sched.h 65.5 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
20
#include <linux/irqflags.h>
L
Linus Torvalds 已提交
21
#include <linux/seccomp.h>
22
#include <linux/nodemask.h>
23
#include <linux/rcupdate.h>
24
#include <linux/refcount.h>
25
#include <linux/resource.h>
A
Arjan van de Ven 已提交
26
#include <linux/latencytop.h>
27
#include <linux/sched/prio.h>
28
#include <linux/sched/types.h>
29
#include <linux/signal_types.h>
30
#include <linux/syscall_user_dispatch.h>
31 32
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
33
#include <linux/posix-timers.h>
34
#include <linux/rseq.h>
35
#include <linux/seqlock.h>
36
#include <linux/kcsan.h>
37
#include <asm/kmap_size.h>
38

39
/* task_struct member predeclarations (sorted alphabetically): */
40 41
struct audit_context;
struct backing_dev_info;
42
struct bio_list;
43
struct blk_plug;
44
struct bpf_local_storage;
45
struct bpf_run_ctx;
46
struct capture_control;
47 48 49 50
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
51
struct io_uring_task;
52
struct mempolicy;
53
struct nameidata;
54 55 56 57 58 59 60
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
61 62
struct root_domain;
struct rq;
63 64
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
65
struct seq_file;
66 67 68
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
69
struct task_group;
L
Linus Torvalds 已提交
70

71 72 73 74 75 76 77 78 79 80
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
81 82

/* Used in tsk->state: */
83 84 85 86 87
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
88
/* Used in tsk->exit_state: */
89 90
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
91 92
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
93 94 95 96
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
97 98
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
99 100 101
/* RT specific auxilliary flag to mark RT lock waiters */
#define TASK_RTLOCK_WAIT		0x1000
#define TASK_STATE_MAX			0x2000
102 103 104 105 106 107 108 109 110 111 112 113 114 115

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 117
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
118

119
#define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
120

121
#define task_is_traced(task)		((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122

123
#define task_is_stopped(task)		((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124

125
#define task_is_stopped_or_traced(task)	((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126

127 128 129 130 131
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
132
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133

134 135 136 137 138
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
# define debug_normal_state_change(state_value)				\
	do {								\
		WARN_ON_ONCE(is_special_task_state(state_value));	\
		current->task_state_change = _THIS_IP_;			\
P
Peter Zijlstra 已提交
139 140
	} while (0)

141
# define debug_special_state_change(state_value)			\
142 143 144 145
	do {								\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		current->task_state_change = _THIS_IP_;			\
	} while (0)
146

147 148 149 150 151 152 153 154 155 156 157
# define debug_rtlock_wait_set_state()					\
	do {								 \
		current->saved_state_change = current->task_state_change;\
		current->task_state_change = _THIS_IP_;			 \
	} while (0)

# define debug_rtlock_wait_restore_state()				\
	do {								 \
		current->task_state_change = current->saved_state_change;\
	} while (0)

P
Peter Zijlstra 已提交
158
#else
159 160
# define debug_normal_state_change(cond)	do { } while (0)
# define debug_special_state_change(cond)	do { } while (0)
161 162
# define debug_rtlock_wait_set_state()		do { } while (0)
# define debug_rtlock_wait_restore_state()	do { } while (0)
163 164
#endif

165 166 167 168 169
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
170
 *   for (;;) {
171
 *	set_current_state(TASK_UNINTERRUPTIBLE);
P
Peter Zijlstra 已提交
172 173
 *	if (CONDITION)
 *	   break;
174 175 176 177 178 179
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
P
Peter Zijlstra 已提交
180
 * CONDITION test and condition change and wakeup are under the same lock) then
181 182 183 184
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
P
Peter Zijlstra 已提交
185
 *   CONDITION = 1;
186
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
187
 *
P
Peter Zijlstra 已提交
188 189
 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 * accessing p->state.
190 191 192 193
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194
 *
195
 * However, with slightly different timing the wakeup TASK_RUNNING store can
I
Ingo Molnar 已提交
196
 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197 198
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
199
 *
200
 * Also see the comments of try_to_wake_up().
201
 */
202
#define __set_current_state(state_value)				\
203 204 205 206
	do {								\
		debug_normal_state_change((state_value));		\
		WRITE_ONCE(current->__state, (state_value));		\
	} while (0)
207 208

#define set_current_state(state_value)					\
209 210 211 212
	do {								\
		debug_normal_state_change((state_value));		\
		smp_store_mb(current->__state, (state_value));		\
	} while (0)
213 214 215 216

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
217 218
 * serialize against wakeups such that any possible in-flight TASK_RUNNING
 * stores will not collide with our state change.
219 220 221 222
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
223
									\
224
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
225
		debug_special_state_change((state_value));		\
226
		WRITE_ONCE(current->__state, (state_value));		\
227 228 229
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
 *
 * RT's spin/rwlock substitutions are state preserving. The state of the
 * task when blocking on the lock is saved in task_struct::saved_state and
 * restored after the lock has been acquired.  These operations are
 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
 * lock related wakeups while the task is blocked on the lock are
 * redirected to operate on task_struct::saved_state to ensure that these
 * are not dropped. On restore task_struct::saved_state is set to
 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
 *
 * The lock operation looks like this:
 *
 *	current_save_and_set_rtlock_wait_state();
 *	for (;;) {
 *		if (try_lock())
 *			break;
 *		raw_spin_unlock_irq(&lock->wait_lock);
 *		schedule_rtlock();
 *		raw_spin_lock_irq(&lock->wait_lock);
 *		set_current_state(TASK_RTLOCK_WAIT);
 *	}
 *	current_restore_rtlock_saved_state();
 */
#define current_save_and_set_rtlock_wait_state()			\
	do {								\
		lockdep_assert_irqs_disabled();				\
		raw_spin_lock(&current->pi_lock);			\
		current->saved_state = current->__state;		\
		debug_rtlock_wait_set_state();				\
		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
		raw_spin_unlock(&current->pi_lock);			\
	} while (0);

