intel_ringbuffer.c 89.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37
int __intel_ring_space(int head, int tail, int size)
38
{
39 40
	int space = head - tail;
	if (space <= 0)
41
		space += size;
42
	return space - I915_RING_FREE_SPACE;
43 44
}

45 46 47 48 49 50 51 52 53 54 55
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;
	}

	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
					    ringbuf->tail, ringbuf->size);
}

56
int intel_ring_space(struct intel_ringbuffer *ringbuf)
57
{
58 59
	intel_ring_update_space(ringbuf);
	return ringbuf->space;
60 61
}

62
bool intel_engine_stopped(struct intel_engine_cs *engine)
63
{
64
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
65
	return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
66
}
67

68
static void __intel_ring_advance(struct intel_engine_cs *engine)
69
{
70
	struct intel_ringbuffer *ringbuf = engine->buffer;
71
	ringbuf->tail &= ringbuf->size - 1;
72
	if (intel_engine_stopped(engine))
73
		return;
74
	engine->write_tail(engine, ringbuf->tail);
75 76
}

77
static int
78
gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 80 81
		       u32	invalidate_domains,
		       u32	flush_domains)
{
82
	struct intel_engine_cs *engine = req->engine;
83 84 85 86
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
87
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 89 90 91 92
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

93
	ret = intel_ring_begin(req, 2);
94 95 96
	if (ret)
		return ret;

97 98 99
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
100 101 102 103 104

	return 0;
}

static int
105
gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 107
		       u32	invalidate_domains,
		       u32	flush_domains)
108
{
109
	struct intel_engine_cs *engine = req->engine;
110
	struct drm_device *dev = engine->dev;
111
	u32 cmd;
112
	int ret;
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 145 146
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
147

148 149 150
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
	    (IS_G4X(dev) || IS_GEN5(dev)))
		cmd |= MI_INVALIDATE_ISP;
151

152
	ret = intel_ring_begin(req, 2);
153 154
	if (ret)
		return ret;
155

156 157 158
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
159 160

	return 0;
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
201
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202
{
203
	struct intel_engine_cs *engine = req->engine;
204
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 206
	int ret;

207
	ret = intel_ring_begin(req, 6);
208 209 210
	if (ret)
		return ret;

211 212
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
213
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 215 216 217 218
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0); /* low dword */
	intel_ring_emit(engine, 0); /* high dword */
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
219

220
	ret = intel_ring_begin(req, 6);
221 222 223
	if (ret)
		return ret;

224 225 226 227 228 229 230
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
231 232 233 234 235

	return 0;
}

static int
236 237
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
238
{
239
	struct intel_engine_cs *engine = req->engine;
240
	u32 flags = 0;
241
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 243
	int ret;

244
	/* Force SNB workarounds for PIPE_CONTROL flushes */
245
	ret = intel_emit_post_sync_nonzero_flush(req);
246 247 248
	if (ret)
		return ret;

249 250 251 252
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
253 254 255 256 257 258 259
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
260
		flags |= PIPE_CONTROL_CS_STALL;
261 262 263 264 265 266 267 268 269 270 271
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
272
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273
	}
274

275
	ret = intel_ring_begin(req, 4);
276 277 278
	if (ret)
		return ret;

279 280 281 282 283
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
284 285 286 287

	return 0;
}

288
static int
289
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290
{
291
	struct intel_engine_cs *engine = req->engine;
292 293
	int ret;

294
	ret = intel_ring_begin(req, 4);
295 296 297
	if (ret)
		return ret;

298 299
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
300
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 302 303
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
304 305 306 307

	return 0;
}

308
static int
309
gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 311
		       u32 invalidate_domains, u32 flush_domains)
{
312
	struct intel_engine_cs *engine = req->engine;
313
	u32 flags = 0;
314
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 316
	int ret;

317 318 319 320 321 322 323 324 325 326
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

327 328 329 330 331 332 333
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 337 338 339 340 341 342 343
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 346 347 348
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
349
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350

351 352
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

353 354 355
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
356
		gen7_render_ring_cs_stall_wa(req);
357 358
	}

359
	ret = intel_ring_begin(req, 4);
360 361 362
	if (ret)
		return ret;

363 364 365 366 367
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
368 369 370 371

	return 0;
}

372
static int
373
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 375
		       u32 flags, u32 scratch_addr)
{
376
	struct intel_engine_cs *engine = req->engine;
377 378
	int ret;

379
	ret = intel_ring_begin(req, 6);
380 381 382
	if (ret)
		return ret;

383 384 385 386 387 388 389
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
390 391 392 393

	return 0;
}

B
Ben Widawsky 已提交
394
static int
395
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
396 397 398
		       u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
399
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400
	int ret;
B
Ben Widawsky 已提交
401 402 403 404 405 406

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
409 410 411 412 413 414 415 416 417 418
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419 420

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421
		ret = gen8_emit_pipe_control(req,
422 423 424 425 426
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
427 428
	}

429
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
430 431
}

432
static void ring_write_tail(struct intel_engine_cs *engine,
433
			    u32 value)
434
{
435 436
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
	I915_WRITE_TAIL(engine, value);
437 438
}

439
u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
440
{
441
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
442
	u64 acthd;
443

444 445 446 447 448
	if (INTEL_INFO(engine->dev)->gen >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_INFO(engine->dev)->gen >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
449 450 451 452
	else
		acthd = I915_READ(ACTHD);

	return acthd;
453 454
}

455
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
456
{
457
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
458 459 460
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
461
	if (INTEL_INFO(engine->dev)->gen >= 4)
462 463 464 465
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

466
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
467
{
468 469
	struct drm_device *dev = engine->dev;
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
470
	i915_reg_t mmio;
471 472 473 474 475

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
	if (IS_GEN7(dev)) {
476
		switch (engine->id) {
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
495 496
	} else if (IS_GEN6(engine->dev)) {
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
497 498
	} else {
		/* XXX: gen8 returns to sanity */
499
		mmio = RING_HWS_PGA(engine->mmio_base);
500 501
	}

502
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
503 504 505 506 507 508 509 510 511 512
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
514 515

		/* ring should be idle before issuing a sync flush*/
516
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
517 518 519 520 521 522 523

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
			     1000))
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524
				  engine->name);
525 526 527
	}
}

528
static bool stop_ring(struct intel_engine_cs *engine)
529
{
530
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
531

532 533 534 535 536
	if (!IS_GEN2(engine->dev)) {
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
		if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
537 538 539 540
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
541
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
542
				return false;
543 544
		}
	}
545

546 547 548
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
549

550 551 552
	if (!IS_GEN2(engine->dev)) {
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
553
	}
554

555
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
556
}
557

558 559 560 561 562
void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
{
	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
}

563
static int init_ring_common(struct intel_engine_cs *engine)
564
{
565
	struct drm_device *dev = engine->dev;
566
	struct drm_i915_private *dev_priv = dev->dev_private;
567
	struct intel_ringbuffer *ringbuf = engine->buffer;
568
	struct drm_i915_gem_object *obj = ringbuf->obj;
569 570
	int ret = 0;

571
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572

573
	if (!stop_ring(engine)) {
574
		/* G45 ring initialization often fails to reset head to zero */
575 576
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
577 578 579 580 581
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
582

583
		if (!stop_ring(engine)) {
584 585
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
586 587 588 589 590
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
591 592
			ret = -EIO;
			goto out;
593
		}
594 595
	}

596
	if (I915_NEED_GFX_HWS(dev))
597
		intel_ring_setup_status_page(engine);
598
	else
599
		ring_setup_phys_status_page(engine);
600

601
	/* Enforce ordering by reading HEAD register back */
602
	I915_READ_HEAD(engine);
603

604 605 606 607
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
608
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
609 610

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
611
	if (I915_READ_HEAD(engine))
612
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 614 615
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
616

617
	I915_WRITE_CTL(engine,
618
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619
			| RING_VALID);
620 621

	/* If the head is still not zero, the ring is dead */
622 623 624
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
625
		DRM_ERROR("%s initialization failed "
626
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 628 629 630 631 632
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
633 634
		ret = -EIO;
		goto out;
635 636
	}

