intel_ringbuffer.c 74.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr =
374
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411
	u64 acthd;
412

413
	if (INTEL_GEN(dev_priv) >= 8)
414 415
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
416
	else if (INTEL_GEN(dev_priv) >= 4)
417
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
418 419 420 421
	else
		acthd = I915_READ(ACTHD);

	return acthd;
422 423
}

424
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
425
{
426
	struct drm_i915_private *dev_priv = engine->i915;
427 428 429
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
430
	if (INTEL_GEN(dev_priv) >= 4)
431 432 433 434
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

435
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
436
{
437
	struct drm_i915_private *dev_priv = engine->i915;
438
	i915_reg_t mmio;
439 440 441 442

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
443
	if (IS_GEN7(dev_priv)) {
444
		switch (engine->id) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
463
	} else if (IS_GEN6(dev_priv)) {
464
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
465 466
	} else {
		/* XXX: gen8 returns to sanity */
467
		mmio = RING_HWS_PGA(engine->mmio_base);
468 469
	}

470
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
471 472 473 474 475 476 477 478 479
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
480
	if (IS_GEN(dev_priv, 6, 7)) {
481
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
482 483

		/* ring should be idle before issuing a sync flush*/
484
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
485 486 487 488

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
489 490 491
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
492
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
493
				  engine->name);
494 495 496
	}
}

497
static bool stop_ring(struct intel_engine_cs *engine)
498
{
499
	struct drm_i915_private *dev_priv = engine->i915;
500

501
	if (INTEL_GEN(dev_priv) > 2) {
502
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
503 504 505 506 507
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
508 509
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
510 511 512 513
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
514
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
515
				return false;
516 517
		}
	}
518

519 520
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
521
	I915_WRITE_TAIL(engine, 0);
522

523
	if (INTEL_GEN(dev_priv) > 2) {
524 525
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
526
	}
527

528
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
529
}
530

531
static int init_ring_common(struct intel_engine_cs *engine)
532
{
533
	struct drm_i915_private *dev_priv = engine->i915;
534
	struct intel_ring *ring = engine->buffer;
535 536
	int ret = 0;

537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538

539
	if (!stop_ring(engine)) {
540
		/* G45 ring initialization often fails to reset head to zero */
541 542
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
543 544 545 546 547
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
548

549
		if (!stop_ring(engine)) {
550 551
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
552 553 554 555 556
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
557 558
			ret = -EIO;
			goto out;
559
		}
560 561
	}

562
	if (HWS_NEEDS_PHYSICAL(dev_priv))
563
		ring_setup_phys_status_page(engine);
564 565
	else
		intel_ring_setup_status_page(engine);
566

567
	/* Enforce ordering by reading HEAD register back */
568
	I915_READ_HEAD(engine);
569

570 571 572 573
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
574
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
575 576

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
577
	if (I915_READ_HEAD(engine))
578
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
579 580 581
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
582

583
	I915_WRITE_CTL(engine,
584
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
585
			| RING_VALID);
586 587

	/* If the head is still not zero, the ring is dead */
588
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
589
		     I915_READ_START(engine) == i915_ggtt_offset(ring->vma) &&
590
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
591
		DRM_ERROR("%s initialization failed "
592
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08x]\n",
593 594 595 596 597
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
598
			  i915_ggtt_offset(ring->vma));
599 600
		ret = -EIO;
		goto out;
601 602
	}

603 604 605 606
	ring->last_retired_head = -1;
	ring->head = I915_READ_HEAD(engine);
	ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
	intel_ring_update_space(ring);
607

608
	intel_engine_init_hangcheck(engine);
609

610
out:
611
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
612 613

	return ret;
614 615
}

616
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
617
{
618
	struct intel_ring *ring = req->ring;
619 620
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
621

622
	if (w->count == 0)
623
		return 0;
624

625
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
626 627
	if (ret)
		return ret;
628

629
	ret = intel_ring_begin(req, (w->count * 2 + 2));
630 631 632
	if (ret)
		return ret;

633
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
634
	for (i = 0; i < w->count; i++) {
635 636
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
637
	}
638
	intel_ring_emit(ring, MI_NOOP);
639

640
	intel_ring_advance(ring);
641

642
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
643 644
	if (ret)
		return ret;
645

646
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
647

648
	return 0;
649 650
}

651
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
652 653 654
{
	int ret;

655
	ret = intel_ring_workarounds_emit(req);
656 657 658
	if (ret != 0)
		return ret;

659
	ret = i915_gem_render_state_init(req);
660
	if (ret)
661
		return ret;
662

663
	return 0;
664 665
}

666
static int wa_add(struct drm_i915_private *dev_priv,
667 668
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
669 670 671 672 673 674 675 676 677 678 679 680 681
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
682 683
}

684
#define WA_REG(addr, mask, val) do { \
685
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
686 687
		if (r) \
			return r; \
688
	} while (0)
689 690

#define WA_SET_BIT_MASKED(addr, mask) \
691
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
692 693

#define WA_CLR_BIT_MASKED(addr, mask) \
694
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
695

696
#define WA_SET_FIELD_MASKED(addr, mask, value) \
697
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
698