#define current_restore_rtlock_saved_state()				\
	do {								\
		lockdep_assert_irqs_disabled();				\
		raw_spin_lock(&current->pi_lock);			\
		debug_rtlock_wait_restore_state();			\
		WRITE_ONCE(current->__state, current->saved_state);	\
		current->saved_state = TASK_RUNNING;			\
		raw_spin_unlock(&current->pi_lock);			\
	} while (0);
P
Peter Zijlstra 已提交
274

275
#define get_current_state()	READ_ONCE(current->__state)
P
Peter Zijlstra 已提交
276

277 278 279 280 281 282 283
/*
 * Define the task command name length as enum, then it can be visible to
 * BPF programs.
 */
enum {
	TASK_COMM_LEN = 16,
};
L
Linus Torvalds 已提交
284 285 286

extern void scheduler_tick(void);

287 288 289 290 291 292 293
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
294
asmlinkage void schedule(void);
295
extern void schedule_preempt_disabled(void);
296
asmlinkage void preempt_schedule_irq(void);
297 298 299
#ifdef CONFIG_PREEMPT_RT
 extern void schedule_rtlock(void);
#endif
L
Linus Torvalds 已提交
300

301 302
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
303
extern long io_schedule_timeout(long timeout);
304
extern void io_schedule(void);
305

306
/**
307
 * struct prev_cputime - snapshot of system and user cputime
308 309
 * @utime: time spent in user mode
 * @stime: time spent in system mode
310
 * @lock: protects the above two fields
311
 *
312 313
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
314
 */
315 316
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
317 318 319
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
320
#endif
321 322
};

323 324 325
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
326 327
	/* Task is idle */
	VTIME_IDLE,
328 329
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
330 331
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
332 333
	/* Task runs as guests in a CPU with VTIME active: */
	VTIME_GUEST,
334 335 336 337 338 339
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
340
	unsigned int		cpu;
341 342 343
	u64			utime;
	u64			stime;
	u64			gtime;
344 345
};

346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Utilization clamp constraints.
 * @UCLAMP_MIN:	Minimum utilization
 * @UCLAMP_MAX:	Maximum utilization
 * @UCLAMP_CNT:	Utilization clamp constraints count
 */
enum uclamp_id {
	UCLAMP_MIN = 0,
	UCLAMP_MAX,
	UCLAMP_CNT
};

358 359 360 361 362
#ifdef CONFIG_SMP
extern struct root_domain def_root_domain;
extern struct mutex sched_domains_mutex;
#endif

L
Linus Torvalds 已提交
363
struct sched_info {
364
#ifdef CONFIG_SCHED_INFO
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
380

381
#endif /* CONFIG_SCHED_INFO */
382
};
L
Linus Torvalds 已提交
383

384 385 386 387 388 389 390
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
391 392
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
393

394 395 396 397
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)

I
Ingo Molnar 已提交
398
struct load_weight {
399 400
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
401 402
};

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
424 425 426 427 428 429 430
 *
 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
 * updates. When a task is dequeued, its util_est should not be updated if its
 * util_avg has not been updated in the meantime.
 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
 * for a task) it is safe to use MSB.
431 432 433 434 435
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
436
#define UTIL_AVG_UNCHANGED		0x80000000
437
} __attribute__((__aligned__(sizeof(u64))));
438

439
/*
440
 * The load/runnable/util_avg accumulates an infinite geometric series
441
 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
442 443 444 445 446
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
447 448 449
 * [runnable_avg definition]
 *
 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
450 451 452 453 454
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
455 456 457 458 459
 * where runnable% is the time ratio that a sched_entity is runnable and
 * running% the time ratio that a sched_entity is running.
 *
 * For cfs_rq, they are the aggregated values of all runnable and blocked
 * sched_entities.
460
 *
王文虎 已提交
461
 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
462 463
 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 * for computing those signals (see update_rq_clock_pelt())
464
 *
465 466 467 468
 * N.B., the above ratios (runnable% and running%) themselves are in the
 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 * to as large a range as necessary. This is for example reflected by
 * util_avg's SCHED_CAPACITY_SCALE.
469 470 471 472 473 474 475 476 477 478 479 480 481 482
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
483
 */
484
struct sched_avg {
485 486
	u64				last_update_time;
	u64				load_sum;
487
	u64				runnable_sum;
488 489 490
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
491
	unsigned long			runnable_avg;
492
	unsigned long			util_avg;
493
	struct util_est			util_est;
494
} ____cacheline_aligned;
495

496
struct sched_statistics {
497
#ifdef CONFIG_SCHEDSTATS
498 499 500 501 502 503 504 505 506 507 508 509 510
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
511 512
	s64				sum_block_runtime;

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
J
Josh Don 已提交
531 532 533

#ifdef CONFIG_SCHED_CORE
	u64				core_forceidle_sum;
534
#endif
J
Josh Don 已提交
535
#endif /* CONFIG_SCHEDSTATS */
536
} ____cacheline_aligned;
537 538

struct sched_entity {
539 540 541 542 543
	/* For load-balancing: */
	struct load_weight		load;
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
544

545 546 547 548
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
549

550
	u64				nr_migrations;
551

I
Ingo Molnar 已提交
552
#ifdef CONFIG_FAIR_GROUP_SCHED
553 554
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
555
	/* rq on which this entity is (to be) queued: */
556
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
557
	/* rq "owned" by this entity/group: */
558
	struct cfs_rq			*my_q;
559 560
	/* cached value of my_q->h_nr_running */
	unsigned long			runnable_weight;
I
Ingo Molnar 已提交
561
#endif
562

