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
					     c->start, 0);
3545 3546 3547
	if (IS_ERR(split))
		return PTR_ERR(split);

3548
	root_add_used(root, fs_info->nodesize);
3549
	ASSERT(btrfs_header_level(c) == level);
3550

3551
	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3552
	if (ret) {
3553
		btrfs_abort_transaction(trans, ret);
3554 3555
		return ret;
	}
3556 3557 3558 3559 3560 3561
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3562 3563
	ret = 0;

3564 3565 3566
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3567
	insert_ptr(trans, path, &disk_key, split->start,
3568
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3569

C
Chris Mason 已提交
3570
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3571
		path->slots[level] -= mid;
3572
		btrfs_tree_unlock(c);
3573 3574
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3575 3576
		path->slots[level + 1] += 1;
	} else {
3577
		btrfs_tree_unlock(split);
3578
		free_extent_buffer(split);
3579
	}
C
Chris Mason 已提交
3580
	return ret;
3581 3582
}

C
Chris Mason 已提交
3583 3584 3585 3586 3587
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3588
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3589
{
J
Josef Bacik 已提交
3590 3591 3592
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3593
	int data_len;
3594
	int nritems = btrfs_header_nritems(l);
3595
	int end = min(nritems, start + nr) - 1;
3596 3597 3598

	if (!nr)
		return 0;
3599
	btrfs_init_map_token(&token, l);
3600 3601
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3602 3603 3604
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3605
	data_len += sizeof(struct btrfs_item) * nr;
3606
	WARN_ON(data_len < 0);
3607 3608 3609
	return data_len;
}

3610 3611 3612 3613 3614
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3615
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3616
{
3617
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3618 3619
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3620 3621

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3622
	if (ret < 0) {
3623 3624 3625 3626 3627
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3628 3629
	}
	return ret;
3630 3631
}

3632 3633 3634 3635
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3636
static noinline int __push_leaf_right(struct btrfs_path *path,
3637 3638
				      int data_size, int empty,
				      struct extent_buffer *right,
3639 3640
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3641
{
3642
	struct btrfs_fs_info *fs_info = right->fs_info;
3643
	struct extent_buffer *left = path->nodes[0];
3644
	struct extent_buffer *upper = path->nodes[1];
3645
	struct btrfs_map_token token;
3646
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3647
	int slot;
3648
	u32 i;
C
Chris Mason 已提交
3649 3650
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3651
	struct btrfs_item *item;
3652
	u32 nr;
3653
	u32 right_nritems;
3654
	u32 data_end;
3655
	u32 this_item_size;
C
Chris Mason 已提交
3656

3657 3658 3659
	if (empty)
		nr = 0;
	else
3660
		nr = max_t(u32, 1, min_slot);
3661

Z
Zheng Yan 已提交
3662
	if (path->slots[0] >= left_nritems)
3663
		push_space += data_size;
Z
Zheng Yan 已提交
3664

3665
	slot = path->slots[1];
3666 3667
	i = left_nritems - 1;
	while (i >= nr) {
3668
		item = btrfs_item_nr(i);
3669

Z
Zheng Yan 已提交
3670 3671 3672 3673
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3674 3675
				int space = btrfs_leaf_free_space(left);

Z
Zheng Yan 已提交
3676 3677 3678 3679 3680
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3681
		if (path->slots[0] == i)
3682
			push_space += data_size;
3683 3684 3685

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3686
			break;
Z
Zheng Yan 已提交
3687

C
Chris Mason 已提交
3688
		push_items++;
3689
		push_space += this_item_size + sizeof(*item);
3690 3691 3692
		if (i == 0)
			break;
		i--;
3693
	}
3694

3695 3696
	if (push_items == 0)
		goto out_unlock;
3697

J
Julia Lawall 已提交
3698
	WARN_ON(!empty && push_items == left_nritems);
3699

C
Chris Mason 已提交
3700
	/* push left to right */
3701
	right_nritems = btrfs_header_nritems(right);
3702

3703
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3704
	push_space -= leaf_data_end(left);
3705

C
Chris Mason 已提交
3706
	/* make room in the right data area */
3707
	data_end = leaf_data_end(right);
3708
	memmove_extent_buffer(right,
3709 3710
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3711
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3712

C
Chris Mason 已提交
3713
	/* copy from the left data area */
3714
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3715
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3716
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
C
Chris Mason 已提交
3717
		     push_space);
3718 3719 3720 3721 3722

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3723
	/* copy the items from left to right */
3724 3725 3726
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3727 3728

