intel_ringbuffer.c 82.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50 51 52 53 54 55 56 57 58 59 60
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;
	}

	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
					    ringbuf->tail, ringbuf->size);
}

61
static void __intel_ring_advance(struct intel_engine_cs *engine)
62
{
63
	struct intel_ringbuffer *ringbuf = engine->buffer;
64
	ringbuf->tail &= ringbuf->size - 1;
65
	engine->write_tail(engine, ringbuf->tail);
66 67
}

68
static int
69
gen2_render_ring_flush(struct drm_i915_gem_request *req,
70 71 72
		       u32	invalidate_domains,
		       u32	flush_domains)
{
73
	struct intel_engine_cs *engine = req->engine;
74 75 76 77
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
78
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
79 80 81 82 83
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

84
	ret = intel_ring_begin(req, 2);
85 86 87
	if (ret)
		return ret;

88 89 90
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
91 92 93 94 95

	return 0;
}

static int
96
gen4_render_ring_flush(struct drm_i915_gem_request *req,
97 98
		       u32	invalidate_domains,
		       u32	flush_domains)
99
{
100
	struct intel_engine_cs *engine = req->engine;
101
	u32 cmd;
102
	int ret;
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
133
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
134 135 136
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
137

138
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
139
	    (IS_G4X(req->i915) || IS_GEN5(req->i915)))
140
		cmd |= MI_INVALIDATE_ISP;
141

142
	ret = intel_ring_begin(req, 2);
143 144
	if (ret)
		return ret;
145

146 147 148
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
149 150

	return 0;
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
191
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
192
{
193
	struct intel_engine_cs *engine = req->engine;
194
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
195 196
	int ret;

197
	ret = intel_ring_begin(req, 6);
198 199 200
	if (ret)
		return ret;

201 202
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
203
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
204 205 206 207 208
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0); /* low dword */
	intel_ring_emit(engine, 0); /* high dword */
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
209

210
	ret = intel_ring_begin(req, 6);
211 212 213
	if (ret)
		return ret;

214 215 216 217 218 219 220
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
221 222 223 224 225

	return 0;
}

static int
226 227
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
228
{
229
	struct intel_engine_cs *engine = req->engine;
230
	u32 flags = 0;
231
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
232 233
	int ret;

234
	/* Force SNB workarounds for PIPE_CONTROL flushes */
235
	ret = intel_emit_post_sync_nonzero_flush(req);
236 237 238
	if (ret)
		return ret;

239 240 241 242
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
243 244 245 246 247 248 249
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
250
		flags |= PIPE_CONTROL_CS_STALL;
251 252 253 254 255 256 257 258 259 260 261
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
262
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
263
	}
264

265
	ret = intel_ring_begin(req, 4);
266 267 268
	if (ret)
		return ret;

269 270 271 272 273
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
274 275 276 277

	return 0;
}

278
static int
279
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
280
{
281
	struct intel_engine_cs *engine = req->engine;
282 283
	int ret;

284
	ret = intel_ring_begin(req, 4);
285 286 287
	if (ret)
		return ret;

288 289
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
290
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
291 292 293
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
294 295 296 297

	return 0;
}

298
static int
299
gen7_render_ring_flush(struct drm_i915_gem_request *req,
300 301
		       u32 invalidate_domains, u32 flush_domains)
{
302
	struct intel_engine_cs *engine = req->engine;
303
	u32 flags = 0;
304
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
305 306
	int ret;

307 308 309 310 311 312 313 314 315 316
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

317 318 319 320 321 322 323
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
324
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
325
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
326 327 328 329 330 331 332 333
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
334
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
335 336 337 338
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
339
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
340

341 342
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

343 344 345
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
346
		gen7_render_ring_cs_stall_wa(req);
347 348
	}

349
	ret = intel_ring_begin(req, 4);
350 351 352
	if (ret)
		return ret;

353 354 355 356 357
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
358 359 360 361

	return 0;
}

362
static int
363
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
364 365
		       u32 flags, u32 scratch_addr)
{
366
	struct intel_engine_cs *engine = req->engine;
367 368
	int ret;

369
	ret = intel_ring_begin(req, 6);
370 371 372
	if (ret)
		return ret;

373 374 375 376 377 378 379
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
380 381 382 383

	return 0;
}

B
Ben Widawsky 已提交
384
static int
385
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
386 387 388
		       u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
389
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
390
	int ret;
B
Ben Widawsky 已提交
391 392 393 394 395 396

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
397
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
398
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
399 400 401 402 403 404 405 406 407 408
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
409 410

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
411
		ret = gen8_emit_pipe_control(req,
412 413 414 415 416
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
417 418
	}

419
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
420 421
}

422
static void ring_write_tail(struct intel_engine_cs *engine,
423
			    u32 value)
424
{
425
	struct drm_i915_private *dev_priv = engine->i915;
426
	I915_WRITE_TAIL(engine, value);
427 428
}

429
u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
430
{
431
	struct drm_i915_private *dev_priv = engine->i915;
432
	u64 acthd;
433

434
	if (INTEL_GEN(dev_priv) >= 8)
435 436
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
437
	else if (INTEL_GEN(dev_priv) >= 4)
438
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
439 440 441 442
	else
		acthd = I915_READ(ACTHD);

	return acthd;
443 444
}

445
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
446
{
447
	struct drm_i915_private *dev_priv = engine->i915;
448 449 450
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
451
	if (INTEL_GEN(dev_priv) >= 4)
452 453 454 455
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

456
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
457
{
458
	struct drm_i915_private *dev_priv = engine->i915;
459
	i915_reg_t mmio;
460 461 462 463

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
464
	if (IS_GEN7(dev_priv)) {
465
		switch (engine->id) {
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
484
	} else if (IS_GEN6(dev_priv)) {
485
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
486 487
	} else {
		/* XXX: gen8 returns to sanity */
488
		mmio = RING_HWS_PGA(engine->mmio_base);
489 490
	}

491
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
492 493 494 495 496 497 498 499 500
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
501
	if (IS_GEN(dev_priv, 6, 7)) {
502
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
503 504

		/* ring should be idle before issuing a sync flush*/
505
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
506 507 508 509

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
510 511 512
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
513
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
514
				  engine->name);
515 516 517
	}
}

518
static bool stop_ring(struct intel_engine_cs *engine)
519
{
520
	struct drm_i915_private *dev_priv = engine->i915;
521

522
	if (!IS_GEN2(dev_priv)) {
523
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
524 525 526 527 528
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
529 530
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
531 532 533 534
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
535
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536
				return false;
537 538
		}
	}
539

