intel_engine_cs.c 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30 31

#include "intel_engine.h"
32
#include "intel_engine_pm.h"
33
#include "intel_context.h"
34
#include "intel_lrc.h"
35
#include "intel_reset.h"
36

37 38 39 40 41 42 43 44 45
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

46
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
47 48
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
49
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
50
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
51 52 53

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

54
struct engine_class_info {
55
	const char *name;
56
	u8 uabi_class;
57 58 59 60 61
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
62
		.uabi_class = I915_ENGINE_CLASS_RENDER,
63 64 65
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
66
		.uabi_class = I915_ENGINE_CLASS_COPY,
67 68 69
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
70
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
71 72 73
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
74
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
75 76 77
	},
};

78
#define MAX_MMIO_BASES 3
79
struct engine_info {
80
	unsigned int hw_id;
81 82
	u8 class;
	u8 instance;
83 84 85 86 87
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
88 89 90
};

static const struct engine_info intel_engines[] = {
91 92
	[RCS0] = {
		.hw_id = RCS0_HW,
93 94
		.class = RENDER_CLASS,
		.instance = 0,
95 96 97
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
98
	},
99 100
	[BCS0] = {
		.hw_id = BCS0_HW,
101 102
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
103 104 105
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
106
	},
107 108
	[VCS0] = {
		.hw_id = VCS0_HW,
109 110
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
111 112 113 114 115
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
116
	},
117 118
	[VCS1] = {
		.hw_id = VCS1_HW,
119 120
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
121 122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
125
	},
126 127
	[VCS2] = {
		.hw_id = VCS2_HW,
128 129
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
130 131 132
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
133
	},
134 135
	[VCS3] = {
		.hw_id = VCS3_HW,
136 137
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
138 139 140
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
141
	},
142 143
	[VECS0] = {
		.hw_id = VECS0_HW,
144 145
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
146 147 148 149
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
150
	},
151 152
	[VECS1] = {
		.hw_id = VECS1_HW,
153 154
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
155 156 157
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
158
	},
159 160
};

161
/**
162
 * intel_engine_context_size() - return the size of the context for an engine
163 164 165 166 167 168 169 170 171 172 173 174
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
175
u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
176 177 178 179 180 181 182 183 184 185
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
186
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
187 188
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
189
		case 10:
O
Oscar Mateo 已提交
190
			return GEN10_LR_CONTEXT_RENDER_SIZE;
191 192 193
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
194
			return GEN8_LR_CONTEXT_RENDER_SIZE;
195 196 197 198 199 200 201 202 203 204 205 206
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
207
		case 4:
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
224 225 226 227 228 229 230 231 232
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
233
		/* fall through */
234 235 236 237 238 239 240 241 242
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

258 259 260 261 262 263 264
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

265 266 267 268 269 270
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
271
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
272 273
		return;

274 275
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
276
	else
277
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
278 279 280 281 282 283 284 285
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

286
static int
287 288 289 290
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
291 292
	struct intel_engine_cs *engine;

293 294
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

295 296 297
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

298
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
299 300
		return -EINVAL;

301
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
302 303
		return -EINVAL;

304
	if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
305 306
		return -EINVAL;

307 308 309 310
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
311

312 313
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

314
	engine->id = id;
315
	engine->mask = BIT(id);
316
	engine->i915 = dev_priv;
317
	engine->uncore = &dev_priv->uncore;
318
	__sprint_engine_name(engine->name, info);
319
	engine->hw_id = engine->guc_id = info->hw_id;
320
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
321 322
	engine->class = info->class;
	engine->instance = info->instance;
323

324 325 326 327 328 329
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

330
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
331

332 333
	engine->context_size = intel_engine_context_size(dev_priv,
							 engine->class);
334 335
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
336 337
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
338

339 340 341
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

342
	seqlock_init(&engine->stats.lock);
343

344 345
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

346 347 348
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

349
	dev_priv->engine_class[info->class][info->instance] = engine;
350 351
	dev_priv->engine[id] = engine;
	return 0;
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

static void intel_setup_engine_capabilities(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		__setup_engine_capabilities(engine);
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
 * @i915: the i915 devic
 */
void intel_engines_cleanup(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		engine->destroy(engine);
		i915->engine[id] = NULL;
	}
}