563
#ifdef CONFIG_SMP
564 565 566 567 568 569
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
570
	struct sched_avg		avg;
571
#endif
I
Ingo Molnar 已提交
572
};
573

P
Peter Zijlstra 已提交
574
struct sched_rt_entity {
575 576 577 578 579 580 581 582
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
583
#ifdef CONFIG_RT_GROUP_SCHED
584
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
585
	/* rq on which this entity is (to be) queued: */
586
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
587
	/* rq "owned" by this entity/group: */
588
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
589
#endif
590
} __randomize_layout;
P
Peter Zijlstra 已提交
591

592
struct sched_dl_entity {
593
	struct rb_node			rb_node;
594 595 596

	/*
	 * Original scheduling parameters. Copied here from sched_attr
597 598
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
599
	 */
600 601 602
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
603
	u64				dl_bw;		/* dl_runtime / dl_period		*/
604
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
605 606 607

	/*
	 * Actual scheduling parameters. Initialized with the values above,
I
Ingo Molnar 已提交
608
	 * they are continuously updated during task execution. Note that
609 610
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
611 612 613
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
614 615 616 617 618 619 620 621

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
622
	 * @dl_yielded tells if task gave up the CPU before consuming
623
	 * all its available runtime during the last job.
624 625 626 627 628 629 630
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
631 632 633
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
634
	 */
635 636 637
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
638
	unsigned int			dl_overrun	  : 1;
639 640 641 642 643

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
644
	struct hrtimer			dl_timer;
645 646 647 648 649 650 651 652 653

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
654 655 656 657 658 659 660 661 662

#ifdef CONFIG_RT_MUTEXES
	/*
	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
	 * pi_se points to the donor, otherwise points to the dl_se it belongs
	 * to (the original one/itself).
	 */
	struct sched_dl_entity *pi_se;
#endif
663
};
664

665 666 667 668 669 670 671 672
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT

/*
 * Utilization clamp for a scheduling entity
 * @value:		clamp value "assigned" to a se
 * @bucket_id:		bucket index corresponding to the "assigned" value
673
 * @active:		the se is currently refcounted in a rq's bucket
674
 * @user_defined:	the requested clamp value comes from user-space
675 676 677 678
 *
 * The bucket_id is the index of the clamp bucket matching the clamp value
 * which is pre-computed and stored to avoid expensive integer divisions from
 * the fast path.
679 680 681 682 683
 *
 * The active bit is set whenever a task has got an "effective" value assigned,
 * which can be different from the clamp value "requested" from user-space.
 * This allows to know a task is refcounted in the rq's bucket corresponding
 * to the "effective" bucket_id.
684 685 686 687 688 689 690
 *
 * The user_defined bit is set whenever a task has got a task-specific clamp
 * value requested from userspace, i.e. the system defaults apply to this task
 * just as a restriction. This allows to relax default clamps when a less
 * restrictive task-specific value has been requested, thus allowing to
 * implement a "nice" semantic. For example, a task running with a 20%
 * default boost can still drop its own boosting to 0%.
691 692 693 694
 */
struct uclamp_se {
	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
695
	unsigned int active		: 1;
696
	unsigned int user_defined	: 1;
697 698 699
};
#endif /* CONFIG_UCLAMP_TASK */

700 701
union rcu_special {
	struct {
702 703
		u8			blocked;
		u8			need_qs;
704
		u8			exp_hint; /* Hint for performance. */
705
		u8			need_mb; /* Readers need smp_mb(). */
706
	} b; /* Bits. */
707
	u32 s; /* Set of bits. */
708
};
709

P
Peter Zijlstra 已提交
710 711 712
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
713
	perf_sw_context,
P
Peter Zijlstra 已提交
714 715 716
	perf_nr_task_contexts,
};

717 718 719 720
struct wake_q_node {
	struct wake_q_node *next;
};

721 722 723 724 725 726 727
struct kmap_ctrl {
#ifdef CONFIG_KMAP_LOCAL
	int				idx;
	pte_t				pteval[KM_MAX_IDX];
#endif
};

L
Linus Torvalds 已提交
728
struct task_struct {
729 730 731 732 733
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
734
	struct thread_info		thread_info;
735
#endif
736
	unsigned int			__state;
K
Kees Cook 已提交
737

738 739 740 741 742
#ifdef CONFIG_PREEMPT_RT
	/* saved state for "spinlock sleepers" */
	unsigned int			saved_state;
#endif

K
Kees Cook 已提交
743 744 745 746 747 748
	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

749
	void				*stack;
750
	refcount_t			usage;
751 752 753
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
754

755
#ifdef CONFIG_SMP
756
	int				on_cpu;
757
	struct __call_single_node	wake_entry;
758 759 760
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
761

762 763 764 765 766 767 768 769
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
770
	int				wake_cpu;
771
#endif
772 773 774 775 776 777
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
778

779 780
	struct sched_entity		se;
	struct sched_rt_entity		rt;
781
	struct sched_dl_entity		dl;
782
	const struct sched_class	*sched_class;
783 784 785 786

#ifdef CONFIG_SCHED_CORE
	struct rb_node			core_node;
	unsigned long			core_cookie;
787
	unsigned int			core_occupation;
788 789
#endif

P
Peter Zijlstra 已提交
790
#ifdef CONFIG_CGROUP_SCHED
791
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
792
#endif
L
Linus Torvalds 已提交
793

794
#ifdef CONFIG_UCLAMP_TASK
795 796 797 798
	/*
	 * Clamp values requested for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
799
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
800 801 802 803
	/*
	 * Effective clamp values used for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
804 805 806
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