540 541 542
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
543

544
	if (!IS_GEN2(dev_priv)) {
545 546
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547
	}
548

549
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550
}
551

552 553 554 555 556
void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
{
	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
}

557
static int init_ring_common(struct intel_engine_cs *engine)
558
{
559
	struct drm_i915_private *dev_priv = engine->i915;
560
	struct intel_ringbuffer *ringbuf = engine->buffer;
561
	struct drm_i915_gem_object *obj = ringbuf->obj;
562 563
	int ret = 0;

564
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
565

566
	if (!stop_ring(engine)) {
567
		/* G45 ring initialization often fails to reset head to zero */
568 569
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
570 571 572 573 574
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
575

576
		if (!stop_ring(engine)) {
577 578
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
579 580 581 582 583
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
584 585
			ret = -EIO;
			goto out;
586
		}
587 588
	}

589
	if (I915_NEED_GFX_HWS(dev_priv))
590
		intel_ring_setup_status_page(engine);
591
	else
592
		ring_setup_phys_status_page(engine);
593

594
	/* Enforce ordering by reading HEAD register back */
595
	I915_READ_HEAD(engine);
596

597 598 599 600
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
601
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
602 603

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
604
	if (I915_READ_HEAD(engine))
605
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
606 607 608
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
609

610
	I915_WRITE_CTL(engine,
611
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
612
			| RING_VALID);
613 614

	/* If the head is still not zero, the ring is dead */
615 616 617
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
618
		DRM_ERROR("%s initialization failed "
619
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
620 621 622 623 624 625
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
626 627
		ret = -EIO;
		goto out;
628 629
	}

630
	ringbuf->last_retired_head = -1;
631 632
	ringbuf->head = I915_READ_HEAD(engine);
	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
633
	intel_ring_update_space(ringbuf);
634

635
	intel_engine_init_hangcheck(engine);
636

637
out:
638
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
639 640

	return ret;
641 642
}

643
void intel_fini_pipe_control(struct intel_engine_cs *engine)
644
{
645
	if (engine->scratch.obj == NULL)
646 647
		return;

648
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
649 650
	drm_gem_object_unreference(&engine->scratch.obj->base);
	engine->scratch.obj = NULL;
651 652
}

653
int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
654
{
655
	struct drm_i915_gem_object *obj;
656 657
	int ret;

658
	WARN_ON(engine->scratch.obj);
659

660
	obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
661
	if (!obj)
662
		obj = i915_gem_object_create(&engine->i915->drm, size);
663 664 665
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		ret = PTR_ERR(obj);
666 667
		goto err;
	}
668

669
	ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
670 671
	if (ret)
		goto err_unref;
672

673 674
	engine->scratch.obj = obj;
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
675
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
676
			 engine->name, engine->scratch.gtt_offset);
677 678 679
	return 0;

err_unref:
680
	drm_gem_object_unreference(&engine->scratch.obj->base);
681 682 683 684
err:
	return ret;
}

685
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
686
{
687
	struct intel_engine_cs *engine = req->engine;
688 689
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
690

691
	if (w->count == 0)
692
		return 0;
693

694
	engine->gpu_caches_dirty = true;
695
	ret = intel_ring_flush_all_caches(req);
696 697
	if (ret)
		return ret;
698

699
	ret = intel_ring_begin(req, (w->count * 2 + 2));
700 701 702
	if (ret)
		return ret;

703
	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
704
	for (i = 0; i < w->count; i++) {
705 706
		intel_ring_emit_reg(engine, w->reg[i].addr);
		intel_ring_emit(engine, w->reg[i].value);
707
	}
708
	intel_ring_emit(engine, MI_NOOP);
709

710
	intel_ring_advance(engine);
711

712
	engine->gpu_caches_dirty = true;
713
	ret = intel_ring_flush_all_caches(req);
714 715
	if (ret)
		return ret;
716

717
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
718

719
	return 0;
720 721
}

722
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
723 724 725
{
	int ret;

726
	ret = intel_ring_workarounds_emit(req);
727 728 729
	if (ret != 0)
		return ret;

730
	ret = i915_gem_render_state_init(req);
731
	if (ret)
732
		return ret;
733

734
	return 0;
735 736
}

737
static int wa_add(struct drm_i915_private *dev_priv,
738 739
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
740 741 742 743 744 745 746 747 748 749 750 751 752
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
753 754
}

755
#define WA_REG(addr, mask, val) do { \
756
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
757 758
		if (r) \
			return r; \
759
	} while (0)
760 761

#define WA_SET_BIT_MASKED(addr, mask) \
762
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
763 764

#define WA_CLR_BIT_MASKED(addr, mask) \
765
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
766

767
#define WA_SET_FIELD_MASKED(addr, mask, value) \
768
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
769

770 771
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
772

773
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
774

775 776
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
777
{
778
	struct drm_i915_private *dev_priv = engine->i915;
779
	struct i915_workarounds *wa = &dev_priv->workarounds;
780
	const uint32_t index = wa->hw_whitelist_count[engine->id];
781 782 783 784

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

785
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
786
		 i915_mmio_reg_offset(reg));
787
	wa->hw_whitelist_count[engine->id]++;
788 789 790 791

	return 0;
}

792
static int gen8_init_workarounds(struct intel_engine_cs *engine)
793
{
794
	struct drm_i915_private *dev_priv = engine->i915;
795 796

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
797

798 799 800
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

801 802 803 804
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

805 806 807 808 809
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
810
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
811
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
812
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
813 814
			  HDC_FORCE_NON_COHERENT);

815 816 817 818 819 820 821 822 823 824
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

825 826 827
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

828 829 830 831 832 833 834 835 836 837 838 839
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

840 841 842
	return 0;
}

843
static int bdw_init_workarounds(struct intel_engine_cs *engine)
844
{
845
	struct drm_i915_private *dev_priv = engine->i915;
846
	int ret;
847

848
	ret = gen8_init_workarounds(engine);
849 850 851
	if (ret)
		return ret;

852
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
853
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
854

855
	/* WaDisableDopClockGating:bdw */
856 857
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
858

859 860
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
861

862
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
863 864 865
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
866
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
867 868 869 870

	return 0;
}

871
static int chv_init_workarounds(struct intel_engine_cs *engine)
872
{
873
	struct drm_i915_private *dev_priv = engine->i915;
874
	int ret;
875

876
	ret = gen8_init_workarounds(engine);
877 878 879
	if (ret)
		return ret;

880
	/* WaDisableThreadStallDopClockGating:chv */
881
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
882