408
/**
409
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
410
 * @i915: the i915 device
411 412 413
 *
 * Return: non-zero if the initialization failed.
 */
414
int intel_engines_init_mmio(struct drm_i915_private *i915)
415
{
416 417
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
418
	unsigned int mask = 0;
419
	unsigned int i;
420
	int err;
421

422 423
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
424
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
425

426 427 428
	if (i915_inject_load_failure())
		return -ENODEV;

429
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
430
		if (!HAS_ENGINE(i915, i))
431 432
			continue;

433
		err = intel_engine_setup(i915, i);
434 435 436
		if (err)
			goto cleanup;

437
		mask |= BIT(i);
438 439 440 441 442 443 444
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
445 446
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
447

448
	/* We always presume we have at least RCS available for later probing */
449
	if (WARN_ON(!HAS_ENGINE(i915, RCS0))) {
450 451 452 453
		err = -ENODEV;
		goto cleanup;
	}

454
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
455

456
	i915_check_and_clear_faults(i915);
457

458 459
	intel_setup_engine_capabilities(i915);

460 461 462
	return 0;

cleanup:
463
	intel_engines_cleanup(i915);
464 465 466 467
	return err;
}

/**
468
 * intel_engines_init() - init the Engine Command Streamers
469
 * @i915: i915 device private
470 471 472
 *
 * Return: non-zero if the initialization failed.
 */
473
int intel_engines_init(struct drm_i915_private *i915)
474
{
475
	int (*init)(struct intel_engine_cs *engine);
476
	struct intel_engine_cs *engine;
477
	enum intel_engine_id id;
478
	int err;
479

480 481 482 483
	if (HAS_EXECLISTS(i915))
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
484

485
	for_each_engine(engine, i915, id) {
486
		err = init(engine);
487
		if (err)
488 489 490 491 492 493
			goto cleanup;
	}

	return 0;

cleanup:
494
	intel_engines_cleanup(i915);
495
	return err;
496 497
}

498 499 500 501 502
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

503
void intel_engine_init_execlists(struct intel_engine_cs *engine)
504 505 506
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

507
	execlists->port_mask = 1;
508
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
509 510
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

511
	execlists->queue_priority_hint = INT_MIN;
512
	execlists->queue = RB_ROOT_CACHED;
513 514
}

515
static void cleanup_status_page(struct intel_engine_cs *engine)
516
{
517 518
	struct i915_vma *vma;

519 520 521
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

522 523 524
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
525

526 527 528 529
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
530
	i915_gem_object_put(vma->obj);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
554

555
	return i915_vma_pin(vma, 0, 0, flags);
556 557 558 559 560 561 562 563 564
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

565 566 567 568 569 570 571
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
572 573 574 575 576 577
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

578
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
579

580
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
581 582 583 584 585 586 587 588
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
589
		goto err;
590 591
	}

592
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
593
	engine->status_page.vma = vma;
594 595 596 597 598 599 600

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

601 602 603
	return 0;

err_unpin:
604
	i915_gem_object_unpin_map(obj);
605 606 607 608 609
err:
	i915_gem_object_put(obj);
	return ret;
}

610
static int intel_engine_setup_common(struct intel_engine_cs *engine)
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
{
	int err;

	err = init_status_page(engine);
	if (err)
		return err;

	err = i915_timeline_init(engine->i915,
				 &engine->timeline,
				 engine->status_page.vma);
	if (err)
		goto err_hwsp;

	i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE);

626
	intel_engine_init_breadcrumbs(engine);
627
	intel_engine_init_execlists(engine);
628 629 630
	intel_engine_init_hangcheck(engine);
	intel_engine_init_batch_pool(engine);
	intel_engine_init_cmd_parser(engine);
631
	intel_engine_init__pm(engine);
632

633 634 635 636
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

637 638 639 640 641 642 643
	return 0;

err_hwsp:
	cleanup_status_page(engine);
	return err;
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
/**
 * intel_engines_setup- setup engine state not requiring hw access
 * @i915: Device to setup.
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engines_setup(struct drm_i915_private *i915)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, i915, id) {
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

674 675 676
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

677 678 679 680 681 682
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
683
	intel_engines_cleanup(i915);
684 685 686
	return err;
}