807 808
	struct sched_statistics         stats;

809
#ifdef CONFIG_PREEMPT_NOTIFIERS
810 811
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
812 813
#endif

814
#ifdef CONFIG_BLK_DEV_IO_TRACE
815
	unsigned int			btrace_seq;
816
#endif
L
Linus Torvalds 已提交
817

818 819
	unsigned int			policy;
	int				nr_cpus_allowed;
820
	const cpumask_t			*cpus_ptr;
821
	cpumask_t			*user_cpus_ptr;
822
	cpumask_t			cpus_mask;
823
	void				*migration_pending;
824
#ifdef CONFIG_SMP
825
	unsigned short			migration_disabled;
P
Peter Zijlstra 已提交
826
#endif
827
	unsigned short			migration_flags;
L
Linus Torvalds 已提交
828

P
Paul E. McKenney 已提交
829
#ifdef CONFIG_PREEMPT_RCU
830 831 832 833
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
834
#endif /* #ifdef CONFIG_PREEMPT_RCU */
835

P
Paul E. McKenney 已提交
836
#ifdef CONFIG_TASKS_RCU
837
	unsigned long			rcu_tasks_nvcsw;
838 839
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
840
	int				rcu_tasks_idle_cpu;
841
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
842
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
843

844 845 846
#ifdef CONFIG_TASKS_TRACE_RCU
	int				trc_reader_nesting;
	int				trc_ipi_to_cpu;
847
	union rcu_special		trc_reader_special;
848 849 850 851
	bool				trc_reader_checked;
	struct list_head		trc_holdout_list;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */

852
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
853

854
	struct list_head		tasks;
855
#ifdef CONFIG_SMP
856 857
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
858
#endif
L
Linus Torvalds 已提交
859

860 861
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
862 863

	/* Per-thread vma caching: */
864
	struct vmacache			vmacache;
865

866 867
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
868
#endif
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
884 885 886 887
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

888 889 890 891 892
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

P
Peter Zijlstra 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	/*
	 * This field must not be in the scheduler word above due to wakelist
	 * queueing no longer being serialized by p->on_cpu. However:
	 *
	 * p->XXX = X;			ttwu()
	 * schedule()			  if (p->on_rq && ..) // false
	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
	 *   deactivate_task()		      ttwu_queue_wakelist())
	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
	 *
	 * guarantees all stores of 'current' are visible before
	 * ->sched_remote_wakeup gets used, so it can be in this word.
	 */
	unsigned			sched_remote_wakeup:1;

908 909 910 911 912
	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
913
#endif
T
Tejun Heo 已提交
914
#ifdef CONFIG_MEMCG
915
	unsigned			in_user_fault:1;
916
#endif
917
#ifdef CONFIG_COMPAT_BRK
918
	unsigned			brk_randomized:1;
919
#endif
920 921 922
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
R
Roman Gushchin 已提交
923 924
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
925
#endif
926 927 928
#ifdef CONFIG_BLK_CGROUP
	unsigned			use_memdelay:1;
#endif
929 930 931 932
#ifdef CONFIG_PSI
	/* Stalled due to lack of memory */
	unsigned			in_memstall:1;
#endif
933 934 935 936
#ifdef CONFIG_PAGE_OWNER
	/* Used by page_owner=on to detect recursion in page tracking. */
	unsigned			in_page_owner:1;
#endif
937 938 939 940
#ifdef CONFIG_EVENTFD
	/* Recursion prevention for eventfd_signal() */
	unsigned			in_eventfd_signal:1;
#endif
941

942
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
943

944
	struct restart_block		restart_block;
945

946 947
	pid_t				pid;
	pid_t				tgid;
948

949
#ifdef CONFIG_STACKPROTECTOR
950 951
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
952
#endif
953
	/*
954
	 * Pointers to the (original) parent process, youngest child, younger sibling,
955
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
956
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
957
	 */
958 959 960 961 962 963 964

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
965
	/*
966
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
967
	 */
968 969 970
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
971

R
Roland McGrath 已提交
972
	/*
973 974
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
975
	 * This includes both natural children and PTRACE_ATTACH targets.
976
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
977
	 */
978 979
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
980

L
Linus Torvalds 已提交
981
	/* PID/PID hash table linkage. */
982 983
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
984 985 986 987
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
988

989 990
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
991

992 993 994
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

995 996
	/* PF_KTHREAD | PF_IO_WORKER */
	void				*worker_private;
997

998 999
	u64				utime;
	u64				stime;
1000
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1001 1002
	u64				utimescaled;
	u64				stimescaled;
1003
#endif
1004 1005
	u64				gtime;
	struct prev_cputime		prev_cputime;
1006
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1007
	struct vtime			vtime;
1008
#endif
1009 1010

#ifdef CONFIG_NO_HZ_FULL
1011
	atomic_t			tick_dep_mask;
1012
#endif
1013 1014 1015 1016 1017 1018 1019 1020
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
1021
	u64				start_boottime;
1022 1023 1024 1025

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
1026

1027 1028
	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
	struct posix_cputimers		posix_cputimers;
L
Linus Torvalds 已提交
1029

1030 1031 1032 1033
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
	struct posix_cputimers_work	posix_cputimers_work;
#endif

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

1045 1046 1047 1048 1049
#ifdef CONFIG_KEYS
	/* Cached requested key. */
	struct key			*cached_requested_key;
#endif

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

1061
#ifdef CONFIG_SYSVIPC
1062 1063
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
1064
#endif
1065
#ifdef CONFIG_DETECT_HUNG_TASK
1066
	unsigned long			last_switch_count;
1067
	unsigned long			last_switch_time;
1068
#endif
1069 1070 1071 1072 1073 1074
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