883 884 885
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

886 887 888
	return 0;
}

889
static int gen9_init_workarounds(struct intel_engine_cs *engine)
890
{
891
	struct drm_i915_private *dev_priv = engine->i915;
892
	int ret;
893

894 895 896
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

897
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
898 899 900
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

901
	/* WaDisableKillLogic:bxt,skl,kbl */
902 903 904
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

905 906
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
907
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
908
			  FLOW_CONTROL_ENABLE |
909 910
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

911
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
912 913 914
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

915
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
916 917
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
918 919
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
920

921
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
922 923
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
924 925
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
926 927 928 929 930
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
931 932
	}

933 934
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
935 936 937
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
938

939 940
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
941 942
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
943

944
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
945 946 947
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

948
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
949 950
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
951 952 953
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

954 955 956 957
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
958

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

980 981 982 983
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
984 985 986
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

987
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
988 989
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

990
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
991 992 993
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

994 995 996 997 998
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

999
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1000
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1001 1002 1003
	if (ret)
		return ret;

1004
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1005
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1006 1007 1008
	if (ret)
		return ret;

1009 1010 1011
	return 0;
}

1012
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1013
{
1014
	struct drm_i915_private *dev_priv = engine->i915;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1025
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1053
static int skl_init_workarounds(struct intel_engine_cs *engine)
1054
{
1055
	struct drm_i915_private *dev_priv = engine->i915;
1056
	int ret;
1057

1058
	ret = gen9_init_workarounds(engine);
1059 1060
	if (ret)
		return ret;
1061

1062 1063 1064 1065 1066
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1067
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1068 1069 1070 1071
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1072
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1073 1074 1075 1076 1077 1078 1079 1080
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1081
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1082 1083 1084 1085 1086
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1087
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1088 1089 1090 1091
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1092
	/* WaDisablePowerCompilerClockGating:skl */
1093
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1094 1095 1096
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1097
	/* WaBarrierPerformanceFixDisable:skl */
1098
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1099 1100 1101 1102
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1103
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1104
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1105 1106 1107 1108
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1109 1110 1111
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1112
	/* WaDisableLSQCROPERFforOCL:skl */
1113
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1114 1115 1116
	if (ret)
		return ret;

1117
	return skl_tune_iz_hashing(engine);
1118 1119
}

1120
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1121
{
1122
	struct drm_i915_private *dev_priv = engine->i915;
1123
	int ret;
1124

1125
	ret = gen9_init_workarounds(engine);
1126 1127
	if (ret)
		return ret;
1128

1129 1130
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1131
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1132 1133 1134
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1135
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1136 1137 1138 1139
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1140 1141 1142 1143
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1144 1145 1146 1147 1148 1149
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1150
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1151
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1152 1153 1154 1155 1156
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1157 1158 1159
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1160
	/* WaDisableLSQCROPERFforOCL:bxt */
1161
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1162
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1163 1164
		if (ret)
			return ret;
1165

1166
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1167 1168
		if (ret)
			return ret;
1169 1170
	}

1171
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1172
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1173 1174
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1175

1176 1177 1178 1179 1180
	/* WaInsertDummyPushConstPs:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1181 1182 1183
	return 0;
}

1184 1185
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1186
	struct drm_i915_private *dev_priv = engine->i915;
1187 1188 1189 1190 1191 1192
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1193 1194 1195 1196
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1197 1198 1199 1200 1201
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1202 1203 1204 1205 1206
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1207 1208 1209 1210 1211 1212 1213 1214
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1215 1216 1217 1218 1219
	/* WaInsertDummyPushConstPs:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1220 1221 1222
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1223 1224 1225 1226 1227
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1228 1229 1230 1231 1232
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1233 1234 1235
	return 0;
}

1236
int init_workarounds_ring(struct intel_engine_cs *engine)
1237
{
1238
	struct drm_i915_private *dev_priv = engine->i915;
1239

1240
	WARN_ON(engine->id != RCS);
1241 1242

	dev_priv->workarounds.count = 0;
1243
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1244

1245
	if (IS_BROADWELL(dev_priv))
1246
		return bdw_init_workarounds(engine);
1247

1248
	if (IS_CHERRYVIEW(dev_priv))
1249
		return chv_init_workarounds(engine);
1250

1251
	if (IS_SKYLAKE(dev_priv))
1252
		return skl_init_workarounds(engine);
1253

1254
	if (IS_BROXTON(dev_priv))
1255
		return bxt_init_workarounds(engine);
1256

1257 1258 1259
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1260 1261 1262
	return 0;
}

1263
static int init_render_ring(struct intel_engine_cs *engine)
1264
{
1265
	struct drm_i915_private *dev_priv = engine->i915;
1266
	int ret = init_ring_common(engine);
1267 1268
	if (ret)
		return ret;
1269

1270
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1271
	if (IS_GEN(dev_priv, 4, 6))
1272
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1273 1274 1275 1276

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1277
	 *
1278
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1279
	 */
1280
	if (IS_GEN(dev_priv, 6, 7))
1281 1282
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1283
	/* Required for the hardware to program scanline values for waiting */
1284
	/* WaEnableFlushTlbInvalidationMode:snb */
1285
	if (IS_GEN6(dev_priv))
1286
		I915_WRITE(GFX_MODE,
1287
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1288

1289
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1290
	if (IS_GEN7(dev_priv))
1291
		I915_WRITE(GFX_MODE_GEN7,
1292
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1293
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1294

1295
	if (IS_GEN6(dev_priv)) {
1296 1297 1298 1299 1300 1301
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1302
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1303 1304
	}

1305
	if (IS_GEN(dev_priv, 6, 7))
1306
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1307

1308 1309
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1310

1311
	return init_workarounds_ring(engine);
1312 1313
}

1314
static void render_ring_cleanup(struct intel_engine_cs *engine)
1315
{
1316
	struct drm_i915_private *dev_priv = engine->i915;
1317 1318 1319 1320 1321 1322

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
		dev_priv->semaphore_obj = NULL;
	}
1323

1324
	intel_fini_pipe_control(engine);
1325 1326
}

1327
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1328 1329 1330
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1331
	struct intel_engine_cs *signaller = signaller_req->engine;
1332
	struct drm_i915_private *dev_priv = signaller_req->i915;
1333
	struct intel_engine_cs *waiter;
1334 1335
	enum intel_engine_id id;
	int ret, num_rings;
1336

1337
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1338 1339 1340
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1341
	ret = intel_ring_begin(signaller_req, num_dwords);
1342 1343 1344
	if (ret)
		return ret;

