intel_ringbuffer.c 54.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31

32 33
#include <drm/drmP.h>
#include <drm/i915_drm.h>
34 35 36

#include "i915_drv.h"
#include "i915_gem_render_state.h"
37
#include "i915_trace.h"
38
#include "intel_drv.h"
39
#include "intel_workarounds.h"
40

41 42 43 44 45
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

46 47 48
static unsigned int __intel_ring_space(unsigned int head,
				       unsigned int tail,
				       unsigned int size)
49
{
50 51 52 53 54 55 56
	/*
	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
	 * same cacheline, the Head Pointer must not be greater than the Tail
	 * Pointer."
	 */
	GEM_BUG_ON(!is_power_of_2(size));
	return (head - tail - CACHELINE_BYTES) & (size - 1);
57 58
}

59
unsigned int intel_ring_update_space(struct intel_ring *ring)
60
{
61 62 63 64 65 66
	unsigned int space;

	space = __intel_ring_space(ring->head, ring->emit, ring->size);

	ring->space = space;
	return space;
67 68
}

69
static int
70
gen2_render_ring_flush(struct i915_request *rq, u32 mode)
71
{
72
	u32 cmd, *cs;
73 74 75

	cmd = MI_FLUSH;

76
	if (mode & EMIT_INVALIDATE)
77 78
		cmd |= MI_READ_FLUSH;

79
	cs = intel_ring_begin(rq, 2);
80 81
	if (IS_ERR(cs))
		return PTR_ERR(cs);
82

83 84
	*cs++ = cmd;
	*cs++ = MI_NOOP;
85
	intel_ring_advance(rq, cs);
86 87 88 89 90

	return 0;
}

static int
91
gen4_render_ring_flush(struct i915_request *rq, u32 mode)
92
{
93
	u32 cmd, *cs;
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

123
	cmd = MI_FLUSH;
124
	if (mode & EMIT_INVALIDATE) {
125
		cmd |= MI_EXE_FLUSH;
126
		if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
127 128
			cmd |= MI_INVALIDATE_ISP;
	}
129

130
	cs = intel_ring_begin(rq, 2);
131 132
	if (IS_ERR(cs))
		return PTR_ERR(cs);
133

134 135
	*cs++ = cmd;
	*cs++ = MI_NOOP;
136
	intel_ring_advance(rq, cs);
137 138

	return 0;
139 140
}

141
/*
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
179
intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
180
{
181
	u32 scratch_addr =
182
		i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
183 184
	u32 *cs;

185
	cs = intel_ring_begin(rq, 6);
186 187 188 189 190 191 192 193 194
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
195
	intel_ring_advance(rq, cs);
196

197
	cs = intel_ring_begin(rq, 6);
198 199 200 201 202 203 204 205 206
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
207
	intel_ring_advance(rq, cs);
208 209 210 211 212

	return 0;
}

static int
213
gen6_render_ring_flush(struct i915_request *rq, u32 mode)
214
{
215
	u32 scratch_addr =
216
		i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
217
	u32 *cs, flags = 0;
218 219
	int ret;

220
	/* Force SNB workarounds for PIPE_CONTROL flushes */
221
	ret = intel_emit_post_sync_nonzero_flush(rq);
222 223 224
	if (ret)
		return ret;

225 226 227 228
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
229
	if (mode & EMIT_FLUSH) {
230 231 232 233 234 235
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
236
		flags |= PIPE_CONTROL_CS_STALL;
237
	}
238
	if (mode & EMIT_INVALIDATE) {
239 240 241 242 243 244 245 246 247
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
248
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249
	}
250

251
	cs = intel_ring_begin(rq, 4);
252 253
	if (IS_ERR(cs))
		return PTR_ERR(cs);
254

255 256 257 258
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
259
	intel_ring_advance(rq, cs);
260 261 262 263

	return 0;
}

264
static int
265
gen7_render_ring_cs_stall_wa(struct i915_request *rq)
266
{
267
	u32 *cs;
268

269
	cs = intel_ring_begin(rq, 4);
270 271
	if (IS_ERR(cs))
		return PTR_ERR(cs);
272

273 274 275 276
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
277
	intel_ring_advance(rq, cs);
278 279 280 281

	return 0;
}

282
static int
283
gen7_render_ring_flush(struct i915_request *rq, u32 mode)
284
{
285
	u32 scratch_addr =
286
		i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
287
	u32 *cs, flags = 0;
288

289 290 291 292 293 294 295 296 297 298
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

299 300 301 302
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
303
	if (mode & EMIT_FLUSH) {
304 305
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
306
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
307
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
308
	}
309
	if (mode & EMIT_INVALIDATE) {
310 311 312 313 314 315
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
316
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
317 318 319 320
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
321
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
322

323 324
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

325 326 327
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
328
		gen7_render_ring_cs_stall_wa(rq);
329 330
	}

331
	cs = intel_ring_begin(rq, 4);
332 333
	if (IS_ERR(cs))
		return PTR_ERR(cs);
334

335 336 337 338
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
339
	intel_ring_advance(rq, cs);
340 341 342 343

	return 0;
}

344
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
345
{
346
	struct drm_i915_private *dev_priv = engine->i915;
347 348 349
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
350
	if (INTEL_GEN(dev_priv) >= 4)
351 352 353 354
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

355
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
356
{
357
	struct drm_i915_private *dev_priv = engine->i915;
358
	i915_reg_t mmio;
359 360 361 362

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
363
	if (IS_GEN7(dev_priv)) {
364
		switch (engine->id) {
365 366 367 368 369 370
		/*
		 * No more rings exist on Gen7. Default case is only to shut up
		 * gcc switch check warning.
		 */
		default:
			GEM_BUG_ON(engine->id);
371 372 373 374 375 376 377 378 379 380 381 382 383
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
384
	} else if (IS_GEN6(dev_priv)) {
385
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
386
	} else {
387
		mmio = RING_HWS_PGA(engine->mmio_base);
388 389
	}