699 700
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
701

702
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
703

704 705
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
706
{
707
	struct drm_i915_private *dev_priv = engine->i915;
708
	struct i915_workarounds *wa = &dev_priv->workarounds;
709
	const uint32_t index = wa->hw_whitelist_count[engine->id];
710 711 712 713

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

714
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
715
		 i915_mmio_reg_offset(reg));
716
	wa->hw_whitelist_count[engine->id]++;
717 718 719 720

	return 0;
}

721
static int gen8_init_workarounds(struct intel_engine_cs *engine)
722
{
723
	struct drm_i915_private *dev_priv = engine->i915;
724 725

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
726

727 728 729
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

730 731 732 733
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

734 735 736 737 738
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
739
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
740
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
741
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
742 743
			  HDC_FORCE_NON_COHERENT);

744 745 746 747 748 749 750 751 752 753
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

754 755 756
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

757 758 759 760 761 762 763 764 765 766 767 768
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

769 770 771
	return 0;
}

772
static int bdw_init_workarounds(struct intel_engine_cs *engine)
773
{
774
	struct drm_i915_private *dev_priv = engine->i915;
775
	int ret;
776

777
	ret = gen8_init_workarounds(engine);
778 779 780
	if (ret)
		return ret;

781
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
782
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
783

784
	/* WaDisableDopClockGating:bdw */
785 786
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
787

788 789
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
790

791
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
792 793 794
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
795
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
796 797 798 799

	return 0;
}

800
static int chv_init_workarounds(struct intel_engine_cs *engine)
801
{
802
	struct drm_i915_private *dev_priv = engine->i915;
803
	int ret;
804

805
	ret = gen8_init_workarounds(engine);
806 807 808
	if (ret)
		return ret;

809
	/* WaDisableThreadStallDopClockGating:chv */
810
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
811

812 813 814
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

815 816 817
	return 0;
}

818
static int gen9_init_workarounds(struct intel_engine_cs *engine)
819
{
820
	struct drm_i915_private *dev_priv = engine->i915;
821
	int ret;
822

823 824 825
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

826
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
827 828 829
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

830
	/* WaDisableKillLogic:bxt,skl,kbl */
831 832 833
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

834 835
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
836
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
837
			  FLOW_CONTROL_ENABLE |
838 839
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

840
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
841 842 843
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

844
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
845 846
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
847 848
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
849

850
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
851 852
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
853 854
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
855 856 857 858 859
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
860 861
	}

862 863
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
864 865 866
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
867

868 869
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
870 871
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
872

873
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
874 875 876
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

877
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
878 879
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
880 881 882
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

883 884 885 886
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
887

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

909 910 911 912
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
913 914 915
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

916
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
917 918
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

919
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
920 921 922
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

923 924 925 926 927
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

928
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
929
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
930 931 932
	if (ret)
		return ret;

933
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
934
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
935 936 937
	if (ret)
		return ret;

938 939 940
	return 0;
}

941
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
942
{
943
	struct drm_i915_private *dev_priv = engine->i915;
944 945 946 947 948 949 950 951 952 953
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
954
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
955 956 957 958 959 960 961 962
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
963
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

982
static int skl_init_workarounds(struct intel_engine_cs *engine)
983
{
984
	struct drm_i915_private *dev_priv = engine->i915;
985
	int ret;
986

987
	ret = gen9_init_workarounds(engine);
988 989
	if (ret)
		return ret;
990

991 992 993 994 995
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
996
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
997 998 999 1000
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1001
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1002 1003 1004 1005 1006 1007 1008 1009
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1010
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1011 1012 1013 1014 1015
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1016
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1017 1018 1019 1020
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1021
	/* WaDisablePowerCompilerClockGating:skl */
1022
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1023 1024 1025
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1026
	/* WaBarrierPerformanceFixDisable:skl */
1027
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1028 1029 1030 1031
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1032
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1033
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1034 1035 1036 1037
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1038 1039 1040
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1041 1042 1043 1044 1045
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1046
	/* WaDisableLSQCROPERFforOCL:skl */
1047
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1048 1049 1050
	if (ret)
		return ret;

1051
	return skl_tune_iz_hashing(engine);
1052 1053
}

1054
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1055
{
1056
	struct drm_i915_private *dev_priv = engine->i915;
1057
	int ret;
1058

1059
	ret = gen9_init_workarounds(engine);
1060 1061
	if (ret)
		return ret;
1062

1063 1064
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1065
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1066 1067 1068
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1069
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1070 1071 1072 1073
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1074 1075 1076 1077
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1078 1079 1080 1081 1082 1083
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1084
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1085
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1086 1087 1088 1089 1090
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1091 1092 1093
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1094
	/* WaDisableLSQCROPERFforOCL:bxt */
1095
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1096
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1097 1098
		if (ret)
			return ret;
1099

1100
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1101 1102
		if (ret)
			return ret;
1103 1104
	}

1105
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1106
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1107 1108
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1109

1110 1111
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1112 1113 1114
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1115 1116 1117 1118 1119
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1120 1121 1122
	return 0;
}

