intel_ringbuffer.c 73.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr =
374
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411 412 413
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
414
	if (INTEL_GEN(dev_priv) >= 4)
415 416 417 418
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

419
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420
{
421
	struct drm_i915_private *dev_priv = engine->i915;
422
	i915_reg_t mmio;
423 424 425 426

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
427
	if (IS_GEN7(dev_priv)) {
428
		switch (engine->id) {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
447
	} else if (IS_GEN6(dev_priv)) {
448
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449 450
	} else {
		/* XXX: gen8 returns to sanity */
451
		mmio = RING_HWS_PGA(engine->mmio_base);
452 453
	}

454
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
455 456 457 458 459 460 461 462 463
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
464
	if (IS_GEN(dev_priv, 6, 7)) {
465
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466 467

		/* ring should be idle before issuing a sync flush*/
468
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469 470 471 472

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
473 474 475
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
476
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477
				  engine->name);
478 479 480
	}
}

481
static bool stop_ring(struct intel_engine_cs *engine)
482
{
483
	struct drm_i915_private *dev_priv = engine->i915;
484

485
	if (INTEL_GEN(dev_priv) > 2) {
486
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487 488 489 490 491
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
492 493
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
494 495 496 497
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
498
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499
				return false;
500 501
		}
	}
502

503 504
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
505
	I915_WRITE_TAIL(engine, 0);
506

507
	if (INTEL_GEN(dev_priv) > 2) {
508 509
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510
	}
511

512
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513
}
514

515
static int init_ring_common(struct intel_engine_cs *engine)
516
{
517
	struct drm_i915_private *dev_priv = engine->i915;
518
	struct intel_ring *ring = engine->buffer;
519 520
	int ret = 0;

521
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522

523
	if (!stop_ring(engine)) {
524
		/* G45 ring initialization often fails to reset head to zero */
525 526
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
527 528 529 530 531
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
532

533
		if (!stop_ring(engine)) {
534 535
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
536 537 538 539 540
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
541 542
			ret = -EIO;
			goto out;
543
		}
544 545
	}

546
	if (HWS_NEEDS_PHYSICAL(dev_priv))
547
		ring_setup_phys_status_page(engine);
548 549
	else
		intel_ring_setup_status_page(engine);
550

551
	intel_engine_reset_breadcrumbs(engine);
552

553
	/* Enforce ordering by reading HEAD register back */
554
	I915_READ_HEAD(engine);
555

556 557 558 559
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
560
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561 562

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
563
	if (I915_READ_HEAD(engine))
564
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565
			  engine->name, I915_READ_HEAD(engine));
566 567 568 569 570

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
571

572
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573 574

	/* If the head is still not zero, the ring is dead */
575 576 577
	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
				       RING_VALID, RING_VALID,
				       50)) {
578
		DRM_ERROR("%s initialization failed "
579
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580 581 582
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
583 584
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
585
			  I915_READ_START(engine),
586
			  i915_ggtt_offset(ring->vma));
587 588
		ret = -EIO;
		goto out;
589 590
	}

591
	intel_engine_init_hangcheck(engine);
592

593
out:
594
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595 596

	return ret;
597 598
}

599 600 601 602 603 604 605 606 607
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct intel_ring *ring = request->ring;

	ring->head = request->postfix;
	ring->last_retired_head = -1;
}

608
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
609
{
610
	struct intel_ring *ring = req->ring;
611 612
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
613

614
	if (w->count == 0)
615
		return 0;
616

617
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
618 619
	if (ret)
		return ret;
620

621
	ret = intel_ring_begin(req, (w->count * 2 + 2));
622 623 624
	if (ret)
		return ret;

625
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
626
	for (i = 0; i < w->count; i++) {
627 628
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
629
	}
630
	intel_ring_emit(ring, MI_NOOP);
631

632
	intel_ring_advance(ring);
633

634
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
635 636
	if (ret)
		return ret;
637

638
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
639

640
	return 0;
641 642
}

643
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 645 646
{
	int ret;

647
	ret = intel_ring_workarounds_emit(req);
648 649 650
	if (ret != 0)
		return ret;

651
	ret = i915_gem_render_state_emit(req);
652
	if (ret)
653
		return ret;
654

655
	return 0;
656 657
}

658
static int wa_add(struct drm_i915_private *dev_priv,
659 660
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
661 662 663 664 665 666 667 668 669 670 671 672 673
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
674 675
}

676
#define WA_REG(addr, mask, val) do { \
677
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
678 679
		if (r) \
			return r; \
680
	} while (0)
681 682

#define WA_SET_BIT_MASKED(addr, mask) \
683
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
684 685

#define WA_CLR_BIT_MASKED(addr, mask) \
686
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
687

688
#define WA_SET_FIELD_MASKED(addr, mask, value) \
689
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
690

691 692
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
693

694
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
695

696 697
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
698
{
699
	struct drm_i915_private *dev_priv = engine->i915;
700
	struct i915_workarounds *wa = &dev_priv->workarounds;
701
	const uint32_t index = wa->hw_whitelist_count[engine->id];
702 703 704 705

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

706
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
707
		 i915_mmio_reg_offset(reg));
708
	wa->hw_whitelist_count[engine->id]++;
709 710 711 712

	return 0;
}

713
static int gen8_init_workarounds(struct intel_engine_cs *engine)
714
{
715
	struct drm_i915_private *dev_priv = engine->i915;
716 717

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
718

719 720 721
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

722 723 724 725
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

726 727 728 729 730
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
731
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
732
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
733
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
734 735
			  HDC_FORCE_NON_COHERENT);