390 391 392
	if (INTEL_GEN(dev_priv) >= 6)
		I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);

393
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
394 395
	POSTING_READ(mmio);

396
	/* Flush the TLB for this page */
397
	if (IS_GEN(dev_priv, 6, 7)) {
398
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
399 400

		/* ring should be idle before issuing a sync flush*/
401
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
402 403 404 405

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
406 407 408
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
409
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
410
				  engine->name);
411 412 413
	}
}

414
static bool stop_ring(struct intel_engine_cs *engine)
415
{
416
	struct drm_i915_private *dev_priv = engine->i915;
417

418
	if (INTEL_GEN(dev_priv) > 2) {
419
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
420 421 422 423 424
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
425 426
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
427 428 429 430
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
431
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
432
				return false;
433 434
		}
	}
435

436 437
	I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));

438
	I915_WRITE_HEAD(engine, 0);
439
	I915_WRITE_TAIL(engine, 0);
440

441 442 443
	/* The ring must be empty before it is disabled */
	I915_WRITE_CTL(engine, 0);

444
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
445
}
446

447
static int init_ring_common(struct intel_engine_cs *engine)
448
{
449
	struct drm_i915_private *dev_priv = engine->i915;
450
	struct intel_ring *ring = engine->buffer;
451 452
	int ret = 0;

453
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
454

455
	if (!stop_ring(engine)) {
456
		/* G45 ring initialization often fails to reset head to zero */
457 458 459 460 461 462 463
		DRM_DEBUG_DRIVER("%s head not reset to zero "
				"ctl %08x head %08x tail %08x start %08x\n",
				engine->name,
				I915_READ_CTL(engine),
				I915_READ_HEAD(engine),
				I915_READ_TAIL(engine),
				I915_READ_START(engine));
464

465
		if (!stop_ring(engine)) {
466 467
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
468 469 470 471 472
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
473 474
			ret = -EIO;
			goto out;
475
		}
476 477
	}

478
	if (HWS_NEEDS_PHYSICAL(dev_priv))
479
		ring_setup_phys_status_page(engine);
480 481
	else
		intel_ring_setup_status_page(engine);
482

483
	intel_engine_reset_breadcrumbs(engine);
484

485
	/* Enforce ordering by reading HEAD register back */
486
	I915_READ_HEAD(engine);
487

488 489 490 491
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
492
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
493 494

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
495
	if (I915_READ_HEAD(engine))
496 497
		DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
				 engine->name, I915_READ_HEAD(engine));
498 499 500 501 502

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
503

504
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
505 506

	/* If the head is still not zero, the ring is dead */
507 508 509
	if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
				    RING_VALID, RING_VALID,
				    50)) {
510
		DRM_ERROR("%s initialization failed "
511
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
512 513 514
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
515 516
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
517
			  I915_READ_START(engine),
518
			  i915_ggtt_offset(ring->vma));
519 520
		ret = -EIO;
		goto out;
521 522
	}

523
	intel_engine_init_hangcheck(engine);
524

525 526 527
	if (INTEL_GEN(dev_priv) > 2)
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));

528
out:
529
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
530 531

	return ret;
532 533
}

534
static void reset_ring_common(struct intel_engine_cs *engine,
535
			      struct i915_request *request)
536
{
537 538 539 540 541 542 543 544 545 546
	/*
	 * RC6 must be prevented until the reset is complete and the engine
	 * reinitialised. If it occurs in the middle of this sequence, the
	 * state written to/loaded from the power context is ill-defined (e.g.
	 * the PP_BASE_DIR may be lost).
	 */
	assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);

	/*
	 * Try to restore the logical GPU state to match the continuation
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	 * of the request queue. If we skip the context/PD restore, then
	 * the next request may try to execute assuming that its context
	 * is valid and loaded on the GPU and so may try to access invalid
	 * memory, prompting repeated GPU hangs.
	 *
	 * If the request was guilty, we still restore the logical state
	 * in case the next request requires it (e.g. the aliasing ppgtt),
	 * but skip over the hung batch.
	 *
	 * If the request was innocent, we try to replay the request with
	 * the restored context.
	 */
	if (request) {
		struct drm_i915_private *dev_priv = request->i915;
		struct intel_context *ce = &request->ctx->engine[engine->id];
		struct i915_hw_ppgtt *ppgtt;

		if (ce->state) {
			I915_WRITE(CCID,
				   i915_ggtt_offset(ce->state) |
				   BIT(8) /* must be set! */ |
				   CCID_EXTENDED_STATE_SAVE |
				   CCID_EXTENDED_STATE_RESTORE |
				   CCID_EN);
		}

		ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
		if (ppgtt) {
			u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;

			I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
			I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);

			/* Wait for the PD reload to complete */
			if (intel_wait_for_register(dev_priv,
						    RING_PP_DIR_BASE(engine),
						    BIT(0), 0,
						    10))
				DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
586

587 588 589 590
			ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
		}

		/* If the rq hung, jump to its breadcrumb and skip the batch */
591 592
		if (request->fence.error == -EIO)
			request->ring->head = request->postfix;
593 594
	} else {
		engine->legacy_active_context = NULL;
595
		engine->legacy_active_ppgtt = NULL;
596
	}
597 598
}

599
static int intel_rcs_ctx_init(struct i915_request *rq)
600 601 602
{
	int ret;

603
	ret = intel_ctx_workarounds_emit(rq);
604 605 606
	if (ret != 0)
		return ret;

607
	ret = i915_gem_render_state_emit(rq);
608
	if (ret)
609
		return ret;
610

611
	return 0;
612 613
}

614
static int init_render_ring(struct intel_engine_cs *engine)
615
{
616
	struct drm_i915_private *dev_priv = engine->i915;
617
	int ret = init_ring_common(engine);
618 619
	if (ret)
		return ret;
620

621
	intel_whitelist_workarounds_apply(engine);
622

623
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
624
	if (IS_GEN(dev_priv, 4, 6))
625
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
626 627 628 629