1123 1124
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1125
	struct drm_i915_private *dev_priv = engine->i915;
1126 1127 1128 1129 1130 1131
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1132 1133 1134 1135
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1136 1137 1138 1139 1140
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1141 1142 1143 1144 1145
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1146 1147 1148 1149 1150 1151 1152 1153
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1154 1155
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1156 1157 1158
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1159 1160 1161
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1162 1163 1164 1165 1166
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1167 1168 1169 1170
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1171 1172 1173 1174 1175
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1176 1177 1178
	return 0;
}

1179
int init_workarounds_ring(struct intel_engine_cs *engine)
1180
{
1181
	struct drm_i915_private *dev_priv = engine->i915;
1182

1183
	WARN_ON(engine->id != RCS);
1184 1185

	dev_priv->workarounds.count = 0;
1186
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1187

1188
	if (IS_BROADWELL(dev_priv))
1189
		return bdw_init_workarounds(engine);
1190

1191
	if (IS_CHERRYVIEW(dev_priv))
1192
		return chv_init_workarounds(engine);
1193

1194
	if (IS_SKYLAKE(dev_priv))
1195
		return skl_init_workarounds(engine);
1196

1197
	if (IS_BROXTON(dev_priv))
1198
		return bxt_init_workarounds(engine);
1199

1200 1201 1202
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1203 1204 1205
	return 0;
}

1206
static int init_render_ring(struct intel_engine_cs *engine)
1207
{
1208
	struct drm_i915_private *dev_priv = engine->i915;
1209
	int ret = init_ring_common(engine);
1210 1211
	if (ret)
		return ret;
1212

1213
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1214
	if (IS_GEN(dev_priv, 4, 6))
1215
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1216 1217 1218 1219

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1220
	 *
1221
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1222
	 */
1223
	if (IS_GEN(dev_priv, 6, 7))
1224 1225
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1226
	/* Required for the hardware to program scanline values for waiting */
1227
	/* WaEnableFlushTlbInvalidationMode:snb */
1228
	if (IS_GEN6(dev_priv))
1229
		I915_WRITE(GFX_MODE,
1230
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1231

1232
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1233
	if (IS_GEN7(dev_priv))
1234
		I915_WRITE(GFX_MODE_GEN7,
1235
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1236
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1237

1238
	if (IS_GEN6(dev_priv)) {
1239 1240 1241 1242 1243 1244
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1245
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1246 1247
	}

1248
	if (IS_GEN(dev_priv, 6, 7))
1249
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1250

1251 1252
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1253

1254
	return init_workarounds_ring(engine);
1255 1256
}

1257
static void render_ring_cleanup(struct intel_engine_cs *engine)
1258
{
1259
	struct drm_i915_private *dev_priv = engine->i915;
1260

1261
	i915_vma_unpin_and_release(&dev_priv->semaphore);
1262 1263
}

1264
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1265
{
1266 1267
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1268
	struct intel_engine_cs *waiter;
1269 1270
	enum intel_engine_id id;
	int ret, num_rings;
1271

1272
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1273
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1274 1275 1276
	if (ret)
		return ret;

1277
	for_each_engine_id(waiter, dev_priv, id) {
1278
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1279 1280 1281
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1282 1283
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1284 1285 1286
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1287 1288 1289 1290 1291
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1292 1293
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1294
		intel_ring_emit(ring, 0);
1295
	}
1296
	intel_ring_advance(ring);
1297 1298 1299 1300

	return 0;
}

1301
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1302
{
1303 1304
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1305
	struct intel_engine_cs *waiter;
1306 1307
	enum intel_engine_id id;
	int ret, num_rings;
1308

1309
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1310
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1311 1312 1313
	if (ret)
		return ret;

1314
	for_each_engine_id(waiter, dev_priv, id) {
1315
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1316 1317 1318
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1319
		intel_ring_emit(ring,
1320
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1321
		intel_ring_emit(ring,
1322 1323
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1324 1325 1326
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1327 1328
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1329
		intel_ring_emit(ring, 0);
1330
	}
1331
	intel_ring_advance(ring);
1332 1333 1334 1335

	return 0;
}

1336
static int gen6_signal(struct drm_i915_gem_request *req)
1337
{
1338 1339
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1340
	struct intel_engine_cs *engine;
1341
	int ret, num_rings;
1342

1343
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1344
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1345 1346 1347
	if (ret)
		return ret;

1348 1349 1350 1351 1352
	for_each_engine(engine, dev_priv) {
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
1353

1354
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1355
		if (i915_mmio_reg_valid(mbox_reg)) {
1356 1357 1358
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1359 1360
		}
	}
1361

1362 1363
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1364 1365
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1366

1367
	return 0;
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1379
{
1380
	struct intel_ring *ring = req->ring;
1381
	int ret;
1382

1383
	ret = intel_ring_begin(req, 4);
1384 1385 1386
	if (ret)
		return ret;

1387 1388 1389 1390
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1391 1392 1393
	intel_ring_advance(ring);

	req->tail = ring->tail;
1394 1395 1396 1397

	return 0;
}

1398
/**
1399
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1400 1401 1402 1403 1404 1405
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1406
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1407
{
1408
	int ret;
1409