1075 1076 1077 1078
#ifdef CONFIG_IO_URING
	struct io_uring_task		*io_uring;
#endif

1079 1080 1081 1082 1083
	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
1084
	struct sighand_struct __rcu		*sighand;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

1096
#ifdef CONFIG_AUDIT
A
Al Viro 已提交
1097
#ifdef CONFIG_AUDITSYSCALL
1098 1099
	struct audit_context		*audit_context;
#endif
1100 1101
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
1102
#endif
1103
	struct seccomp			seccomp;
1104
	struct syscall_user_dispatch	syscall_dispatch;
1105 1106

	/* Thread group tracking: */
1107 1108
	u64				parent_exec_id;
	u64				self_exec_id;
L
Linus Torvalds 已提交
1109

1110 1111
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
1112

1113
	/* Protection of the PI data structures: */
1114
	raw_spinlock_t			pi_lock;
1115

1116
	struct wake_q_node		wake_q;
1117

I
Ingo Molnar 已提交
1118
#ifdef CONFIG_RT_MUTEXES
1119
	/* PI waiters blocked on a rt_mutex held by this task: */
1120
	struct rb_root_cached		pi_waiters;
1121 1122
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
1123 1124
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
1125 1126
#endif

1127
#ifdef CONFIG_DEBUG_MUTEXES
1128 1129
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
1130
#endif
1131

1132 1133 1134 1135
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	int				non_block_count;
#endif

1136
#ifdef CONFIG_TRACE_IRQFLAGS
1137
	struct irqtrace_events		irqtrace;
1138
	unsigned int			hardirq_threaded;
1139
	u64				hardirq_chain_key;
1140 1141
	int				softirqs_enabled;
	int				softirq_context;
1142
	int				irq_config;
1143
#endif
1144 1145 1146
#ifdef CONFIG_PREEMPT_RT
	int				softirq_disable_cnt;
#endif
1147

I
Ingo Molnar 已提交
1148
#ifdef CONFIG_LOCKDEP
1149 1150 1151 1152 1153
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
1154
#endif
1155

1156
#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1157
	unsigned int			in_ubsan;
1158
#endif
1159

1160 1161
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
1162

1163 1164
	/* Stacked block device info: */
	struct bio_list			*bio_list;
1165

1166 1167
	/* Stack plugging: */
	struct blk_plug			*plug;
1168

1169 1170 1171 1172
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
1173

1174
	struct io_context		*io_context;
L
Linus Torvalds 已提交
1175

1176 1177 1178
#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
1179 1180
	/* Ptrace state: */
	unsigned long			ptrace_message;
1181
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
1182

1183
	struct task_io_accounting	ioac;
1184 1185 1186 1187
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
1188 1189 1190 1191 1192 1193 1194
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
1195 1196
#endif
#ifdef CONFIG_CPUSETS
1197 1198
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
I
Ingo Molnar 已提交
1199
	/* Sequence number to catch updates: */
1200
	seqcount_spinlock_t		mems_allowed_seq;
1201 1202
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
1203
#endif
1204
#ifdef CONFIG_CGROUPS
1205 1206 1207 1208
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
1209
#endif
1210
#ifdef CONFIG_X86_CPU_RESCTRL
1211
	u32				closid;
1212
	u32				rmid;
F
Fenghua Yu 已提交
1213
#endif
1214
#ifdef CONFIG_FUTEX
1215
	struct robust_list_head __user	*robust_list;
1216 1217 1218
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1219 1220
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1221
	struct mutex			futex_exit_mutex;
1222
	unsigned int			futex_state;
1223
#endif
1224
#ifdef CONFIG_PERF_EVENTS
1225 1226 1227
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1228
#endif
1229
#ifdef CONFIG_DEBUG_PREEMPT
1230
	unsigned long			preempt_disable_ip;
1231
#endif
1232
#ifdef CONFIG_NUMA
1233 1234
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1235
	short				il_prev;
1236
	short				pref_node_fork;
1237
#endif
1238
#ifdef CONFIG_NUMA_BALANCING
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

1250 1251 1252 1253 1254 1255 1256 1257 1258
	/*
	 * This pointer is only modified for current in syscall and
	 * pagefault context (and for tasks being destroyed), so it can be read
	 * from any of the following contexts:
	 *  - RCU read-side critical section
	 *  - current->numa_group from everywhere
	 *  - task's runqueue locked, task not running
	 */
	struct numa_group __rcu		*numa_group;
1259

1260
	/*
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1273
	 */
1274 1275
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1276

1277 1278
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1279 1280 1281
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1282
	 */
1283
	unsigned long			numa_faults_locality[3];
1284

1285
	unsigned long			numa_pages_migrated;
1286 1287
#endif /* CONFIG_NUMA_BALANCING */

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1298
	struct tlbflush_unmap_batch	tlb_ubc;
1299

1300 1301 1302 1303
	union {
		refcount_t		rcu_users;
		struct rcu_head		rcu;
	};
1304

1305 1306
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1307

1308
	struct page_frag		task_frag;
1309

1310 1311
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1312
#endif
1313

1314
#ifdef CONFIG_FAULT_INJECTION
1315
	int				make_it_fail;
1316
	unsigned int			fail_nth;
1317
#endif
1318
	/*
1319 1320
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1321
	 */
1322 1323 1324 1325
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1326

A
Arjan van de Ven 已提交
1327
#ifdef CONFIG_LATENCYTOP
1328 1329
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1330
#endif
1331
	/*
1332
	 * Time slack values; these are used to round up poll() and
1333 1334
	 * select() etc timeout values. These are in nanoseconds.
	 */
1335 1336
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1337

1338
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1339
	unsigned int			kasan_depth;
1340
#endif
1341