	/* update the item pointers */
3729
	btrfs_init_map_token(&token, right);
3730
	right_nritems += push_items;
3731
	btrfs_set_header_nritems(right, right_nritems);
3732
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3733
	for (i = 0; i < right_nritems; i++) {
3734
		item = btrfs_item_nr(i);
3735 3736
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3737 3738
	}

3739
	left_nritems -= push_items;
3740
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3741

3742 3743
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3744
	else
3745
		btrfs_clean_tree_block(left);
3746

3747
	btrfs_mark_buffer_dirty(right);
3748

3749 3750
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3751
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3752

C
Chris Mason 已提交
3753
	/* then fixup the leaf pointer in the path */
3754 3755
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3756
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3757
			btrfs_clean_tree_block(path->nodes[0]);
3758
		btrfs_tree_unlock(path->nodes[0]);
3759 3760
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3761 3762
		path->slots[1] += 1;
	} else {
3763
		btrfs_tree_unlock(right);
3764
		free_extent_buffer(right);
C
Chris Mason 已提交
3765 3766
	}
	return 0;
3767 3768 3769 3770 3771

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3772
}
3773

3774 3775 3776 3777 3778 3779
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3780 3781 3782
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3783 3784
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3785 3786 3787
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3807
	right = btrfs_read_node_slot(upper, slot + 1);
3808 3809 3810 3811 3812
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3813 3814
		return 1;

3815
	btrfs_tree_lock(right);
3816
	btrfs_set_lock_blocking_write(right);
3817

3818
	free_space = btrfs_leaf_free_space(right);
3819 3820 3821 3822 3823 3824 3825 3826 3827
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3828
	free_space = btrfs_leaf_free_space(right);
3829 3830 3831 3832 3833 3834 3835
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3836 3837 3838 3839
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3840
		 * no need to touch/dirty our left leaf. */
3841 3842 3843 3844 3845 3846 3847 3848
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3849
	return __push_leaf_right(path, min_data_size, empty,
3850
				right, free_space, left_nritems, min_slot);
3851 3852 3853 3854 3855 3856
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3857 3858 3859
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3860 3861 3862 3863
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3864
 */
3865
static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3866
				     int empty, struct extent_buffer *left,
3867 3868
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3869
{
3870
	struct btrfs_fs_info *fs_info = left->fs_info;
3871 3872
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3873 3874 3875
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3876
	struct btrfs_item *item;
3877
	u32 old_left_nritems;
3878
	u32 nr;
C
Chris Mason 已提交
3879
	int ret = 0;
3880 3881
	u32 this_item_size;
	u32 old_left_item_size;
3882 3883
	struct btrfs_map_token token;

3884
	if (empty)
3885
		nr = min(right_nritems, max_slot);
3886
	else
3887
		nr = min(right_nritems - 1, max_slot);
3888 3889

	for (i = 0; i < nr; i++) {
3890
		item = btrfs_item_nr(i);
3891

Z
Zheng Yan 已提交
3892 3893 3894 3895
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3896 3897
				int space = btrfs_leaf_free_space(right);

Z
Zheng Yan 已提交
3898 3899 3900 3901 3902
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3903
		if (path->slots[0] == i)
3904
			push_space += data_size;
3905 3906 3907

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3908
			break;
3909

3910
		push_items++;
3911 3912 3913
		push_space += this_item_size + sizeof(*item);
	}

3914
	if (push_items == 0) {
3915 3916
		ret = 1;
		goto out;
3917
	}
3918
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3919

3920
	/* push data from right to left */
3921 3922 3923 3924 3925
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3926
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3927
		     btrfs_item_offset_nr(right, push_items - 1);
3928

3929
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3930
		     leaf_data_end(left) - push_space,
3931
		     BTRFS_LEAF_DATA_OFFSET +
3932
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3933
		     push_space);
3934
	old_left_nritems = btrfs_header_nritems(left);
3935
	BUG_ON(old_left_nritems <= 0);
3936

3937
	btrfs_init_map_token(&token, left);
3938
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3939
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3940
		u32 ioff;
3941

3942
		item = btrfs_item_nr(i);
3943

3944 3945
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3946
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3947
		      &token);
3948
	}
3949
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3950 3951

	/* fixup right node */
J
Julia Lawall 已提交
3952 3953
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3954
		       right_nritems);
3955 3956 3957

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3958
						  leaf_data_end(right);
3959
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3960
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3961
				      BTRFS_LEAF_DATA_OFFSET +
3962
				      leaf_data_end(right), push_space);
3963 3964