1345 1346
	for_each_engine_id(waiter, dev_priv, id) {
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1347 1348 1349 1350 1351 1352
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_QW_WRITE |
1353
					   PIPE_CONTROL_CS_STALL);
1354 1355
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1356
		intel_ring_emit(signaller, signaller_req->seqno);
1357 1358
		intel_ring_emit(signaller, 0);
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1359
					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1360 1361 1362 1363 1364 1365
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1366
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1367 1368 1369
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1370
	struct intel_engine_cs *signaller = signaller_req->engine;
1371
	struct drm_i915_private *dev_priv = signaller_req->i915;
1372
	struct intel_engine_cs *waiter;
1373 1374
	enum intel_engine_id id;
	int ret, num_rings;
1375

1376
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1377 1378 1379
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1380
	ret = intel_ring_begin(signaller_req, num_dwords);
1381 1382 1383
	if (ret)
		return ret;

1384 1385
	for_each_engine_id(waiter, dev_priv, id) {
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1386 1387 1388 1389 1390 1391 1392 1393
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
					   MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
					   MI_FLUSH_DW_USE_GTT);
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1394
		intel_ring_emit(signaller, signaller_req->seqno);
1395
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1396
					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1397 1398 1399 1400 1401 1402
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1403
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1404
		       unsigned int num_dwords)
1405
{
1406
	struct intel_engine_cs *signaller = signaller_req->engine;
1407
	struct drm_i915_private *dev_priv = signaller_req->i915;
1408
	struct intel_engine_cs *useless;
1409 1410
	enum intel_engine_id id;
	int ret, num_rings;
1411

1412
#define MBOX_UPDATE_DWORDS 3
1413
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1414 1415
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1416

1417
	ret = intel_ring_begin(signaller_req, num_dwords);
1418 1419 1420
	if (ret)
		return ret;

1421 1422
	for_each_engine_id(useless, dev_priv, id) {
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1423 1424

		if (i915_mmio_reg_valid(mbox_reg)) {
1425
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1426
			intel_ring_emit_reg(signaller, mbox_reg);
1427
			intel_ring_emit(signaller, signaller_req->seqno);
1428 1429
		}
	}
1430

1431 1432 1433 1434
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1435
	return 0;
1436 1437
}

1438 1439
/**
 * gen6_add_request - Update the semaphore mailbox registers
1440 1441
 *
 * @request - request to write to the ring
1442 1443 1444 1445
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1446
static int
1447
gen6_add_request(struct drm_i915_gem_request *req)
1448
{
1449
	struct intel_engine_cs *engine = req->engine;
1450
	int ret;
1451

1452 1453
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1454
	else
1455
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1456

1457 1458 1459
	if (ret)
		return ret;

1460 1461 1462
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1463
	intel_ring_emit(engine, req->seqno);
1464 1465
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1466 1467 1468 1469

	return 0;
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
static int
gen8_render_add_request(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	int ret;

	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 8);
	else
		ret = intel_ring_begin(req, 8);
	if (ret)
		return ret;

	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	/* We're thrashing one dword of HWS. */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	intel_ring_emit(engine, MI_NOOP);
	__intel_ring_advance(engine);

	return 0;
}

1499
static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1500 1501 1502 1503 1504
					      u32 seqno)
{
	return dev_priv->last_seqno < seqno;
}

1505 1506 1507 1508 1509 1510 1511
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1512 1513

static int
1514
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1515 1516 1517
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1518
	struct intel_engine_cs *waiter = waiter_req->engine;
1519
	struct drm_i915_private *dev_priv = waiter_req->i915;
1520
	u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1521
	struct i915_hw_ppgtt *ppgtt;
1522 1523
	int ret;

1524
	ret = intel_ring_begin(waiter_req, 4);
1525 1526 1527 1528 1529 1530 1531
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
1532 1533
	intel_ring_emit(waiter, lower_32_bits(offset));
	intel_ring_emit(waiter, upper_32_bits(offset));
1534
	intel_ring_advance(waiter);
1535 1536 1537 1538 1539 1540 1541 1542 1543

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
	ppgtt = waiter_req->ctx->ppgtt;
	if (ppgtt && waiter_req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1544 1545 1546
	return 0;
}

1547
static int
1548
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1549
	       struct intel_engine_cs *signaller,
1550
	       u32 seqno)
1551
{
1552
	struct intel_engine_cs *waiter = waiter_req->engine;
1553 1554 1555
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1556 1557
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
	int ret;
1558

1559 1560 1561 1562 1563 1564
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1565
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1566

1567
	ret = intel_ring_begin(waiter_req, 4);
1568 1569 1570
	if (ret)
		return ret;

1571
	/* If seqno wrap happened, omit the wait with no-ops */
1572
	if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1573
		intel_ring_emit(waiter, dw1 | wait_mbox);
1574 1575 1576 1577 1578 1579 1580 1581 1582
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1583
	intel_ring_advance(waiter);
1584 1585 1586 1587

	return 0;
}

1588 1589
static void
gen5_seqno_barrier(struct intel_engine_cs *ring)
1590
{
1591 1592 1593
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1594
	 *
1595 1596 1597 1598 1599 1600 1601
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1602
	 */
1603
	usleep_range(125, 250);
1604 1605
}

1606 1607
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1608
{
1609
	struct drm_i915_private *dev_priv = engine->i915;
1610

1611 1612
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1613 1614 1615 1616 1617 1618 1619 1620 1621
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1622 1623 1624
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1625
	 */
1626
	spin_lock_irq(&dev_priv->uncore.lock);
1627
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1628
	spin_unlock_irq(&dev_priv->uncore.lock);
1629 1630
}

1631 1632
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1633
{
1634
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1635 1636 1637
}

static void
1638
gen5_irq_disable(struct intel_engine_cs *engine)
1639
{
1640
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1641 1642
}

1643 1644
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1645
{
1646
	struct drm_i915_private *dev_priv = engine->i915;
1647

1648 1649 1650
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1651 1652
}

1653
static void
1654
i9xx_irq_disable(struct intel_engine_cs *engine)
1655
{
1656
	struct drm_i915_private *dev_priv = engine->i915;
1657

1658 1659
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1660 1661
}

1662 1663
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1664
{
1665
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1666

1667 1668 1669
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1670 1671 1672
}

static void
1673
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1674
{
1675
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1676

1677 1678
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1679 1680
}

1681
static int
1682
bsd_ring_flush(struct drm_i915_gem_request *req,
1683 1684
	       u32     invalidate_domains,
	       u32     flush_domains)
1685
{
1686
	struct intel_engine_cs *engine = req->engine;
1687 1688
	int ret;