1410 1411 1412
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1413 1414 1415 1416

	return i9xx_emit_request(req);
}

1417
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1418 1419
{
	struct intel_engine_cs *engine = req->engine;
1420
	struct intel_ring *ring = req->ring;
1421 1422
	int ret;

1423 1424 1425 1426 1427 1428 1429
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1430 1431 1432
	if (ret)
		return ret;

1433 1434 1435 1436 1437 1438 1439
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1440
	/* We're thrashing one dword of HWS. */
1441 1442 1443
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1444
	intel_ring_advance(ring);
1445 1446

	req->tail = ring->tail;
1447 1448 1449 1450

	return 0;
}

1451 1452 1453 1454 1455 1456 1457
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1458 1459

static int
1460 1461
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1462
{
1463 1464 1465
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1466
	struct i915_hw_ppgtt *ppgtt;
1467 1468
	int ret;

1469
	ret = intel_ring_begin(req, 4);
1470 1471 1472
	if (ret)
		return ret;

1473 1474 1475 1476 1477 1478 1479 1480
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1481 1482 1483 1484 1485 1486

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1487 1488 1489
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1490 1491 1492
	return 0;
}

1493
static int
1494 1495
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1496
{
1497
	struct intel_ring *ring = req->ring;
1498 1499 1500
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1501
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1502
	int ret;
1503

1504
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1505

1506
	ret = intel_ring_begin(req, 4);
1507 1508 1509
	if (ret)
		return ret;

1510
	intel_ring_emit(ring, dw1 | wait_mbox);
1511 1512 1513 1514
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1515 1516 1517 1518
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1519 1520 1521 1522

	return 0;
}

1523
static void
1524
gen5_seqno_barrier(struct intel_engine_cs *engine)
1525
{
1526 1527 1528
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1529
	 *
1530 1531 1532 1533 1534 1535 1536
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1537
	 */
1538
	usleep_range(125, 250);
1539 1540
}

1541 1542
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1543
{
1544
	struct drm_i915_private *dev_priv = engine->i915;
1545

1546 1547
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1548 1549 1550 1551 1552 1553 1554 1555 1556
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1557 1558 1559
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1560
	 */
1561
	spin_lock_irq(&dev_priv->uncore.lock);
1562
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1563
	spin_unlock_irq(&dev_priv->uncore.lock);
1564 1565
}

1566 1567
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1568
{
1569
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1570 1571 1572
}

static void
1573
gen5_irq_disable(struct intel_engine_cs *engine)
1574
{
1575
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1576 1577
}

1578 1579
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1580
{
1581
	struct drm_i915_private *dev_priv = engine->i915;
1582

1583 1584 1585
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1586 1587
}

1588
static void
1589
i9xx_irq_disable(struct intel_engine_cs *engine)
1590
{
1591
	struct drm_i915_private *dev_priv = engine->i915;
1592

1593 1594
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1595 1596
}

1597 1598
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1599
{
1600
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1601

1602 1603 1604
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1605 1606 1607
}

static void
1608
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1609
{
1610
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1611

1612 1613
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1614 1615
}

1616
static int
1617
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1618
{
1619
	struct intel_ring *ring = req->ring;
1620 1621
	int ret;

1622
	ret = intel_ring_begin(req, 2);
1623 1624 1625
	if (ret)
		return ret;

1626 1627 1628
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1629
	return 0;
1630 1631
}

1632 1633
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1634
{
1635
	struct drm_i915_private *dev_priv = engine->i915;
1636

1637 1638 1639
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1640
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1641 1642 1643
}

static void
1644
gen6_irq_disable(struct intel_engine_cs *engine)
1645
{
1646
	struct drm_i915_private *dev_priv = engine->i915;
1647

1648
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1649
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1650 1651
}

1652 1653
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1654
{
1655
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1656

1657 1658
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1659 1660 1661
}

static void
1662
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1663
{
1664
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1665

1666 1667
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1668 1669
}

1670 1671
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1672
{
1673
	struct drm_i915_private *dev_priv = engine->i915;
1674

1675 1676 1677
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1678
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1679 1680 1681
}

static void
1682
gen8_irq_disable(struct intel_engine_cs *engine)
1683
{
1684
	struct drm_i915_private *dev_priv = engine->i915;
1685

1686
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1687 1688
}

1689
static int
1690 1691 1692
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1693
{
1694
	struct intel_ring *ring = req->ring;
1695
	int ret;
1696

1697
	ret = intel_ring_begin(req, 2);
1698 1699 1700
	if (ret)
		return ret;

1701
	intel_ring_emit(ring,
1702 1703
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1704 1705
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1706 1707
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1708

1709 1710 1711
	return 0;
}

1712 1713
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1714 1715
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1716
static int
1717 1718 1719
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1720
{
1721
	struct intel_ring *ring = req->ring;
1722
	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1723
	int ret;
1724

1725
	ret = intel_ring_begin(req, 6);
1726 1727
	if (ret)
		return ret;
1728

1729
	/* Evict the invalid PTE TLBs */
1730 1731 1732 1733 1734 1735 1736
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1737