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3965 3966 3967
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3968
	}
3969 3970

	btrfs_init_map_token(&token, right);
3971 3972
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3973
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3974
	for (i = 0; i < right_nritems; i++) {
3975
		item = btrfs_item_nr(i);
3976

3977 3978 3979
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3980
	}
3981

3982
	btrfs_mark_buffer_dirty(left);
3983 3984
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3985
	else
3986
		btrfs_clean_tree_block(right);
3987

3988
	btrfs_item_key(right, &disk_key, 0);
3989
	fixup_low_keys(path, &disk_key, 1);
3990 3991 3992 3993

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3994
		btrfs_tree_unlock(path->nodes[0]);
3995 3996
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3997 3998
		path->slots[1] -= 1;
	} else {
3999
		btrfs_tree_unlock(left);
4000
		free_extent_buffer(left);
4001 4002
		path->slots[0] -= push_items;
	}
4003
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
4004
	return ret;
4005 4006 4007 4008
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
4009 4010
}

4011 4012 4013
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4014 4015 4016 4017
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
4018 4019
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4020 4021
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

4042
	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4043 4044 4045 4046 4047
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4048 4049
		return 1;

4050
	btrfs_tree_lock(left);
4051
	btrfs_set_lock_blocking_write(left);
4052

4053
	free_space = btrfs_leaf_free_space(left);
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4064 4065
		if (ret == -ENOSPC)
			ret = 1;
4066 4067 4068
		goto out;
	}

4069
	free_space = btrfs_leaf_free_space(left);
4070 4071 4072 4073 4074
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4075
	return __push_leaf_left(path, min_data_size,
4076 4077
			       empty, left, free_space, right_nritems,
			       max_slot);
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4088 4089 4090 4091 4092
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4093
{
4094
	struct btrfs_fs_info *fs_info = trans->fs_info;
4095 4096 4097 4098
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4099 4100
	struct btrfs_map_token token;

4101 4102
	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4103
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4104 4105 4106 4107 4108 4109

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4110 4111
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4112
		     leaf_data_end(l), data_copy_size);
4113

4114
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4115

4116
	btrfs_init_map_token(&token, right);
4117
	for (i = 0; i < nritems; i++) {
4118
		struct btrfs_item *item = btrfs_item_nr(i);
4119 4120
		u32 ioff;

4121 4122 4123
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4124 4125 4126 4127
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4128
	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4167
	int space_needed = data_size;
4168 4169

	slot = path->slots[0];
4170
	if (slot < btrfs_header_nritems(path->nodes[0]))
4171
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4172 4173 4174 4175 4176

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4177
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4192
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4193 4194 4195 4196
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4197 4198
	space_needed = data_size;
	if (slot > 0)
4199
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4200
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4212 4213 4214
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4215 4216
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4217
 */
4218 4219
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4220
			       const struct btrfs_key *ins_key,
4221 4222
			       struct btrfs_path *path, int data_size,
			       int extend)
4223
{
4224
	struct btrfs_disk_key disk_key;
4225
	struct extent_buffer *l;
4226
	u32 nritems;
4227 4228
	int mid;
	int slot;
4229
	struct extent_buffer *right;
4230
	struct btrfs_fs_info *fs_info = root->fs_info;
4231
	int ret = 0;
C
Chris Mason 已提交
4232
	int wret;
4233
	int split;
4234
	int num_doubles = 0;
4235
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4236

4237 4238 4239
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4240
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4241 4242
		return -EOVERFLOW;

C
Chris Mason 已提交
4243
	/* first try to make some room by pushing left and right */
4244
	if (data_size && path->nodes[1]) {
4245 4246 4247
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4248
			space_needed -= btrfs_leaf_free_space(l);
4249 4250 4251

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4252
		if (wret < 0)
C
Chris Mason 已提交
4253
			return wret;
4254
		if (wret) {
4255 4256
			space_needed = data_size;
			if (slot > 0)
4257
				space_needed -= btrfs_leaf_free_space(l);
4258 4259
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4260 4261 4262 4263
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4264

4265
		/* did the pushes work? */
4266
		if (btrfs_leaf_free_space(l) >= data_size)
4267
			return 0;
4268
	}
C
Chris Mason 已提交
4269

C
Chris Mason 已提交
4270
	if (!path->nodes[1]) {
4271
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4272 4273 4274
		if (ret)
			return ret;
	}
4275
again:
4276
	split = 1;
4277
	l = path->nodes[0];
4278
	slot = path->slots[0];
4279
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4280
	mid = (nritems + 1) / 2;
4281