736 737 738 739 740 741 742 743 744 745
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

746 747 748
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

749 750 751 752 753 754 755 756 757 758 759 760
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

761 762 763
	return 0;
}

764
static int bdw_init_workarounds(struct intel_engine_cs *engine)
765
{
766
	struct drm_i915_private *dev_priv = engine->i915;
767
	int ret;
768

769
	ret = gen8_init_workarounds(engine);
770 771 772
	if (ret)
		return ret;

773
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
774
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
775

776
	/* WaDisableDopClockGating:bdw */
777 778
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
779

780 781
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
782

783
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
784 785 786
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
787
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
788 789 790 791

	return 0;
}

792
static int chv_init_workarounds(struct intel_engine_cs *engine)
793
{
794
	struct drm_i915_private *dev_priv = engine->i915;
795
	int ret;
796

797
	ret = gen8_init_workarounds(engine);
798 799 800
	if (ret)
		return ret;

801
	/* WaDisableThreadStallDopClockGating:chv */
802
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
803

804 805 806
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

807 808 809
	return 0;
}

810
static int gen9_init_workarounds(struct intel_engine_cs *engine)
811
{
812
	struct drm_i915_private *dev_priv = engine->i915;
813
	int ret;
814

815
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk */
816 817
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

818
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk */
819 820 821
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

822
	/* WaDisableKillLogic:bxt,skl,kbl */
823 824 825
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

826 827
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk */
828
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
829
			  FLOW_CONTROL_ENABLE |
830 831
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

832
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
833 834 835
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

836 837
	/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
838 839
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
840

841 842
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
843 844
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
845 846 847 848 849
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
850 851
	}

852
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
853 854
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_GPGPU_PREEMPTION);
855

856
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk */
857
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
858 859
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
860

861
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk */
862 863 864
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

865 866
	/* WaDisableMaskBasedCammingInRCC:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
867 868 869
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

870 871 872 873
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
874

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

896 897 898 899
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
900 901 902
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

903
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk */
904 905
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

906
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
907 908 909
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

910
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk */
911 912 913 914
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

915
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
916
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
917 918 919
	if (ret)
		return ret;

920
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk */
921
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
922 923 924
	if (ret)
		return ret;

925 926 927
	return 0;
}

928
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
929
{
930
	struct drm_i915_private *dev_priv = engine->i915;
931 932 933 934 935 936 937 938 939 940
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
941
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
942 943 944 945 946 947 948 949
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
950
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

969
static int skl_init_workarounds(struct intel_engine_cs *engine)
970
{
971
	struct drm_i915_private *dev_priv = engine->i915;
972
	int ret;
973

974
	ret = gen9_init_workarounds(engine);
975 976
	if (ret)
		return ret;
977

978 979 980 981 982
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
983 984
	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
985

986
	/* WaEnableGapsTsvCreditFix:skl */
987 988
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));
989

990 991 992
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

993 994 995 996 997
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

998
	/* WaDisableLSQCROPERFforOCL:skl */
999
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1000 1001 1002
	if (ret)
		return ret;

1003
	return skl_tune_iz_hashing(engine);
1004 1005
}

1006
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1007
{
1008
	struct drm_i915_private *dev_priv = engine->i915;
1009
	int ret;
1010

1011
	ret = gen9_init_workarounds(engine);
1012 1013
	if (ret)
		return ret;
1014

1015 1016
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1017
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1018 1019 1020
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1021
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1022 1023 1024 1025
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1026 1027 1028 1029
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1030 1031 1032 1033 1034 1035
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1036
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1037
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1038 1039 1040 1041 1042
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1043 1044 1045
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1046
	/* WaDisableLSQCROPERFforOCL:bxt */
1047
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1048
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1049 1050
		if (ret)
			return ret;
1051

1052
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1053 1054
		if (ret)
			return ret;
1055 1056
	}

1057
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1058
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1059 1060
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1061

1062 1063
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1064 1065 1066
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1067 1068 1069 1070 1071
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1072 1073 1074
	return 0;
}

1075 1076
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1077
	struct drm_i915_private *dev_priv = engine->i915;
1078 1079 1080 1081 1082 1083
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1084 1085 1086 1087
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1088 1089 1090 1091 1092
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1093 1094 1095 1096 1097
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1098 1099
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1100 1101 1102
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1103 1104 1105
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1106 1107 1108 1109 1110
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1111 1112 1113 1114
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1115 1116 1117 1118 1119
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1120 1121 1122
	return 0;
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
static int glk_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaToEnableHwFixForPushConstHWBug:glk */
	WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
			  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

	return 0;
}

1139
int init_workarounds_ring(struct intel_engine_cs *engine)
1140
{
1141
	struct drm_i915_private *dev_priv = engine->i915;
1142

1143
	WARN_ON(engine->id != RCS);
1144 1145

	dev_priv->workarounds.count = 0;
1146
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1147

1148
	if (IS_BROADWELL(dev_priv))
1149
		return bdw_init_workarounds(engine);
1150

1151
	if (IS_CHERRYVIEW(dev_priv))
1152
		return chv_init_workarounds(engine);
1153

1154
	if (IS_SKYLAKE(dev_priv))
1155
		return skl_init_workarounds(engine);
1156

1157
	if (IS_BROXTON(dev_priv))
1158
		return bxt_init_workarounds(engine);
1159

1160 1161 1162
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1163 1164 1165
	if (IS_GEMINILAKE(dev_priv))
		return glk_init_workarounds(engine);