637
	ringbuf->last_retired_head = -1;
638 639
	ringbuf->head = I915_READ_HEAD(engine);
	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
640
	intel_ring_update_space(ringbuf);
641

642
	intel_engine_init_hangcheck(engine);
643

644
out:
645
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
646 647

	return ret;
648 649
}

650
void
651
intel_fini_pipe_control(struct intel_engine_cs *engine)
652
{
653
	struct drm_device *dev = engine->dev;
654

655
	if (engine->scratch.obj == NULL)
656 657 658
		return;

	if (INTEL_INFO(dev)->gen >= 5) {
659 660
		kunmap(sg_page(engine->scratch.obj->pages->sgl));
		i915_gem_object_ggtt_unpin(engine->scratch.obj);
661 662
	}

663 664
	drm_gem_object_unreference(&engine->scratch.obj->base);
	engine->scratch.obj = NULL;
665 666 667
}

int
668
intel_init_pipe_control(struct intel_engine_cs *engine)
669 670 671
{
	int ret;

672
	WARN_ON(engine->scratch.obj);
673

674
	engine->scratch.obj = i915_gem_object_create(engine->dev, 4096);
675
	if (IS_ERR(engine->scratch.obj)) {
676
		DRM_ERROR("Failed to allocate seqno page\n");
677 678
		ret = PTR_ERR(engine->scratch.obj);
		engine->scratch.obj = NULL;
679 680
		goto err;
	}
681

682 683
	ret = i915_gem_object_set_cache_level(engine->scratch.obj,
					      I915_CACHE_LLC);
684 685
	if (ret)
		goto err_unref;
686

687
	ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
688 689 690
	if (ret)
		goto err_unref;

691 692 693
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
	engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
	if (engine->scratch.cpu_page == NULL) {
694
		ret = -ENOMEM;
695
		goto err_unpin;
696
	}
697

698
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
699
			 engine->name, engine->scratch.gtt_offset);
700 701 702
	return 0;

err_unpin:
703
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
704
err_unref:
705
	drm_gem_object_unreference(&engine->scratch.obj->base);
706 707 708 709
err:
	return ret;
}

710
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
711
{
712
	int ret, i;
713
	struct intel_engine_cs *engine = req->engine;
714
	struct drm_device *dev = engine->dev;
715
	struct drm_i915_private *dev_priv = dev->dev_private;
716
	struct i915_workarounds *w = &dev_priv->workarounds;
717

718
	if (w->count == 0)
719
		return 0;
720

721
	engine->gpu_caches_dirty = true;
722
	ret = intel_ring_flush_all_caches(req);
723 724
	if (ret)
		return ret;
725

726
	ret = intel_ring_begin(req, (w->count * 2 + 2));
727 728 729
	if (ret)
		return ret;

730
	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
731
	for (i = 0; i < w->count; i++) {
732 733
		intel_ring_emit_reg(engine, w->reg[i].addr);
		intel_ring_emit(engine, w->reg[i].value);
734
	}
735
	intel_ring_emit(engine, MI_NOOP);
736

737
	intel_ring_advance(engine);
738

739
	engine->gpu_caches_dirty = true;
740
	ret = intel_ring_flush_all_caches(req);
741 742
	if (ret)
		return ret;
743

744
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
745

746
	return 0;
747 748
}

749
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
750 751 752
{
	int ret;

753
	ret = intel_ring_workarounds_emit(req);
754 755 756
	if (ret != 0)
		return ret;

757
	ret = i915_gem_render_state_init(req);
758
	if (ret)
759
		return ret;
760

761
	return 0;
762 763
}

764
static int wa_add(struct drm_i915_private *dev_priv,
765 766
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
767 768 769 770 771 772 773 774 775 776 777 778 779
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
780 781
}

782
#define WA_REG(addr, mask, val) do { \
783
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
784 785
		if (r) \
			return r; \
786
	} while (0)
787 788

#define WA_SET_BIT_MASKED(addr, mask) \
789
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
790 791

#define WA_CLR_BIT_MASKED(addr, mask) \
792
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
793

794
#define WA_SET_FIELD_MASKED(addr, mask, value) \
795
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
796

797 798
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
799

800
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
801

802 803
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
804
{
805
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
806
	struct i915_workarounds *wa = &dev_priv->workarounds;
807
	const uint32_t index = wa->hw_whitelist_count[engine->id];
808 809 810 811

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

812
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
813
		 i915_mmio_reg_offset(reg));
814
	wa->hw_whitelist_count[engine->id]++;
815 816 817 818

	return 0;
}

819
static int gen8_init_workarounds(struct intel_engine_cs *engine)
820
{
821
	struct drm_device *dev = engine->dev;
822 823 824
	struct drm_i915_private *dev_priv = dev->dev_private;

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
825

826 827 828
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

829 830 831 832
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

833 834 835 836 837
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
838
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
839
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
840
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
841 842
			  HDC_FORCE_NON_COHERENT);

843 844 845 846 847 848 849 850 851 852
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

853 854 855
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

856 857 858 859 860 861 862 863 864 865 866 867
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

868 869 870
	return 0;
}

871
static int bdw_init_workarounds(struct intel_engine_cs *engine)
872
{
873
	int ret;
874
	struct drm_device *dev = engine->dev;
875
	struct drm_i915_private *dev_priv = dev->dev_private;
876

877
	ret = gen8_init_workarounds(engine);
878 879 880
	if (ret)
		return ret;

881
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
882
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
883

884
	/* WaDisableDopClockGating:bdw */
885 886
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
887

888 889
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
890

891
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
892 893 894
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
895
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
896 897 898 899

	return 0;
}

900
static int chv_init_workarounds(struct intel_engine_cs *engine)
901
{
902
	int ret;
903
	struct drm_device *dev = engine->dev;
904 905
	struct drm_i915_private *dev_priv = dev->dev_private;

906
	ret = gen8_init_workarounds(engine);
907 908 909
	if (ret)
		return ret;

910
	/* WaDisableThreadStallDopClockGating:chv */
911
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
912

913 914 915
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

916 917 918
	return 0;
}

919
static int gen9_init_workarounds(struct intel_engine_cs *engine)
920
{
921
	struct drm_device *dev = engine->dev;
922
	struct drm_i915_private *dev_priv = dev->dev_private;
923
	uint32_t tmp;
924
	int ret;
925

926 927 928 929 930 931 932 933
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

	/* WaDisableKillLogic:bxt,skl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

934
	/* WaClearFlowControlGpgpuContextSave:skl,bxt */
935
	/* WaDisablePartialInstShootdown:skl,bxt */
936
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
937
			  FLOW_CONTROL_ENABLE |
938 939
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

940
	/* Syncing dependencies between camera and graphics:skl,bxt */
941 942 943
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

944 945 946
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
947 948
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
949

950 951 952
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
953 954
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
955 956 957 958 959
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
960 961
	}

962
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
963 964 965 966
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
967

968
	/* Wa4x4STCOptimizationDisable:skl,bxt */
969
	/* WaDisablePartialResolveInVc:skl,bxt */
970 971
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
972

973
	/* WaCcsTlbPrefetchDisable:skl,bxt */
974 975 976
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

977
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
978 979
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
980 981 982
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

983 984
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
985
	if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
986
	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
987 988 989
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);

990
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
991
	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
992 993 994
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

995 996 997
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

998 999 1000 1001
	/* WaOCLCoherentLineFlush:skl,bxt */
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

1002
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
1003
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1004 1005 1006
	if (ret)
		return ret;

1007
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt */
1008
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1009 1010 1011
	if (ret)
		return ret;

1012 1013 1014
	return 0;
}

1015
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1016
{
1017
	struct drm_device *dev = engine->dev;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	struct drm_i915_private *dev_priv = dev->dev_private;
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1029
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1057
static int skl_init_workarounds(struct intel_engine_cs *engine)
1058
{
1059
	int ret;
1060
	struct drm_device *dev = engine->dev;
1061 1062
	struct drm_i915_private *dev_priv = dev->dev_private;