1342 1343
#ifdef CONFIG_KCSAN
	struct kcsan_ctx		kcsan_ctx;
1344 1345 1346
#ifdef CONFIG_TRACE_IRQFLAGS
	struct irqtrace_events		kcsan_save_irqtrace;
#endif
1347 1348 1349
#ifdef CONFIG_KCSAN_WEAK_MEMORY
	int				kcsan_stack_depth;
#endif
1350
#endif
1351

1352 1353 1354 1355
#if IS_ENABLED(CONFIG_KUNIT)
	struct kunit			*kunit_test;
#endif

1356
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1357 1358
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
1359
	int				curr_ret_depth;
1360 1361 1362 1363 1364 1365 1366

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1367 1368
	/*
	 * Number of functions that haven't been traced
1369
	 * because of depth overrun:
1370
	 */
1371 1372 1373 1374
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1375
#endif
1376

1377
#ifdef CONFIG_TRACING
1378 1379 1380 1381 1382
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1383
#endif /* CONFIG_TRACING */
1384

D
Dmitry Vyukov 已提交
1385
#ifdef CONFIG_KCOV
A
Andrey Konovalov 已提交
1386 1387
	/* See kernel/kcov.c for more details. */

1388
	/* Coverage collection mode enabled for this task (0 if disabled): */
1389
	unsigned int			kcov_mode;
1390 1391 1392 1393 1394 1395 1396 1397 1398

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
A
Andrey Konovalov 已提交
1399 1400 1401 1402 1403 1404

	/* KCOV common handle for remote coverage collection: */
	u64				kcov_handle;

	/* KCOV sequence number: */
	int				kcov_sequence;
1405 1406 1407

	/* Collect coverage from softirq context: */
	unsigned int			kcov_softirq;
D
Dmitry Vyukov 已提交
1408
#endif
1409

1410
#ifdef CONFIG_MEMCG
1411 1412 1413
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1414

1415 1416
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1417 1418 1419

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1420
#endif
1421

1422 1423 1424 1425
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1426
#ifdef CONFIG_UPROBES
1427
	struct uprobe_task		*utask;
1428
#endif
K
Kent Overstreet 已提交
1429
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1430 1431
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1432
#endif
1433
	struct kmap_ctrl		kmap_ctrl;
P
Peter Zijlstra 已提交
1434
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1435
	unsigned long			task_state_change;
1436 1437 1438
# ifdef CONFIG_PREEMPT_RT
	unsigned long			saved_state_change;
# endif
P
Peter Zijlstra 已提交
1439
#endif
1440
	int				pagefault_disabled;
1441
#ifdef CONFIG_MMU
1442
	struct task_struct		*oom_reaper_list;
1443
#endif
1444
#ifdef CONFIG_VMAP_STACK
1445
	struct vm_struct		*stack_vm_area;
1446
#endif
1447
#ifdef CONFIG_THREAD_INFO_IN_TASK
1448
	/* A live task holds one reference: */
1449
	refcount_t			stack_refcount;
1450 1451 1452
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1453
#endif
1454 1455 1456
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1457
#endif
1458 1459 1460
#ifdef CONFIG_BPF_SYSCALL
	/* Used by BPF task local storage */
	struct bpf_local_storage __rcu	*bpf_storage;
1461 1462
	/* Used for BPF run context */
	struct bpf_run_ctx		*bpf_ctx;
1463
#endif
K
Kees Cook 已提交
1464

1465 1466
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1467
	unsigned long			prev_lowest_stack;
1468 1469
#endif

1470
#ifdef CONFIG_X86_MCE
1471 1472
	void __user			*mce_vaddr;
	__u64				mce_kflags;
1473
	u64				mce_addr;
1474 1475 1476
	__u64				mce_ripv : 1,
					mce_whole_page : 1,
					__mce_reserved : 62;
1477
	struct callback_head		mce_kill_me;
1478
	int				mce_count;
1479 1480
#endif

P
Peter Zijlstra 已提交
1481 1482 1483
#ifdef CONFIG_KRETPROBES
	struct llist_head               kretprobe_instances;
#endif
1484 1485 1486
#ifdef CONFIG_RETHOOK
	struct llist_head               rethooks;
#endif
P
Peter Zijlstra 已提交
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
	/*
	 * If L1D flush is supported on mm context switch
	 * then we use this callback head to queue kill work
	 * to kill tasks that are not running on SMT disabled
	 * cores
	 */
	struct callback_head		l1d_flush_kill;
#endif

K
Kees Cook 已提交
1498 1499 1500 1501 1502 1503
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1504 1505 1506 1507 1508 1509 1510 1511 1512
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1513 1514
};

A
Alexey Dobriyan 已提交
1515
static inline struct pid *task_pid(struct task_struct *task)
1516
{
1517
	return task->thread_pid;
1518 1519
}

1520 1521 1522 1523 1524
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1525 1526
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1527 1528 1529 1530
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1531
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1532

A
Alexey Dobriyan 已提交
1533
static inline pid_t task_pid_nr(struct task_struct *tsk)
1534 1535 1536 1537
{
	return tsk->pid;
}

1538
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1539 1540 1541
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1542 1543 1544

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1545
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1546 1547 1548
}


A
Alexey Dobriyan 已提交
1549
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1550 1551 1552 1553
{
	return tsk->tgid;
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1566
	return p->thread_pid != NULL;
1567
}
1568

1569
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1570
{
1571
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1572 1573 1574 1575
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1576
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1577 1578 1579
}


1580
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1581
{
1582
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1583 1584 1585 1586
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1587
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1588 1589
}

1590 1591
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1592
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1593 1594 1595 1596
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1597
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1617
/* Obsolete, do not use: */
1618 1619 1620 1621
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1622