1689
	ret = intel_ring_begin(req, 2);
1690 1691 1692
	if (ret)
		return ret;

1693 1694 1695
	intel_ring_emit(engine, MI_FLUSH);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1696
	return 0;
1697 1698
}

1699
static int
1700
i9xx_add_request(struct drm_i915_gem_request *req)
1701
{
1702
	struct intel_engine_cs *engine = req->engine;
1703 1704
	int ret;

1705
	ret = intel_ring_begin(req, 4);
1706 1707
	if (ret)
		return ret;
1708

1709 1710 1711
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1712
	intel_ring_emit(engine, req->seqno);
1713 1714
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1715

1716
	return 0;
1717 1718
}

1719 1720
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1721
{
1722
	struct drm_i915_private *dev_priv = engine->i915;
1723

1724 1725 1726
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1727
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1728 1729 1730
}

static void
1731
gen6_irq_disable(struct intel_engine_cs *engine)
1732
{
1733
	struct drm_i915_private *dev_priv = engine->i915;
1734

1735
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1736
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1737 1738
}

1739 1740
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1741
{
1742
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1743

1744 1745
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1746 1747 1748
}

static void
1749
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1750
{
1751
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1752

1753 1754
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1755 1756
}

1757 1758
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1759
{
1760
	struct drm_i915_private *dev_priv = engine->i915;
1761

1762 1763 1764
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1765
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1766 1767 1768
}

static void
1769
gen8_irq_disable(struct intel_engine_cs *engine)
1770
{
1771
	struct drm_i915_private *dev_priv = engine->i915;
1772

1773
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1774 1775
}

1776
static int
1777
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1778
			 u64 offset, u32 length,
1779
			 unsigned dispatch_flags)
1780
{
1781
	struct intel_engine_cs *engine = req->engine;
1782
	int ret;
1783

1784
	ret = intel_ring_begin(req, 2);
1785 1786 1787
	if (ret)
		return ret;

1788
	intel_ring_emit(engine,
1789 1790
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1791 1792
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1793 1794
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
1795

1796 1797 1798
	return 0;
}

1799 1800
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1801 1802
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1803
static int
1804
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1805 1806
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
1807
{
1808
	struct intel_engine_cs *engine = req->engine;
1809
	u32 cs_offset = engine->scratch.gtt_offset;
1810
	int ret;
1811

1812
	ret = intel_ring_begin(req, 6);
1813 1814
	if (ret)
		return ret;
1815

1816
	/* Evict the invalid PTE TLBs */
1817 1818 1819 1820 1821 1822 1823
	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(engine, cs_offset);
	intel_ring_emit(engine, 0xdeadbeef);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1824

1825
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1826 1827 1828
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1829
		ret = intel_ring_begin(req, 6 + 2);
1830 1831
		if (ret)
			return ret;
1832 1833 1834 1835 1836

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(engine,
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(engine, cs_offset);
		intel_ring_emit(engine, 4096);
		intel_ring_emit(engine, offset);

		intel_ring_emit(engine, MI_FLUSH);
		intel_ring_emit(engine, MI_NOOP);
		intel_ring_advance(engine);
1848 1849

		/* ... and execute it. */
1850
		offset = cs_offset;
1851
	}
1852

1853
	ret = intel_ring_begin(req, 2);
1854 1855 1856
	if (ret)
		return ret;

1857 1858 1859 1860
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1861

1862 1863 1864 1865
	return 0;
}

static int
1866
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1867
			 u64 offset, u32 len,
1868
			 unsigned dispatch_flags)
1869
{
1870
	struct intel_engine_cs *engine = req->engine;
1871 1872
	int ret;

1873
	ret = intel_ring_begin(req, 2);
1874 1875 1876
	if (ret)
		return ret;

1877 1878 1879 1880
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1881 1882 1883 1884

	return 0;
}

1885
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1886
{
1887
	struct drm_i915_private *dev_priv = engine->i915;
1888 1889 1890 1891

	if (!dev_priv->status_page_dmah)
		return;

1892
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1893
	engine->status_page.page_addr = NULL;
1894 1895
}

1896
static void cleanup_status_page(struct intel_engine_cs *engine)
1897
{
1898
	struct drm_i915_gem_object *obj;
1899

1900
	obj = engine->status_page.obj;
1901
	if (obj == NULL)
1902 1903
		return;

1904
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
1905
	i915_gem_object_ggtt_unpin(obj);
1906
	drm_gem_object_unreference(&obj->base);
1907
	engine->status_page.obj = NULL;
1908 1909
}

1910
static int init_status_page(struct intel_engine_cs *engine)
1911
{
1912
	struct drm_i915_gem_object *obj = engine->status_page.obj;
1913

1914
	if (obj == NULL) {
1915
		unsigned flags;
1916
		int ret;
1917

1918
		obj = i915_gem_object_create(&engine->i915->drm, 4096);
1919
		if (IS_ERR(obj)) {
1920
			DRM_ERROR("Failed to allocate status page\n");
1921
			return PTR_ERR(obj);
1922
		}
1923

1924 1925 1926 1927
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

1928
		flags = 0;
1929
		if (!HAS_LLC(engine->i915))
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1942 1943 1944 1945 1946 1947
		if (ret) {
err_unref:
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

1948
		engine->status_page.obj = obj;
1949
	}
1950

1951 1952 1953
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1954

1955
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1956
			engine->name, engine->status_page.gfx_addr);
1957 1958 1959 1960

	return 0;
}

1961
static int init_phys_status_page(struct intel_engine_cs *engine)
1962
{
1963
	struct drm_i915_private *dev_priv = engine->i915;
1964 1965 1966

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
1967
			drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1968 1969 1970 1971
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

1972 1973
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1974 1975 1976 1977

	return 0;
}

1978
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1979
{
1980 1981 1982
	GEM_BUG_ON(ringbuf->vma == NULL);
	GEM_BUG_ON(ringbuf->virtual_start == NULL);

1983
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1984
		i915_gem_object_unpin_map(ringbuf->obj);
1985
	else
1986
		i915_vma_unpin_iomap(ringbuf->vma);
1987
	ringbuf->virtual_start = NULL;
1988

1989
	i915_gem_object_ggtt_unpin(ringbuf->obj);
1990
	ringbuf->vma = NULL;
1991 1992
}

1993
int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
1994 1995 1996
				     struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_gem_object *obj = ringbuf->obj;
1997 1998
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
1999
	void *addr;
2000 2001
	int ret;

2002
	if (HAS_LLC(dev_priv) && !obj->stolen) {
2003
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2004 2005
		if (ret)
			return ret;
2006