1063
	ret = gen9_init_workarounds(engine);
1064 1065
	if (ret)
		return ret;
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
	if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1077
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1078 1079 1080 1081 1082 1083 1084 1085
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1086
	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1087 1088 1089 1090 1091
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1092
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1093 1094 1095 1096
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1097
	/* WaDisablePowerCompilerClockGating:skl */
1098
	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1099 1100 1101
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1102 1103
	/* This is tied to WaForceContextSaveRestoreNonCoherent */
	if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1104 1105 1106 1107 1108 1109 1110 1111
		/*
		 *Use Force Non-Coherent whenever executing a 3D context. This
		 * is a workaround for a possible hang in the unlikely event
		 * a TLB invalidation occurs during a PSD flush.
		 */
		/* WaForceEnableNonCoherent:skl */
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FORCE_NON_COHERENT);
1112 1113 1114 1115

		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);
1116 1117
	}

1118 1119
	/* WaBarrierPerformanceFixDisable:skl */
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1120 1121 1122 1123
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1124
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1125
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1126 1127 1128 1129
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1130
	/* WaDisableLSQCROPERFforOCL:skl */
1131
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1132 1133 1134
	if (ret)
		return ret;

1135
	return skl_tune_iz_hashing(engine);
1136 1137
}

1138
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1139
{
1140
	int ret;
1141
	struct drm_device *dev = engine->dev;
1142 1143
	struct drm_i915_private *dev_priv = dev->dev_private;

1144
	ret = gen9_init_workarounds(engine);
1145 1146
	if (ret)
		return ret;
1147

1148 1149
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
T
Tim Gore 已提交
1150
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1151 1152 1153
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
T
Tim Gore 已提交
1154
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1155 1156 1157 1158
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1159 1160 1161 1162
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1163
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1164
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1165 1166 1167 1168 1169
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1170 1171 1172
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1173
	/* WaDisableLSQCROPERFforOCL:bxt */
1174
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1175
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1176 1177
		if (ret)
			return ret;
1178

1179
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1180 1181
		if (ret)
			return ret;
1182 1183
	}

1184 1185 1186 1187
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
	if (IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN8_L3SQCREG1, BXT_WA_L3SQCREG1_DEFAULT);

1188 1189 1190
	return 0;
}

1191
int init_workarounds_ring(struct intel_engine_cs *engine)
1192
{
1193
	struct drm_device *dev = engine->dev;
1194 1195
	struct drm_i915_private *dev_priv = dev->dev_private;

1196
	WARN_ON(engine->id != RCS);
1197 1198

	dev_priv->workarounds.count = 0;
1199
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1200 1201

	if (IS_BROADWELL(dev))
1202
		return bdw_init_workarounds(engine);
1203 1204

	if (IS_CHERRYVIEW(dev))
1205
		return chv_init_workarounds(engine);
1206

1207
	if (IS_SKYLAKE(dev))
1208
		return skl_init_workarounds(engine);
1209 1210

	if (IS_BROXTON(dev))
1211
		return bxt_init_workarounds(engine);
1212

1213 1214 1215
	return 0;
}

1216
static int init_render_ring(struct intel_engine_cs *engine)
1217
{
1218
	struct drm_device *dev = engine->dev;
1219
	struct drm_i915_private *dev_priv = dev->dev_private;
1220
	int ret = init_ring_common(engine);
1221 1222
	if (ret)
		return ret;
1223

1224 1225
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1226
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1227 1228 1229 1230

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1231
	 *
1232
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1233
	 */
1234
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1235 1236
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1237
	/* Required for the hardware to program scanline values for waiting */
1238
	/* WaEnableFlushTlbInvalidationMode:snb */
1239 1240
	if (INTEL_INFO(dev)->gen == 6)
		I915_WRITE(GFX_MODE,
1241
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1242

1243
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1244 1245
	if (IS_GEN7(dev))
		I915_WRITE(GFX_MODE_GEN7,
1246
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1247
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1248

1249
	if (IS_GEN6(dev)) {
1250 1251 1252 1253 1254 1255
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1256
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1257 1258
	}

1259
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1260
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1261

1262
	if (HAS_L3_DPF(dev))
1263
		I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1264

1265
	return init_workarounds_ring(engine);
1266 1267
}

1268
static void render_ring_cleanup(struct intel_engine_cs *engine)
1269
{
1270
	struct drm_device *dev = engine->dev;
1271 1272 1273 1274 1275 1276 1277
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
		dev_priv->semaphore_obj = NULL;
	}
1278

1279
	intel_fini_pipe_control(engine);
1280 1281
}

1282
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1283 1284 1285
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1286
	struct intel_engine_cs *signaller = signaller_req->engine;
1287 1288 1289
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *waiter;
1290 1291
	enum intel_engine_id id;
	int ret, num_rings;
1292 1293 1294 1295 1296

	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1297
	ret = intel_ring_begin(signaller_req, num_dwords);
1298 1299 1300
	if (ret)
		return ret;

1301
	for_each_engine_id(waiter, dev_priv, id) {
1302
		u32 seqno;
1303
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1304 1305 1306
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1307
		seqno = i915_gem_request_get_seqno(signaller_req);
1308 1309 1310 1311 1312 1313
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_QW_WRITE |
					   PIPE_CONTROL_FLUSH_ENABLE);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1314
		intel_ring_emit(signaller, seqno);
1315 1316 1317 1318 1319 1320 1321 1322 1323
		intel_ring_emit(signaller, 0);
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
					   MI_SEMAPHORE_TARGET(waiter->id));
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1324
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1325 1326 1327
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1328
	struct intel_engine_cs *signaller = signaller_req->engine;
1329 1330 1331
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *waiter;
1332 1333
	enum intel_engine_id id;
	int ret, num_rings;
1334 1335 1336 1337 1338

	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1339
	ret = intel_ring_begin(signaller_req, num_dwords);
1340 1341 1342
	if (ret)
		return ret;

1343
	for_each_engine_id(waiter, dev_priv, id) {
1344
		u32 seqno;
1345
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1346 1347 1348
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1349
		seqno = i915_gem_request_get_seqno(signaller_req);
1350 1351 1352 1353 1354
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
					   MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
					   MI_FLUSH_DW_USE_GTT);
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1355
		intel_ring_emit(signaller, seqno);
1356 1357 1358 1359 1360 1361 1362 1363
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
					   MI_SEMAPHORE_TARGET(waiter->id));
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1364
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1365
		       unsigned int num_dwords)
1366
{
1367
	struct intel_engine_cs *signaller = signaller_req->engine;
1368 1369
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1370
	struct intel_engine_cs *useless;
1371 1372
	enum intel_engine_id id;
	int ret, num_rings;
1373

1374 1375 1376 1377
#define MBOX_UPDATE_DWORDS 3
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1378

1379
	ret = intel_ring_begin(signaller_req, num_dwords);
1380 1381 1382
	if (ret)
		return ret;

1383 1384
	for_each_engine_id(useless, dev_priv, id) {
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1385 1386

		if (i915_mmio_reg_valid(mbox_reg)) {
1387
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1388

1389
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1390
			intel_ring_emit_reg(signaller, mbox_reg);
1391
			intel_ring_emit(signaller, seqno);
1392 1393
		}
	}
1394

1395 1396 1397 1398
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1399
	return 0;
1400 1401
}

1402 1403
/**
 * gen6_add_request - Update the semaphore mailbox registers
1404 1405
 *
 * @request - request to write to the ring
1406 1407 1408 1409
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1410
static int
1411
gen6_add_request(struct drm_i915_gem_request *req)
1412
{
1413
	struct intel_engine_cs *engine = req->engine;
1414
	int ret;
1415

1416 1417
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1418
	else
1419
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1420

1421 1422 1423
	if (ret)
		return ret;

1424 1425 1426 1427 1428 1429
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1430 1431 1432 1433

	return 0;
}

1434 1435 1436 1437 1438 1439 1440
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
					      u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	return dev_priv->last_seqno < seqno;
}

1441 1442 1443 1444 1445 1446 1447
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1448 1449

static int
1450
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1451 1452 1453
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1454
	struct intel_engine_cs *waiter = waiter_req->engine;
1455 1456 1457
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
	int ret;