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
630
	 *
631
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
632
	 */
633
	if (IS_GEN(dev_priv, 6, 7))
634 635
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

636
	/* Required for the hardware to program scanline values for waiting */
637
	/* WaEnableFlushTlbInvalidationMode:snb */
638
	if (IS_GEN6(dev_priv))
639
		I915_WRITE(GFX_MODE,
640
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
641

642
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
643
	if (IS_GEN7(dev_priv))
644
		I915_WRITE(GFX_MODE_GEN7,
645
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
646
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
647

648
	if (IS_GEN6(dev_priv)) {
649 650 651 652 653 654
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
655
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
656 657
	}

658
	if (IS_GEN(dev_priv, 6, 7))
659
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
660

661
	if (INTEL_GEN(dev_priv) >= 6)
662
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
663

664
	return 0;
665 666
}

667
static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
668
{
669
	struct drm_i915_private *dev_priv = rq->i915;
670
	struct intel_engine_cs *engine;
671
	enum intel_engine_id id;
C
Chris Wilson 已提交
672
	int num_rings = 0;
673

674
	for_each_engine(engine, dev_priv, id) {
675 676 677 678
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
679

680
		mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
681
		if (i915_mmio_reg_valid(mbox_reg)) {
682 683
			*cs++ = MI_LOAD_REGISTER_IMM(1);
			*cs++ = i915_mmio_reg_offset(mbox_reg);
684
			*cs++ = rq->global_seqno;
C
Chris Wilson 已提交
685
			num_rings++;
686 687
		}
	}
C
Chris Wilson 已提交
688
	if (num_rings & 1)
689
		*cs++ = MI_NOOP;
690

691
	return cs;
692 693
}

694 695
static void cancel_requests(struct intel_engine_cs *engine)
{
696
	struct i915_request *request;
697 698 699 700 701 702 703
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Mark all submitted requests as skipped. */
	list_for_each_entry(request, &engine->timeline->requests, link) {
		GEM_BUG_ON(!request->global_seqno);
704
		if (!i915_request_completed(request))
705 706 707 708 709 710 711
			dma_fence_set_error(&request->fence, -EIO);
	}
	/* Remaining _unready_ requests will be nop'ed when submitted */

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

712
static void i9xx_submit_request(struct i915_request *request)
713 714 715
{
	struct drm_i915_private *dev_priv = request->i915;

716
	i915_request_submit(request);
717

718 719
	I915_WRITE_TAIL(request->engine,
			intel_ring_set_tail(request->ring, request->tail));
720 721
}

722
static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
723
{
724 725
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
726
	*cs++ = rq->global_seqno;
727
	*cs++ = MI_USER_INTERRUPT;
728

729 730
	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
731 732
}

733 734
static const int i9xx_emit_breadcrumb_sz = 4;

735
static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
736
{
737
	return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
738 739
}

740
static int
741
gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
742
{
743 744 745
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
746
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
747
	u32 *cs;
748

749
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
750

751
	cs = intel_ring_begin(rq, 4);
752 753
	if (IS_ERR(cs))
		return PTR_ERR(cs);
754

755
	*cs++ = dw1 | wait_mbox;
756 757 758 759
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
760 761 762
	*cs++ = signal->global_seqno - 1;
	*cs++ = 0;
	*cs++ = MI_NOOP;
763
	intel_ring_advance(rq, cs);
764 765 766 767

	return 0;
}

768
static void
769
gen5_seqno_barrier(struct intel_engine_cs *engine)
770
{
771 772 773
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
774
	 *
775 776 777 778 779 780 781
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
782
	 */
783
	usleep_range(125, 250);
784 785
}

786 787
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
788
{
789
	struct drm_i915_private *dev_priv = engine->i915;
790

791 792
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
793 794 795 796 797 798 799 800 801
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
802 803 804
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
805
	 */
806
	spin_lock_irq(&dev_priv->uncore.lock);
807
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
808
	spin_unlock_irq(&dev_priv->uncore.lock);
809 810
}

811 812
static void
gen5_irq_enable(struct intel_engine_cs *engine)
813
{
814
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
815 816 817
}

static void
818
gen5_irq_disable(struct intel_engine_cs *engine)
819
{
820
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
821 822
}

823 824
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
825
{
826
	struct drm_i915_private *dev_priv = engine->i915;
827

828 829 830
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
831 832
}

833
static void
834
i9xx_irq_disable(struct intel_engine_cs *engine)
835
{
836
	struct drm_i915_private *dev_priv = engine->i915;
837

838 839
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
840 841
}

842 843
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
844
{
845
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
846

847 848 849
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
850 851 852
}

static void
853
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
854
{
855
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
856

857 858
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
859 860
}

861
static int
862
bsd_ring_flush(struct i915_request *rq, u32 mode)
863
{
864
	u32 *cs;
865

866
	cs = intel_ring_begin(rq, 2);
867 868
	if (IS_ERR(cs))
		return PTR_ERR(cs);
869

870 871
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
872
	intel_ring_advance(rq, cs);
873
	return 0;
874 875
}

876 877
static void
gen6_irq_enable(struct intel_engine_cs *engine)
878
{
879
	struct drm_i915_private *dev_priv = engine->i915;
880

881 882 883
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
884
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
885 886 887
}

static void
888
gen6_irq_disable(struct intel_engine_cs *engine)
889
{
890
	struct drm_i915_private *dev_priv = engine->i915;
891

892
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
893
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
894 895
}

896 897
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
898
{
899
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
900

901
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
902
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
903 904 905
}

static void
906
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
907
{
908
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
909

910
	I915_WRITE_IMR(engine, ~0);
911
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
912 913
}

914
static int
915
i965_emit_bb_start(struct i915_request *rq,
916 917
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
918
{
919
	u32 *cs;
920

921
	cs = intel_ring_begin(rq, 2);
922 923
	if (IS_ERR(cs))
		return PTR_ERR(cs);
924

925 926 927
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
928
	intel_ring_advance(rq, cs);
929