4282 4283 4284
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4285
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4286 4287 4288 4289 4290 4291
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4292
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4293 4294
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4295 4296 4297 4298 4299 4300
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4301
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4302 4303 4304 4305 4306 4307 4308 4309
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4310
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4311 4312
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4313
					split = 2;
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4324 4325
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
					     l->start, 0);
4326
	if (IS_ERR(right))
4327
		return PTR_ERR(right);
4328

4329
	root_add_used(root, fs_info->nodesize);
4330

4331 4332 4333
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4334
			insert_ptr(trans, path, &disk_key,
4335
				   right->start, path->slots[1] + 1, 1);
4336 4337 4338 4339 4340 4341 4342
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4343
			insert_ptr(trans, path, &disk_key,
4344
				   right->start, path->slots[1], 1);
4345 4346 4347 4348
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4349
			if (path->slots[1] == 0)
4350
				fixup_low_keys(path, &disk_key, 1);
4351
		}
4352 4353 4354 4355 4356
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4357
		return ret;
4358
	}
C
Chris Mason 已提交
4359

4360
	copy_for_split(trans, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4361

4362
	if (split == 2) {
4363 4364 4365
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4366
	}
4367

4368
	return 0;
4369 4370 4371 4372

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4373
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4374 4375
		return 0;
	goto again;
4376 4377
}

Y
Yan, Zheng 已提交
4378 4379 4380
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4381
{
Y
Yan, Zheng 已提交
4382
	struct btrfs_key key;
4383
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4384 4385 4386 4387
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4388 4389

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4390 4391 4392 4393 4394
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4395
	if (btrfs_leaf_free_space(leaf) >= ins_len)
Y
Yan, Zheng 已提交
4396
		return 0;
4397 4398

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4399 4400 4401 4402 4403
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4404
	btrfs_release_path(path);
4405 4406

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4407 4408
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4409
	path->search_for_split = 0;
4410 4411
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4412 4413
	if (ret < 0)
		goto err;
4414

Y
Yan, Zheng 已提交
4415 4416
	ret = -EAGAIN;
	leaf = path->nodes[0];
4417 4418
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4419 4420
		goto err;

4421
	/* the leaf has  changed, it now has room.  return now */
4422
	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4423 4424
		goto err;

Y
Yan, Zheng 已提交
4425 4426 4427 4428 4429
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4430 4431
	}

4432
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4433
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4434 4435
	if (ret)
		goto err;
4436

Y
Yan, Zheng 已提交
4437
	path->keep_locks = 0;
4438
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4439 4440 4441 4442 4443 4444
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4445
static noinline int split_item(struct btrfs_path *path,
4446
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4459
	leaf = path->nodes[0];
4460
	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4461

4462 4463
	btrfs_set_path_blocking(path);

4464
	item = btrfs_item_nr(path->slots[0]);
4465 4466 4467 4468
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4469 4470 4471
	if (!buf)
		return -ENOMEM;

4472 4473 4474
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4475
	slot = path->slots[0] + 1;
4476 4477 4478 4479
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4480 4481
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4482 4483 4484 4485 4486
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4487
	new_item = btrfs_item_nr(slot);
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4509
	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4510
	kfree(buf);
Y
Yan, Zheng 已提交
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4532
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4533 4534 4535 4536 4537 4538 4539 4540
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4541
	ret = split_item(path, new_key, split_offset);
4542 4543 4544
	return ret;
}

Y
Yan, Zheng 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4556
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4570
	setup_items_for_insert(root, path, new_key, &item_size,
4571 4572
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4573 4574 4575 4576 4577 4578 4579 4580
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4581 4582 4583 4584 4585 4586
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4587
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4588 4589
{
	int slot;
4590 4591
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4592 4593 4594 4595 4596 4597
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4598 4599
	struct btrfs_map_token token;

4600
	leaf = path->nodes[0];
4601 4602 4603 4604
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4605
		return;
C
Chris Mason 已提交
4606

4607
	nritems = btrfs_header_nritems(leaf);
4608
	data_end = leaf_data_end(leaf);
C
Chris Mason 已提交
4609

4610
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4611

C
Chris Mason 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4621
	btrfs_init_map_token(&token, leaf);
C
Chris Mason 已提交
4622
	for (i = slot; i < nritems; i++) {
4623
		u32 ioff;
4624
		item = btrfs_item_nr(i);
4625

4626 4627 4628
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4629
	}
4630

C
Chris Mason 已提交
4631
	/* shift the data */
4632
	if (from_end) {
4633 4634
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4655
				      (unsigned long)fi,
4656
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4657 4658 4659
			}
		}

4660 4661
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4662 4663 4664 4665 4666 4667
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4668
			fixup_low_keys(path, &disk_key, 1);
4669
	}
4670