1166 1167 1168
	return 0;
}

1169
static int init_render_ring(struct intel_engine_cs *engine)
1170
{
1171
	struct drm_i915_private *dev_priv = engine->i915;
1172
	int ret = init_ring_common(engine);
1173 1174
	if (ret)
		return ret;
1175

1176
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1177
	if (IS_GEN(dev_priv, 4, 6))
1178
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1179 1180 1181 1182

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1183
	 *
1184
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1185
	 */
1186
	if (IS_GEN(dev_priv, 6, 7))
1187 1188
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1189
	/* Required for the hardware to program scanline values for waiting */
1190
	/* WaEnableFlushTlbInvalidationMode:snb */
1191
	if (IS_GEN6(dev_priv))
1192
		I915_WRITE(GFX_MODE,
1193
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1194

1195
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1196
	if (IS_GEN7(dev_priv))
1197
		I915_WRITE(GFX_MODE_GEN7,
1198
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1199
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1200

1201
	if (IS_GEN6(dev_priv)) {
1202 1203 1204 1205 1206 1207
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1208
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1209 1210
	}

1211
	if (IS_GEN(dev_priv, 6, 7))
1212
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1213

1214 1215
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1216

1217
	return init_workarounds_ring(engine);
1218 1219
}

1220
static void render_ring_cleanup(struct intel_engine_cs *engine)
1221
{
1222
	struct drm_i915_private *dev_priv = engine->i915;
1223

1224
	i915_vma_unpin_and_release(&dev_priv->semaphore);
1225 1226
}

C
Chris Wilson 已提交
1227
static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
1228
{
1229
	struct drm_i915_private *dev_priv = req->i915;
1230
	struct intel_engine_cs *waiter;
1231
	enum intel_engine_id id;
1232

1233
	for_each_engine(waiter, dev_priv, id) {
1234
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1235 1236 1237
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

C
Chris Wilson 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		*out++ = GFX_OP_PIPE_CONTROL(6);
		*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
			  PIPE_CONTROL_QW_WRITE |
			  PIPE_CONTROL_CS_STALL);
		*out++ = lower_32_bits(gtt_offset);
		*out++ = upper_32_bits(gtt_offset);
		*out++ = req->global_seqno;
		*out++ = 0;
		*out++ = (MI_SEMAPHORE_SIGNAL |
			  MI_SEMAPHORE_TARGET(waiter->hw_id));
		*out++ = 0;
1249 1250
	}

C
Chris Wilson 已提交
1251
	return out;
1252 1253
}

C
Chris Wilson 已提交
1254
static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
1255
{
1256
	struct drm_i915_private *dev_priv = req->i915;
1257
	struct intel_engine_cs *waiter;
1258
	enum intel_engine_id id;
1259

1260
	for_each_engine(waiter, dev_priv, id) {
1261
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1262 1263 1264
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

C
Chris Wilson 已提交
1265 1266 1267 1268 1269 1270 1271
		*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
		*out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
		*out++ = upper_32_bits(gtt_offset);
		*out++ = req->global_seqno;
		*out++ = (MI_SEMAPHORE_SIGNAL |
			  MI_SEMAPHORE_TARGET(waiter->hw_id));
		*out++ = 0;
1272 1273
	}

C
Chris Wilson 已提交
1274
	return out;
1275 1276
}

C
Chris Wilson 已提交
1277
static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
1278
{
1279
	struct drm_i915_private *dev_priv = req->i915;
1280
	struct intel_engine_cs *engine;
1281
	enum intel_engine_id id;
C
Chris Wilson 已提交
1282
	int num_rings = 0;
1283

1284
	for_each_engine(engine, dev_priv, id) {
1285 1286 1287 1288
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
1289

1290
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1291
		if (i915_mmio_reg_valid(mbox_reg)) {
C
Chris Wilson 已提交
1292 1293 1294 1295
			*out++ = MI_LOAD_REGISTER_IMM(1);
			*out++ = i915_mmio_reg_offset(mbox_reg);
			*out++ = req->global_seqno;
			num_rings++;
1296 1297
		}
	}
C
Chris Wilson 已提交
1298 1299
	if (num_rings & 1)
		*out++ = MI_NOOP;
1300

C
Chris Wilson 已提交
1301
	return out;
1302 1303
}

1304 1305 1306 1307
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

1308 1309
	i915_gem_request_submit(request);

C
Chris Wilson 已提交
1310
	I915_WRITE_TAIL(request->engine, request->tail);
1311 1312
}

C
Chris Wilson 已提交
1313 1314
static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
				 u32 *out)
1315
{
C
Chris Wilson 已提交
1316 1317 1318 1319
	*out++ = MI_STORE_DWORD_INDEX;
	*out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
	*out++ = req->global_seqno;
	*out++ = MI_USER_INTERRUPT;
1320

C
Chris Wilson 已提交
1321
	req->tail = intel_ring_offset(req->ring, out);
1322 1323
}

1324 1325
static const int i9xx_emit_breadcrumb_sz = 4;

1326
/**
1327
 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
1328 1329 1330 1331 1332 1333
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
C
Chris Wilson 已提交
1334 1335
static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
				      u32 *out)
1336
{
C
Chris Wilson 已提交
1337 1338
	return i9xx_emit_breadcrumb(req,
				    req->engine->semaphore.signal(req, out));
1339 1340
}

C
Chris Wilson 已提交
1341 1342
static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
					u32 *out)
1343 1344
{
	struct intel_engine_cs *engine = req->engine;
1345

C
Chris Wilson 已提交
1346 1347
	if (engine->semaphore.signal)
		out = engine->semaphore.signal(req, out);
1348