930 931 932
	return 0;
}

933 934
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
935 936
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
937
static int
938
i830_emit_bb_start(struct i915_request *rq,
939 940
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
941
{
942
	u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
943

944
	cs = intel_ring_begin(rq, 6);
945 946
	if (IS_ERR(cs))
		return PTR_ERR(cs);
947

948
	/* Evict the invalid PTE TLBs */
949 950 951 952 953 954
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
955
	intel_ring_advance(rq, cs);
956

957
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
958 959 960
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

961
		cs = intel_ring_begin(rq, 6 + 2);
962 963
		if (IS_ERR(cs))
			return PTR_ERR(cs);
964 965 966 967 968

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
969 970 971 972 973 974 975 976 977
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
978
		intel_ring_advance(rq, cs);
979 980

		/* ... and execute it. */
981
		offset = cs_offset;
982
	}
983

984
	cs = intel_ring_begin(rq, 2);
985 986
	if (IS_ERR(cs))
		return PTR_ERR(cs);
987

988 989 990
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
991
	intel_ring_advance(rq, cs);
992

993 994 995 996
	return 0;
}

static int
997
i915_emit_bb_start(struct i915_request *rq,
998 999
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1000
{
1001
	u32 *cs;
1002

1003
	cs = intel_ring_begin(rq, 2);
1004 1005
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1006

1007 1008 1009
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1010
	intel_ring_advance(rq, cs);
1011 1012 1013 1014 1015

	return 0;
}


1016

1017 1018 1019
int intel_ring_pin(struct intel_ring *ring,
		   struct drm_i915_private *i915,
		   unsigned int offset_bias)
1020
{
1021
	enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1022
	struct i915_vma *vma = ring->vma;
1023
	unsigned int flags;
1024
	void *addr;
1025 1026
	int ret;

1027
	GEM_BUG_ON(ring->vaddr);
1028

1029

1030 1031 1032
	flags = PIN_GLOBAL;
	if (offset_bias)
		flags |= PIN_OFFSET_BIAS | offset_bias;
1033
	if (vma->obj->stolen)
1034
		flags |= PIN_MAPPABLE;
1035

1036
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1037
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1038 1039 1040 1041
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1042
			return ret;
1043
	}
1044

1045 1046 1047
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1048

1049
	if (i915_vma_is_map_and_fenceable(vma))
1050 1051
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1052
		addr = i915_gem_object_pin_map(vma->obj, map);
1053 1054
	if (IS_ERR(addr))
		goto err;
1055

1056 1057
	vma->obj->pin_global++;

1058
	ring->vaddr = addr;
1059
	return 0;
1060

1061 1062 1063
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1064 1065
}

1066 1067 1068 1069 1070 1071 1072 1073 1074
void intel_ring_reset(struct intel_ring *ring, u32 tail)
{
	GEM_BUG_ON(!list_empty(&ring->request_list));
	ring->tail = tail;
	ring->head = tail;
	ring->emit = tail;
	intel_ring_update_space(ring);
}

1075 1076 1077 1078 1079
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1080 1081 1082
	/* Discard any unused bytes beyond that submitted to hw. */
	intel_ring_reset(ring, ring->tail);

1083
	if (i915_vma_is_map_and_fenceable(ring->vma))
1084
		i915_vma_unpin_iomap(ring->vma);
1085 1086
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1087 1088
	ring->vaddr = NULL;

1089
	ring->vma->obj->pin_global--;
1090
	i915_vma_unpin(ring->vma);
1091 1092
}

1093 1094
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1095
{
1096
	struct drm_i915_gem_object *obj;
1097
	struct i915_vma *vma;
1098

1099
	obj = i915_gem_object_create_stolen(dev_priv, size);
1100
	if (!obj)
1101
		obj = i915_gem_object_create_internal(dev_priv, size);
1102 1103
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1104

1105 1106 1107
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1108
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1109 1110 1111 1112
	if (IS_ERR(vma))
		goto err;

	return vma;
1113

1114 1115 1116
err:
	i915_gem_object_put(obj);
	return vma;
1117 1118
}

1119 1120
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1121
{
1122
	struct intel_ring *ring;
1123
	struct i915_vma *vma;
1124

1125
	GEM_BUG_ON(!is_power_of_2(size));
1126
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1127

1128
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1129
	if (!ring)
1130 1131
		return ERR_PTR(-ENOMEM);

1132 1133
	INIT_LIST_HEAD(&ring->request_list);

1134 1135 1136 1137 1138 1139
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1140
	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1141 1142 1143 1144
		ring->effective_size -= 2 * CACHELINE_BYTES;

	intel_ring_update_space(ring);

1145 1146
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1147
		kfree(ring);
1148
		return ERR_CAST(vma);
1149
	}
1150
	ring->vma = vma;
1151 1152 1153 1154 1155

	return ring;
}

void
1156
intel_ring_free(struct intel_ring *ring)
1157
{
1158 1159 1160 1161 1162
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1163 1164 1165
	kfree(ring);
}

1166
static int context_pin(struct i915_gem_context *ctx)
1167 1168 1169 1170
{
	struct i915_vma *vma = ctx->engine[RCS].state;
	int ret;

1171 1172
	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
1173 1174 1175 1176
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1177
		ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1178 1179 1180 1181
		if (ret)
			return ret;
	}

1182 1183
	return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
			    PIN_GLOBAL | PIN_HIGH);
1184 1185
}

1186 1187 1188 1189 1190 1191
static struct i915_vma *
alloc_context_vma(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
1192
	int err;
1193

1194
	obj = i915_gem_object_create(i915, engine->context_size);
1195 1196 1197
	if (IS_ERR(obj))
		return ERR_CAST(obj);

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	if (engine->default_state) {
		void *defaults, *vaddr;