1458
	ret = intel_ring_begin(waiter_req, 4);
1459 1460 1461 1462 1463
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
B
Ben Widawsky 已提交
1464
				MI_SEMAPHORE_POLL |
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
	intel_ring_emit(waiter,
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
	intel_ring_emit(waiter,
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
	intel_ring_advance(waiter);
	return 0;
}

1475
static int
1476
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1477
	       struct intel_engine_cs *signaller,
1478
	       u32 seqno)
1479
{
1480
	struct intel_engine_cs *waiter = waiter_req->engine;
1481 1482 1483
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1484 1485
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
	int ret;
1486

1487 1488 1489 1490 1491 1492
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1493
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1494

1495
	ret = intel_ring_begin(waiter_req, 4);
1496 1497 1498
	if (ret)
		return ret;

1499 1500
	/* If seqno wrap happened, omit the wait with no-ops */
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1501
		intel_ring_emit(waiter, dw1 | wait_mbox);
1502 1503 1504 1505 1506 1507 1508 1509 1510
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1511
	intel_ring_advance(waiter);
1512 1513 1514 1515

	return 0;
}

1516 1517
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
1518 1519
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
1520 1521 1522 1523 1524 1525
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
1526
pc_render_add_request(struct drm_i915_gem_request *req)
1527
{
1528
	struct intel_engine_cs *engine = req->engine;
1529
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
1540
	ret = intel_ring_begin(req, 32);
1541 1542 1543
	if (ret)
		return ret;

1544 1545
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1546 1547
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1548 1549 1550 1551 1552
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1553
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1554
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1555
	scratch_addr += 2 * CACHELINE_BYTES;
1556
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1557
	scratch_addr += 2 * CACHELINE_BYTES;
1558
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1559
	scratch_addr += 2 * CACHELINE_BYTES;
1560
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1561
	scratch_addr += 2 * CACHELINE_BYTES;
1562
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1563

1564 1565
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1566 1567
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1568
			PIPE_CONTROL_NOTIFY);
1569 1570 1571 1572 1573
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	__intel_ring_advance(engine);
1574 1575 1576 1577

	return 0;
}

1578 1579
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1580
{
1581 1582
	struct drm_i915_private *dev_priv = engine->dev->dev_private;

1583 1584
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1585 1586 1587 1588 1589 1590 1591 1592 1593
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1594 1595 1596
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1597
	 */
1598
	spin_lock_irq(&dev_priv->uncore.lock);
1599
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1600
	spin_unlock_irq(&dev_priv->uncore.lock);
1601 1602
}

1603
static u32
1604
ring_get_seqno(struct intel_engine_cs *engine)
1605
{
1606
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1607 1608
}

M
Mika Kuoppala 已提交
1609
static void
1610
ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1611
{
1612
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
M
Mika Kuoppala 已提交
1613 1614
}

1615
static u32
1616
pc_render_get_seqno(struct intel_engine_cs *engine)
1617
{
1618
	return engine->scratch.cpu_page[0];
1619 1620
}

M
Mika Kuoppala 已提交
1621
static void
1622
pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1623
{
1624
	engine->scratch.cpu_page[0] = seqno;
M
Mika Kuoppala 已提交
1625 1626
}

1627
static bool
1628
gen5_ring_get_irq(struct intel_engine_cs *engine)
1629
{
1630
	struct drm_device *dev = engine->dev;
1631
	struct drm_i915_private *dev_priv = dev->dev_private;
1632
	unsigned long flags;
1633

1634
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1635 1636
		return false;

1637
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1638 1639
	if (engine->irq_refcount++ == 0)
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1640
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1641 1642 1643 1644 1645

	return true;
}

static void
1646
gen5_ring_put_irq(struct intel_engine_cs *engine)
1647
{
1648
	struct drm_device *dev = engine->dev;
1649
	struct drm_i915_private *dev_priv = dev->dev_private;
1650
	unsigned long flags;
1651

1652
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1653 1654
	if (--engine->irq_refcount == 0)
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1655
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1656 1657
}

1658
static bool
1659
i9xx_ring_get_irq(struct intel_engine_cs *engine)
1660
{
1661
	struct drm_device *dev = engine->dev;
1662
	struct drm_i915_private *dev_priv = dev->dev_private;
1663
	unsigned long flags;
1664

1665
	if (!intel_irqs_enabled(dev_priv))
1666 1667
		return false;

1668
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1669 1670
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1671 1672 1673
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1674
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1675 1676

	return true;
1677 1678
}

1679
static void
1680
i9xx_ring_put_irq(struct intel_engine_cs *engine)
1681
{
1682
	struct drm_device *dev = engine->dev;
1683
	struct drm_i915_private *dev_priv = dev->dev_private;
1684
	unsigned long flags;
1685

1686
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1687 1688
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
1689 1690 1691
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1692
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1693 1694
}

C
Chris Wilson 已提交
1695
static bool
1696
i8xx_ring_get_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1697
{
1698
	struct drm_device *dev = engine->dev;
1699
	struct drm_i915_private *dev_priv = dev->dev_private;
1700
	unsigned long flags;
C
Chris Wilson 已提交
1701

1702
	if (!intel_irqs_enabled(dev_priv))
C
Chris Wilson 已提交
1703 1704
		return false;

1705
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1706 1707
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
C
Chris Wilson 已提交
1708 1709 1710
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1711
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1712 1713 1714 1715 1716

	return true;
}

static void
1717
i8xx_ring_put_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1718
{
1719
	struct drm_device *dev = engine->dev;
1720
	struct drm_i915_private *dev_priv = dev->dev_private;
1721
	unsigned long flags;
C
Chris Wilson 已提交
1722

1723
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1724 1725
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
C
Chris Wilson 已提交
1726 1727 1728
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1729
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1730 1731
}

1732
static int
1733
bsd_ring_flush(struct drm_i915_gem_request *req,
1734 1735
	       u32     invalidate_domains,
	       u32     flush_domains)
1736
{
1737
	struct intel_engine_cs *engine = req->engine;
1738 1739
	int ret;

1740
	ret = intel_ring_begin(req, 2);
1741 1742 1743
	if (ret)
		return ret;

1744 1745 1746
	intel_ring_emit(engine, MI_FLUSH);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1747
	return 0;
1748 1749
}

1750
static int
1751
i9xx_add_request(struct drm_i915_gem_request *req)
1752
{
1753
	struct intel_engine_cs *engine = req->engine;
1754 1755
	int ret;

1756
	ret = intel_ring_begin(req, 4);
1757 1758
	if (ret)
		return ret;
1759

1760 1761 1762 1763 1764 1765
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1766

1767
	return 0;
1768 1769
}

1770
static bool
1771
gen6_ring_get_irq(struct intel_engine_cs *engine)
1772
{
1773
	struct drm_device *dev = engine->dev;
1774
	struct drm_i915_private *dev_priv = dev->dev_private;
1775
	unsigned long flags;
1776

1777 1778
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
		return false;
1779

1780
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1781 1782 1783 1784
	if (engine->irq_refcount++ == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS)
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1785
					 GT_PARITY_ERROR(dev)));
1786
		else
1787 1788
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1789
	}
1790
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791 1792 1793 1794 1795

	return true;
}

static void
1796
gen6_ring_put_irq(struct intel_engine_cs *engine)
1797
{
1798
	struct drm_device *dev = engine->dev;
1799
	struct drm_i915_private *dev_priv = dev->dev_private;
1800
	unsigned long flags;
1801

1802
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803 1804 1805
	if (--engine->irq_refcount == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS)
			I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1806
		else
1807 1808
			I915_WRITE_IMR(engine, ~0);
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1809
	}
1810
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1811 1812
}

B
Ben Widawsky 已提交
1813
static bool
1814
hsw_vebox_get_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1815
{
1816
	struct drm_device *dev = engine->dev;
B
Ben Widawsky 已提交
1817 1818 1819
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1820
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
B
Ben Widawsky 已提交
1821 1822
		return false;

