smu_v11_0.c 47.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26 27

#include "pp_debug.h"
28 29
#include "amdgpu.h"
#include "amdgpu_smu.h"
30
#include "atomfirmware.h"
31
#include "amdgpu_atomfirmware.h"
32
#include "smu_v11_0.h"
33
#include "soc15_common.h"
34
#include "atom.h"
35
#include "vega20_ppt.h"
36
#include "navi10_ppt.h"
37 38 39

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
40 41
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
42
#include "asic_reg/nbio/nbio_7_4_offset.h"
43
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
44 45
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
46

47
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
48
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
49
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
50

51
#define SMU11_VOLTAGE_SCALE 4
52

53 54 55 56 57 58 59 60
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

61 62 63 64 65 66 67 68
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

69 70 71
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
72
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
73

74
	for (i = 0; i < timeout; i++) {
75 76 77 78 79 80 81
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
82
	if (i == timeout)
83 84
		return -ETIME;

85
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
86 87 88 89 90
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
91 92 93 94 95
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
96 97 98 99 100

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

101
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
102 103 104 105

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
106
		pr_err("Failed to send message 0x%x, response 0x%x\n", index,
107 108 109 110 111 112 113 114 115 116 117 118
		       ret);

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
119 120 121 122 123
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
124 125 126

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
127 128
		pr_err("Failed to send message 0x%x, response 0x%x, param 0x%x\n",
		       index, ret, param);
129 130 131 132 133

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

134
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
135 136 137

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
138 139
		pr_err("Failed to send message 0x%x, response 0x%x param 0x%x\n",
		       index, ret, param);
140 141 142 143

	return ret;
}

144 145 146
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
147 148 149 150 151 152
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
153

154 155 156 157
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
158 159 160
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
161 162 163
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
198 199
}

200 201
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

	hdr = (const struct smc_firmware_header_v1_0 *)	adev->pm.fw->data;
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

235 236 237
	return 0;
}

238 239
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
240 241 242
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

243 244
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
245 246 247 248

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
249

250
	return -EIO;
251 252
}

253 254
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
255 256 257
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
258 259
	int ret = 0;

260
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
261
	if (ret)
262
		return ret;
263

264 265 266 267
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

268 269 270 271 272 273 274 275
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
276
	if (if_version != smu->smc_if_version) {
277 278 279 280
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
281
		pr_warn("SMU driver if version not matched\n");
282 283
	}

284 285 286
	return ret;
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id)
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

static int smu_v11_0_setup_pptable(struct smu_context *smu)
329
{
330 331
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
332
	int ret, index;
333
	uint32_t size;
334
	uint8_t frev, crev;
335
	void *table;
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
356

357 358 359
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
360

361
		ret = smu_get_atom_data_table(smu, index, (uint16_t *)&size, &frev, &crev,
362 363 364 365
					      (uint8_t **)&table);
		if (ret)
			return ret;
	}
366

367 368 369 370
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
371 372 373 374

	return 0;
}

375 376 377 378 379 380 381
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

382
	return smu_alloc_dpm_context(smu);
383 384 385 386 387 388 389 390 391 392
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
393
	kfree(smu_dpm->golden_dpm_context);
394 395
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
396
	smu_dpm->dpm_context = NULL;
397
	smu_dpm->golden_dpm_context = NULL;
398
	smu_dpm->dpm_context_size = 0;
399 400
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
401 402 403 404

	return 0;
}

405 406 407 408
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
409
	int ret = 0;
410

411
	if (smu_table->tables || smu_table->table_count == 0)
412 413
		return -EINVAL;

414 415
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
416 417 418 419 420
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

421 422 423
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
424

425 426 427 428
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

429 430 431 432 433 434
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
435
	int ret = 0;
436 437 438 439 440

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
441
	kfree(smu_table->metrics_table);
442 443
	smu_table->tables = NULL;
	smu_table->table_count = 0;
444 445
	smu_table->metrics_table = NULL;
	smu_table->metrics_time = 0;
446

447 448 449
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
450 451
	return 0;
}
452 453 454 455 456

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

457 458
	if (!smu->pm_enabled)
		return 0;
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

475 476
	if (!smu->pm_enabled)
		return 0;
477 478 479 480 481 482 483 484 485 486
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

	return 0;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

621 622 623
	return 0;
}

624 625 626 627 628 629 630 631 632 633 634
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

635
	address = (uintptr_t)memory_pool->cpu_addr;
636 637 638 639
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
640
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
641 642 643 644
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
645
					  SMU_MSG_SetSystemVirtualDramAddrLow,
646 647 648 649 650 651 652 653
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