1623 1624 1625
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1626
static inline unsigned int task_state_index(struct task_struct *tsk)
1627
{
1628
	unsigned int tsk_state = READ_ONCE(tsk->__state);
1629
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1630

1631 1632 1633 1634 1635
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1636 1637 1638
	return fls(state);
}

1639
static inline char task_index_to_char(unsigned int state)
1640
{
1641
	static const char state_char[] = "RSDTtXZPI";
1642

1643
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1644

1645 1646 1647 1648 1649
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1650
	return task_index_to_char(task_state_index(tsk));
1651 1652
}

1653
/**
1654 1655
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1656 1657 1658
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1659 1660
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1661
 */
A
Alexey Dobriyan 已提交
1662
static inline int is_global_init(struct task_struct *tsk)
1663
{
1664
	return task_tgid_nr(tsk) == 1;
1665
}
1666

1667 1668
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1669 1670 1671
/*
 * Per process flags
 */
1672
#define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1673 1674
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
1675
#define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1676
#define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1688 1689 1690
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1691 1692
#define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
						 * I am cleaning dirty pages from some other bdi. */
1693 1694 1695
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1696
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1697
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1698
#define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1699 1700
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1713 1714 1715 1716 1717
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1718 1719
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1720 1721 1722

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1723 1724
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1725

L
Linus Torvalds 已提交
1726
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1727 1728
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1729

1730
static __always_inline bool is_percpu_thread(void)
1731 1732 1733 1734 1735 1736 1737 1738 1739
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1740
/* Per-process atomic flags. */
1741 1742 1743
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1744 1745
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1746 1747
#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1748
#define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1749

1750 1751 1752
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1753

1754 1755 1756
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1757

1758 1759 1760 1761 1762 1763
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1764

1765 1766 1767 1768 1769 1770 1771
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1772

1773 1774 1775 1776
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

1777 1778 1779 1780
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)

1781 1782 1783
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1784 1785 1786 1787 1788 1789 1790
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)

TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)

1791
static inline void
1792
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1793
{
1794 1795
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1796 1797
}

1798 1799
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1800
#ifdef CONFIG_SMP
1801 1802
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1803 1804
extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
extern void release_user_cpus_ptr(struct task_struct *p);
1805
extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1806 1807
extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
L
Linus Torvalds 已提交
1808
#else
1809
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1810 1811
{
}
1812
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1813
{
1814
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1815 1816 1817
		return -EINVAL;
	return 0;
}
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
{
	if (src->user_cpus_ptr)
		return -EINVAL;
	return 0;
}
static inline void release_user_cpus_ptr(struct task_struct *p)
{
	WARN_ON(p->user_cpus_ptr);
}
1828 1829 1830 1831 1832

static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
{
	return 0;
}
L
Linus Torvalds 已提交
1833
#endif
1834

1835
extern int yield_to(struct task_struct *p, bool preempt);
1836 1837
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1849

1850 1851
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1852
extern int idle_cpu(int cpu);
1853
extern int available_idle_cpu(int cpu);
1854 1855
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1856 1857 1858
extern void sched_set_fifo(struct task_struct *p);
extern void sched_set_fifo_low(struct task_struct *p);
extern void sched_set_normal(struct task_struct *p, int nice);
1859
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1860
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1861
extern struct task_struct *idle_task(int cpu);
1862

1863 1864
/**
 * is_idle_task - is the specified task an idle task?
1865
 * @p: the task in question.
1866 1867
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1868
 */
1869
static __always_inline bool is_idle_task(const struct task_struct *p)
1870
{
1871
	return !!(p->flags & PF_IDLE);
1872
}
1873

1874
extern struct task_struct *curr_task(int cpu);
1875
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1876 1877 1878 1879

void yield(void);

union thread_union {
1880 1881 1882
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1883
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1884
	struct thread_info thread_info;
1885
#endif
L
Linus Torvalds 已提交
1886 1887 1888
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1889 1890 1891 1892 1893 1894
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1895
#ifdef CONFIG_THREAD_INFO_IN_TASK
1896
# define task_thread_info(task)	(&(task)->thread_info)
1897 1898 1899 1900
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1901 1902 1903 1904 1905
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1906 1907
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1908
 *
1909
 * see also find_vpid() etc in include/linux/pid.h
1910 1911
 */

1912
extern struct task_struct *find_task_by_vpid(pid_t nr);
1913
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1914

1915 1916 1917 1918 1919
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1920 1921
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1922
extern void wake_up_new_task(struct task_struct *tsk);
1923

L
Linus Torvalds 已提交
1924
#ifdef CONFIG_SMP
1925
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1926
#else
1927
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1928 1929
#endif

1930
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1931

1932 1933 1934 1935
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1936

1937 1938 1939 1940 1941
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1942 1943

#ifdef CONFIG_SMP
1944 1945 1946 1947 1948 1949 1950 1951 1952
static __always_inline void scheduler_ipi(void)
{
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
	preempt_fold_need_resched();
}
1953
extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
L
Linus Torvalds 已提交
1954
#else
1955
static inline void scheduler_ipi(void) { }
1956
static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
R
Roland McGrath 已提交
1957 1958 1959
{
	return 1;
}
L
Linus Torvalds 已提交
1960 1961
#endif

1962 1963 1964
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1965 1966 1967
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1968
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1969 1970 1971 1972
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1973
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1974 1975
}

1976 1977 1978 1979 1980 1981
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1982 1983
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1984
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1985 1986 1987 1988
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1989
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1990 1991 1992 1993
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1994
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

2007 2008 2009 2010 2011
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
2012 2013 2014 2015 2016 2017
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
2018 2019 2020 2021 2022 2023 2024 2025 2026
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
extern int __cond_resched(void);