		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_obj;
		}

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults)) {
			err = PTR_ERR(defaults);
			goto err_map;
		}

		memcpy(vaddr, defaults, engine->context_size);

		i915_gem_object_unpin_map(engine->default_state);
		i915_gem_object_unpin_map(obj);
	}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	/*
	 * Try to make the context utilize L3 as well as LLC.
	 *
	 * On VLV we don't have L3 controls in the PTEs so we
	 * shouldn't touch the cache level, especially as that
	 * would make the object snooped which might have a
	 * negative performance impact.
	 *
	 * Snooping is required on non-llc platforms in execlist
	 * mode, but since all GGTT accesses use PAT entry 0 we
	 * get snooping anyway regardless of cache_level.
	 *
	 * This is only applicable for Ivy Bridge devices since
	 * later platforms don't have L3 control bits in the PTE.
	 */
	if (IS_IVYBRIDGE(i915)) {
		/* Ignore any error, regard it as a simple optimisation */
		i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1241 1242 1243 1244
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err_obj;
	}
1245 1246

	return vma;
1247 1248 1249 1250 1251 1252

err_map:
	i915_gem_object_unpin_map(obj);
err_obj:
	i915_gem_object_put(obj);
	return ERR_PTR(err);
1253 1254
}

1255 1256 1257
static struct intel_ring *
intel_ring_context_pin(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
1258 1259 1260 1261
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1262
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1263

1264 1265
	if (likely(ce->pin_count++))
		goto out;
1266
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1267

1268
	if (!ce->state && engine->context_size) {
1269 1270 1271 1272 1273
		struct i915_vma *vma;

		vma = alloc_context_vma(engine);
		if (IS_ERR(vma)) {
			ret = PTR_ERR(vma);
1274
			goto err;
1275 1276 1277 1278 1279
		}

		ce->state = vma;
	}

1280
	if (ce->state) {
1281
		ret = context_pin(ctx);
1282
		if (ret)
1283
			goto err;
1284

1285
		ce->state->obj->pin_global++;
1286 1287
	}

1288
	i915_gem_context_get(ctx);
1289

1290 1291 1292 1293 1294
out:
	/* One ringbuffer to rule them all */
	return engine->buffer;

err:
1295
	ce->pin_count = 0;
1296
	return ERR_PTR(ret);
1297 1298
}

1299 1300
static void intel_ring_context_unpin(struct intel_engine_cs *engine,
				     struct i915_gem_context *ctx)
1301 1302 1303
{
	struct intel_context *ce = &ctx->engine[engine->id];

1304
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1305
	GEM_BUG_ON(ce->pin_count == 0);
1306 1307 1308 1309

	if (--ce->pin_count)
		return;

1310 1311
	if (ce->state) {
		ce->state->obj->pin_global--;
1312
		i915_vma_unpin(ce->state);
1313
	}
1314

1315
	i915_gem_context_put(ctx);
1316 1317
}

1318
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1319
{
1320
	struct intel_ring *ring;
1321
	int err;
1322

1323 1324
	intel_engine_setup_common(engine);

1325 1326 1327
	err = intel_engine_init_common(engine);
	if (err)
		goto err;
1328

1329 1330
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
1331
		err = PTR_ERR(ring);
1332
		goto err;
1333 1334
	}

1335
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1336 1337 1338 1339 1340
	err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
	if (err)
		goto err_ring;

	GEM_BUG_ON(engine->buffer);
1341
	engine->buffer = ring;
1342

1343
	return 0;
1344

1345 1346 1347 1348 1349
err_ring:
	intel_ring_free(ring);
err:
	intel_engine_cleanup_common(engine);
	return err;
1350 1351
}

1352
void intel_engine_cleanup(struct intel_engine_cs *engine)
1353
{
1354
	struct drm_i915_private *dev_priv = engine->i915;
1355

1356 1357
	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
		(I915_READ_MODE(engine) & MODE_IDLE) == 0);
1358

1359 1360
	intel_ring_unpin(engine->buffer);
	intel_ring_free(engine->buffer);
1361

1362 1363
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
1364

1365
	intel_engine_cleanup_common(engine);
1366

1367 1368
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1369 1370
}

1371 1372 1373
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1374
	enum intel_engine_id id;
1375

1376
	/* Restart from the beginning of the rings for convenience */
1377
	for_each_engine(engine, dev_priv, id)
1378
		intel_ring_reset(engine->buffer, 0);
1379 1380
}

1381
static inline int mi_set_context(struct i915_request *rq, u32 flags)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
{
	struct drm_i915_private *i915 = rq->i915;
	struct intel_engine_cs *engine = rq->engine;
	enum intel_engine_id id;
	const int num_rings =
		/* Use an extended w/a on gen7 if signalling from other rings */
		(HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
		INTEL_INFO(i915)->num_rings - 1 :
		0;
	int len;
	u32 *cs;

	flags |= MI_MM_SPACE_GTT;
	if (IS_HASWELL(i915))
		/* These flags are for resource streamer on HSW+ */
		flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
	else
		flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;

	len = 4;
	if (IS_GEN7(i915))
		len += 2 + (num_rings ? 4*num_rings + 6 : 0);

	cs = intel_ring_begin(rq, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
	if (IS_GEN7(i915)) {
		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
		if (num_rings) {
			struct intel_engine_cs *signaller;

			*cs++ = MI_LOAD_REGISTER_IMM(num_rings);
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				*cs++ = i915_mmio_reg_offset(
					   RING_PSMI_CTL(signaller->mmio_base));
				*cs++ = _MASKED_BIT_ENABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}
		}
	}

	*cs++ = MI_NOOP;
	*cs++ = MI_SET_CONTEXT;
	*cs++ = i915_ggtt_offset(rq->ctx->engine[RCS].state) | flags;
	/*
	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
	 * WaMiSetContext_Hang:snb,ivb,vlv
	 */
	*cs++ = MI_NOOP;

	if (IS_GEN7(i915)) {
		if (num_rings) {
			struct intel_engine_cs *signaller;
			i915_reg_t last_reg = {}; /* keep gcc quiet */

			*cs++ = MI_LOAD_REGISTER_IMM(num_rings);
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				last_reg = RING_PSMI_CTL(signaller->mmio_base);
				*cs++ = i915_mmio_reg_offset(last_reg);
				*cs++ = _MASKED_BIT_DISABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}