1823
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1824 1825 1826
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1827
	}
1828
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1829 1830 1831 1832 1833

	return true;
}

static void
1834
hsw_vebox_put_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1835
{
1836
	struct drm_device *dev = engine->dev;
B
Ben Widawsky 已提交
1837 1838 1839
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1840
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1841 1842 1843
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~0);
		gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1844
	}
1845
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1846 1847
}

1848
static bool
1849
gen8_ring_get_irq(struct intel_engine_cs *engine)
1850
{
1851
	struct drm_device *dev = engine->dev;
1852 1853 1854
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1855
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1856 1857 1858
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1859 1860 1861 1862
	if (engine->irq_refcount++ == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS) {
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1863 1864
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
		} else {
1865
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1866
		}
1867
		POSTING_READ(RING_IMR(engine->mmio_base));
1868 1869 1870 1871 1872 1873 1874
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void
1875
gen8_ring_put_irq(struct intel_engine_cs *engine)
1876
{
1877
	struct drm_device *dev = engine->dev;
1878 1879 1880 1881
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1882 1883 1884
	if (--engine->irq_refcount == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS) {
			I915_WRITE_IMR(engine,
1885 1886
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
		} else {
1887
			I915_WRITE_IMR(engine, ~0);
1888
		}
1889
		POSTING_READ(RING_IMR(engine->mmio_base));
1890 1891 1892 1893
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1894
static int
1895
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1896
			 u64 offset, u32 length,
1897
			 unsigned dispatch_flags)
1898
{
1899
	struct intel_engine_cs *engine = req->engine;
1900
	int ret;
1901

1902
	ret = intel_ring_begin(req, 2);
1903 1904 1905
	if (ret)
		return ret;

1906
	intel_ring_emit(engine,
1907 1908
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1909 1910
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1911 1912
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
1913

1914 1915 1916
	return 0;
}

1917 1918
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1919 1920
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1921
static int
1922
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1923 1924
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
1925
{
1926
	struct intel_engine_cs *engine = req->engine;
1927
	u32 cs_offset = engine->scratch.gtt_offset;
1928
	int ret;
1929

1930
	ret = intel_ring_begin(req, 6);
1931 1932
	if (ret)
		return ret;
1933

1934
	/* Evict the invalid PTE TLBs */
1935 1936 1937 1938 1939 1940 1941
	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(engine, cs_offset);
	intel_ring_emit(engine, 0xdeadbeef);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1942

1943
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1944 1945 1946
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1947
		ret = intel_ring_begin(req, 6 + 2);
1948 1949
		if (ret)
			return ret;
1950 1951 1952 1953 1954

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(engine,
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(engine, cs_offset);
		intel_ring_emit(engine, 4096);
		intel_ring_emit(engine, offset);

		intel_ring_emit(engine, MI_FLUSH);
		intel_ring_emit(engine, MI_NOOP);
		intel_ring_advance(engine);
1966 1967

		/* ... and execute it. */
1968
		offset = cs_offset;
1969
	}
1970

1971
	ret = intel_ring_begin(req, 2);
1972 1973 1974
	if (ret)
		return ret;

1975 1976 1977 1978
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1979

1980 1981 1982 1983
	return 0;
}

static int
1984
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1985
			 u64 offset, u32 len,
1986
			 unsigned dispatch_flags)
1987
{
1988
	struct intel_engine_cs *engine = req->engine;
1989 1990
	int ret;

1991
	ret = intel_ring_begin(req, 2);
1992 1993 1994
	if (ret)
		return ret;

1995 1996 1997 1998
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1999 2000 2001 2002

	return 0;
}

2003
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2004
{
2005
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2006 2007 2008 2009

	if (!dev_priv->status_page_dmah)
		return;

2010 2011
	drm_pci_free(engine->dev, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
2012 2013
}

2014
static void cleanup_status_page(struct intel_engine_cs *engine)
2015
{
2016
	struct drm_i915_gem_object *obj;
2017

2018
	obj = engine->status_page.obj;
2019
	if (obj == NULL)
2020 2021
		return;

2022
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
2023
	i915_gem_object_ggtt_unpin(obj);
2024
	drm_gem_object_unreference(&obj->base);
2025
	engine->status_page.obj = NULL;
2026 2027
}

2028
static int init_status_page(struct intel_engine_cs *engine)
2029
{
2030
	struct drm_i915_gem_object *obj = engine->status_page.obj;
2031

2032
	if (obj == NULL) {
2033
		unsigned flags;
2034
		int ret;
2035

2036
		obj = i915_gem_object_create(engine->dev, 4096);
2037
		if (IS_ERR(obj)) {
2038
			DRM_ERROR("Failed to allocate status page\n");
2039
			return PTR_ERR(obj);
2040
		}
2041

2042 2043 2044 2045
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

2046
		flags = 0;
2047
		if (!HAS_LLC(engine->dev))
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2060 2061 2062 2063 2064 2065
		if (ret) {
err_unref:
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

2066
		engine->status_page.obj = obj;
2067
	}
2068

2069 2070 2071
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2072

2073
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2074
			engine->name, engine->status_page.gfx_addr);
2075 2076 2077 2078

	return 0;
}

2079
static int init_phys_status_page(struct intel_engine_cs *engine)
2080
{
2081
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2082 2083 2084

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
2085
			drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2086 2087 2088 2089
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

2090 2091
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2092 2093 2094 2095

	return 0;
}

2096
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2097
{
2098 2099 2100
	GEM_BUG_ON(ringbuf->vma == NULL);
	GEM_BUG_ON(ringbuf->virtual_start == NULL);

2101
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2102
		i915_gem_object_unpin_map(ringbuf->obj);
2103
	else
2104
		i915_vma_unpin_iomap(ringbuf->vma);
2105
	ringbuf->virtual_start = NULL;
2106

2107
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2108
	ringbuf->vma = NULL;
2109 2110 2111 2112 2113 2114 2115
}

int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
				     struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct drm_i915_gem_object *obj = ringbuf->obj;
2116 2117
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2118
	void *addr;
2119 2120
	int ret;

2121
	if (HAS_LLC(dev_priv) && !obj->stolen) {
2122
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2123 2124
		if (ret)
			return ret;
2125

2126
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2127 2128
		if (ret)
			goto err_unpin;
2129

2130 2131 2132
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2133
			goto err_unpin;
2134 2135
		}
	} else {
2136 2137
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
2138 2139
		if (ret)
			return ret;
2140

2141
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2142 2143
		if (ret)
			goto err_unpin;
2144

2145 2146 2147
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2148 2149 2150
		addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2151
			goto err_unpin;
2152
		}
2153 2154
	}

2155
	ringbuf->virtual_start = addr;
2156
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2157
	return 0;
2158 2159 2160 2161

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2162 2163
}

2164
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2165
{
2166 2167 2168 2169
	drm_gem_object_unreference(&ringbuf->obj->base);
	ringbuf->obj = NULL;
}

2170 2171
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
				      struct intel_ringbuffer *ringbuf)
2172
{
2173
	struct drm_i915_gem_object *obj;
2174

2175 2176
	obj = NULL;
	if (!HAS_LLC(dev))
2177
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2178
	if (obj == NULL)
2179
		obj = i915_gem_object_create(dev, ringbuf->size);
2180 2181
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2182

2183 2184 2185
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2186
	ringbuf->obj = obj;
2187

2188
	return 0;
2189 2190
}

2191 2192 2193 2194 2195 2196 2197
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
{
	struct intel_ringbuffer *ring;
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2198 2199 2200
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2201
		return ERR_PTR(-ENOMEM);
2202
	}
2203

2204
	ring->engine = engine;
2205
	list_add(&ring->link, &engine->buffers);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
	if (ret) {
2221 2222 2223
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
intel_ringbuffer_free(struct intel_ringbuffer *ring)
{
	intel_destroy_ringbuffer_obj(ring);
2235
	list_del(&ring->link);
2236 2237 2238
	kfree(ring);
}

2239
static int intel_init_ring_buffer(struct drm_device *dev,
2240
				  struct intel_engine_cs *engine)
2241
{
2242
	struct intel_ringbuffer *ringbuf;
2243 2244
	int ret;