C
Chris Wilson 已提交
1349 1350
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1351
			       PIPE_CONTROL_CS_STALL |
C
Chris Wilson 已提交
1352 1353 1354 1355
			       PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(engine);
	*out++ = 0;
	*out++ = req->global_seqno;
1356
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1357 1358 1359
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
1360

C
Chris Wilson 已提交
1361
	req->tail = intel_ring_offset(req->ring, out);
1362 1363
}

1364 1365
static const int gen8_render_emit_breadcrumb_sz = 8;

1366 1367 1368 1369 1370 1371 1372
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1373 1374

static int
1375 1376
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1377
{
1378 1379 1380
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1381
	struct i915_hw_ppgtt *ppgtt;
1382 1383
	int ret;

1384
	ret = intel_ring_begin(req, 4);
1385 1386 1387
	if (ret)
		return ret;

1388 1389 1390 1391
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
1392
	intel_ring_emit(ring, signal->global_seqno);
1393 1394 1395
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1396 1397 1398 1399 1400 1401

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1402 1403 1404
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1405 1406 1407
	return 0;
}

1408
static int
1409 1410
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1411
{
1412
	struct intel_ring *ring = req->ring;
1413 1414 1415
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1416
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1417
	int ret;
1418

1419
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1420

1421
	ret = intel_ring_begin(req, 4);
1422 1423 1424
	if (ret)
		return ret;

1425
	intel_ring_emit(ring, dw1 | wait_mbox);
1426 1427 1428 1429
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1430
	intel_ring_emit(ring, signal->global_seqno - 1);
1431 1432 1433
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1434 1435 1436 1437

	return 0;
}

1438
static void
1439
gen5_seqno_barrier(struct intel_engine_cs *engine)
1440
{
1441 1442 1443
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1444
	 *
1445 1446 1447 1448 1449 1450 1451
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1452
	 */
1453
	usleep_range(125, 250);
1454 1455
}

1456 1457
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1458
{
1459
	struct drm_i915_private *dev_priv = engine->i915;
1460

1461 1462
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1463 1464 1465 1466 1467 1468 1469 1470 1471
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1472 1473 1474
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1475
	 */
1476
	spin_lock_irq(&dev_priv->uncore.lock);
1477
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1478
	spin_unlock_irq(&dev_priv->uncore.lock);
1479 1480
}

1481 1482
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1483
{
1484
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1485 1486 1487
}

static void
1488
gen5_irq_disable(struct intel_engine_cs *engine)
1489
{
1490
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1491 1492
}

1493 1494
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1495
{
1496
	struct drm_i915_private *dev_priv = engine->i915;
1497

1498 1499 1500
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1501 1502
}

1503
static void
1504
i9xx_irq_disable(struct intel_engine_cs *engine)
1505
{
1506
	struct drm_i915_private *dev_priv = engine->i915;
1507

1508 1509
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1510 1511
}

1512 1513
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1514
{
1515
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1516

1517 1518 1519
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1520 1521 1522
}

static void
1523
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1524
{
1525
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1526

1527 1528
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1529 1530
}

1531
static int
1532
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1533
{
1534
	struct intel_ring *ring = req->ring;
1535 1536
	int ret;

1537
	ret = intel_ring_begin(req, 2);
1538 1539 1540
	if (ret)
		return ret;

1541 1542 1543
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1544
	return 0;
1545 1546
}

1547 1548
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1549
{
1550
	struct drm_i915_private *dev_priv = engine->i915;
1551

1552 1553 1554
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1555
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1556 1557 1558
}

static void
1559
gen6_irq_disable(struct intel_engine_cs *engine)
1560
{
1561
	struct drm_i915_private *dev_priv = engine->i915;
1562

1563
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1564
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1565 1566
}

1567 1568
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1569
{
1570
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1571

1572
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1573
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1574 1575 1576
}

static void
1577
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1578
{
1579
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1580

1581
	I915_WRITE_IMR(engine, ~0);
1582
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1583 1584
}

1585 1586
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1587
{
1588
	struct drm_i915_private *dev_priv = engine->i915;
1589

1590 1591 1592
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1593
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1594 1595 1596
}

static void
1597
gen8_irq_disable(struct intel_engine_cs *engine)
1598
{
1599
	struct drm_i915_private *dev_priv = engine->i915;
1600

1601
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1602 1603
}

1604
static int
1605 1606 1607
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1608
{
1609
	struct intel_ring *ring = req->ring;
1610
	int ret;
1611

1612
	ret = intel_ring_begin(req, 2);
1613 1614 1615
	if (ret)
		return ret;

1616
	intel_ring_emit(ring,
1617 1618
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1619 1620
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1621 1622
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1623

1624 1625 1626
	return 0;
}

1627 1628
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1629 1630
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1631
static int
1632 1633 1634
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1635
{
1636
	struct intel_ring *ring = req->ring;
1637
	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1638
	int ret;
1639

1640
	ret = intel_ring_begin(req, 6);
1641 1642
	if (ret)
		return ret;
1643

1644
	/* Evict the invalid PTE TLBs */
1645 1646 1647 1648 1649 1650 1651
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1652

1653
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1654 1655 1656
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1657
		ret = intel_ring_begin(req, 6 + 2);
1658 1659
		if (ret)
			return ret;
1660 1661 1662 1663 1664

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1665 1666
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1667
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1668 1669 1670 1671
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1672

1673 1674 1675
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1676 1677

		/* ... and execute it. */
1678
		offset = cs_offset;
1679
	}
1680

1681
	ret = intel_ring_begin(req, 2);
1682 1683 1684
	if (ret)
		return ret;