			/* Insert a delay before the next switch! */
			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
			*cs++ = i915_mmio_reg_offset(last_reg);
			*cs++ = i915_ggtt_offset(engine->scratch);
			*cs++ = MI_NOOP;
		}
		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	}

	intel_ring_advance(rq, cs);

	return 0;
}

1467
static int remap_l3(struct i915_request *rq, int slice)
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
{
	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
	int i;

	if (!remap_info)
		return 0;

	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
		*cs++ = remap_info[i];
	}
	*cs++ = MI_NOOP;
	intel_ring_advance(rq, cs);

	return 0;
}

1495
static int switch_context(struct i915_request *rq)
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
{
	struct intel_engine_cs *engine = rq->engine;
	struct i915_gem_context *to_ctx = rq->ctx;
	struct i915_hw_ppgtt *to_mm =
		to_ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
	struct i915_gem_context *from_ctx = engine->legacy_active_context;
	struct i915_hw_ppgtt *from_mm = engine->legacy_active_ppgtt;
	u32 hw_flags = 0;
	int ret, i;

	lockdep_assert_held(&rq->i915->drm.struct_mutex);
	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));

	if (to_mm != from_mm ||
	    (to_mm && intel_engine_flag(engine) & to_mm->pd_dirty_rings)) {
		trace_switch_mm(engine, to_ctx);
		ret = to_mm->switch_mm(to_mm, rq);
		if (ret)
			goto err;

		to_mm->pd_dirty_rings &= ~intel_engine_flag(engine);
		engine->legacy_active_ppgtt = to_mm;
		hw_flags = MI_FORCE_RESTORE;
	}

	if (to_ctx->engine[engine->id].state &&
	    (to_ctx != from_ctx || hw_flags & MI_FORCE_RESTORE)) {
		GEM_BUG_ON(engine->id != RCS);

		/*
		 * The kernel context(s) is treated as pure scratch and is not
		 * expected to retain any state (as we sacrifice it during
		 * suspend and on resume it may be corrupted). This is ok,
		 * as nothing actually executes using the kernel context; it
		 * is purely used for flushing user contexts.
		 */
		if (i915_gem_context_is_kernel(to_ctx))
			hw_flags = MI_RESTORE_INHIBIT;

		ret = mi_set_context(rq, hw_flags);
		if (ret)
			goto err_mm;

		engine->legacy_active_context = to_ctx;
	}

	if (to_ctx->remap_slice) {
		for (i = 0; i < MAX_L3_SLICES; i++) {
			if (!(to_ctx->remap_slice & BIT(i)))
				continue;

			ret = remap_l3(rq, i);
			if (ret)
				goto err_ctx;
		}

		to_ctx->remap_slice = 0;
	}

	return 0;

err_ctx:
	engine->legacy_active_context = from_ctx;
err_mm:
	engine->legacy_active_ppgtt = from_mm;
err:
	return ret;
}

1565
static int ring_request_alloc(struct i915_request *request)
1566
{
1567
	int ret;
1568

1569 1570
	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);

1571 1572 1573 1574
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1575
	request->reserved_space += LEGACY_REQUEST_SIZE;
1576

1577 1578 1579
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1580

1581
	ret = switch_context(request);
1582 1583 1584
	if (ret)
		return ret;

1585
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1586
	return 0;
1587 1588
}

1589
static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1590
{
1591
	struct i915_request *target;
1592 1593
	long timeout;

1594
	lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1595

1596
	if (intel_ring_update_space(ring) >= bytes)
1597 1598
		return 0;

1599
	GEM_BUG_ON(list_empty(&ring->request_list));
1600
	list_for_each_entry(target, &ring->request_list, ring_link) {
1601
		/* Would completion of this request free enough space? */
1602 1603
		if (bytes <= __intel_ring_space(target->postfix,
						ring->emit, ring->size))
1604
			break;
1605
	}
1606

1607
	if (WARN_ON(&target->ring_link == &ring->request_list))
1608 1609
		return -ENOSPC;

1610
	timeout = i915_request_wait(target,
1611 1612 1613 1614
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
1615

1616
	i915_request_retire_upto(target);
1617 1618 1619 1620

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
1621 1622
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
{
	GEM_BUG_ON(bytes > ring->effective_size);
	if (unlikely(bytes > ring->effective_size - ring->emit))
		bytes += ring->size - ring->emit;

	if (unlikely(bytes > ring->space)) {
		int ret = wait_for_space(ring, bytes);
		if (unlikely(ret))
			return ret;
	}

	GEM_BUG_ON(ring->space < bytes);
	return 0;
}

1639
u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
M
Mika Kuoppala 已提交
1640
{
1641
	struct intel_ring *ring = rq->ring;
1642 1643 1644 1645
	const unsigned int remain_usable = ring->effective_size - ring->emit;
	const unsigned int bytes = num_dwords * sizeof(u32);
	unsigned int need_wrap = 0;
	unsigned int total_bytes;
1646
	u32 *cs;
1647

1648 1649 1650
	/* Packets must be qword aligned. */
	GEM_BUG_ON(num_dwords & 1);

1651
	total_bytes = bytes + rq->reserved_space;
1652
	GEM_BUG_ON(total_bytes > ring->effective_size);
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	if (unlikely(total_bytes > remain_usable)) {
		const int remain_actual = ring->size - ring->emit;

		if (bytes > remain_usable) {
			/*
			 * Not enough space for the basic request. So need to
			 * flush out the remainder and then wait for
			 * base + reserved.
			 */
			total_bytes += remain_actual;
			need_wrap = remain_actual | 1;
		} else  {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So we don't need an immediate
			 * wrap and only need to effectively wait for the
			 * reserved size from the start of ringbuffer.
			 */
1672
			total_bytes = rq->reserved_space + remain_actual;
1673
		}
M
Mika Kuoppala 已提交
1674 1675
	}