1738
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1739 1740 1741
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1742
		ret = intel_ring_begin(req, 6 + 2);
1743 1744
		if (ret)
			return ret;
1745 1746 1747 1748 1749

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1750 1751
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1752
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1753 1754 1755 1756
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1757

1758 1759 1760
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1761 1762

		/* ... and execute it. */
1763
		offset = cs_offset;
1764
	}
1765

1766
	ret = intel_ring_begin(req, 2);
1767 1768 1769
	if (ret)
		return ret;

1770 1771 1772 1773
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1774

1775 1776 1777 1778
	return 0;
}

static int
1779 1780 1781
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1782
{
1783
	struct intel_ring *ring = req->ring;
1784 1785
	int ret;

1786
	ret = intel_ring_begin(req, 2);
1787 1788 1789
	if (ret)
		return ret;

1790 1791 1792 1793
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1794 1795 1796 1797

	return 0;
}

1798
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1799
{
1800
	struct drm_i915_private *dev_priv = engine->i915;
1801 1802 1803 1804

	if (!dev_priv->status_page_dmah)
		return;

1805
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1806
	engine->status_page.page_addr = NULL;
1807 1808
}

1809
static void cleanup_status_page(struct intel_engine_cs *engine)
1810
{
1811
	struct i915_vma *vma;
1812

1813 1814
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1815 1816
		return;

1817 1818 1819
	i915_vma_unpin(vma);
	i915_gem_object_unpin_map(vma->obj);
	i915_vma_put(vma);
1820 1821
}

1822
static int init_status_page(struct intel_engine_cs *engine)
1823
{
1824 1825 1826 1827
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	int ret;
1828

1829 1830 1831 1832 1833
	obj = i915_gem_object_create(&engine->i915->drm, 4096);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1834

1835 1836 1837
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1838

1839 1840 1841 1842
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1843
	}
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1861

1862
	engine->status_page.vma = vma;
1863
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1864 1865
	engine->status_page.page_addr =
		i915_gem_object_pin_map(obj, I915_MAP_WB);
1866

1867 1868
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1869
	return 0;
1870 1871 1872 1873

err:
	i915_gem_object_put(obj);
	return ret;
1874 1875
}

1876
static int init_phys_status_page(struct intel_engine_cs *engine)
1877
{
1878
	struct drm_i915_private *dev_priv = engine->i915;
1879

1880 1881 1882 1883
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1884

1885 1886
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1887 1888 1889 1890

	return 0;
}

1891
int intel_ring_pin(struct intel_ring *ring)
1892
{
1893
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1894
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1895
	enum i915_map_type map;
1896
	struct i915_vma *vma = ring->vma;
1897
	void *addr;
1898 1899
	int ret;

1900
	GEM_BUG_ON(ring->vaddr);
1901

1902 1903 1904
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

	if (vma->obj->stolen)
1905
		flags |= PIN_MAPPABLE;
1906

1907
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1908
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1909 1910 1911 1912
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1913
			return ret;
1914
	}
1915

1916 1917 1918
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1919

1920
	if (i915_vma_is_map_and_fenceable(vma))
1921 1922
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1923
		addr = i915_gem_object_pin_map(vma->obj, map);
1924 1925
	if (IS_ERR(addr))
		goto err;
1926

1927
	ring->vaddr = addr;
1928
	return 0;
1929

1930 1931 1932
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1933 1934
}

1935 1936 1937 1938 1939
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1940
	if (i915_vma_is_map_and_fenceable(ring->vma))
1941
		i915_vma_unpin_iomap(ring->vma);
1942 1943
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1944 1945
	ring->vaddr = NULL;

1946
	i915_vma_unpin(ring->vma);
1947 1948
}

1949 1950
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1951
{
1952
	struct drm_i915_gem_object *obj;
1953
	struct i915_vma *vma;
1954

1955 1956
	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
	if (!obj)
1957 1958 1959
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1960

1961 1962 1963
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1964 1965 1966 1967 1968
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
1969

1970 1971 1972
err:
	i915_gem_object_put(obj);
	return vma;
1973 1974
}

1975 1976
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1977
{
1978
	struct intel_ring *ring;
1979
	struct i915_vma *vma;
1980

1981 1982
	GEM_BUG_ON(!is_power_of_2(size));

1983
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1984
	if (!ring)
1985 1986
		return ERR_PTR(-ENOMEM);

1987
	ring->engine = engine;
1988

1989 1990
	INIT_LIST_HEAD(&ring->request_list);

1991 1992 1993 1994 1995 1996
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1997
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1998 1999 2000 2001 2002
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2003 2004
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
2005
		kfree(ring);
2006
		return ERR_CAST(vma);
2007
	}
2008
	ring->vma = vma;
2009

2010
	list_add(&ring->link, &engine->buffers);
2011 2012 2013 2014
	return ring;
}

void
2015
intel_ring_free(struct intel_ring *ring)
2016
{
2017
	i915_vma_put(ring->vma);
2018
	list_del(&ring->link);
2019 2020 2021
	kfree(ring);
}