654
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
655 656 657
					  address_high);
	if (ret)
		return ret;
658
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
659 660 661
					  address_low);
	if (ret)
		return ret;
662
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
663 664 665 666 667 668 669
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

670 671 672 673 674 675 676 677
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

678 679 680 681 682
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
683
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
684 685 686 687

	if (table_context->driver_pptable)
		return -EINVAL;

688
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
689 690 691 692 693

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
694 695 696 697
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
698 699 700 701

	return ret;
}

702 703
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
704
	int ret;
705

706
	ret = smu_set_default_dpm_table(smu);
707

708
	return ret;
709 710
}

711 712
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
713
	struct smu_table_context *table_context = &smu->smu_table;
714 715
	int ret = 0;

716
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
717
			       table_context->driver_pptable, true);
718 719 720 721

	return ret;
}

722 723
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
724 725 726 727 728 729 730 731 732 733 734
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];
	if (!table)
		return -EINVAL;

	if (!table->cpu_addr)
		return -EINVAL;

735
	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
736
				true);
737 738

	return ret;
739 740
}

741 742 743 744 745 746 747 748 749 750 751 752
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

753 754 755 756
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

757 758
	if (!smu->pm_enabled)
		return 0;
759 760 761
	if (!table_context)
		return -EINVAL;

762
	return smu_set_deep_sleep_dcefclk(smu,
763 764 765
					  table_context->boot_values.dcefclk / 100);
}

766 767 768
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
769
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
770 771 772

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
773
				SMU_MSG_SetToolsDramAddrHigh,
774 775 776
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
777
				SMU_MSG_SetToolsDramAddrLow,
778 779 780 781 782 783
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

784
static int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
785 786
{
	int ret = 0;
787 788 789

	if (!smu->pm_enabled)
		return ret;
790

791
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
792 793 794
	return ret;
}

795 796 797 798 799
static int smu_v11_0_update_feature_enable_state(struct smu_context *smu, uint32_t feature_id, bool enabled)
{
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

800 801
	if (!smu->pm_enabled)
		return ret;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	if (feature_id >= 0 && feature_id < 31)
		feature_low = (1 << feature_id);
	else if (feature_id > 31 && feature_id < 63)
		feature_high = (1 << feature_id);
	else
		return -EINVAL;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	}

	return ret;
}

834 835 836 837 838 839
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

840
	mutex_lock(&feature->mutex);
841
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
842
		goto failed;
843 844 845 846 847 848

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
849
		goto failed;
850 851 852 853

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
854
		goto failed;
855

856 857
failed:
	mutex_unlock(&feature->mutex);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

890 891
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
892 893 894 895 896
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

897 898 899 900 901 902 903
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

904 905 906 907 908 909 910 911 912 913 914 915
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

916 917 918 919
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

920 921
	if (!smu->pm_enabled)
		return ret;
922 923 924
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
925 926 927 928

	return ret;
}

929 930
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
931
				    enum smu_clk_type clock_select)
932 933 934
{
	int ret = 0;

935 936
	if (!smu->pm_enabled)
		return ret;
937
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
938
					  smu_clk_get_index(smu, clock_select) << 16);
939 940 941 942 943 944 945 946 947 948 949 950 951 952
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
953
					  smu_clk_get_index(smu, clock_select) << 16);
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

980
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
981 982
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
983
							  SMU_UCLK);
984 985 986 987 988 989 990
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

991
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
992 993
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
994
							  SMU_SOCCLK);
995 996 997 998 999 1000 1001
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1002
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1003 1004
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1005
							  SMU_DCEFCLK);
1006 1007 1008 1009 1010 1011 1012 1013
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1014
							  SMU_DISPCLK);
1015 1016 1017 1018 1019 1020 1021
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1022
							  SMU_PHYCLK);
1023 1024 1025 1026 1027 1028 1029
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1030
							  SMU_PIXCLK);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1044 1045 1046
static int smu_v11_0_get_power_limit(struct smu_context *smu,
				     uint32_t *limit,
				     bool get_default)
1047
{
1048
	int ret = 0;
1049

1050 1051 1052
	if (get_default) {
		mutex_lock(&smu->mutex);
		*limit = smu->default_power_limit;
1053 1054 1055 1056
		if (smu->od_enabled) {
			*limit *= (100 + smu->smu_table.TDPODLimit);
			*limit /= 100;
		}
1057 1058 1059
		mutex_unlock(&smu->mutex);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit,
1060
			smu_power_get_index(smu, SMU_POWER_SOURCE_AC) << 16);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		if (ret) {
			pr_err("[%s] get PPT limit failed!", __func__);
			return ret;
		}
		smu_read_smc_arg(smu, limit);
		smu->power_limit = *limit;
	}

	return ret;
}

static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
{
1074
	uint32_t max_power_limit;
1075 1076
	int ret = 0;

