intel_ringbuffer.c 81.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static void __intel_engine_submit(struct intel_engine_cs *engine)
62
{
63 64 65 66
	struct intel_ring *ring = engine->buffer;

	ring->tail &= ring->size - 1;
	engine->write_tail(engine, ring->tail);
67 68
}

69
static int
70
gen2_render_ring_flush(struct drm_i915_gem_request *req,
71 72 73
		       u32	invalidate_domains,
		       u32	flush_domains)
{
74
	struct intel_ring *ring = req->ring;
75 76 77 78
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
79
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
80 81 82 83 84
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

85
	ret = intel_ring_begin(req, 2);
86 87 88
	if (ret)
		return ret;

89 90 91
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
92 93 94 95 96

	return 0;
}

static int
97
gen4_render_ring_flush(struct drm_i915_gem_request *req,
98 99
		       u32	invalidate_domains,
		       u32	flush_domains)
100
{
101
	struct intel_ring *ring = req->ring;
102
	u32 cmd;
103
	int ret;
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

133 134
	cmd = MI_FLUSH;
	if (invalidate_domains) {
135
		cmd |= MI_EXE_FLUSH;
136 137 138
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
139

140
	ret = intel_ring_begin(req, 2);
141 142
	if (ret)
		return ret;
143

144 145 146
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
147 148

	return 0;
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
189
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
190
{
191
	struct intel_ring *ring = req->ring;
192 193
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
194 195
	int ret;

196
	ret = intel_ring_begin(req, 6);
197 198 199
	if (ret)
		return ret;

200 201
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
202
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
203 204 205 206 207
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
208

209
	ret = intel_ring_begin(req, 6);
210 211 212
	if (ret)
		return ret;

213 214 215 216 217 218 219
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
220 221 222 223 224

	return 0;
}

static int
225 226
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
227
{
228
	struct intel_ring *ring = req->ring;
229 230
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
231 232 233
	u32 flags = 0;
	int ret;

234
	/* Force SNB workarounds for PIPE_CONTROL flushes */
235
	ret = intel_emit_post_sync_nonzero_flush(req);
236 237 238
	if (ret)
		return ret;

239 240 241 242
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
243 244 245 246 247 248 249
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
250
		flags |= PIPE_CONTROL_CS_STALL;
251 252 253 254 255 256 257 258 259 260 261
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
262
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
263
	}
264

265
	ret = intel_ring_begin(req, 4);
266 267 268
	if (ret)
		return ret;

269 270 271 272 273
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
274 275 276 277

	return 0;
}

278
static int
279
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
280
{
281
	struct intel_ring *ring = req->ring;
282 283
	int ret;

284
	ret = intel_ring_begin(req, 4);
285 286 287
	if (ret)
		return ret;

288 289 290 291 292 293 294
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
295 296 297 298

	return 0;
}

299
static int
300
gen7_render_ring_flush(struct drm_i915_gem_request *req,
301 302
		       u32 invalidate_domains, u32 flush_domains)
{
303
	struct intel_ring *ring = req->ring;
304 305
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
306 307 308
	u32 flags = 0;
	int ret;

309 310 311 312 313 314 315 316 317 318
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

319 320 321 322 323 324 325
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
326
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
327
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
328 329 330 331 332 333 334 335
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
336
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
337 338 339 340
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
341
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342

343 344
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

345 346 347
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
348
		gen7_render_ring_cs_stall_wa(req);
349 350
	}

351
	ret = intel_ring_begin(req, 4);
352 353 354
	if (ret)
		return ret;

355 356 357 358 359
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
360 361 362 363

	return 0;
}

364
static int
365
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
366 367
		       u32 flags, u32 scratch_addr)
{
368
	struct intel_ring *ring = req->ring;
369 370
	int ret;

371
	ret = intel_ring_begin(req, 6);
372 373 374
	if (ret)
		return ret;