2007
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2008 2009
		if (ret)
			goto err_unpin;
2010

2011 2012 2013
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2014
			goto err_unpin;
2015 2016
		}
	} else {
2017 2018
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
2019 2020
		if (ret)
			return ret;
2021

2022
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2023 2024
		if (ret)
			goto err_unpin;
2025

2026 2027 2028
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2029 2030 2031
		addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2032
			goto err_unpin;
2033
		}
2034 2035
	}

2036
	ringbuf->virtual_start = addr;
2037
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2038
	return 0;
2039 2040 2041 2042

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2043 2044
}

2045
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2046
{
2047 2048 2049 2050
	drm_gem_object_unreference(&ringbuf->obj->base);
	ringbuf->obj = NULL;
}

2051 2052
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
				      struct intel_ringbuffer *ringbuf)
2053
{
2054
	struct drm_i915_gem_object *obj;
2055

2056 2057
	obj = NULL;
	if (!HAS_LLC(dev))
2058
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2059
	if (obj == NULL)
2060
		obj = i915_gem_object_create(dev, ringbuf->size);
2061 2062
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2063

2064 2065 2066
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2067
	ringbuf->obj = obj;
2068

2069
	return 0;
2070 2071
}

2072 2073 2074 2075 2076 2077 2078
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
{
	struct intel_ringbuffer *ring;
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2079 2080 2081
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2082
		return ERR_PTR(-ENOMEM);
2083
	}
2084

2085
	ring->engine = engine;
2086
	list_add(&ring->link, &engine->buffers);
2087 2088 2089 2090 2091 2092 2093

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2094
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2095 2096 2097 2098 2099
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2100
	ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2101
	if (ret) {
2102 2103 2104
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
intel_ringbuffer_free(struct intel_ringbuffer *ring)
{
	intel_destroy_ringbuffer_obj(ring);
2116
	list_del(&ring->link);
2117 2118 2119
	kfree(ring);
}

2120 2121 2122 2123 2124 2125
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2126
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
		ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
		if (ret)
			goto error;
	}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	i915_gem_context_reference(ctx);
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2160
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

	if (--ce->pin_count)
		return;

	if (ce->state)
		i915_gem_object_ggtt_unpin(ce->state);

	i915_gem_context_unreference(ctx);
}

2171
static int intel_init_ring_buffer(struct drm_device *dev,
2172
				  struct intel_engine_cs *engine)
2173
{
2174
	struct drm_i915_private *dev_priv = to_i915(dev);
2175
	struct intel_ringbuffer *ringbuf;
2176 2177
	int ret;

2178
	WARN_ON(engine->buffer);
2179

2180
	engine->i915 = dev_priv;
2181 2182 2183 2184 2185 2186 2187
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->buffers);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2188

2189 2190 2191
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
		goto error;
2192

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2204
	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2205 2206 2207 2208
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
		goto error;
	}
2209
	engine->buffer = ringbuf;
2210

2211
	if (I915_NEED_GFX_HWS(dev_priv)) {
2212
		ret = init_status_page(engine);
2213
		if (ret)
2214
			goto error;
2215
	} else {
2216 2217
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2218
		if (ret)
2219
			goto error;
2220 2221
	}

2222
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2223 2224
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2225
				engine->name, ret);
2226 2227
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
2228
	}
2229

2230
	ret = i915_cmd_parser_init_ring(engine);
2231
	if (ret)
2232 2233 2234
		goto error;

	return 0;
2235

2236
error:
2237
	intel_cleanup_engine(engine);
2238
	return ret;
2239 2240
}

2241
void intel_cleanup_engine(struct intel_engine_cs *engine)
2242
{
2243
	struct drm_i915_private *dev_priv;
2244

2245
	if (!intel_engine_initialized(engine))
2246 2247
		return;

2248
	dev_priv = engine->i915;
2249

2250
	if (engine->buffer) {
2251
		intel_stop_engine(engine);
2252
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2253

2254 2255 2256
		intel_unpin_ringbuffer_obj(engine->buffer);
		intel_ringbuffer_free(engine->buffer);
		engine->buffer = NULL;
2257
	}
2258

2259 2260
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2261

2262
	if (I915_NEED_GFX_HWS(dev_priv)) {
2263
		cleanup_status_page(engine);
2264
	} else {
2265 2266
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2267
	}
2268

2269 2270
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
2271
	intel_engine_fini_breadcrumbs(engine);
2272 2273 2274

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2275
	engine->i915 = NULL;
2276 2277
}

2278
int intel_engine_idle(struct intel_engine_cs *engine)
2279
{
2280
	struct drm_i915_gem_request *req;
2281 2282

	/* Wait upon the last request to be completed */
2283
	if (list_empty(&engine->request_list))
2284 2285
		return 0;

2286 2287 2288
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2289 2290 2291

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2292
				   req->i915->mm.interruptible,
2293
				   NULL, NULL);
2294 2295
}

2296
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2297
{
2298 2299 2300 2301 2302 2303
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2304
	request->reserved_space += LEGACY_REQUEST_SIZE;
2305

2306
	request->ringbuf = request->engine->buffer;
2307 2308 2309 2310 2311

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2312
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2313
	return 0;
2314 2315
}

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *target;

	intel_ring_update_space(ringbuf);
	if (ringbuf->space >= bytes)
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2335
	GEM_BUG_ON(!req->reserved_space);
2336 2337 2338 2339

	list_for_each_entry(target, &engine->request_list, list) {
		unsigned space;

2340
		/*
2341 2342 2343
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
2344
		 */
2345 2346 2347 2348 2349 2350 2351 2352
		if (target->ringbuf != ringbuf)
			continue;

		/* Would completion of this request free enough space? */
		space = __intel_ring_space(target->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= bytes)
			break;
2353
	}
2354

2355 2356 2357 2358
	if (WARN_ON(&target->list == &engine->request_list))
		return -ENOSPC;

	return i915_wait_request(target);
2359 2360
}

2361
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2362
{
2363
	struct intel_ringbuffer *ringbuf = req->ringbuf;
2364
	int remain_actual = ringbuf->size - ringbuf->tail;
2365 2366 2367
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2368
	bool need_wrap = false;
2369

2370
	total_bytes = bytes + req->reserved_space;
2371

2372 2373 2374 2375 2376 2377 2378
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2379 2380 2381 2382 2383 2384 2385
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2386
		wait_bytes = remain_actual + req->reserved_space;
2387
	} else {
2388 2389
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2390 2391
	}