4671
	item = btrfs_item_nr(slot);
4672 4673
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4674

4675
	if (btrfs_leaf_free_space(leaf) < 0) {
4676
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4677
		BUG();
4678
	}
C
Chris Mason 已提交
4679 4680
}

C
Chris Mason 已提交
4681
/*
S
Stefan Behrens 已提交
4682
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4683
 */
4684
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4685 4686
{
	int slot;
4687 4688
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4689 4690 4691 4692 4693
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4694 4695
	struct btrfs_map_token token;

4696
	leaf = path->nodes[0];
4697

4698
	nritems = btrfs_header_nritems(leaf);
4699
	data_end = leaf_data_end(leaf);
4700

4701
	if (btrfs_leaf_free_space(leaf) < data_size) {
4702
		btrfs_print_leaf(leaf);
4703
		BUG();
4704
	}
4705
	slot = path->slots[0];
4706
	old_data = btrfs_item_end_nr(leaf, slot);
4707 4708

	BUG_ON(slot < 0);
4709
	if (slot >= nritems) {
4710
		btrfs_print_leaf(leaf);
4711
		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4712
			   slot, nritems);
4713
		BUG();
4714
	}
4715 4716 4717 4718 4719

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4720
	btrfs_init_map_token(&token, leaf);
4721
	for (i = slot; i < nritems; i++) {
4722
		u32 ioff;
4723
		item = btrfs_item_nr(i);
4724

4725 4726 4727
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4728
	}
4729

4730
	/* shift the data */
4731 4732
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4733
		      data_end, old_data - data_end);
4734

4735
	data_end = old_data;
4736
	old_size = btrfs_item_size_nr(leaf, slot);
4737
	item = btrfs_item_nr(slot);
4738 4739
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4740

4741
	if (btrfs_leaf_free_space(leaf) < 0) {
4742
		btrfs_print_leaf(leaf);
4743
		BUG();
4744
	}
4745 4746
}

C
Chris Mason 已提交
4747
/*
4748 4749 4750
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4751
 */
4752
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4753
			    const struct btrfs_key *cpu_key, u32 *data_size,
4754
			    u32 total_data, u32 total_size, int nr)
4755
{
4756
	struct btrfs_fs_info *fs_info = root->fs_info;
4757
	struct btrfs_item *item;
4758
	int i;
4759
	u32 nritems;
4760
	unsigned int data_end;
C
Chris Mason 已提交
4761
	struct btrfs_disk_key disk_key;
4762 4763
	struct extent_buffer *leaf;
	int slot;
4764 4765
	struct btrfs_map_token token;

4766 4767
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4768
		fixup_low_keys(path, &disk_key, 1);
4769 4770 4771
	}
	btrfs_unlock_up_safe(path, 1);

4772
	leaf = path->nodes[0];
4773
	slot = path->slots[0];
C
Chris Mason 已提交
4774

4775
	nritems = btrfs_header_nritems(leaf);
4776
	data_end = leaf_data_end(leaf);
4777

4778
	if (btrfs_leaf_free_space(leaf) < total_size) {
4779
		btrfs_print_leaf(leaf);
4780
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4781
			   total_size, btrfs_leaf_free_space(leaf));
4782
		BUG();
4783
	}
4784

4785
	btrfs_init_map_token(&token, leaf);
4786
	if (slot != nritems) {
4787
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4788

4789
		if (old_data < data_end) {
4790
			btrfs_print_leaf(leaf);
4791
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4792
				   slot, old_data, data_end);
4793
			BUG();
4794
		}
4795 4796 4797 4798
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4799
		for (i = slot; i < nritems; i++) {
4800
			u32 ioff;
4801

4802
			item = btrfs_item_nr(i);
4803 4804 4805
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4806
		}
4807
		/* shift the items */
4808
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4809
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4810
			      (nritems - slot) * sizeof(struct btrfs_item));
4811 4812

		/* shift the data */
4813 4814
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4815
			      data_end, old_data - data_end);
4816 4817
		data_end = old_data;
	}
4818

4819
	/* setup the item for the new data */
4820 4821 4822
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4823
		item = btrfs_item_nr(slot + i);
4824 4825
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4826
		data_end -= data_size[i];
4827
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4828
	}
4829

4830
	btrfs_set_header_nritems(leaf, nritems + nr);
4831
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4832

4833
	if (btrfs_leaf_free_space(leaf) < 0) {
4834
		btrfs_print_leaf(leaf);
4835
		BUG();
4836
	}
4837 4838 4839 4840 4841 4842 4843 4844 4845
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4846
			    const struct btrfs_key *cpu_key, u32 *data_size,
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4863
		return ret;
4864 4865 4866 4867

	slot = path->slots[0];
	BUG_ON(slot < 0);