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	if (n == 0)
		n = smu->default_power_limit;

	max_power_limit = smu->default_power_limit;

	if (smu->od_enabled) {
		max_power_limit *= (100 + smu->smu_table.TDPODLimit);
		max_power_limit /= 100;
	}

1087
	if (smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
1088
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1089
	if (ret) {
1090
		pr_err("[%s] Set power limit Failed!", __func__);
1091 1092 1093
		return ret;
	}

1094
	return ret;
1095 1096
}

1097 1098 1099
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1100 1101
{
	int ret = 0;
1102
	uint32_t freq = 0;
1103

1104
	if (clk_id >= SMU_CLK_COUNT || !value)
1105 1106
		return -EINVAL;

1107 1108
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) == 0)
1109 1110 1111 1112 1113 1114
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
						  (smu_clk_get_index(smu, clk_id) << 16));
		if (ret)
			return ret;
1115

1116 1117 1118 1119
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1120 1121 1122 1123 1124 1125 1126

	freq *= 100;
	*value = freq;

	return ret;
}

1127
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1128
				       struct smu_temperature_range *range)
1129 1130
{
	struct amdgpu_device *adev = smu->adev;
1131 1132 1133 1134
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP *
		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP *
		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1135 1136
	uint32_t val;

1137 1138 1139
	if (!range)
		return -EINVAL;

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1151 1152
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1153 1154
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES));
1155 1156 1157 1158 1159 1160 1161
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1176 1177 1178
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1179
	struct smu_temperature_range range = {
1180 1181 1182 1183 1184 1185 1186 1187 1188
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1189 1190
	struct amdgpu_device *adev = smu->adev;

1191 1192
	if (!smu->pm_enabled)
		return ret;
1193
	ret = smu_get_thermal_temperature_range(smu, &range);
1194 1195 1196 1197 1198 1199 1200 1201 1202

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1203

1204
		ret = smu_set_thermal_fan_table(smu);
1205 1206 1207 1208 1209 1210
		if (ret)
			return ret;
	}

	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
1211 1212 1213 1214 1215 1216 1217
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1218 1219 1220 1221

	return ret;
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1246 1247 1248 1249 1250 1251
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
	switch (sensor) {
1252
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1253
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1254 1255 1256
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1257
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1258
		*size = 4;
1259
		break;
1260 1261 1262
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1263
		break;
1264 1265 1266 1267
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1268
	default:
1269
		ret = smu_common_read_sensor(smu, sensor, data, size);
1270 1271 1272
		break;
	}

1273 1274 1275 1276
	/* try get sensor data by asic */
	if (ret)
		ret = smu_asic_read_sensor(smu, sensor, data, size);

1277 1278 1279 1280 1281 1282
	if (ret)
		*size = 0;

	return ret;
}

1283 1284 1285 1286 1287 1288 1289
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1290
	enum smu_clk_type clk_select = 0;
1291 1292
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1293 1294
	if (!smu->pm_enabled)
		return -EINVAL;
1295

1296
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1297
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1298 1299
		switch (clk_type) {
		case amd_pp_dcef_clock:
1300
			clk_select = SMU_DCEFCLK;
1301 1302
			break;
		case amd_pp_disp_clock:
1303
			clk_select = SMU_DISPCLK;
1304 1305
			break;
		case amd_pp_pixel_clock:
1306
			clk_select = SMU_PIXCLK;
1307 1308
			break;
		case amd_pp_phy_clock:
1309
			clk_select = SMU_PHYCLK;
1310
			break;
1311 1312 1313
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1314 1315 1316 1317 1318 1319 1320 1321 1322
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1323
		mutex_lock(&smu->mutex);
1324
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
1325
			(smu_clk_get_index(smu, clk_select) << 16) | clk_freq);
1326
		mutex_unlock(&smu->mutex);
1327 1328 1329 1330 1331 1332
	}

failed:
	return ret;
}

1333 1334 1335 1336 1337 1338
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
1339
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1340
	void *table = watermarks->cpu_addr;
1341 1342

	if (!smu->disable_watermark &&
1343 1344
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1345
		smu_set_watermarks_table(smu, table, clock_ranges);
1346 1347 1348 1349 1350 1351 1352
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1353 1354 1355
static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
	int ret = 0;
1356
	struct amdgpu_device *adev = smu->adev;
1357