2392 2393
	if (wait_bytes > ringbuf->space) {
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2394 2395
		if (unlikely(ret))
			return ret;
2396

2397
		intel_ring_update_space(ringbuf);
2398 2399
		if (unlikely(ringbuf->space < wait_bytes))
			return -EAGAIN;
M
Mika Kuoppala 已提交
2400 2401
	}

2402 2403 2404
	if (unlikely(need_wrap)) {
		GEM_BUG_ON(remain_actual > ringbuf->space);
		GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2405

2406 2407 2408 2409 2410 2411
		/* Fill the tail with MI_NOOP */
		memset(ringbuf->virtual_start + ringbuf->tail,
		       0, remain_actual);
		ringbuf->tail = 0;
		ringbuf->space -= remain_actual;
	}
2412

2413 2414
	ringbuf->space -= bytes;
	GEM_BUG_ON(ringbuf->space < 0);
2415
	return 0;
2416
}
2417

2418
/* Align the ring tail to a cacheline boundary */
2419
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2420
{
2421
	struct intel_engine_cs *engine = req->engine;
2422
	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2423 2424 2425 2426 2427
	int ret;

	if (num_dwords == 0)
		return 0;

2428
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2429
	ret = intel_ring_begin(req, num_dwords);
2430 2431 2432 2433
	if (ret)
		return ret;

	while (num_dwords--)
2434
		intel_ring_emit(engine, MI_NOOP);
2435

2436
	intel_ring_advance(engine);
2437 2438 2439 2440

	return 0;
}

2441
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2442
{
2443
	struct drm_i915_private *dev_priv = engine->i915;
2444

2445 2446 2447 2448 2449 2450 2451 2452
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2453
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2454 2455
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2456
		if (HAS_VEBOX(dev_priv))
2457
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2458
	}
2459 2460 2461 2462 2463 2464 2465 2466
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2467 2468
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2469

2470 2471 2472
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);
2473
	engine->last_submitted_seqno = seqno;
2474

2475
	engine->hangcheck.seqno = seqno;
2476 2477 2478 2479 2480 2481 2482

	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	rcu_read_lock();
	intel_engine_wakeup(engine);
	rcu_read_unlock();
2483
}
2484

2485
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2486
				     u32 value)
2487
{
2488
	struct drm_i915_private *dev_priv = engine->i915;
2489

2490 2491
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2492
       /* Every tail move must follow the sequence below */
2493 2494 2495 2496

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2497 2498
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2499 2500

	/* Clear the context id. Here be magic! */
2501
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2502

2503
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2504 2505 2506 2507 2508
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2509
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2510

2511
	/* Now that the ring is fully powered up, update the tail */
2512 2513
	I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
	POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2514 2515 2516 2517

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2518 2519 2520 2521
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2522 2523
}

2524
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2525
			       u32 invalidate, u32 flush)
2526
{
2527
	struct intel_engine_cs *engine = req->engine;
2528
	uint32_t cmd;
2529 2530
	int ret;

2531
	ret = intel_ring_begin(req, 4);
2532 2533 2534
	if (ret)
		return ret;

2535
	cmd = MI_FLUSH_DW;
2536
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2537
		cmd += 1;
2538 2539 2540 2541 2542 2543 2544 2545

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2546 2547 2548 2549 2550 2551
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2552
	if (invalidate & I915_GEM_GPU_DOMAINS)
2553 2554
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2555 2556 2557
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2558
	if (INTEL_GEN(req->i915) >= 8) {
2559 2560
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2561
	} else  {
2562 2563
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2564
	}
2565
	intel_ring_advance(engine);
2566
	return 0;
2567 2568
}

2569
static int
2570
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2571
			      u64 offset, u32 len,
2572
			      unsigned dispatch_flags)
2573
{
2574
	struct intel_engine_cs *engine = req->engine;
2575
	bool ppgtt = USES_PPGTT(engine->dev) &&
2576
			!(dispatch_flags & I915_DISPATCH_SECURE);
2577 2578
	int ret;

2579
	ret = intel_ring_begin(req, 4);
2580 2581 2582 2583
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2584
	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2585 2586
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2587 2588 2589 2590
	intel_ring_emit(engine, lower_32_bits(offset));
	intel_ring_emit(engine, upper_32_bits(offset));
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2591 2592 2593 2594

	return 0;
}

2595
static int
2596
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2597 2598
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2599
{
2600
	struct intel_engine_cs *engine = req->engine;
2601 2602
	int ret;

2603
	ret = intel_ring_begin(req, 2);
2604 2605 2606
	if (ret)
		return ret;

2607
	intel_ring_emit(engine,
2608
			MI_BATCH_BUFFER_START |
2609
			(dispatch_flags & I915_DISPATCH_SECURE ?
2610 2611 2612
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2613
	/* bit0-7 is the length on GEN6+ */
2614 2615
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2616 2617 2618 2619

	return 0;
}

2620
static int
2621
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2622
			      u64 offset, u32 len,
2623
			      unsigned dispatch_flags)
2624
{
2625
	struct intel_engine_cs *engine = req->engine;
2626
	int ret;
2627

2628
	ret = intel_ring_begin(req, 2);
2629 2630
	if (ret)
		return ret;
2631

2632
	intel_ring_emit(engine,
2633
			MI_BATCH_BUFFER_START |
2634 2635
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2636
	/* bit0-7 is the length on GEN6+ */
2637 2638
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2639

2640
	return 0;
2641 2642
}

2643 2644
/* Blitter support (SandyBridge+) */

2645
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2646
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2647
{
2648
	struct intel_engine_cs *engine = req->engine;
2649
	uint32_t cmd;
2650 2651
	int ret;

2652
	ret = intel_ring_begin(req, 4);
2653 2654 2655
	if (ret)
		return ret;

2656
	cmd = MI_FLUSH_DW;
2657
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2658
		cmd += 1;
2659 2660 2661 2662 2663 2664 2665 2666

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2667 2668 2669 2670 2671 2672
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2673
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2674
		cmd |= MI_INVALIDATE_TLB;
2675 2676 2677
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2678
	if (INTEL_GEN(req->i915) >= 8) {
2679 2680
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2681
	} else  {
2682 2683
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2684
	}
2685
	intel_ring_advance(engine);
R
Rodrigo Vivi 已提交
2686