687 688 689 690 691 692 693 694
void intel_engines_set_scheduler_caps(struct drm_i915_private *i915)
{
	static const struct {
		u8 engine;
		u8 sched;
	} map[] = {
#define MAP(x, y) { ilog2(I915_ENGINE_HAS_##x), ilog2(I915_SCHEDULER_CAP_##y) }
		MAP(PREEMPTION, PREEMPTION),
695
		MAP(SEMAPHORES, SEMAPHORES),
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
#undef MAP
	};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 enabled, disabled;

	enabled = 0;
	disabled = 0;
	for_each_engine(engine, i915, id) { /* all engines must agree! */
		int i;

		if (engine->schedule)
			enabled |= (I915_SCHEDULER_CAP_ENABLED |
				    I915_SCHEDULER_CAP_PRIORITY);
		else
			disabled |= (I915_SCHEDULER_CAP_ENABLED |
				     I915_SCHEDULER_CAP_PRIORITY);

		for (i = 0; i < ARRAY_SIZE(map); i++) {
			if (engine->flags & BIT(map[i].engine))
				enabled |= BIT(map[i].sched);
			else
				disabled |= BIT(map[i].sched);
		}
	}

	i915->caps.scheduler = enabled & ~disabled;
	if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_ENABLED))
		i915->caps.scheduler = 0;
}

727 728 729 730 731 732 733
struct measure_breadcrumb {
	struct i915_request rq;
	struct i915_timeline timeline;
	struct intel_ring ring;
	u32 cs[1024];
};

734
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
735 736
{
	struct measure_breadcrumb *frame;
737
	int dw = -ENOMEM;
738 739 740 741 742 743 744

	GEM_BUG_ON(!engine->i915->gt.scratch);

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

745
	if (i915_timeline_init(engine->i915,
746
			       &frame->timeline,
747 748
			       engine->status_page.vma))
		goto out_frame;
749 750 751 752 753 754 755 756 757 758 759 760 761

	INIT_LIST_HEAD(&frame->ring.request_list);
	frame->ring.timeline = &frame->timeline;
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
	frame->rq.timeline = &frame->timeline;

762 763 764 765
	dw = i915_timeline_pin(&frame->timeline);
	if (dw < 0)
		goto out_timeline;

766
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
767
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
768

769
	i915_timeline_unpin(&frame->timeline);
770

771 772
out_timeline:
	i915_timeline_fini(&frame->timeline);
773 774
out_frame:
	kfree(frame);
775 776 777
	return dw;
}

778 779 780 781 782
static int pin_context(struct i915_gem_context *ctx,
		       struct intel_engine_cs *engine,
		       struct intel_context **out)
{
	struct intel_context *ce;
783
	int err;
784

785
	ce = i915_gem_context_get_engine(ctx, engine->id);
786 787 788
	if (IS_ERR(ce))
		return PTR_ERR(ce);

789 790 791 792 793
	err = intel_context_pin(ce);
	intel_context_put(ce);
	if (err)
		return err;

794 795 796 797
	*out = ce;
	return 0;
}

798 799 800 801 802 803 804 805 806 807 808 809 810
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
811
	struct drm_i915_private *i915 = engine->i915;
812 813
	int ret;

814 815 816 817 818 819 820
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
821 822 823 824
	ret = pin_context(i915->kernel_context, engine,
			  &engine->kernel_context);
	if (ret)
		return ret;
825

826 827
	/*
	 * Similarly the preempt context must always be available so that
828 829
	 * we can interrupt the engine at any time. However, as preemption
	 * is optional, we allow it to fail.
830
	 */
831 832 833
	if (i915->preempt_context)
		pin_context(i915->preempt_context, engine,
			    &engine->preempt_context);
834

835
	ret = measure_breadcrumb_dw(engine);
836
	if (ret < 0)
837
		goto err_unpin;
838

839
	engine->emit_fini_breadcrumb_dw = ret;
840

841
	engine->set_default_submission(engine);
842

843
	return 0;
844

845 846 847 848
err_unpin:
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
849
	return ret;
850
}
851 852 853 854 855 856 857 858 859 860

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
861
	cleanup_status_page(engine);
862