1685 1686 1687 1688
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1689

1690 1691 1692 1693
	return 0;
}

static int
1694 1695 1696
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1697
{
1698
	struct intel_ring *ring = req->ring;
1699 1700
	int ret;

1701
	ret = intel_ring_begin(req, 2);
1702 1703 1704
	if (ret)
		return ret;

1705 1706 1707 1708
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1709 1710 1711 1712

	return 0;
}

1713
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1714
{
1715
	struct drm_i915_private *dev_priv = engine->i915;
1716 1717 1718 1719

	if (!dev_priv->status_page_dmah)
		return;

1720
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1721
	engine->status_page.page_addr = NULL;
1722 1723
}

1724
static void cleanup_status_page(struct intel_engine_cs *engine)
1725
{
1726
	struct i915_vma *vma;
1727
	struct drm_i915_gem_object *obj;
1728

1729 1730
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1731 1732
		return;

1733 1734
	obj = vma->obj;

1735
	i915_vma_unpin(vma);
1736 1737 1738 1739
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
1740 1741
}

1742
static int init_status_page(struct intel_engine_cs *engine)
1743
{
1744 1745 1746
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
1747
	void *vaddr;
1748
	int ret;
1749

1750
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1751 1752 1753 1754
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1755

1756 1757 1758
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1759

1760
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1761 1762 1763
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1764
	}
1765

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1782

1783 1784 1785 1786 1787 1788
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

1789
	engine->status_page.vma = vma;
1790
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1791
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1792

1793 1794
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1795
	return 0;
1796

1797 1798
err_unpin:
	i915_vma_unpin(vma);
1799 1800 1801
err:
	i915_gem_object_put(obj);
	return ret;
1802 1803
}

1804
static int init_phys_status_page(struct intel_engine_cs *engine)
1805
{
1806
	struct drm_i915_private *dev_priv = engine->i915;
1807

1808 1809 1810 1811
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1812

1813 1814
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1815 1816 1817 1818

	return 0;
}

1819
int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias)
1820
{
1821
	unsigned int flags;
1822
	enum i915_map_type map;
1823
	struct i915_vma *vma = ring->vma;
1824
	void *addr;
1825 1826
	int ret;

1827
	GEM_BUG_ON(ring->vaddr);
1828

1829 1830
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

1831 1832 1833
	flags = PIN_GLOBAL;
	if (offset_bias)
		flags |= PIN_OFFSET_BIAS | offset_bias;
1834
	if (vma->obj->stolen)
1835
		flags |= PIN_MAPPABLE;
1836

1837
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1838
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1839 1840 1841 1842
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1843
			return ret;
1844
	}
1845

1846 1847 1848
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1849

1850
	if (i915_vma_is_map_and_fenceable(vma))
1851 1852
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1853
		addr = i915_gem_object_pin_map(vma->obj, map);
1854 1855
	if (IS_ERR(addr))
		goto err;
1856

1857
	ring->vaddr = addr;
1858
	return 0;
1859

1860 1861 1862
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1863 1864
}

1865 1866 1867 1868 1869
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1870
	if (i915_vma_is_map_and_fenceable(ring->vma))
1871
		i915_vma_unpin_iomap(ring->vma);
1872 1873
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1874 1875
	ring->vaddr = NULL;

1876
	i915_vma_unpin(ring->vma);
1877 1878
}

1879 1880
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1881
{
1882
	struct drm_i915_gem_object *obj;
1883
	struct i915_vma *vma;
1884

1885
	obj = i915_gem_object_create_stolen(dev_priv, size);
1886
	if (!obj)
1887
		obj = i915_gem_object_create(dev_priv, size);
1888 1889
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1890

1891 1892 1893
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1894
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1895 1896 1897 1898
	if (IS_ERR(vma))
		goto err;

	return vma;
1899

1900 1901 1902
err:
	i915_gem_object_put(obj);
	return vma;
1903 1904
}

1905 1906
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1907
{
1908
	struct intel_ring *ring;
1909
	struct i915_vma *vma;
1910

1911
	GEM_BUG_ON(!is_power_of_2(size));
1912
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1913

1914
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1915
	if (!ring)
1916 1917
		return ERR_PTR(-ENOMEM);

1918
	ring->engine = engine;
1919

1920 1921
	INIT_LIST_HEAD(&ring->request_list);

1922 1923 1924 1925 1926 1927
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1928
	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1929 1930 1931 1932 1933
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

1934 1935
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1936
		kfree(ring);
1937
		return ERR_CAST(vma);
1938
	}
1939
	ring->vma = vma;
1940 1941 1942 1943 1944

	return ring;
}

void
1945
intel_ring_free(struct intel_ring *ring)
1946
{
1947 1948 1949 1950 1951
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1952 1953 1954
	kfree(ring);
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static int context_pin(struct i915_gem_context *ctx, unsigned int flags)
{
	struct i915_vma *vma = ctx->engine[RCS].state;
	int ret;

	/* Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
		if (ret)
			return ret;
	}

	return i915_vma_pin(vma, 0, ctx->ggtt_alignment, PIN_GLOBAL | flags);
}

static int intel_ring_context_pin(struct intel_engine_cs *engine,
				  struct i915_gem_context *ctx)
1975 1976 1977 1978
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1979
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1980 1981 1982 1983 1984

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
1985 1986 1987
		unsigned int flags;

		flags = 0;
1988
		if (i915_gem_context_is_kernel(ctx))
1989
			flags = PIN_HIGH;
1990