2022 2023 2024 2025 2026 2027
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2028
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2029 2030 2031 2032 2033

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
2034 2035 2036 2037
		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
		if (ret)
			goto error;

2038 2039
		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
				   PIN_GLOBAL | PIN_HIGH);
2040 2041 2042 2043
		if (ret)
			goto error;
	}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2054
	i915_gem_context_get(ctx);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2067
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2068 2069 2070 2071 2072

	if (--ce->pin_count)
		return;

	if (ce->state)
2073
		i915_vma_unpin(ce->state);
2074

2075
	i915_gem_context_put(ctx);
2076 2077
}

2078
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2079
{
2080
	struct drm_i915_private *dev_priv = engine->i915;
2081
	struct intel_ring *ring;
2082 2083
	int ret;

2084
	WARN_ON(engine->buffer);
2085

2086 2087
	intel_engine_setup_common(engine);

2088 2089
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2090

2091
	ret = intel_engine_init_common(engine);
2092 2093
	if (ret)
		goto error;
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2106 2107 2108
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2109 2110
		goto error;
	}
2111

2112 2113 2114
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2115
		if (ret)
2116
			goto error;
2117
	} else {
2118
		ret = init_status_page(engine);
2119
		if (ret)
2120
			goto error;
2121 2122
	}

2123
	ret = intel_ring_pin(ring);
2124
	if (ret) {
2125
		intel_ring_free(ring);
2126
		goto error;
2127
	}
2128
	engine->buffer = ring;
2129

2130
	return 0;
2131

2132
error:
2133
	intel_engine_cleanup(engine);
2134
	return ret;
2135 2136
}

2137
void intel_engine_cleanup(struct intel_engine_cs *engine)
2138
{
2139
	struct drm_i915_private *dev_priv;
2140

2141
	if (!intel_engine_initialized(engine))
2142 2143
		return;

2144
	dev_priv = engine->i915;
2145

2146
	if (engine->buffer) {
2147 2148
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2149

2150
		intel_ring_unpin(engine->buffer);
2151
		intel_ring_free(engine->buffer);
2152
		engine->buffer = NULL;
2153
	}
2154

2155 2156
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2157

2158
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2159 2160
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2161 2162
	} else {
		cleanup_status_page(engine);
2163
	}
2164

2165
	intel_engine_cleanup_common(engine);
2166 2167 2168

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2169
	engine->i915 = NULL;
2170 2171
}

2172
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2173
{
2174 2175 2176 2177 2178 2179
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2180
	request->reserved_space += LEGACY_REQUEST_SIZE;
2181

2182
	request->ring = request->engine->buffer;
2183 2184 2185 2186 2187

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2188
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2189
	return 0;
2190 2191
}

2192 2193
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2194
	struct intel_ring *ring = req->ring;
2195
	struct drm_i915_gem_request *target;
2196
	int ret;
2197

2198 2199
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2211
	GEM_BUG_ON(!req->reserved_space);
2212

2213
	list_for_each_entry(target, &ring->request_list, ring_link) {
2214 2215 2216
		unsigned space;

		/* Would completion of this request free enough space? */
2217 2218
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2219 2220
		if (space >= bytes)
			break;
2221
	}
2222

2223
	if (WARN_ON(&target->ring_link == &ring->request_list))
2224 2225
		return -ENOSPC;

2226 2227
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2228
				NULL, NO_WAITBOOST);
2229 2230 2231 2232 2233 2234 2235 2236
	if (ret)
		return ret;

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2237 2238
}

2239
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2240
{
2241
	struct intel_ring *ring = req->ring;
2242 2243
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2244 2245
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2246
	bool need_wrap = false;
2247

2248
	total_bytes = bytes + req->reserved_space;
2249

2250 2251 2252 2253 2254 2255 2256
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2257 2258 2259 2260 2261 2262 2263
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2264
		wait_bytes = remain_actual + req->reserved_space;
2265
	} else {
2266 2267
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2268 2269
	}

2270
	if (wait_bytes > ring->space) {
2271
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2272 2273 2274 2275
		if (unlikely(ret))
			return ret;
	}

2276
	if (unlikely(need_wrap)) {
2277 2278
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2279

2280
		/* Fill the tail with MI_NOOP */
2281 2282 2283
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2284
	}
2285

2286 2287
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2288
	return 0;
2289
}
2290

2291
/* Align the ring tail to a cacheline boundary */
2292
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2293
{
2294
	struct intel_ring *ring = req->ring;
2295 2296
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2297 2298 2299 2300 2301
	int ret;

	if (num_dwords == 0)
		return 0;

2302
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2303
	ret = intel_ring_begin(req, num_dwords);
2304 2305 2306 2307
	if (ret)
		return ret;

	while (num_dwords--)
2308
		intel_ring_emit(ring, MI_NOOP);
2309

2310
	intel_ring_advance(ring);
2311 2312 2313 2314

	return 0;
}

2315
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2316
{
2317
	struct drm_i915_private *dev_priv = request->i915;
2318

2319 2320
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2321
       /* Every tail move must follow the sequence below */
2322 2323 2324 2325