4868
	setup_items_for_insert(root, path, cpu_key, data_size,
4869
			       total_data, total_size, nr);
4870
	return 0;
4871 4872 4873 4874 4875 4876
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4877 4878 4879
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4880 4881
{
	int ret = 0;
C
Chris Mason 已提交
4882
	struct btrfs_path *path;
4883 4884
	struct extent_buffer *leaf;
	unsigned long ptr;
4885

C
Chris Mason 已提交
4886
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4887 4888
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4889
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4890
	if (!ret) {
4891 4892 4893 4894
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4895
	}
C
Chris Mason 已提交
4896
	btrfs_free_path(path);
C
Chris Mason 已提交
4897
	return ret;
4898 4899
}

C
Chris Mason 已提交
4900
/*
C
Chris Mason 已提交
4901
 * delete the pointer from a given node.
C
Chris Mason 已提交
4902
 *
C
Chris Mason 已提交
4903 4904
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4905
 */
4906 4907
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4908
{
4909
	struct extent_buffer *parent = path->nodes[level];
4910
	u32 nritems;
4911
	int ret;
4912

4913
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4914
	if (slot != nritems - 1) {
4915 4916
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4917
					nritems - slot - 1);
4918 4919
			BUG_ON(ret < 0);
		}
4920 4921 4922
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4923 4924
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4925
	} else if (level) {
4926 4927
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4928
		BUG_ON(ret < 0);
4929
	}
4930

4931
	nritems--;
4932
	btrfs_set_header_nritems(parent, nritems);
4933
	if (nritems == 0 && parent == root->node) {
4934
		BUG_ON(btrfs_header_level(root->node) != 1);
4935
		/* just turn the root into a leaf and break */
4936
		btrfs_set_header_level(root->node, 0);
4937
	} else if (slot == 0) {
4938 4939 4940
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4941
		fixup_low_keys(path, &disk_key, level + 1);
4942
	}
C
Chris Mason 已提交
4943
	btrfs_mark_buffer_dirty(parent);
4944 4945
}

4946 4947
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4948
 * path->nodes[1].
4949 4950 4951 4952 4953 4954 4955
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4956 4957 4958 4959
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4960
{
4961
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4962
	del_ptr(root, path, 1, path->slots[1]);
4963

4964 4965 4966 4967 4968 4969
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4970 4971
	root_sub_used(root, leaf->len);

4972
	extent_buffer_get(leaf);
4973
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4974
	free_extent_buffer_stale(leaf);
4975
}
C
Chris Mason 已提交
4976 4977 4978 4979
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4980 4981
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4982
{
4983
	struct btrfs_fs_info *fs_info = root->fs_info;
4984 4985
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4986 4987
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4988 4989
	int ret = 0;
	int wret;
4990
	int i;
4991
	u32 nritems;
4992

4993
	leaf = path->nodes[0];
4994 4995 4996 4997 4998
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4999
	nritems = btrfs_header_nritems(leaf);
5000

5001
	if (slot + nr != nritems) {
5002
		int data_end = leaf_data_end(leaf);
5003
		struct btrfs_map_token token;
5004

5005
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
5006
			      data_end + dsize,
5007
			      BTRFS_LEAF_DATA_OFFSET + data_end,
5008
			      last_off - data_end);
5009

5010
		btrfs_init_map_token(&token, leaf);
5011
		for (i = slot + nr; i < nritems; i++) {
5012
			u32 ioff;
5013

5014
			item = btrfs_item_nr(i);
5015 5016 5017
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
5018
		}
5019

5020
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5021
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
5022
			      sizeof(struct btrfs_item) *
5023
			      (nritems - slot - nr));
5024
	}
5025 5026
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
5027

C
Chris Mason 已提交
5028
	/* delete the leaf if we've emptied it */
5029
	if (nritems == 0) {
5030 5031
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5032
		} else {
5033
			btrfs_set_path_blocking(path);
5034
			btrfs_clean_tree_block(leaf);
5035
			btrfs_del_leaf(trans, root, path, leaf);
5036
		}
5037
	} else {
5038
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5039
		if (slot == 0) {
5040 5041 5042
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5043
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
5044 5045
		}

C
Chris Mason 已提交
5046
		/* delete the leaf if it is mostly empty */
5047
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5048 5049 5050 5051
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5052
			slot = path->slots[1];
5053 5054
			extent_buffer_get(leaf);