1991 1992
		ret = context_pin(ctx, flags);
		if (ret)
1993 1994 1995
			goto error;
	}

1996 1997 1998 1999 2000 2001 2002
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
2003
	if (i915_gem_context_is_kernel(ctx))
2004 2005
		ce->initialised = true;

2006
	i915_gem_context_get(ctx);
2007 2008 2009 2010 2011 2012 2013
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

2014 2015
static void intel_ring_context_unpin(struct intel_engine_cs *engine,
				     struct i915_gem_context *ctx)
2016 2017 2018
{
	struct intel_context *ce = &ctx->engine[engine->id];

2019
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2020
	GEM_BUG_ON(ce->pin_count == 0);
2021 2022 2023 2024 2025

	if (--ce->pin_count)
		return;

	if (ce->state)
2026
		i915_vma_unpin(ce->state);
2027

2028
	i915_gem_context_put(ctx);
2029 2030
}

2031
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2032
{
2033
	struct drm_i915_private *dev_priv = engine->i915;
2034
	struct intel_ring *ring;
2035 2036
	int ret;

2037
	WARN_ON(engine->buffer);
2038

2039 2040 2041
	intel_engine_setup_common(engine);

	ret = intel_engine_init_common(engine);
2042 2043
	if (ret)
		goto error;
2044

2045 2046 2047
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2048 2049
		goto error;
	}
2050

2051 2052 2053
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2054
		if (ret)
2055
			goto error;
2056
	} else {
2057
		ret = init_status_page(engine);
2058
		if (ret)
2059
			goto error;
2060 2061
	}

2062
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2063
	ret = intel_ring_pin(ring, I915_GTT_PAGE_SIZE);
2064
	if (ret) {
2065
		intel_ring_free(ring);
2066
		goto error;
2067
	}
2068
	engine->buffer = ring;
2069

2070
	return 0;
2071

2072
error:
2073
	intel_engine_cleanup(engine);
2074
	return ret;
2075 2076
}

2077
void intel_engine_cleanup(struct intel_engine_cs *engine)
2078
{
2079
	struct drm_i915_private *dev_priv;
2080

2081
	dev_priv = engine->i915;
2082

2083
	if (engine->buffer) {
2084 2085
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2086

2087
		intel_ring_unpin(engine->buffer);
2088
		intel_ring_free(engine->buffer);
2089
		engine->buffer = NULL;
2090
	}
2091

2092 2093
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2094

2095
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2096 2097
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2098 2099
	} else {
		cleanup_status_page(engine);
2100
	}
2101

2102
	intel_engine_cleanup_common(engine);
2103

2104
	engine->i915 = NULL;
2105 2106
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2107 2108
}

2109 2110 2111
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
2112
	enum intel_engine_id id;
2113

2114
	for_each_engine(engine, dev_priv, id) {
2115 2116 2117 2118 2119
		engine->buffer->head = engine->buffer->tail;
		engine->buffer->last_retired_head = -1;
	}
}

2120
static int ring_request_alloc(struct drm_i915_gem_request *request)
2121
{
2122 2123
	int ret;

2124 2125
	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);

2126 2127 2128 2129
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2130
	request->reserved_space += LEGACY_REQUEST_SIZE;
2131

2132
	GEM_BUG_ON(!request->engine->buffer);
2133
	request->ring = request->engine->buffer;
2134 2135 2136 2137 2138

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2139
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2140
	return 0;
2141 2142
}

2143 2144
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2145
	struct intel_ring *ring = req->ring;
2146
	struct drm_i915_gem_request *target;
2147 2148 2149
	long timeout;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
2150

2151 2152
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2164
	GEM_BUG_ON(!req->reserved_space);
2165

2166
	list_for_each_entry(target, &ring->request_list, ring_link) {
2167 2168 2169
		unsigned space;

		/* Would completion of this request free enough space? */
2170 2171
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2172 2173
		if (space >= bytes)
			break;
2174
	}
2175

2176
	if (WARN_ON(&target->ring_link == &ring->request_list))
2177 2178
		return -ENOSPC;

2179 2180 2181 2182 2183
	timeout = i915_wait_request(target,
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
2184 2185 2186 2187 2188 2189

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2190 2191
}

2192
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2193
{
2194
	struct intel_ring *ring = req->ring;
2195 2196
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2197 2198
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2199
	bool need_wrap = false;
2200

2201
	total_bytes = bytes + req->reserved_space;
2202

2203 2204 2205 2206 2207 2208 2209
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2210 2211 2212 2213 2214 2215 2216
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2217
		wait_bytes = remain_actual + req->reserved_space;
2218
	} else {
2219 2220
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2221 2222
	}

2223
	if (wait_bytes > ring->space) {
2224
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2225 2226 2227 2228
		if (unlikely(ret))
			return ret;
	}

2229
	if (unlikely(need_wrap)) {
2230 2231
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2232

2233
		/* Fill the tail with MI_NOOP */
2234 2235 2236
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2237
	}
2238

2239 2240
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2241
	GEM_BUG_ONLY(ring->advance = ring->tail + bytes);
2242
	return 0;
2243
}
2244

2245
/* Align the ring tail to a cacheline boundary */
2246
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2247
{
2248
	struct intel_ring *ring = req->ring;
2249 2250
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2251 2252 2253 2254 2255
	int ret;

	if (num_dwords == 0)
		return 0;

2256
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2257
	ret = intel_ring_begin(req, num_dwords);
2258 2259 2260 2261
	if (ret)
		return ret;

	while (num_dwords--)
2262
		intel_ring_emit(ring, MI_NOOP);
2263

2264
	intel_ring_advance(ring);
2265 2266 2267 2268

	return 0;
}

2269
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2270
{
2271
	struct drm_i915_private *dev_priv = request->i915;
2272