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2326 2327
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2328 2329

	/* Clear the context id. Here be magic! */
2330
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2331

2332
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2333 2334 2335 2336 2337
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2338
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2339

2340
	/* Now that the ring is fully powered up, update the tail */
2341
	i9xx_submit_request(request);
2342 2343 2344 2345

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2346 2347 2348 2349
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2350 2351
}

2352
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2353
{
2354
	struct intel_ring *ring = req->ring;
2355
	uint32_t cmd;
2356 2357
	int ret;

2358
	ret = intel_ring_begin(req, 4);
2359 2360 2361
	if (ret)
		return ret;

2362
	cmd = MI_FLUSH_DW;
2363
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2364
		cmd += 1;
2365 2366 2367 2368 2369 2370 2371 2372

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2373 2374 2375 2376 2377 2378
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2379
	if (mode & EMIT_INVALIDATE)
2380 2381
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2382 2383
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2384
	if (INTEL_GEN(req->i915) >= 8) {
2385 2386
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2387
	} else  {
2388 2389
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2390
	}
2391
	intel_ring_advance(ring);
2392
	return 0;
2393 2394
}

2395
static int
2396 2397 2398
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2399
{
2400
	struct intel_ring *ring = req->ring;
2401
	bool ppgtt = USES_PPGTT(req->i915) &&
2402
			!(dispatch_flags & I915_DISPATCH_SECURE);
2403 2404
	int ret;

2405
	ret = intel_ring_begin(req, 4);
2406 2407 2408 2409
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2410
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2411 2412
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2413 2414 2415 2416
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2417 2418 2419 2420

	return 0;
}

2421
static int
2422 2423 2424
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2425
{
2426
	struct intel_ring *ring = req->ring;
2427 2428
	int ret;

2429
	ret = intel_ring_begin(req, 2);
2430 2431 2432
	if (ret)
		return ret;

2433
	intel_ring_emit(ring,
2434
			MI_BATCH_BUFFER_START |
2435
			(dispatch_flags & I915_DISPATCH_SECURE ?
2436 2437 2438
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2439
	/* bit0-7 is the length on GEN6+ */
2440 2441
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2442 2443 2444 2445

	return 0;
}

2446
static int
2447 2448 2449
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2450
{
2451
	struct intel_ring *ring = req->ring;
2452
	int ret;
2453

2454
	ret = intel_ring_begin(req, 2);
2455 2456
	if (ret)
		return ret;
2457

2458
	intel_ring_emit(ring,
2459
			MI_BATCH_BUFFER_START |
2460 2461
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2462
	/* bit0-7 is the length on GEN6+ */
2463 2464
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2465

2466
	return 0;
2467 2468
}

2469 2470
/* Blitter support (SandyBridge+) */

2471
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2472
{
2473
	struct intel_ring *ring = req->ring;
2474
	uint32_t cmd;
2475 2476
	int ret;

2477
	ret = intel_ring_begin(req, 4);
2478 2479 2480
	if (ret)
		return ret;

2481
	cmd = MI_FLUSH_DW;
2482
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2483
		cmd += 1;
2484 2485 2486 2487 2488 2489 2490 2491

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2492 2493 2494 2495 2496 2497
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2498
	if (mode & EMIT_INVALIDATE)
2499
		cmd |= MI_INVALIDATE_TLB;
2500 2501
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2502
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2503
	if (INTEL_GEN(req->i915) >= 8) {
2504 2505
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2506
	} else  {
2507 2508
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2509
	}
2510
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2511

2512
	return 0;
Z
Zou Nan hai 已提交
2513 2514
}

2515 2516 2517
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2518
	struct drm_i915_gem_object *obj;
2519
	int ret, i;
2520

2521
	if (!i915.semaphores)
2522 2523
		return;

2524 2525 2526
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

2527
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2528 2529
		if (IS_ERR(obj))
			goto err;
2530

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
2545 2546

	if (INTEL_GEN(dev_priv) >= 8) {
2547
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2548

2549
		engine->semaphore.sync_to = gen8_ring_sync_to;
2550
		engine->semaphore.signal = gen8_xcs_signal;
2551 2552

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2553
			u32 ring_offset;
2554 2555 2556 2557 2558 2559 2560 2561

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2562
	} else if (INTEL_GEN(dev_priv) >= 6) {
2563
		engine->semaphore.sync_to = gen6_ring_sync_to;
2564
		engine->semaphore.signal = gen6_signal;
2565 2566 2567 2568 2569 2570 2571 2572

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
2573
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2574 2575 2576
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
2577 2578 2579 2580 2581
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2582
				},
2583 2584 2585 2586
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2587
				},
2588 2589 2590 2591
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2592
				},
2593 2594 2595 2596
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2597 2598 2599 2600 2601
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2602
			if (i == engine->hw_id) {
2603 2604 2605
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2606 2607
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2608 2609 2610 2611 2612
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2613
	}
2614 2615 2616 2617 2618 2619 2620 2621