375 376 377 378 379 380 381
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
382 383 384 385

	return 0;
}

B
Ben Widawsky 已提交
386
static int
387
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
388 389
		       u32 invalidate_domains, u32 flush_domains)
{
390
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
391
	u32 flags = 0;
392
	int ret;
B
Ben Widawsky 已提交
393 394 395 396 397 398

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
399
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
400
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
401 402 403 404 405 406 407 408 409 410
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
411 412

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
413
		ret = gen8_emit_pipe_control(req,
414 415 416 417 418
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
419 420
	}

421
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
422 423
}

424
static void ring_write_tail(struct intel_engine_cs *engine,
425
			    u32 value)
426
{
427
	struct drm_i915_private *dev_priv = engine->i915;
428
	I915_WRITE_TAIL(engine, value);
429 430
}

431
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
432
{
433
	struct drm_i915_private *dev_priv = engine->i915;
434
	u64 acthd;
435

436
	if (INTEL_GEN(dev_priv) >= 8)
437 438
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
439
	else if (INTEL_GEN(dev_priv) >= 4)
440
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
441 442 443 444
	else
		acthd = I915_READ(ACTHD);

	return acthd;
445 446
}

447
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
448
{
449
	struct drm_i915_private *dev_priv = engine->i915;
450 451 452
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
453
	if (INTEL_GEN(dev_priv) >= 4)
454 455 456 457
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

458
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
459
{
460
	struct drm_i915_private *dev_priv = engine->i915;
461
	i915_reg_t mmio;
462 463 464 465

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
466
	if (IS_GEN7(dev_priv)) {
467
		switch (engine->id) {
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
486
	} else if (IS_GEN6(dev_priv)) {
487
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
488 489
	} else {
		/* XXX: gen8 returns to sanity */
490
		mmio = RING_HWS_PGA(engine->mmio_base);
491 492
	}

493
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
494 495 496 497 498 499 500 501 502
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
503
	if (IS_GEN(dev_priv, 6, 7)) {
504
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
505 506

		/* ring should be idle before issuing a sync flush*/
507
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
508 509 510 511

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
512 513 514
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
515
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
516
				  engine->name);
517 518 519
	}
}

520
static bool stop_ring(struct intel_engine_cs *engine)
521
{
522
	struct drm_i915_private *dev_priv = engine->i915;
523

524
	if (!IS_GEN2(dev_priv)) {
525
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
526 527 528 529 530
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
531 532
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
533 534 535 536
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
537
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
538
				return false;
539 540
		}
	}
541

542 543 544
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
545

546
	if (!IS_GEN2(dev_priv)) {
547 548
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
549
	}
550

551
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
552
}
553

554
static int init_ring_common(struct intel_engine_cs *engine)
555
{
556
	struct drm_i915_private *dev_priv = engine->i915;
557 558
	struct intel_ring *ring = engine->buffer;
	struct drm_i915_gem_object *obj = ring->obj;
559 560
	int ret = 0;

561
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
562

563
	if (!stop_ring(engine)) {
564
		/* G45 ring initialization often fails to reset head to zero */
565 566
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
567 568 569 570 571
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
572

573
		if (!stop_ring(engine)) {
574 575
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
576 577 578 579 580
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
581 582
			ret = -EIO;
			goto out;
583
		}
584 585
	}

586
	if (I915_NEED_GFX_HWS(dev_priv))
587
		intel_ring_setup_status_page(engine);
588
	else
589
		ring_setup_phys_status_page(engine);
590

591
	/* Enforce ordering by reading HEAD register back */
592
	I915_READ_HEAD(engine);
593

594 595 596 597
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
598
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
599 600

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
601
	if (I915_READ_HEAD(engine))
602
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
603 604 605
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
606

607
	I915_WRITE_CTL(engine,
608
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
609
			| RING_VALID);
610 611

	/* If the head is still not zero, the ring is dead */
612 613 614
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
615
		DRM_ERROR("%s initialization failed "
616
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
617 618 619 620 621 622
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
623 624
		ret = -EIO;
		goto out;
625 626
	}