2273 2274
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2275
       /* Every tail move must follow the sequence below */
2276 2277 2278 2279

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2280 2281
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2282 2283

	/* Clear the context id. Here be magic! */
2284
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2285

2286
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2287 2288 2289 2290 2291
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2292
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2293

2294
	/* Now that the ring is fully powered up, update the tail */
2295
	i9xx_submit_request(request);
2296 2297 2298 2299

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2300 2301 2302 2303
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2304 2305
}

2306
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2307
{
2308
	struct intel_ring *ring = req->ring;
2309
	uint32_t cmd;
2310 2311
	int ret;

2312
	ret = intel_ring_begin(req, 4);
2313 2314 2315
	if (ret)
		return ret;

2316
	cmd = MI_FLUSH_DW;
2317
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2318
		cmd += 1;
2319 2320 2321 2322 2323 2324 2325 2326

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2327 2328 2329 2330 2331 2332
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2333
	if (mode & EMIT_INVALIDATE)
2334 2335
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2336 2337
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2338
	if (INTEL_GEN(req->i915) >= 8) {
2339 2340
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2341
	} else  {
2342 2343
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2344
	}
2345
	intel_ring_advance(ring);
2346
	return 0;
2347 2348
}

2349
static int
2350 2351 2352
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2353
{
2354
	struct intel_ring *ring = req->ring;
2355
	bool ppgtt = USES_PPGTT(req->i915) &&
2356
			!(dispatch_flags & I915_DISPATCH_SECURE);
2357 2358
	int ret;

2359
	ret = intel_ring_begin(req, 4);
2360 2361 2362 2363
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2364
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2365 2366
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2367 2368 2369 2370
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2371 2372 2373 2374

	return 0;
}

2375
static int
2376 2377 2378
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2379
{
2380
	struct intel_ring *ring = req->ring;
2381 2382
	int ret;

2383
	ret = intel_ring_begin(req, 2);
2384 2385 2386
	if (ret)
		return ret;

2387
	intel_ring_emit(ring,
2388
			MI_BATCH_BUFFER_START |
2389
			(dispatch_flags & I915_DISPATCH_SECURE ?
2390 2391 2392
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2393
	/* bit0-7 is the length on GEN6+ */
2394 2395
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2396 2397 2398 2399

	return 0;
}

2400
static int
2401 2402 2403
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2404
{
2405
	struct intel_ring *ring = req->ring;
2406
	int ret;
2407

2408
	ret = intel_ring_begin(req, 2);
2409 2410
	if (ret)
		return ret;
2411

2412
	intel_ring_emit(ring,
2413
			MI_BATCH_BUFFER_START |
2414 2415
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2416
	/* bit0-7 is the length on GEN6+ */
2417 2418
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2419

2420
	return 0;
2421 2422
}

2423 2424
/* Blitter support (SandyBridge+) */

2425
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2426
{
2427
	struct intel_ring *ring = req->ring;
2428
	uint32_t cmd;
2429 2430
	int ret;

2431
	ret = intel_ring_begin(req, 4);
2432 2433 2434
	if (ret)
		return ret;

2435
	cmd = MI_FLUSH_DW;
2436
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2437
		cmd += 1;
2438 2439 2440 2441 2442 2443 2444 2445

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2446 2447 2448 2449 2450 2451
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2452
	if (mode & EMIT_INVALIDATE)
2453
		cmd |= MI_INVALIDATE_TLB;
2454 2455
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2456
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2457
	if (INTEL_GEN(req->i915) >= 8) {
2458 2459
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2460
	} else  {
2461 2462
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2463
	}
2464
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2465

2466
	return 0;
Z
Zou Nan hai 已提交
2467 2468
}

2469 2470 2471
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2472
	struct drm_i915_gem_object *obj;
2473
	int ret, i;
2474

2475
	if (!i915.semaphores)
2476 2477
		return;

2478 2479 2480
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

2481
		obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
2482 2483
		if (IS_ERR(obj))
			goto err;
2484

2485
		vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
2499 2500

	if (INTEL_GEN(dev_priv) >= 8) {
2501
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2502

2503
		engine->semaphore.sync_to = gen8_ring_sync_to;
2504
		engine->semaphore.signal = gen8_xcs_signal;
2505 2506

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2507
			u32 ring_offset;
2508 2509 2510 2511 2512 2513 2514 2515

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2516
	} else if (INTEL_GEN(dev_priv) >= 6) {
2517
		engine->semaphore.sync_to = gen6_ring_sync_to;
2518
		engine->semaphore.signal = gen6_signal;
2519 2520 2521 2522 2523 2524 2525 2526

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
2527
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2528 2529 2530
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
2531 2532 2533 2534 2535
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2536
				},
2537 2538 2539 2540
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2541
				},
2542 2543 2544 2545
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2546
				},
2547 2548 2549 2550
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2551 2552 2553 2554 2555
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2556
			if (i == engine->hw_id) {
2557 2558 2559
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2560 2561
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2562 2563 2564 2565 2566
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2567
	}
2568 2569 2570 2571 2572 2573 2574 2575

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2576 2577
}

2578 2579 2580
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2581 2582
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2583
	if (INTEL_GEN(dev_priv) >= 8) {
2584 2585
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2586 2587
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2588 2589
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2590 2591
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2592 2593
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2594
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2595
	} else if (INTEL_GEN(dev_priv) >= 3) {
2596 2597
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2598
	} else {
2599 2600
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2601 2602 2603
	}
}