863
	intel_engine_fini_breadcrumbs(engine);
864
	intel_engine_cleanup_cmd_parser(engine);
865
	i915_gem_batch_pool_fini(&engine->batch_pool);
866

867 868 869
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

870 871 872
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
873 874

	i915_timeline_fini(&engine->timeline);
875

876
	intel_wa_list_free(&engine->ctx_wa_list);
877
	intel_wa_list_free(&engine->wa_list);
878
	intel_wa_list_free(&engine->whitelist);
879
}
880

881
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
882
{
883 884
	struct drm_i915_private *i915 = engine->i915;

885 886
	u64 acthd;

887 888 889 890
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
891
	else
892
		acthd = ENGINE_READ(engine, ACTHD);
893 894 895 896

	return acthd;
}

897
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
898 899 900
{
	u64 bbaddr;

901 902
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
903
	else
904
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
905 906 907

	return bbaddr;
}
908

909 910
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
911
	struct intel_uncore *uncore = engine->uncore;
912 913 914 915
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

916
	if (INTEL_GEN(engine->i915) < 3)
917 918 919 920
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

921
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
922 923

	err = 0;
924
	if (__intel_wait_for_register_fw(uncore,
925 926 927 928 929 930 931 932
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
933
	intel_uncore_posting_read_fw(uncore, mode);
934 935 936 937

	return err;
}

938 939 940 941
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

942
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
943 944
}

945 946 947 948 949 950 951 952 953 954 955
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

956 957
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
958
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
959 960
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
961
	u32 subslice = fls(sseu->subslice_mask[slice]);
962

963
	if (IS_GEN(dev_priv, 10))
964 965
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
966 967 968
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
969 970 971 972 973 974
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

975 976 977
static u32
read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
		  i915_reg_t reg)
978
{
979 980
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
981 982 983 984 985
	u32 mcr_slice_subslice_mask;
	u32 mcr_slice_subslice_select;
	u32 default_mcr_s_ss_select;
	u32 mcr;
	u32 ret;
986 987
	enum forcewake_domains fw_domains;

988
	if (INTEL_GEN(i915) >= 11) {
989 990 991 992 993 994 995 996 997 998 999
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

1000
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(i915);
1001

1002
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1003
						    FW_REG_READ);
1004
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1005 1006 1007
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1008 1009
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1010

1011
	mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1012 1013 1014 1015

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

1016 1017
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
1018
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1019

1020
	ret = intel_uncore_read_fw(uncore, reg);
1021

1022
	mcr &= ~mcr_slice_subslice_mask;
1023 1024
	mcr |= default_mcr_s_ss_select;

1025
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1026

1027 1028
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1029 1030 1031 1032 1033 1034 1035 1036

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
1037
	struct drm_i915_private *i915 = engine->i915;
1038
	struct intel_uncore *uncore = engine->uncore;
1039 1040 1041 1042 1043 1044
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1045
	switch (INTEL_GEN(i915)) {
1046
	default:
1047 1048
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1049

1050
		if (engine->id != RCS0)
1051 1052
			break;

1053 1054
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1055
		for_each_instdone_slice_subslice(i915, slice, subslice) {
1056
			instdone->sampler[slice][subslice] =
1057
				read_subslice_reg(engine, slice, subslice,
1058 1059
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1060
				read_subslice_reg(engine, slice, subslice,
1061 1062 1063 1064
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1065 1066
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1067

1068
		if (engine->id != RCS0)
1069 1070
			break;

1071 1072 1073 1074 1075 1076
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1077 1078 1079 1080 1081

		break;
	case 6:
	case 5:
	case 4:
1082 1083
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1084
		if (engine->id == RCS0)
1085
			/* HACK: Using the wrong struct member */
1086 1087
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1088 1089 1090
		break;
	case 3:
	case 2:
1091
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1092 1093 1094
		break;
	}
}
1095

1096 1097 1098
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1099
	intel_wakeref_t wakeref;
1100 1101
	bool idle = true;

1102 1103 1104
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1105
	/* If the whole device is asleep, the engine must be idle */
1106 1107
	wakeref = intel_runtime_pm_get_if_in_use(dev_priv);
	if (!wakeref)
1108
		return true;
1109