5055
			btrfs_set_path_blocking(path);
5056 5057
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5058
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5059
				ret = wret;
5060 5061 5062

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5063 5064
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5065
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5066 5067
					ret = wret;
			}
5068 5069

			if (btrfs_header_nritems(leaf) == 0) {
5070
				path->slots[1] = slot;
5071
				btrfs_del_leaf(trans, root, path, leaf);
5072
				free_extent_buffer(leaf);
5073
				ret = 0;
C
Chris Mason 已提交
5074
			} else {
5075 5076 5077 5078 5079 5080 5081
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5082
				free_extent_buffer(leaf);
5083
			}
5084
		} else {
5085
			btrfs_mark_buffer_dirty(leaf);
5086 5087
		}
	}
C
Chris Mason 已提交
5088
	return ret;
5089 5090
}

5091
/*
5092
 * search the tree again to find a leaf with lesser keys
5093 5094
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5095 5096 5097
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5098
 */
5099
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5100
{
5101 5102 5103
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5104

5105
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5106

5107
	if (key.offset > 0) {
5108
		key.offset--;
5109
	} else if (key.type > 0) {
5110
		key.type--;
5111 5112
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5113
		key.objectid--;
5114 5115 5116
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5117
		return 1;
5118
	}
5119

5120
	btrfs_release_path(path);
5121 5122 5123 5124 5125
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5137 5138
		return 0;
	return 1;
5139 5140
}

5141 5142
/*
 * A helper function to walk down the tree starting at min_key, and looking
5143 5144
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5145 5146 5147 5148 5149 5150 5151 5152
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5153 5154 5155 5156
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5157 5158 5159 5160
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5161
			 struct btrfs_path *path,
5162 5163 5164 5165 5166
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5167
	int sret;
5168 5169 5170
	u32 nritems;
	int level;
	int ret = 1;
5171
	int keep_locks = path->keep_locks;
5172

5173
	path->keep_locks = 1;
5174
again:
5175
	cur = btrfs_read_lock_root_node(root);
5176
	level = btrfs_header_level(cur);
5177
	WARN_ON(path->nodes[level]);
5178
	path->nodes[level] = cur;
5179
	path->locks[level] = BTRFS_READ_LOCK;
5180 5181 5182 5183 5184

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5185
	while (1) {
5186 5187
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5188
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5189 5190 5191 5192
		if (sret < 0) {
			ret = sret;
			goto out;
		}
5193

5194 5195
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5196 5197
			if (slot >= nritems)
				goto find_next_key;
5198 5199 5200 5201 5202
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5203 5204
		if (sret && slot > 0)
			slot--;
5205
		/*
5206 5207
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5208
		 */
C
Chris Mason 已提交
5209
		while (slot < nritems) {
5210
			u64 gen;
5211

5212 5213 5214 5215 5216
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5217
			break;
5218
		}
5219
find_next_key:
5220 5221 5222 5223 5224
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5225
			path->slots[level] = slot;
5226
			btrfs_set_path_blocking(path);
5227
			sret = btrfs_find_next_key(root, path, min_key, level,
5228
						  min_trans);
5229
			if (sret == 0) {
5230
				btrfs_release_path(path);
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5243
		btrfs_set_path_blocking(path);
5244
		cur = btrfs_read_node_slot(cur, slot);
5245 5246 5247 5248
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5249

5250
		btrfs_tree_read_lock(cur);
5251

5252
		path->locks[level - 1] = BTRFS_READ_LOCK;
5253
		path->nodes[level - 1] = cur;
5254
		unlock_up(path, level, 1, 0, NULL);
5255 5256
	}
out:
5257 5258 5259 5260
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5261
		memcpy(min_key, &found_key, sizeof(found_key));
5262
	}
5263 5264 5265 5266 5267 5268
	return ret;
}

/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5269
 * tree based on the current path and the min_trans parameters.
5270 5271 5272 5273 5274 5275 5276
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5277
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5278
			struct btrfs_key *key, int level, u64 min_trans)
5279 5280 5281 5282
{
	int slot;
	struct extent_buffer *c;

5283
	WARN_ON(!path->keep_locks && !path->skip_locking);
C
Chris Mason 已提交
5284
	while (level < BTRFS_MAX_LEVEL) {
5285 5286 5287 5288 5289
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5290
next:
5291
		if (slot >= btrfs_header_nritems(c)) {
5292 5293 5294 5295 5296
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5297
				return 1;
5298

5299
			if (path->locks[level + 1] || path->skip_locking) {
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5311
			btrfs_release_path(path);
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5324
		}
5325