2604 2605 2606
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2607 2608 2609
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2610
	engine->init_hw = init_ring_common;
2611
	engine->reset_hw = reset_ring_common;
2612

2613 2614 2615
	engine->context_pin = intel_ring_context_pin;
	engine->context_unpin = intel_ring_context_unpin;

2616 2617
	engine->request_alloc = ring_request_alloc;

2618
	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2619 2620 2621 2622
	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
	if (i915.semaphores) {
		int num_rings;

2623
		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633

		num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
		if (INTEL_GEN(dev_priv) >= 8) {
			engine->emit_breadcrumb_sz += num_rings * 6;
		} else {
			engine->emit_breadcrumb_sz += num_rings * 3;
			if (num_rings & 1)
				engine->emit_breadcrumb_sz++;
		}
	}
2634
	engine->submit_request = i9xx_submit_request;
2635 2636

	if (INTEL_GEN(dev_priv) >= 8)
2637
		engine->emit_bb_start = gen8_emit_bb_start;
2638
	else if (INTEL_GEN(dev_priv) >= 6)
2639
		engine->emit_bb_start = gen6_emit_bb_start;
2640
	else if (INTEL_GEN(dev_priv) >= 4)
2641
		engine->emit_bb_start = i965_emit_bb_start;
2642
	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2643
		engine->emit_bb_start = i830_emit_bb_start;
2644
	else
2645
		engine->emit_bb_start = i915_emit_bb_start;
2646 2647
}

2648
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2649
{
2650
	struct drm_i915_private *dev_priv = engine->i915;
2651
	int ret;
2652

2653 2654
	intel_ring_default_vfuncs(dev_priv, engine);

2655 2656
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2657

2658
	if (INTEL_GEN(dev_priv) >= 8) {
2659
		engine->init_context = intel_rcs_ctx_init;
2660
		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2661
		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2662
		engine->emit_flush = gen8_render_ring_flush;
2663 2664 2665
		if (i915.semaphores) {
			int num_rings;

2666
			engine->semaphore.signal = gen8_rcs_signal;
2667 2668 2669 2670 2671

			num_rings =
				hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
			engine->emit_breadcrumb_sz += num_rings * 6;
		}
2672
	} else if (INTEL_GEN(dev_priv) >= 6) {
2673
		engine->init_context = intel_rcs_ctx_init;
2674
		engine->emit_flush = gen7_render_ring_flush;
2675
		if (IS_GEN6(dev_priv))
2676
			engine->emit_flush = gen6_render_ring_flush;
2677
	} else if (IS_GEN5(dev_priv)) {
2678
		engine->emit_flush = gen4_render_ring_flush;
2679
	} else {
2680
		if (INTEL_GEN(dev_priv) < 4)
2681
			engine->emit_flush = gen2_render_ring_flush;
2682
		else
2683
			engine->emit_flush = gen4_render_ring_flush;
2684
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2685
	}
B
Ben Widawsky 已提交
2686

2687
	if (IS_HASWELL(dev_priv))
2688
		engine->emit_bb_start = hsw_emit_bb_start;
2689

2690 2691
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2692

2693
	ret = intel_init_ring_buffer(engine);
2694 2695 2696
	if (ret)
		return ret;

2697
	if (INTEL_GEN(dev_priv) >= 6) {
2698
		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2699 2700 2701
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2702
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2703 2704 2705 2706 2707
		if (ret)
			return ret;
	}

	return 0;
2708 2709
}

2710
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2711
{
2712
	struct drm_i915_private *dev_priv = engine->i915;
2713

2714 2715
	intel_ring_default_vfuncs(dev_priv, engine);

2716
	if (INTEL_GEN(dev_priv) >= 6) {
2717
		/* gen6 bsd needs a special wa for tail updates */
2718
		if (IS_GEN6(dev_priv))
2719
			engine->submit_request = gen6_bsd_submit_request;
2720
		engine->emit_flush = gen6_bsd_ring_flush;
2721
		if (INTEL_GEN(dev_priv) < 8)
2722
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2723
	} else {
2724
		engine->mmio_base = BSD_RING_BASE;
2725
		engine->emit_flush = bsd_ring_flush;
2726
		if (IS_GEN5(dev_priv))
2727
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2728
		else
2729
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2730 2731
	}

2732
	return intel_init_ring_buffer(engine);
2733
}
2734

2735
/**
2736
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2737
 */
2738
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2739
{
2740
	struct drm_i915_private *dev_priv = engine->i915;
2741 2742 2743

	intel_ring_default_vfuncs(dev_priv, engine);

2744
	engine->emit_flush = gen6_bsd_ring_flush;
2745

2746
	return intel_init_ring_buffer(engine);
2747 2748
}

2749
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2750
{
2751
	struct drm_i915_private *dev_priv = engine->i915;
2752 2753 2754

	intel_ring_default_vfuncs(dev_priv, engine);

2755
	engine->emit_flush = gen6_ring_flush;
2756
	if (INTEL_GEN(dev_priv) < 8)
2757
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2758

2759
	return intel_init_ring_buffer(engine);
2760
}
2761

2762
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2763
{
2764
	struct drm_i915_private *dev_priv = engine->i915;
2765 2766 2767

	intel_ring_default_vfuncs(dev_priv, engine);

2768
	engine->emit_flush = gen6_ring_flush;
2769

2770
	if (INTEL_GEN(dev_priv) < 8) {
2771
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2772 2773
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2774
	}
B
Ben Widawsky 已提交
2775

2776
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2777
}