1110
	/* First check that no commands are left in the ring */
1111 1112
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1113
		idle = false;
1114

1115
	/* No bit for gen2, so assume the CS parser is idle */
1116 1117
	if (INTEL_GEN(dev_priv) > 2 &&
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1118 1119
		idle = false;

1120
	intel_runtime_pm_put(dev_priv, wakeref);
1121 1122 1123 1124

	return idle;
}

1125 1126 1127 1128 1129 1130 1131 1132 1133
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1134
	/* More white lies, if wedged, hw state is inconsistent */
1135
	if (i915_reset_failed(engine->i915))
1136 1137
		return true;

1138 1139 1140
	if (!intel_wakeref_active(&engine->wakeref))
		return true;

1141
	/* Waiting to drain ELSP? */
1142
	if (READ_ONCE(engine->execlists.active)) {
1143
		struct tasklet_struct *t = &engine->execlists.tasklet;
1144

1145 1146
		synchronize_hardirq(engine->i915->drm.irq);

1147
		local_bh_disable();
1148 1149 1150 1151 1152
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1153
		}
1154
		local_bh_enable();
1155

1156 1157 1158
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1159
		if (READ_ONCE(engine->execlists.active))
1160 1161
			return false;
	}
1162

1163
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1164
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1165 1166
		return false;

1167
	/* Ring stopped? */
1168
	return ring_is_idle(engine);
1169 1170
}

1171
bool intel_engines_are_idle(struct drm_i915_private *i915)
1172 1173 1174 1175
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1176 1177
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1178 1179
	 * report that it is still busy, even though we have stopped using it.
	 */
1180
	if (i915_reset_failed(i915))
1181 1182
		return true;

1183 1184 1185 1186 1187
	/* Already parked (and passed an idleness test); must still be idle */
	if (!READ_ONCE(i915->gt.awake))
		return true;

	for_each_engine(engine, i915, id) {
1188 1189 1190 1191 1192 1193 1194
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1195 1196 1197 1198 1199 1200 1201 1202 1203
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1215
	struct intel_context *ce;
1216 1217 1218

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1219 1220 1221
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1222 1223
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1253 1254 1255
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1256 1257
{
	if (attr->priority == I915_PRIORITY_INVALID)
1258 1259 1260 1261
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1262

1263
	return x;
1264 1265
}

1266
static void print_request(struct drm_printer *m,
1267
			  struct i915_request *rq,
1268 1269
			  const char *prefix)
{
1270
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1271
	char buf[80] = "";
1272 1273 1274
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1275

1276
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1277
		   prefix,
1278
		   rq->fence.context, rq->fence.seqno,
1279 1280 1281
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1282 1283
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1284
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1285 1286
			    &rq->fence.flags) ? "-" :
		   "",
1287
		   buf,
1288
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1289
		   name);
1290 1291
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1314
		drm_printf(m, "[%04zx] %s\n", pos, line);
1315 1316 1317 1318 1319 1320

		prev = buf + pos;
		skip = false;
	}
}

1321 1322
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1323 1324
{
	struct drm_i915_private *dev_priv = engine->i915;
1325 1326
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1327 1328
	u64 addr;

1329
	if (engine->id == RCS0 && IS_GEN_RANGE(dev_priv, 4, 7))
1330
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1331
	drm_printf(m, "\tRING_START: 0x%08x\n",
1332
		   ENGINE_READ(engine, RING_START));
1333
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1334
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1335
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1336
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1337
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1338 1339
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1340 1341
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1342 1343
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1344
	}
1345 1346

	if (INTEL_GEN(dev_priv) >= 6) {
1347 1348
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1349 1350
	}

1351 1352 1353 1354 1355 1356
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1357
	if (INTEL_GEN(dev_priv) >= 8)
1358
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1359
	else if (INTEL_GEN(dev_priv) >= 4)
1360
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1361
	else
1362
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1363 1364 1365 1366
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1367
			   ENGINE_READ(engine, RING_IPEIR));
1368
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1369
			   ENGINE_READ(engine, RING_IPEHR));
1370
	} else {
1371 1372
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1373
	}
1374

1375
	if (HAS_EXECLISTS(dev_priv)) {
1376 1377
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1378
		const u8 num_entries = execlists->csb_size;
1379
		unsigned int idx;
1380
		u8 read, write;
1381