627 628 629 630
	ring->last_retired_head = -1;
	ring->head = I915_READ_HEAD(engine);
	ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
	intel_ring_update_space(ring);
631

632
	intel_engine_init_hangcheck(engine);
633

634
out:
635
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
636 637

	return ret;
638 639
}

640
void intel_fini_pipe_control(struct intel_engine_cs *engine)
641
{
642
	if (engine->scratch.obj == NULL)
643 644
		return;

645
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
646
	i915_gem_object_put(engine->scratch.obj);
647
	engine->scratch.obj = NULL;
648 649
}

650
int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
651
{
652
	struct drm_i915_gem_object *obj;
653 654
	int ret;

655
	WARN_ON(engine->scratch.obj);
656

657
	obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
658
	if (!obj)
659
		obj = i915_gem_object_create(&engine->i915->drm, size);
660 661 662
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		ret = PTR_ERR(obj);
663 664
		goto err;
	}
665

666
	ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
667 668
	if (ret)
		goto err_unref;
669

670 671
	engine->scratch.obj = obj;
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
672
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
673
			 engine->name, engine->scratch.gtt_offset);
674 675 676
	return 0;

err_unref:
677
	i915_gem_object_put(engine->scratch.obj);
678 679 680 681
err:
	return ret;
}

682
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
683
{
684
	struct intel_ring *ring = req->ring;
685 686
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
687

688
	if (w->count == 0)
689
		return 0;
690

691
	req->engine->gpu_caches_dirty = true;
692
	ret = intel_engine_flush_all_caches(req);
693 694
	if (ret)
		return ret;
695

696
	ret = intel_ring_begin(req, (w->count * 2 + 2));
697 698 699
	if (ret)
		return ret;

700
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
701
	for (i = 0; i < w->count; i++) {
702 703
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
704
	}
705
	intel_ring_emit(ring, MI_NOOP);
706

707
	intel_ring_advance(ring);
708

709
	req->engine->gpu_caches_dirty = true;
710
	ret = intel_engine_flush_all_caches(req);
711 712
	if (ret)
		return ret;
713

714
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
715

716
	return 0;
717 718
}

719
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
720 721 722
{
	int ret;

723
	ret = intel_ring_workarounds_emit(req);
724 725 726
	if (ret != 0)
		return ret;

727
	ret = i915_gem_render_state_init(req);
728
	if (ret)
729
		return ret;
730

731
	return 0;
732 733
}

734
static int wa_add(struct drm_i915_private *dev_priv,
735 736
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
737 738 739 740 741 742 743 744 745 746 747 748 749
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
750 751
}

752
#define WA_REG(addr, mask, val) do { \
753
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
754 755
		if (r) \
			return r; \
756
	} while (0)
757 758

#define WA_SET_BIT_MASKED(addr, mask) \
759
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
760 761

#define WA_CLR_BIT_MASKED(addr, mask) \
762
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
763

764
#define WA_SET_FIELD_MASKED(addr, mask, value) \
765
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
766

767 768
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
769

770
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
771

772 773
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
774
{
775
	struct drm_i915_private *dev_priv = engine->i915;
776
	struct i915_workarounds *wa = &dev_priv->workarounds;
777
	const uint32_t index = wa->hw_whitelist_count[engine->id];
778 779 780 781

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

782
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
783
		 i915_mmio_reg_offset(reg));
784
	wa->hw_whitelist_count[engine->id]++;
785 786 787 788

	return 0;
}

789
static int gen8_init_workarounds(struct intel_engine_cs *engine)
790
{
791
	struct drm_i915_private *dev_priv = engine->i915;
792 793

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
794

795 796 797
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

798 799 800 801
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

802 803 804 805 806
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
807
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
808
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
809
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
810 811
			  HDC_FORCE_NON_COHERENT);

812 813 814 815 816 817 818 819 820 821
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

822 823 824
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

825 826 827 828 829 830 831 832 833 834 835 836
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