2687
	return 0;
Z
Zou Nan hai 已提交
2688 2689
}

2690 2691 2692
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2693
	struct drm_i915_gem_object *obj;
2694
	int ret, i;
2695 2696 2697 2698 2699

	if (!i915_semaphore_is_enabled(dev_priv))
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2700
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
			ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
			if (ret != 0) {
				drm_gem_object_unreference(&obj->base);
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2717 2718 2719 2720
	if (!i915_semaphore_is_enabled(dev_priv))
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2721 2722
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2723 2724
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2736 2737 2738
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->semaphore.sync_to = gen6_ring_sync;
		engine->semaphore.signal = gen6_signal;
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2787 2788 2789
	}
}

2790 2791 2792
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2793 2794
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2795
	if (INTEL_GEN(dev_priv) >= 8) {
2796 2797
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2798 2799
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2800 2801
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2802 2803
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2804 2805
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2806
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2807
	} else if (INTEL_GEN(dev_priv) >= 3) {
2808 2809
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2810
	} else {
2811 2812
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2813 2814 2815
	}
}

2816 2817 2818
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2819
	engine->init_hw = init_ring_common;
2820
	engine->write_tail = ring_write_tail;
2821

2822 2823
	engine->add_request = i9xx_add_request;
	if (INTEL_GEN(dev_priv) >= 6)
2824
		engine->add_request = gen6_add_request;
2825 2826 2827 2828

	if (INTEL_GEN(dev_priv) >= 8)
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
	else if (INTEL_GEN(dev_priv) >= 6)
2829
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2830
	else if (INTEL_GEN(dev_priv) >= 4)
2831
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2832 2833 2834 2835
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
	else
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2836

2837
	intel_ring_init_irq(dev_priv, engine);
2838
	intel_ring_init_semaphores(dev_priv, engine);
2839 2840
}

2841
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2842
{
2843
	struct drm_i915_private *dev_priv = engine->i915;
2844
	int ret;
2845

2846 2847
	intel_ring_default_vfuncs(dev_priv, engine);

2848 2849
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2850

2851
	if (INTEL_GEN(dev_priv) >= 8) {
2852
		engine->init_context = intel_rcs_ctx_init;
2853
		engine->add_request = gen8_render_add_request;
2854
		engine->flush = gen8_render_ring_flush;
2855
		if (i915_semaphore_is_enabled(dev_priv))
2856
			engine->semaphore.signal = gen8_rcs_signal;
2857
	} else if (INTEL_GEN(dev_priv) >= 6) {
2858 2859
		engine->init_context = intel_rcs_ctx_init;
		engine->flush = gen7_render_ring_flush;
2860
		if (IS_GEN6(dev_priv))
2861
			engine->flush = gen6_render_ring_flush;
2862
	} else if (IS_GEN5(dev_priv)) {
2863
		engine->flush = gen4_render_ring_flush;
2864
	} else {
2865
		if (INTEL_GEN(dev_priv) < 4)
2866
			engine->flush = gen2_render_ring_flush;
2867
		else
2868 2869
			engine->flush = gen4_render_ring_flush;
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2870
	}
B
Ben Widawsky 已提交
2871

2872
	if (IS_HASWELL(dev_priv))
2873
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2874

2875 2876
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2877

2878
	ret = intel_init_ring_buffer(&dev_priv->drm, engine);
2879 2880 2881
	if (ret)
		return ret;

2882
	if (INTEL_GEN(dev_priv) >= 6) {
2883 2884 2885 2886 2887
		ret = intel_init_pipe_control(engine, 4096);
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
		ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2888 2889 2890 2891 2892
		if (ret)
			return ret;
	}

	return 0;
2893 2894
}

2895
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2896
{
2897
	struct drm_i915_private *dev_priv = engine->i915;
2898

2899 2900
	intel_ring_default_vfuncs(dev_priv, engine);

2901
	if (INTEL_GEN(dev_priv) >= 6) {
2902
		/* gen6 bsd needs a special wa for tail updates */
2903
		if (IS_GEN6(dev_priv))
2904 2905
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
2906
		if (INTEL_GEN(dev_priv) < 8)
2907
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2908
	} else {
2909 2910
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
2911
		if (IS_GEN5(dev_priv))
2912
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2913
		else
2914
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2915 2916
	}

2917
	return intel_init_ring_buffer(&dev_priv->drm, engine);
2918
}
2919

2920
/**
2921
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2922
 */
2923
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2924
{
2925
	struct drm_i915_private *dev_priv = engine->i915;
2926 2927 2928

	intel_ring_default_vfuncs(dev_priv, engine);

2929
	engine->flush = gen6_bsd_ring_flush;
2930

2931
	return intel_init_ring_buffer(&dev_priv->drm, engine);
2932 2933
}

2934
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2935
{
2936
	struct drm_i915_private *dev_priv = engine->i915;
2937 2938 2939

	intel_ring_default_vfuncs(dev_priv, engine);

2940
	engine->flush = gen6_ring_flush;
2941
	if (INTEL_GEN(dev_priv) < 8)
2942
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2943

2944
	return intel_init_ring_buffer(&dev_priv->drm, engine);
2945
}
2946

2947
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2948
{
2949
	struct drm_i915_private *dev_priv = engine->i915;
2950 2951 2952

	intel_ring_default_vfuncs(dev_priv, engine);

2953
	engine->flush = gen6_ring_flush;
2954

2955
	if (INTEL_GEN(dev_priv) < 8) {
2956
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2957 2958
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2959
	}
B
Ben Widawsky 已提交
2960

2961
	return intel_init_ring_buffer(&dev_priv->drm, engine);
B
Ben Widawsky 已提交
2962 2963
}

2964
int
2965
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2966
{
2967
	struct intel_engine_cs *engine = req->engine;
2968 2969
	int ret;

2970
	if (!engine->gpu_caches_dirty)
2971 2972
		return 0;

2973
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
2974 2975 2976
	if (ret)
		return ret;

2977
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2978

2979
	engine->gpu_caches_dirty = false;
2980 2981 2982 2983
	return 0;
}

int
2984
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2985
{
2986
	struct intel_engine_cs *engine = req->engine;
2987 2988 2989 2990
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
2991
	if (engine->gpu_caches_dirty)
2992 2993
		flush_domains = I915_GEM_GPU_DOMAINS;

2994
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2995 2996 2997
	if (ret)
		return ret;

2998
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2999

3000
	engine->gpu_caches_dirty = false;
3001 3002
	return 0;
}
3003 3004

void
3005
intel_stop_engine(struct intel_engine_cs *engine)
3006 3007 3008
{
	int ret;

3009
	if (!intel_engine_initialized(engine))
3010 3011
		return;

3012
	ret = intel_engine_idle(engine);
3013
	if (ret)
3014
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3015
			  engine->name, ret);
3016

3017
	stop_ring(engine);
3018
}