5326 5327
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5328 5329 5330 5331 5332 5333 5334
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5335
			btrfs_node_key_to_cpu(c, key, slot);
5336
		}
5337 5338 5339 5340 5341
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5342
/*
5343
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5344 5345
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5346
 */
C
Chris Mason 已提交
5347
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5348 5349 5350 5351 5352 5353
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5354 5355
{
	int slot;
5356
	int level;
5357
	struct extent_buffer *c;
5358
	struct extent_buffer *next;
5359 5360 5361
	struct btrfs_key key;
	u32 nritems;
	int ret;
5362
	int old_spinning = path->leave_spinning;
5363
	int next_rw_lock = 0;
5364 5365

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5366
	if (nritems == 0)
5367 5368
		return 1;

5369 5370 5371 5372
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5373
	next_rw_lock = 0;
5374
	btrfs_release_path(path);
5375

5376
	path->keep_locks = 1;
5377
	path->leave_spinning = 1;
5378

J
Jan Schmidt 已提交
5379 5380 5381 5382
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5383 5384 5385 5386 5387
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5388
	nritems = btrfs_header_nritems(path->nodes[0]);
5389 5390 5391 5392 5393 5394
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5395
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5396 5397
		if (ret == 0)
			path->slots[0]++;
5398
		ret = 0;
5399 5400
		goto done;
	}
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5419

C
Chris Mason 已提交
5420
	while (level < BTRFS_MAX_LEVEL) {
5421 5422 5423 5424
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5425

5426 5427
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5428
		if (slot >= btrfs_header_nritems(c)) {
5429
			level++;
5430 5431 5432 5433
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5434 5435
			continue;
		}
5436

5437
		if (next) {
5438
			btrfs_tree_unlock_rw(next, next_rw_lock);
5439
			free_extent_buffer(next);
5440
		}
5441

5442
		next = c;
5443
		next_rw_lock = path->locks[level];
5444
		ret = read_block_for_search(root, path, &next, level,
5445
					    slot, &key);
5446 5447
		if (ret == -EAGAIN)
			goto again;
5448

5449
		if (ret < 0) {
5450
			btrfs_release_path(path);
5451 5452 5453
			goto done;
		}

5454
		if (!path->skip_locking) {
5455
			ret = btrfs_try_tree_read_lock(next);
5456 5457 5458 5459 5460 5461 5462 5463
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5464
				free_extent_buffer(next);
5465 5466 5467 5468
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5469 5470
			if (!ret) {
				btrfs_set_path_blocking(path);
5471
				btrfs_tree_read_lock(next);
5472
			}
5473
			next_rw_lock = BTRFS_READ_LOCK;
5474
		}
5475 5476 5477
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5478
	while (1) {
5479 5480
		level--;
		c = path->nodes[level];
5481
		if (path->locks[level])
5482
			btrfs_tree_unlock_rw(c, path->locks[level]);
5483

5484
		free_extent_buffer(c);
5485 5486
		path->nodes[level] = next;
		path->slots[level] = 0;
5487
		if (!path->skip_locking)
5488
			path->locks[level] = next_rw_lock;
5489 5490
		if (!level)
			break;
5491

5492
		ret = read_block_for_search(root, path, &next, level,
5493
					    0, &key);
5494 5495 5496
		if (ret == -EAGAIN)
			goto again;

5497
		if (ret < 0) {
5498
			btrfs_release_path(path);
5499 5500 5501
			goto done;
		}

5502
		if (!path->skip_locking) {
5503
			ret = btrfs_try_tree_read_lock(next);
5504 5505
			if (!ret) {
				btrfs_set_path_blocking(path);
5506 5507
				btrfs_tree_read_lock(next);
			}
5508
			next_rw_lock = BTRFS_READ_LOCK;
5509
		}
5510
	}
5511
	ret = 0;
5512
done:
5513
	unlock_up(path, 0, 1, 0, NULL);
5514 5515 5516 5517 5518
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5519
}
5520

5521 5522 5523 5524 5525 5526
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5527 5528 5529 5530 5531 5532
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5533
	u32 nritems;
5534 5535
	int ret;

C
Chris Mason 已提交
5536
	while (1) {
5537
		if (path->slots[0] == 0) {
5538
			btrfs_set_path_blocking(path);
5539 5540 5541 5542 5543 5544 5545
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5546 5547 5548 5549 5550 5551
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5552
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5553 5554
		if (found_key.objectid < min_objectid)
			break;
5555 5556
		if (found_key.type == type)
			return 0;
5557 5558 5559
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5560 5561 5562
	}
	return 1;
}
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}