2245
	WARN_ON(engine->buffer);
2246

2247 2248 2249 2250 2251 2252 2253 2254
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->buffers);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2255

2256
	init_waitqueue_head(&engine->irq_queue);
2257

2258
	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2259 2260 2261 2262
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
		goto error;
	}
2263
	engine->buffer = ringbuf;
2264

2265
	if (I915_NEED_GFX_HWS(dev)) {
2266
		ret = init_status_page(engine);
2267
		if (ret)
2268
			goto error;
2269
	} else {
2270 2271
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2272
		if (ret)
2273
			goto error;
2274 2275
	}

2276 2277 2278
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2279
				engine->name, ret);
2280 2281
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
2282
	}
2283

2284
	ret = i915_cmd_parser_init_ring(engine);
2285
	if (ret)
2286 2287 2288
		goto error;

	return 0;
2289

2290
error:
2291
	intel_cleanup_engine(engine);
2292
	return ret;
2293 2294
}

2295
void intel_cleanup_engine(struct intel_engine_cs *engine)
2296
{
2297
	struct drm_i915_private *dev_priv;
2298

2299
	if (!intel_engine_initialized(engine))
2300 2301
		return;

2302
	dev_priv = to_i915(engine->dev);
2303

2304
	if (engine->buffer) {
2305
		intel_stop_engine(engine);
2306
		WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2307

2308 2309 2310
		intel_unpin_ringbuffer_obj(engine->buffer);
		intel_ringbuffer_free(engine->buffer);
		engine->buffer = NULL;
2311
	}
2312

2313 2314
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2315

2316 2317
	if (I915_NEED_GFX_HWS(engine->dev)) {
		cleanup_status_page(engine);
2318
	} else {
2319 2320
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2321
	}
2322

2323 2324 2325
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
	engine->dev = NULL;
2326 2327
}

2328
static int ring_wait_for_space(struct intel_engine_cs *engine, int n)
2329
{
2330
	struct intel_ringbuffer *ringbuf = engine->buffer;
2331
	struct drm_i915_gem_request *request;
2332 2333
	unsigned space;
	int ret;
2334

2335 2336
	if (intel_ring_space(ringbuf) >= n)
		return 0;
2337

2338 2339 2340
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

2341
	list_for_each_entry(request, &engine->request_list, list) {
2342 2343 2344
		space = __intel_ring_space(request->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= n)
2345 2346 2347
			break;
	}

2348
	if (WARN_ON(&request->list == &engine->request_list))
2349 2350
		return -ENOSPC;

2351
	ret = i915_wait_request(request);
2352 2353 2354
	if (ret)
		return ret;

2355
	ringbuf->space = space;
2356 2357 2358
	return 0;
}

2359
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2360 2361
{
	uint32_t __iomem *virt;
2362
	int rem = ringbuf->size - ringbuf->tail;
2363

2364
	virt = ringbuf->virtual_start + ringbuf->tail;
2365 2366 2367 2368
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

2369
	ringbuf->tail = 0;
2370
	intel_ring_update_space(ringbuf);
2371 2372
}

2373
int intel_engine_idle(struct intel_engine_cs *engine)
2374
{
2375
	struct drm_i915_gem_request *req;
2376 2377

	/* Wait upon the last request to be completed */
2378
	if (list_empty(&engine->request_list))
2379 2380
		return 0;

2381 2382 2383
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2384 2385 2386

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2387
				   req->i915->mm.interruptible,
2388
				   NULL, NULL);
2389 2390
}

2391
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2392
{
2393
	request->ringbuf = request->engine->buffer;
2394
	return 0;
2395 2396
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_ring_begin(request, 0);
}

2412 2413
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
{
2414
	WARN_ON(ringbuf->reserved_size);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_size = size;
}

void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_size   = 0;
	ringbuf->reserved_in_use = false;
}

void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_in_use = true;
	ringbuf->reserved_tail   = ringbuf->tail;
}

void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(!ringbuf->reserved_in_use);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	if (ringbuf->tail > ringbuf->reserved_tail) {
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
		     "request reserved size too small: %d vs %d!\n",
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
	} else {
		/*
		 * The ring was wrapped while the reserved space was in use.
		 * That means that some unknown amount of the ring tail was
		 * no-op filled and skipped. Thus simply adding the ring size
		 * to the tail and doing the above space check will not work.
		 * Rather than attempt to track how much tail was skipped,
		 * it is much simpler to say that also skipping the sanity
		 * check every once in a while is not a big issue.
		 */
	}
2454 2455 2456 2457 2458

	ringbuf->reserved_size   = 0;
	ringbuf->reserved_in_use = false;
}

2459
static int __intel_ring_prepare(struct intel_engine_cs *engine, int bytes)
M
Mika Kuoppala 已提交
2460
{
2461
	struct intel_ringbuffer *ringbuf = engine->buffer;
2462 2463 2464 2465
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
2466

2467 2468 2469 2470
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
2471

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
2483 2484 2485
			 * falls off the end. So don't need an immediate wrap
			 * and only need to effectively wait for the reserved
			 * size space from the start of ringbuffer.
2486 2487 2488 2489 2490
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
2491
		}
M
Mika Kuoppala 已提交
2492 2493
	}

2494
	if (wait_bytes) {
2495
		ret = ring_wait_for_space(engine, wait_bytes);
M
Mika Kuoppala 已提交
2496 2497
		if (unlikely(ret))
			return ret;
2498 2499 2500

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
M
Mika Kuoppala 已提交
2501 2502 2503 2504 2505
	}

	return 0;
}

2506
int intel_ring_begin(struct drm_i915_gem_request *req,
2507
		     int num_dwords)
2508
{
2509
	struct intel_engine_cs *engine = req->engine;
2510
	int ret;
2511

2512
	ret = __intel_ring_prepare(engine, num_dwords * sizeof(uint32_t));
2513 2514 2515
	if (ret)
		return ret;

2516
	engine->buffer->space -= num_dwords * sizeof(uint32_t);
2517
	return 0;
2518
}
2519

2520
/* Align the ring tail to a cacheline boundary */
2521
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2522
{
2523
	struct intel_engine_cs *engine = req->engine;
2524
	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2525 2526 2527 2528 2529
	int ret;

	if (num_dwords == 0)
		return 0;

2530
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2531
	ret = intel_ring_begin(req, num_dwords);
2532 2533 2534 2535
	if (ret)
		return ret;

	while (num_dwords--)
2536
		intel_ring_emit(engine, MI_NOOP);
2537

2538
	intel_ring_advance(engine);
2539 2540 2541 2542

	return 0;
}

2543
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2544
{
2545
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2546

2547 2548 2549 2550 2551 2552 2553 2554
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2555
	if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2556 2557
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2558
		if (HAS_VEBOX(dev_priv))
2559
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2560
	}
2561 2562 2563 2564 2565 2566 2567 2568
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2569 2570
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2571

2572
	engine->set_seqno(engine, seqno);
2573
	engine->last_submitted_seqno = seqno;
2574

2575
	engine->hangcheck.seqno = seqno;
2576
}
2577

2578
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2579
				     u32 value)
2580
{
2581
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2582 2583

       /* Every tail move must follow the sequence below */
2584 2585 2586 2587

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2588
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2589 2590 2591 2592
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	/* Clear the context id. Here be magic! */
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2593

2594
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2595
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2596 2597 2598
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
		     50))
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2599

2600
	/* Now that the ring is fully powered up, update the tail */
2601 2602
	I915_WRITE_TAIL(engine, value);
	POSTING_READ(RING_TAIL(engine->mmio_base));
2603 2604 2605 2606

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2607
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2608
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2609 2610
}

2611
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2612
			       u32 invalidate, u32 flush)
2613
{
2614
	struct intel_engine_cs *engine = req->engine;
2615
	uint32_t cmd;
2616 2617
	int ret;

2618
	ret = intel_ring_begin(req, 4);
2619 2620 2621
	if (ret)
		return ret;