1676
	if (unlikely(total_bytes > ring->space)) {
1677 1678 1679 1680 1681 1682 1683 1684 1685
		int ret;

		/*
		 * Space is reserved in the ringbuffer for finalising the
		 * request, as that cannot be allowed to fail. During request
		 * finalisation, reserved_space is set to 0 to stop the
		 * overallocation and the assumption is that then we never need
		 * to wait (which has the risk of failing with EINTR).
		 *
1686
		 * See also i915_request_alloc() and i915_request_add().
1687
		 */
1688
		GEM_BUG_ON(!rq->reserved_space);
1689 1690

		ret = wait_for_space(ring, total_bytes);
M
Mika Kuoppala 已提交
1691
		if (unlikely(ret))
1692
			return ERR_PTR(ret);
M
Mika Kuoppala 已提交
1693 1694
	}

1695
	if (unlikely(need_wrap)) {
1696 1697 1698
		need_wrap &= ~1;
		GEM_BUG_ON(need_wrap > ring->space);
		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1699
		GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1700

1701
		/* Fill the tail with MI_NOOP */
1702
		memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1703
		ring->space -= need_wrap;
1704
		ring->emit = 0;
1705
	}
1706

1707
	GEM_BUG_ON(ring->emit > ring->size - bytes);
1708
	GEM_BUG_ON(ring->space < bytes);
1709
	cs = ring->vaddr + ring->emit;
1710
	GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1711
	ring->emit += bytes;
1712
	ring->space -= bytes;
1713 1714

	return cs;
1715
}
1716

1717
/* Align the ring tail to a cacheline boundary */
1718
int intel_ring_cacheline_align(struct i915_request *rq)
1719
{
1720 1721
	int num_dwords;
	void *cs;
1722

1723
	num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1724 1725 1726
	if (num_dwords == 0)
		return 0;

1727 1728 1729
	num_dwords = CACHELINE_DWORDS - num_dwords;
	GEM_BUG_ON(num_dwords & 1);

1730
	cs = intel_ring_begin(rq, num_dwords);
1731 1732
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1733

1734
	memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1735
	intel_ring_advance(rq, cs);
1736

1737
	GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1738 1739 1740
	return 0;
}

1741
static void gen6_bsd_submit_request(struct i915_request *request)
1742
{
1743
	struct drm_i915_private *dev_priv = request->i915;
1744

1745 1746
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

1747
       /* Every tail move must follow the sequence below */
1748 1749 1750 1751

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
1752 1753
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1754 1755

	/* Clear the context id. Here be magic! */
1756
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1757

1758
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1759 1760 1761 1762 1763
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_BSD_SLEEP_PSMI_CONTROL,
					 GEN6_BSD_SLEEP_INDICATOR,
					 0,
					 1000, 0, NULL))
1764
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1765

1766
	/* Now that the ring is fully powered up, update the tail */
1767
	i9xx_submit_request(request);
1768 1769 1770 1771

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
1772 1773 1774 1775
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1776 1777
}

1778
static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1779
{
1780
	u32 cmd, *cs;
1781

1782
	cs = intel_ring_begin(rq, 4);
1783 1784
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1785

1786
	cmd = MI_FLUSH_DW;
1787 1788 1789 1790 1791 1792 1793 1794

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1795 1796 1797 1798 1799 1800
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1801
	if (mode & EMIT_INVALIDATE)
1802 1803
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

1804 1805
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1806
	*cs++ = 0;
1807
	*cs++ = MI_NOOP;
1808
	intel_ring_advance(rq, cs);
1809 1810 1811
	return 0;
}

1812
static int
1813
hsw_emit_bb_start(struct i915_request *rq,
1814 1815
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
1816
{
1817
	u32 *cs;
1818

1819
	cs = intel_ring_begin(rq, 2);
1820 1821
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1822

1823 1824 1825 1826
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
		(dispatch_flags & I915_DISPATCH_RS ?
		MI_BATCH_RESOURCE_STREAMER : 0);
1827
	/* bit0-7 is the length on GEN6+ */
1828
	*cs++ = offset;
1829
	intel_ring_advance(rq, cs);
1830 1831 1832 1833

	return 0;
}

1834
static int
1835
gen6_emit_bb_start(struct i915_request *rq,
1836 1837
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1838
{
1839
	u32 *cs;
1840

1841
	cs = intel_ring_begin(rq, 2);
1842 1843
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1844

1845 1846
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
1847
	/* bit0-7 is the length on GEN6+ */
1848
	*cs++ = offset;
1849
	intel_ring_advance(rq, cs);
1850

1851
	return 0;
1852 1853
}

1854 1855
/* Blitter support (SandyBridge+) */

1856
static int gen6_ring_flush(struct i915_request *rq, u32 mode)
Z
Zou Nan hai 已提交
1857
{
1858
	u32 cmd, *cs;
1859

1860
	cs = intel_ring_begin(rq, 4);
1861 1862
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1863

1864
	cmd = MI_FLUSH_DW;
1865 1866 1867 1868 1869 1870 1871 1872

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1873 1874 1875 1876 1877 1878
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1879
	if (mode & EMIT_INVALIDATE)
1880
		cmd |= MI_INVALIDATE_TLB;
1881 1882
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1883 1884
	*cs++ = 0;
	*cs++ = MI_NOOP;
1885
	intel_ring_advance(rq, cs);
R
Rodrigo Vivi 已提交
1886

1887
	return 0;
Z
Zou Nan hai 已提交
1888 1889
}

1890 1891 1892
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
1893
	int i;
1894

1895
	if (!HAS_LEGACY_SEMAPHORES(dev_priv))
1896 1897
		return;

1898 1899 1900
	GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
	engine->semaphore.sync_to = gen6_ring_sync_to;
	engine->semaphore.signal = gen6_signal;
1901