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2622 2623
}

2624 2625 2626
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2627 2628
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2629
	if (INTEL_GEN(dev_priv) >= 8) {
2630 2631
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2632 2633
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2634 2635
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2636 2637
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2638 2639
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2640
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2641
	} else if (INTEL_GEN(dev_priv) >= 3) {
2642 2643
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2644
	} else {
2645 2646
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2647 2648 2649
	}
}

2650 2651 2652
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2653 2654 2655
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2656
	engine->init_hw = init_ring_common;
2657

2658
	engine->emit_request = i9xx_emit_request;
2659 2660
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2661
	engine->submit_request = i9xx_submit_request;
2662 2663

	if (INTEL_GEN(dev_priv) >= 8)
2664
		engine->emit_bb_start = gen8_emit_bb_start;
2665
	else if (INTEL_GEN(dev_priv) >= 6)
2666
		engine->emit_bb_start = gen6_emit_bb_start;
2667
	else if (INTEL_GEN(dev_priv) >= 4)
2668
		engine->emit_bb_start = i965_emit_bb_start;
2669
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2670
		engine->emit_bb_start = i830_emit_bb_start;
2671
	else
2672
		engine->emit_bb_start = i915_emit_bb_start;
2673 2674
}

2675
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2676
{
2677
	struct drm_i915_private *dev_priv = engine->i915;
2678
	int ret;
2679

2680 2681
	intel_ring_default_vfuncs(dev_priv, engine);

2682 2683
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2684

2685
	if (INTEL_GEN(dev_priv) >= 8) {
2686
		engine->init_context = intel_rcs_ctx_init;
2687
		engine->emit_request = gen8_render_emit_request;
2688
		engine->emit_flush = gen8_render_ring_flush;
2689
		if (i915.semaphores)
2690
			engine->semaphore.signal = gen8_rcs_signal;
2691
	} else if (INTEL_GEN(dev_priv) >= 6) {
2692
		engine->init_context = intel_rcs_ctx_init;
2693
		engine->emit_flush = gen7_render_ring_flush;
2694
		if (IS_GEN6(dev_priv))
2695
			engine->emit_flush = gen6_render_ring_flush;
2696
	} else if (IS_GEN5(dev_priv)) {
2697
		engine->emit_flush = gen4_render_ring_flush;
2698
	} else {
2699
		if (INTEL_GEN(dev_priv) < 4)
2700
			engine->emit_flush = gen2_render_ring_flush;
2701
		else
2702
			engine->emit_flush = gen4_render_ring_flush;
2703
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2704
	}
B
Ben Widawsky 已提交
2705

2706
	if (IS_HASWELL(dev_priv))
2707
		engine->emit_bb_start = hsw_emit_bb_start;
2708

2709 2710
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2711

2712
	ret = intel_init_ring_buffer(engine);
2713 2714 2715
	if (ret)
		return ret;

2716
	if (INTEL_GEN(dev_priv) >= 6) {
2717
		ret = intel_engine_create_scratch(engine, 4096);
2718 2719 2720
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2721
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2722 2723 2724 2725 2726
		if (ret)
			return ret;
	}

	return 0;
2727 2728
}

2729
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2730
{
2731
	struct drm_i915_private *dev_priv = engine->i915;
2732

2733 2734
	intel_ring_default_vfuncs(dev_priv, engine);

2735
	if (INTEL_GEN(dev_priv) >= 6) {
2736
		/* gen6 bsd needs a special wa for tail updates */
2737
		if (IS_GEN6(dev_priv))
2738
			engine->submit_request = gen6_bsd_submit_request;
2739
		engine->emit_flush = gen6_bsd_ring_flush;
2740
		if (INTEL_GEN(dev_priv) < 8)
2741
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2742
	} else {
2743
		engine->mmio_base = BSD_RING_BASE;
2744
		engine->emit_flush = bsd_ring_flush;
2745
		if (IS_GEN5(dev_priv))
2746
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2747
		else
2748
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2749 2750
	}

2751
	return intel_init_ring_buffer(engine);
2752
}
2753

2754
/**
2755
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2756
 */
2757
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2758
{
2759
	struct drm_i915_private *dev_priv = engine->i915;
2760 2761 2762

	intel_ring_default_vfuncs(dev_priv, engine);

2763
	engine->emit_flush = gen6_bsd_ring_flush;
2764

2765
	return intel_init_ring_buffer(engine);
2766 2767
}

2768
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2769
{
2770
	struct drm_i915_private *dev_priv = engine->i915;
2771 2772 2773

	intel_ring_default_vfuncs(dev_priv, engine);

2774
	engine->emit_flush = gen6_ring_flush;
2775
	if (INTEL_GEN(dev_priv) < 8)
2776
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2777

2778
	return intel_init_ring_buffer(engine);
2779
}
2780

2781
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2782
{
2783
	struct drm_i915_private *dev_priv = engine->i915;
2784 2785 2786

	intel_ring_default_vfuncs(dev_priv, engine);

2787
	engine->emit_flush = gen6_ring_flush;
2788

2789
	if (INTEL_GEN(dev_priv) < 8) {
2790
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2791 2792
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2793
	}
B
Ben Widawsky 已提交
2794

2795
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2796
}