2622
	cmd = MI_FLUSH_DW;
2623
	if (INTEL_INFO(engine->dev)->gen >= 8)
B
Ben Widawsky 已提交
2624
		cmd += 1;
2625 2626 2627 2628 2629 2630 2631 2632

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2633 2634 2635 2636 2637 2638
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2639
	if (invalidate & I915_GEM_GPU_DOMAINS)
2640 2641
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2642 2643 2644 2645 2646 2647
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
	if (INTEL_INFO(engine->dev)->gen >= 8) {
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2648
	} else  {
2649 2650
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2651
	}
2652
	intel_ring_advance(engine);
2653
	return 0;
2654 2655
}

2656
static int
2657
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2658
			      u64 offset, u32 len,
2659
			      unsigned dispatch_flags)
2660
{
2661
	struct intel_engine_cs *engine = req->engine;
2662
	bool ppgtt = USES_PPGTT(engine->dev) &&
2663
			!(dispatch_flags & I915_DISPATCH_SECURE);
2664 2665
	int ret;

2666
	ret = intel_ring_begin(req, 4);
2667 2668 2669 2670
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2671
	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2672 2673
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2674 2675 2676 2677
	intel_ring_emit(engine, lower_32_bits(offset));
	intel_ring_emit(engine, upper_32_bits(offset));
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2678 2679 2680 2681

	return 0;
}

2682
static int
2683
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2684 2685
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2686
{
2687
	struct intel_engine_cs *engine = req->engine;
2688 2689
	int ret;

2690
	ret = intel_ring_begin(req, 2);
2691 2692 2693
	if (ret)
		return ret;

2694
	intel_ring_emit(engine,
2695
			MI_BATCH_BUFFER_START |
2696
			(dispatch_flags & I915_DISPATCH_SECURE ?
2697 2698 2699
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2700
	/* bit0-7 is the length on GEN6+ */
2701 2702
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2703 2704 2705 2706

	return 0;
}

2707
static int
2708
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2709
			      u64 offset, u32 len,
2710
			      unsigned dispatch_flags)
2711
{
2712
	struct intel_engine_cs *engine = req->engine;
2713
	int ret;
2714

2715
	ret = intel_ring_begin(req, 2);
2716 2717
	if (ret)
		return ret;
2718

2719
	intel_ring_emit(engine,
2720
			MI_BATCH_BUFFER_START |
2721 2722
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2723
	/* bit0-7 is the length on GEN6+ */
2724 2725
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2726

2727
	return 0;
2728 2729
}

2730 2731
/* Blitter support (SandyBridge+) */

2732
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2733
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2734
{
2735
	struct intel_engine_cs *engine = req->engine;
2736
	struct drm_device *dev = engine->dev;
2737
	uint32_t cmd;
2738 2739
	int ret;

2740
	ret = intel_ring_begin(req, 4);
2741 2742 2743
	if (ret)
		return ret;

2744
	cmd = MI_FLUSH_DW;
2745
	if (INTEL_INFO(dev)->gen >= 8)
B
Ben Widawsky 已提交
2746
		cmd += 1;
2747 2748 2749 2750 2751 2752 2753 2754

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2755 2756 2757 2758 2759 2760
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2761
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2762
		cmd |= MI_INVALIDATE_TLB;
2763 2764 2765
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2766
	if (INTEL_INFO(dev)->gen >= 8) {
2767 2768
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2769
	} else  {
2770 2771
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2772
	}
2773
	intel_ring_advance(engine);
R
Rodrigo Vivi 已提交
2774

2775
	return 0;
Z
Zou Nan hai 已提交
2776 2777
}

2778 2779
int intel_init_render_ring_buffer(struct drm_device *dev)
{
2780
	struct drm_i915_private *dev_priv = dev->dev_private;
2781
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2782 2783
	struct drm_i915_gem_object *obj;
	int ret;
2784

2785 2786 2787 2788
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->mmio_base = RENDER_RING_BASE;
2789

B
Ben Widawsky 已提交
2790
	if (INTEL_INFO(dev)->gen >= 8) {
2791
		if (i915_semaphore_is_enabled(dev)) {
2792
			obj = i915_gem_object_create(dev, 4096);
2793
			if (IS_ERR(obj)) {
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
				if (ret != 0) {
					drm_gem_object_unreference(&obj->base);
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
					i915.semaphores = 0;
				} else
					dev_priv->semaphore_obj = obj;
			}
		}
2807

2808 2809 2810 2811 2812 2813
		engine->init_context = intel_rcs_ctx_init;
		engine->add_request = gen6_add_request;
		engine->flush = gen8_render_ring_flush;
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2814 2815
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2816
		engine->set_seqno = ring_set_seqno;
B
Ben Widawsky 已提交
2817
		if (i915_semaphore_is_enabled(dev)) {
2818
			WARN_ON(!dev_priv->semaphore_obj);
2819 2820 2821
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_rcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
2822 2823
		}
	} else if (INTEL_INFO(dev)->gen >= 6) {
2824 2825 2826
		engine->init_context = intel_rcs_ctx_init;
		engine->add_request = gen6_add_request;
		engine->flush = gen7_render_ring_flush;
2827
		if (INTEL_INFO(dev)->gen == 6)
2828 2829 2830 2831
			engine->flush = gen6_render_ring_flush;
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2832 2833
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2834
		engine->set_seqno = ring_set_seqno;
B
Ben Widawsky 已提交
2835
		if (i915_semaphore_is_enabled(dev)) {
2836 2837
			engine->semaphore.sync_to = gen6_ring_sync;
			engine->semaphore.signal = gen6_signal;
B
Ben Widawsky 已提交
2838 2839 2840 2841 2842 2843 2844
			/*
			 * The current semaphore is only applied on pre-gen8
			 * platform.  And there is no VCS2 ring on the pre-gen8
			 * platform. So the semaphore between RCS and VCS2 is
			 * initialized as INVALID.  Gen8 will initialize the
			 * sema between VCS2 and RCS later.
			 */
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
2855
		}
2856
	} else if (IS_GEN5(dev)) {
2857 2858 2859 2860 2861 2862 2863
		engine->add_request = pc_render_add_request;
		engine->flush = gen4_render_ring_flush;
		engine->get_seqno = pc_render_get_seqno;
		engine->set_seqno = pc_render_set_seqno;
		engine->irq_get = gen5_ring_get_irq;
		engine->irq_put = gen5_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2864
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2865
	} else {
2866
		engine->add_request = i9xx_add_request;
2867
		if (INTEL_INFO(dev)->gen < 4)
2868
			engine->flush = gen2_render_ring_flush;
2869
		else
2870 2871 2872
			engine->flush = gen4_render_ring_flush;
		engine->get_seqno = ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
C
Chris Wilson 已提交
2873
		if (IS_GEN2(dev)) {
2874 2875
			engine->irq_get = i8xx_ring_get_irq;
			engine->irq_put = i8xx_ring_put_irq;
C
Chris Wilson 已提交
2876
		} else {
2877 2878
			engine->irq_get = i9xx_ring_get_irq;
			engine->irq_put = i9xx_ring_put_irq;
C
Chris Wilson 已提交
2879
		}
2880
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2881
	}
2882
	engine->write_tail = ring_write_tail;
B
Ben Widawsky 已提交
2883

2884
	if (IS_HASWELL(dev))
2885
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2886
	else if (IS_GEN8(dev))
2887
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2888
	else if (INTEL_INFO(dev)->gen >= 6)
2889
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2890
	else if (INTEL_INFO(dev)->gen >= 4)
2891
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2892
	else if (IS_I830(dev) || IS_845G(dev))
2893
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2894
	else
2895 2896 2897
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2898

2899 2900
	/* Workaround batchbuffer to combat CS tlb bug. */
	if (HAS_BROKEN_CS_TLB(dev)) {
2901
		obj = i915_gem_object_create(dev, I830_WA_SIZE);
2902
		if (IS_ERR(obj)) {
2903
			DRM_ERROR("Failed to allocate batch bo\n");
2904
			return PTR_ERR(obj);
2905 2906
		}

2907
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2908 2909 2910 2911 2912 2913
		if (ret != 0) {
			drm_gem_object_unreference(&obj->base);
			DRM_ERROR("Failed to ping batch bo\n");
			return ret;
		}