#ifdef CONFIG_PREEMPT_DYNAMIC

DECLARE_STATIC_CALL(cond_resched, __cond_resched);

static __always_inline int _cond_resched(void)
{
P
Peter Zijlstra 已提交
2027
	return static_call_mod(cond_resched)();
2028 2029
}

2030
#else
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

static inline int _cond_resched(void)
{
	return __cond_resched();
}

#endif /* CONFIG_PREEMPT_DYNAMIC */

#else

2041
static inline int _cond_resched(void) { return 0; }
2042 2043

#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2044

2045
#define cond_resched() ({			\
2046
	__might_resched(__FILE__, __LINE__, 0);	\
2047 2048
	_cond_resched();			\
})
2049

2050
extern int __cond_resched_lock(spinlock_t *lock);
B
Ben Gardon 已提交
2051 2052
extern int __cond_resched_rwlock_read(rwlock_t *lock);
extern int __cond_resched_rwlock_write(rwlock_t *lock);
2053

2054 2055 2056
#define MIGHT_RESCHED_RCU_SHIFT		8
#define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
#ifndef CONFIG_PREEMPT_RT
/*
 * Non RT kernels have an elevated preempt count due to the held lock,
 * but are not allowed to be inside a RCU read side critical section
 */
# define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
#else
/*
 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
 * cond_resched*lock() has to take that into account because it checks for
 * preempt_count() and rcu_preempt_depth().
 */
# define PREEMPT_LOCK_RESCHED_OFFSETS	\
	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
#endif

#define cond_resched_lock(lock) ({						\
	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
	__cond_resched_lock(lock);						\
2076 2077
})

2078 2079 2080
#define cond_resched_rwlock_read(lock) ({					\
	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
	__cond_resched_rwlock_read(lock);					\
B
Ben Gardon 已提交
2081 2082
})

2083 2084 2085
#define cond_resched_rwlock_write(lock) ({					\
	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
	__cond_resched_rwlock_write(lock);					\
B
Ben Gardon 已提交
2086 2087
})

2088 2089 2090 2091 2092 2093 2094 2095 2096
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
2097 2098
/*
 * Does a critical section need to be broken due to another
2099
 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
N
Nick Piggin 已提交
2100
 * but a general need for low latency)
L
Linus Torvalds 已提交
2101
 */
N
Nick Piggin 已提交
2102
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
2103
{
2104
#ifdef CONFIG_PREEMPTION
N
Nick Piggin 已提交
2105 2106
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
2107
	return 0;
N
Nick Piggin 已提交
2108
#endif
L
Linus Torvalds 已提交
2109 2110
}

B
Ben Gardon 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
/*
 * Check if a rwlock is contended.
 * Returns non-zero if there is another task waiting on the rwlock.
 * Returns zero if the lock is not contended or the system / underlying
 * rwlock implementation does not support contention detection.
 * Technically does not depend on CONFIG_PREEMPTION, but a general need
 * for low latency.
 */
static inline int rwlock_needbreak(rwlock_t *lock)
{
#ifdef CONFIG_PREEMPTION
	return rwlock_is_contended(lock);
#else
	return 0;
#endif
}

2128 2129 2130 2131 2132
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
2133 2134 2135 2136 2137 2138 2139
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
2140
	return READ_ONCE(task_thread_info(p)->cpu);
L
Linus Torvalds 已提交
2141 2142
}

I
Ingo Molnar 已提交
2143
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

2158
extern bool sched_task_on_rq(struct task_struct *p);
2159
extern unsigned long get_wchan(struct task_struct *p);
2160

2161 2162 2163 2164 2165 2166 2167 2168 2169
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
2170 2171 2172 2173
static inline bool vcpu_is_preempted(int cpu)
{
	return false;
}
2174 2175
#endif

2176 2177
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2178

D
Dave Hansen 已提交
2179 2180 2181 2182
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

2183
#ifdef CONFIG_SMP
2184 2185 2186 2187 2188 2189
static inline bool owner_on_cpu(struct task_struct *owner)
{
	/*
	 * As lock holder preemption issue, we both skip spinning if
	 * task is not on cpu or its cpu is preempted
	 */
2190
	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2191 2192
}

2193 2194 2195 2196
/* Returns effective CPU energy utilization, as seen by the scheduler */
unsigned long sched_cpu_util(int cpu, unsigned long max);
#endif /* CONFIG_SMP */

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

2221
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2222

2223 2224
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2225 2226
{
	if (current->rseq)
2227
		__rseq_handle_notify_resume(ksig, regs);
2228 2229
}

2230 2231
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2232 2233 2234 2235
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
2236
	rseq_handle_notify_resume(ksig, regs);
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
2255
 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2256 2257 2258
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
2259
	if (clone_flags & CLONE_VM) {
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		t->rseq = NULL;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
2282 2283
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2284 2285
{
}
2286 2287
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

2317 2318 2319 2320 2321 2322 2323 2324 2325
const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);

const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);

int sched_trace_rq_cpu(struct rq *rq);
2326
int sched_trace_rq_cpu_capacity(struct rq *rq);
2327
int sched_trace_rq_nr_running(struct rq *rq);
2328 2329 2330

const struct cpumask *sched_trace_rd_span(struct root_domain *rd);

2331 2332
#ifdef CONFIG_SCHED_CORE
extern void sched_core_free(struct task_struct *tsk);
2333
extern void sched_core_fork(struct task_struct *p);
2334 2335
extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
				unsigned long uaddr);
2336 2337
#else
static inline void sched_core_free(struct task_struct *tsk) { }
2338
static inline void sched_core_fork(struct task_struct *p) { }
2339 2340
#endif

L
Linus Torvalds 已提交
2341
#endif