1382
		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1383
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1384 1385
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   num_entries);
1386

1387 1388 1389
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1390
		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1391
			   read, write,
1392 1393 1394
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1395
		if (read >= num_entries)
1396
			read = 0;
1397
		if (write >= num_entries)
1398 1399
			write = 0;
		if (read > write)
1400
			write += num_entries;
1401
		while (read < write) {
1402 1403 1404
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1405 1406 1407 1408
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1409
			struct i915_request *rq;
1410 1411 1412 1413
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1414 1415
				char hdr[80];

1416
				snprintf(hdr, sizeof(hdr),
1417
					 "\t\tELSP[%d] count=%d, ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1418
					 idx, count,
1419
					 i915_ggtt_offset(rq->ring->vma),
1420 1421
					 rq->timeline->hwsp_offset,
					 hwsp_seqno(rq));
1422
				print_request(m, rq, hdr);
1423
			} else {
1424
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1425 1426
			}
		}
1427
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1428 1429 1430
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1431
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1432
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1433
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1434
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1435
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1436
	}
1437 1438
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1472 1473 1474 1475 1476
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1477
	struct i915_request *rq;
1478
	intel_wakeref_t wakeref;
1479 1480 1481 1482 1483 1484 1485 1486 1487

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1488
	if (i915_reset_failed(engine->i915))
1489 1490
		drm_printf(m, "*** WEDGED ***\n");

1491
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1492
	drm_printf(m, "\tHangcheck: %d ms ago\n",
1493
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1494 1495 1496 1497 1498 1499 1500 1501
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1502
	rq = list_first_entry(&engine->timeline.requests,
1503
			      struct i915_request, link);
1504
	if (&rq->link != &engine->timeline.requests)
1505 1506
		print_request(m, rq, "\t\tfirst  ");

1507
	rq = list_last_entry(&engine->timeline.requests,
1508
			     struct i915_request, link);
1509
	if (&rq->link != &engine->timeline.requests)
1510 1511
		print_request(m, rq, "\t\tlast   ");

1512
	rq = intel_engine_find_active_request(engine);
1513 1514
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1515

1516
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1517
			   i915_ggtt_offset(rq->ring->vma));
1518
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1519
			   rq->ring->head);
1520
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1521
			   rq->ring->tail);
1522 1523 1524 1525
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1526 1527
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   rq->timeline->hwsp_offset);
1528 1529

		print_request_ring(m, rq);
1530 1531 1532 1533
	}

	rcu_read_unlock();

1534 1535
	wakeref = intel_runtime_pm_get_if_in_use(engine->i915);
	if (wakeref) {
1536
		intel_engine_print_registers(engine, m);
1537
		intel_runtime_pm_put(engine->i915, wakeref);
1538 1539 1540
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1541

1542
	intel_execlists_show_requests(engine, m, print_request, 8);
1543

1544
	drm_printf(m, "HWSP:\n");
1545
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1546

1547
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1548 1549

	intel_engine_print_breadcrumbs(engine, m);
1550 1551
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1585
	struct intel_engine_execlists *execlists = &engine->execlists;
1586
	unsigned long flags;
1587
	int err = 0;
1588

1589
	if (!intel_engine_supports_stats(engine))
1590 1591
		return -ENODEV;

1592 1593
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1594 1595 1596 1597 1598 1599

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1600 1601 1602 1603
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1604
		engine->stats.enabled_at = ktime_get();
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1615

1616
unlock:
1617 1618
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1619

1620
	return err;
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1646
	unsigned int seq;
1647 1648
	ktime_t total;

1649 1650 1651 1652
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1667
	if (!intel_engine_supports_stats(engine))
1668 1669
		return;

1670
	write_seqlock_irqsave(&engine->stats.lock, flags);
1671 1672 1673 1674 1675
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1676
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1677 1678
}

1679 1680
static bool match_ring(struct i915_request *rq)
{
1681
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;
	unsigned long flags;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
			break;

		/* More than one preemptible request may match! */
		if (!match_ring(request))
			break;

		active = request;
		break;
	}
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

	return active;
}

1723
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1724
#include "selftest_engine_cs.c"
1725
#endif