1358 1359 1360 1361
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1362
	case CHIP_NAVI14:
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		mutex_lock(&smu->mutex);
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		mutex_unlock(&smu->mutex);
		break;
	default:
		break;
	}
1375 1376 1377 1378

	return ret;
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
static int smu_v11_0_get_current_rpm(struct smu_context *smu,
				     uint32_t *current_rpm)
{
	int ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);

	if (ret) {
		pr_err("Attempt to get current RPM from SMC Failed!\n");
		return ret;
	}

	smu_read_smc_arg(smu, current_rpm);

	return 0;
}

1396 1397 1398
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1399
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
smu_v11_0_smc_fan_control(struct smu_context *smu, bool start)
{
	int ret = 0;

1410
	if (smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1411 1412
		return 0;

1413
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, start);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
		       __func__, (start ? "Start" : "Stop"));

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t duty100;
	uint32_t duty;
	uint64_t tmp64;
	bool stop = 0;

	if (speed > 100)
		speed = 100;

	if (smu_v11_0_smc_fan_control(smu, stop))
		return -EINVAL;
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;
	bool start = 1;
	bool stop  = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
		ret = smu_v11_0_smc_fan_control(smu, stop);
		break;
	case AMD_FAN_CTRL_AUTO:
		ret = smu_v11_0_smc_fan_control(smu, start);
		break;
	default:
		break;
	}

	if (ret) {
1489
		pr_err("[%s]Set fan control mode failed!", __func__);
1490 1491 1492 1493 1494 1495
		return -EINVAL;
	}

	return ret;
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;
	bool stop = 0;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
	ret = smu_v11_0_smc_fan_control(smu, stop);
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

1526 1527 1528
#define XGMI_STATE_D0 1
#define XGMI_STATE_D3 0

1529 1530 1531
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
1532 1533 1534 1535 1536 1537 1538
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
1539 1540
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

static int smu_v11_0_register_irq_handler(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
static int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
static int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);
	mutex_unlock(&smu->mutex);

	return ret;
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}

static bool smu_v11_0_baco_is_support(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

	if (!smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

static enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	enum smu_baco_state baco_state = SMU_BACO_STATE_EXIT;

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

static int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

	if (state == SMU_BACO_STATE_ENTER)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, BACO_SEQ_BACO);
	else
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

static int smu_v11_0_baco_reset(struct smu_context *smu)
{
	int ret = 0;

	ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
	if (ret)
		return ret;

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1743 1744
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
1745
	.load_microcode = smu_v11_0_load_microcode,
1746
	.check_fw_status = smu_v11_0_check_fw_status,
1747
	.check_fw_version = smu_v11_0_check_fw_version,
1748 1749
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
1750
	.read_smc_arg = smu_v11_0_read_arg,
1751
	.setup_pptable = smu_v11_0_setup_pptable,
1752 1753
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
1754 1755
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
1756
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
1757
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
1758
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
1759
	.check_pptable = smu_v11_0_check_pptable,
1760
	.parse_pptable = smu_v11_0_parse_pptable,
1761
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
1762
	.write_pptable = smu_v11_0_write_pptable,
1763
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
1764
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
1765
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
1766
	.init_display_count = smu_v11_0_init_display_count,
1767 1768
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
1769
	.system_features_control = smu_v11_0_system_features_control,
1770
	.update_feature_enable_state = smu_v11_0_update_feature_enable_state,
1771
	.notify_display_change = smu_v11_0_notify_display_change,
1772
	.get_power_limit = smu_v11_0_get_power_limit,
1773
	.set_power_limit = smu_v11_0_set_power_limit,
1774
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
1775
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
1776
	.start_thermal_control = smu_v11_0_start_thermal_control,
1777
	.read_sensor = smu_v11_0_read_sensor,
1778
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
1779
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
1780
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
1781
	.get_current_rpm = smu_v11_0_get_current_rpm,
1782
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
1783
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
1784
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
1785
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
1786
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
1787
	.gfx_off_control = smu_v11_0_gfx_off_control,
1788
	.register_irq_handler = smu_v11_0_register_irq_handler,
1789
	.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
1790
	.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
1791 1792 1793 1794
	.baco_is_support = smu_v11_0_baco_is_support,
	.baco_get_state = smu_v11_0_baco_get_state,
	.baco_set_state = smu_v11_0_baco_set_state,
	.baco_reset = smu_v11_0_baco_reset,
1795 1796 1797 1798
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
1799 1800
	struct amdgpu_device *adev = smu->adev;

1801
	smu->funcs = &smu_v11_0_funcs;
1802 1803 1804 1805
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
1806
	case CHIP_NAVI10:
1807
	case CHIP_NAVI14:
1808 1809
		navi10_set_ppt_funcs(smu);
		break;
1810
	default:
1811
		pr_warn("Unknown asic for smu11\n");
1812
	}
1813
}