2914 2915
		engine->scratch.obj = obj;
		engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2916 2917
	}

2918
	ret = intel_init_ring_buffer(dev, engine);
2919 2920 2921 2922
	if (ret)
		return ret;

	if (INTEL_INFO(dev)->gen >= 5) {
2923
		ret = intel_init_pipe_control(engine);
2924 2925 2926 2927 2928
		if (ret)
			return ret;
	}

	return 0;
2929 2930 2931 2932
}

int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
2933
	struct drm_i915_private *dev_priv = dev->dev_private;
2934
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2935

2936 2937 2938
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
2939

2940
	engine->write_tail = ring_write_tail;
2941
	if (INTEL_INFO(dev)->gen >= 6) {
2942
		engine->mmio_base = GEN6_BSD_RING_BASE;
2943 2944
		/* gen6 bsd needs a special wa for tail updates */
		if (IS_GEN6(dev))
2945 2946 2947
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
		engine->add_request = gen6_add_request;
2948 2949
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2950
		engine->set_seqno = ring_set_seqno;
2951
		if (INTEL_INFO(dev)->gen >= 8) {
2952
			engine->irq_enable_mask =
2953
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2954 2955 2956
			engine->irq_get = gen8_ring_get_irq;
			engine->irq_put = gen8_ring_put_irq;
			engine->dispatch_execbuffer =
2957
				gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
2958
			if (i915_semaphore_is_enabled(dev)) {
2959 2960 2961
				engine->semaphore.sync_to = gen8_ring_sync;
				engine->semaphore.signal = gen8_xcs_signal;
				GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
2962
			}
2963
		} else {
2964 2965 2966 2967
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
			engine->irq_get = gen6_ring_get_irq;
			engine->irq_put = gen6_ring_put_irq;
			engine->dispatch_execbuffer =
2968
				gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
2969
			if (i915_semaphore_is_enabled(dev)) {
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
				engine->semaphore.sync_to = gen6_ring_sync;
				engine->semaphore.signal = gen6_signal;
				engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
				engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
				engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
				engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
				engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
				engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
				engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
				engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
				engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
				engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
2982
			}
2983
		}
2984
	} else {
2985 2986 2987 2988 2989
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
		engine->add_request = i9xx_add_request;
		engine->get_seqno = ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
2990
		if (IS_GEN5(dev)) {
2991 2992 2993
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
			engine->irq_get = gen5_ring_get_irq;
			engine->irq_put = gen5_ring_put_irq;
2994
		} else {
2995 2996 2997
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
			engine->irq_get = i9xx_ring_get_irq;
			engine->irq_put = i9xx_ring_put_irq;
2998
		}
2999
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3000
	}
3001
	engine->init_hw = init_ring_common;
3002

3003
	return intel_init_ring_buffer(dev, engine);
3004
}
3005

3006
/**
3007
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3008 3009 3010 3011
 */
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3012
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3013 3014 3015 3016 3017 3018 3019 3020 3021

	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;

	engine->write_tail = ring_write_tail;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
	engine->flush = gen6_bsd_ring_flush;
	engine->add_request = gen6_add_request;
3022 3023
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3024 3025
	engine->set_seqno = ring_set_seqno;
	engine->irq_enable_mask =
3026
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3027 3028 3029
	engine->irq_get = gen8_ring_get_irq;
	engine->irq_put = gen8_ring_put_irq;
	engine->dispatch_execbuffer =
3030
			gen8_ring_dispatch_execbuffer;
3031
	if (i915_semaphore_is_enabled(dev)) {
3032 3033 3034
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
		GEN8_RING_SEMAPHORE_INIT(engine);
3035
	}
3036
	engine->init_hw = init_ring_common;
3037

3038
	return intel_init_ring_buffer(dev, engine);
3039 3040
}

3041 3042
int intel_init_blt_ring_buffer(struct drm_device *dev)
{
3043
	struct drm_i915_private *dev_priv = dev->dev_private;
3044
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3045 3046 3047 3048 3049 3050 3051 3052 3053

	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;

	engine->mmio_base = BLT_RING_BASE;
	engine->write_tail = ring_write_tail;
	engine->flush = gen6_ring_flush;
	engine->add_request = gen6_add_request;
3054 3055
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3056
	engine->set_seqno = ring_set_seqno;
3057
	if (INTEL_INFO(dev)->gen >= 8) {
3058
		engine->irq_enable_mask =
3059
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3060 3061 3062
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3063
		if (i915_semaphore_is_enabled(dev)) {
3064 3065 3066
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_xcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
3067
		}
3068
	} else {
3069 3070 3071 3072
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3073
		if (i915_semaphore_is_enabled(dev)) {
3074 3075
			engine->semaphore.signal = gen6_signal;
			engine->semaphore.sync_to = gen6_ring_sync;
B
Ben Widawsky 已提交
3076 3077 3078 3079 3080 3081 3082
			/*
			 * The current semaphore is only applied on pre-gen8
			 * platform.  And there is no VCS2 ring on the pre-gen8
			 * platform. So the semaphore between BCS and VCS2 is
			 * initialized as INVALID.  Gen8 will initialize the
			 * sema between BCS and VCS2 later.
			 */
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
3093
		}
3094
	}
3095
	engine->init_hw = init_ring_common;
3096

3097
	return intel_init_ring_buffer(dev, engine);
3098
}
3099

B
Ben Widawsky 已提交
3100 3101
int intel_init_vebox_ring_buffer(struct drm_device *dev)
{
3102
	struct drm_i915_private *dev_priv = dev->dev_private;
3103
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
B
Ben Widawsky 已提交
3104

3105 3106 3107
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
B
Ben Widawsky 已提交
3108

3109 3110 3111 3112
	engine->mmio_base = VEBOX_RING_BASE;
	engine->write_tail = ring_write_tail;
	engine->flush = gen6_ring_flush;
	engine->add_request = gen6_add_request;
3113 3114
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3115
	engine->set_seqno = ring_set_seqno;
3116 3117

	if (INTEL_INFO(dev)->gen >= 8) {
3118
		engine->irq_enable_mask =
3119
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3120 3121 3122
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3123
		if (i915_semaphore_is_enabled(dev)) {
3124 3125 3126
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_xcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
3127
		}
3128
	} else {
3129 3130 3131 3132
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
		engine->irq_get = hsw_vebox_get_irq;
		engine->irq_put = hsw_vebox_put_irq;
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3133
		if (i915_semaphore_is_enabled(dev)) {
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
			engine->semaphore.sync_to = gen6_ring_sync;
			engine->semaphore.signal = gen6_signal;
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
3146
		}
3147
	}
3148
	engine->init_hw = init_ring_common;
B
Ben Widawsky 已提交
3149

3150
	return intel_init_ring_buffer(dev, engine);
B
Ben Widawsky 已提交
3151 3152
}

3153
int
3154
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3155
{
3156
	struct intel_engine_cs *engine = req->engine;
3157 3158
	int ret;

3159
	if (!engine->gpu_caches_dirty)
3160 3161
		return 0;

3162
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3163 3164 3165
	if (ret)
		return ret;

3166
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3167

3168
	engine->gpu_caches_dirty = false;
3169 3170 3171 3172
	return 0;
}

int
3173
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3174
{
3175
	struct intel_engine_cs *engine = req->engine;
3176 3177 3178 3179
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
3180
	if (engine->gpu_caches_dirty)
3181 3182
		flush_domains = I915_GEM_GPU_DOMAINS;

3183
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3184 3185 3186
	if (ret)
		return ret;

3187
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3188

3189
	engine->gpu_caches_dirty = false;
3190 3191
	return 0;
}
3192 3193

void
3194
intel_stop_engine(struct intel_engine_cs *engine)
3195 3196 3197
{
	int ret;

3198
	if (!intel_engine_initialized(engine))
3199 3200
		return;

3201
	ret = intel_engine_idle(engine);
3202
	if (ret)
3203
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3204
			  engine->name, ret);
3205

3206
	stop_ring(engine);
3207
}