1902 1903 1904 1905 1906 1907 1908 1909
	/*
	 * The current semaphore is only applied on pre-gen8
	 * platform.  And there is no VCS2 ring on the pre-gen8
	 * platform. So the semaphore between RCS and VCS2 is
	 * initialized as INVALID.
	 */
	for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
		static const struct {
1910 1911
			u32 wait_mbox;
			i915_reg_t mbox_reg;
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
		} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
			[RCS_HW] = {
				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
			},
			[VCS_HW] = {
				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
			},
			[BCS_HW] = {
				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
			},
			[VECS_HW] = {
				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
			},
		};
		u32 wait_mbox;
		i915_reg_t mbox_reg;
1936

1937 1938 1939 1940 1941 1942
		if (i == engine->hw_id) {
			wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
			mbox_reg = GEN6_NOSYNC;
		} else {
			wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
			mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1943
		}
1944

1945 1946 1947
		engine->semaphore.mbox.wait[i] = wait_mbox;
		engine->semaphore.mbox.signal[i] = mbox_reg;
	}
1948 1949
}

1950 1951 1952
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
1953
	if (INTEL_GEN(dev_priv) >= 6) {
1954 1955
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
1956 1957
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
1958 1959
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
1960
		engine->irq_seqno_barrier = gen5_seqno_barrier;
1961
	} else if (INTEL_GEN(dev_priv) >= 3) {
1962 1963
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
1964
	} else {
1965 1966
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
1967 1968 1969
	}
}

1970 1971 1972
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = i9xx_submit_request;
1973
	engine->cancel_requests = cancel_requests;
1974 1975 1976

	engine->park = NULL;
	engine->unpark = NULL;
1977 1978 1979 1980
}

static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
1981
	i9xx_set_default_submission(engine);
1982 1983 1984
	engine->submit_request = gen6_bsd_submit_request;
}

1985 1986 1987
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
1988 1989 1990
	/* gen8+ are only supported with execlists */
	GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);

1991 1992 1993
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

1994
	engine->init_hw = init_ring_common;
1995
	engine->reset_hw = reset_ring_common;
1996

1997 1998 1999
	engine->context_pin = intel_ring_context_pin;
	engine->context_unpin = intel_ring_context_unpin;

2000 2001
	engine->request_alloc = ring_request_alloc;

2002
	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2003
	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2004
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2005 2006
		int num_rings;

2007
		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2008

2009
		num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2010 2011 2012
		engine->emit_breadcrumb_sz += num_rings * 3;
		if (num_rings & 1)
			engine->emit_breadcrumb_sz++;
2013
	}
2014 2015

	engine->set_default_submission = i9xx_set_default_submission;
2016

2017
	if (INTEL_GEN(dev_priv) >= 6)
2018
		engine->emit_bb_start = gen6_emit_bb_start;
2019
	else if (INTEL_GEN(dev_priv) >= 4)
2020
		engine->emit_bb_start = i965_emit_bb_start;
2021
	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2022
		engine->emit_bb_start = i830_emit_bb_start;
2023
	else
2024
		engine->emit_bb_start = i915_emit_bb_start;
2025 2026
}

2027
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2028
{
2029
	struct drm_i915_private *dev_priv = engine->i915;
2030
	int ret;
2031

2032 2033
	intel_ring_default_vfuncs(dev_priv, engine);

2034 2035
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2036

2037 2038
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;

2039
	if (INTEL_GEN(dev_priv) >= 6) {
2040
		engine->init_context = intel_rcs_ctx_init;
2041
		engine->emit_flush = gen7_render_ring_flush;
2042
		if (IS_GEN6(dev_priv))
2043
			engine->emit_flush = gen6_render_ring_flush;
2044
	} else if (IS_GEN5(dev_priv)) {
2045
		engine->emit_flush = gen4_render_ring_flush;
2046
	} else {
2047
		if (INTEL_GEN(dev_priv) < 4)
2048
			engine->emit_flush = gen2_render_ring_flush;
2049
		else
2050
			engine->emit_flush = gen4_render_ring_flush;
2051
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2052
	}
B
Ben Widawsky 已提交
2053

2054
	if (IS_HASWELL(dev_priv))
2055
		engine->emit_bb_start = hsw_emit_bb_start;
2056

2057
	engine->init_hw = init_render_ring;
2058

2059
	ret = intel_init_ring_buffer(engine);
2060 2061 2062
	if (ret)
		return ret;

2063
	if (INTEL_GEN(dev_priv) >= 6) {
2064
		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2065 2066 2067
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2068
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2069 2070 2071 2072 2073
		if (ret)
			return ret;
	}

	return 0;
2074 2075
}

2076
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2077
{
2078
	struct drm_i915_private *dev_priv = engine->i915;
2079

2080 2081
	intel_ring_default_vfuncs(dev_priv, engine);

2082
	if (INTEL_GEN(dev_priv) >= 6) {
2083
		/* gen6 bsd needs a special wa for tail updates */
2084
		if (IS_GEN6(dev_priv))
2085
			engine->set_default_submission = gen6_bsd_set_default_submission;
2086
		engine->emit_flush = gen6_bsd_ring_flush;
2087
		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2088
	} else {
2089
		engine->emit_flush = bsd_ring_flush;
2090
		if (IS_GEN5(dev_priv))
2091
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2092
		else
2093
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2094 2095
	}

2096
	return intel_init_ring_buffer(engine);
2097
}
2098

2099
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2100
{
2101
	struct drm_i915_private *dev_priv = engine->i915;
2102 2103 2104

	intel_ring_default_vfuncs(dev_priv, engine);

2105
	engine->emit_flush = gen6_ring_flush;
2106
	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2107

2108
	return intel_init_ring_buffer(engine);
2109
}
2110

2111
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2112
{
2113
	struct drm_i915_private *dev_priv = engine->i915;
2114 2115 2116

	intel_ring_default_vfuncs(dev_priv, engine);

2117
	engine->emit_flush = gen6_ring_flush;
2118 2119 2120
	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
	engine->irq_enable = hsw_vebox_irq_enable;
	engine->irq_disable = hsw_vebox_irq_disable;
B
Ben Widawsky 已提交
2121

2122
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2123
}