837 838 839
	return 0;
}

840
static int bdw_init_workarounds(struct intel_engine_cs *engine)
841
{
842
	struct drm_i915_private *dev_priv = engine->i915;
843
	int ret;
844

845
	ret = gen8_init_workarounds(engine);
846 847 848
	if (ret)
		return ret;

849
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
850
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
851

852
	/* WaDisableDopClockGating:bdw */
853 854
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
855

856 857
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
858

859
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
860 861 862
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
863
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
864 865 866 867

	return 0;
}

868
static int chv_init_workarounds(struct intel_engine_cs *engine)
869
{
870
	struct drm_i915_private *dev_priv = engine->i915;
871
	int ret;
872

873
	ret = gen8_init_workarounds(engine);
874 875 876
	if (ret)
		return ret;

877
	/* WaDisableThreadStallDopClockGating:chv */
878
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
879

880 881 882
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

883 884 885
	return 0;
}

886
static int gen9_init_workarounds(struct intel_engine_cs *engine)
887
{
888
	struct drm_i915_private *dev_priv = engine->i915;
889
	int ret;
890

891 892 893
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

894
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
895 896 897
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

898
	/* WaDisableKillLogic:bxt,skl,kbl */
899 900 901
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

902 903
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
904
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
905
			  FLOW_CONTROL_ENABLE |
906 907
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

908
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
909 910 911
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

912
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
913 914
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
915 916
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
917

918
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
919 920
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
921 922
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
923 924 925 926 927
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
928 929
	}

930 931
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
932 933 934
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
935

936 937
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
938 939
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
940

941
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
942 943 944
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

945
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
946 947
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
948 949 950
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

951 952 953 954
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

977 978 979 980
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
981 982 983
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

984
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
985 986
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

987
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
988 989 990
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

991 992 993 994 995
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

996
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
997
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
998 999 1000
	if (ret)
		return ret;

1001
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1002
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1003 1004 1005
	if (ret)
		return ret;

1006 1007 1008
	return 0;
}

1009
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1010
{
1011
	struct drm_i915_private *dev_priv = engine->i915;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1022
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1050
static int skl_init_workarounds(struct intel_engine_cs *engine)
1051
{
1052
	struct drm_i915_private *dev_priv = engine->i915;
1053
	int ret;
1054

1055
	ret = gen9_init_workarounds(engine);
1056 1057
	if (ret)
		return ret;
1058

1059 1060 1061 1062 1063
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1064
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1065 1066 1067 1068
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1069
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1070 1071 1072 1073 1074 1075 1076 1077
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1078
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1079 1080 1081 1082 1083
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1084
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1085 1086 1087 1088
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1089
	/* WaDisablePowerCompilerClockGating:skl */
1090
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1091 1092 1093
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1094
	/* WaBarrierPerformanceFixDisable:skl */
1095
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1096 1097 1098 1099
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1100
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1101
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1102 1103 1104 1105
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1106 1107 1108
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1109 1110 1111 1112 1113
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1114
	/* WaDisableLSQCROPERFforOCL:skl */
1115
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1116 1117 1118
	if (ret)
		return ret;

1119
	return skl_tune_iz_hashing(engine);
1120 1121
}

1122
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1123
{
1124
	struct drm_i915_private *dev_priv = engine->i915;
1125
	int ret;
1126

1127
	ret = gen9_init_workarounds(engine);
1128 1129
	if (ret)
		return ret;
1130

1131 1132
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1133
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1134 1135 1136
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1137
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1138 1139 1140 1141
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1142 1143 1144 1145
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1146 1147 1148 1149 1150 1151
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1152
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1153
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1154 1155 1156 1157 1158
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1159 1160 1161
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1162
	/* WaDisableLSQCROPERFforOCL:bxt */
1163
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1164
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1165 1166
		if (ret)
			return ret;
1167

1168
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1169 1170
		if (ret)
			return ret;
1171 1172
	}

1173
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1174
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1175 1176
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1177

1178 1179 1180 1181 1182
	/* WaInsertDummyPushConstPs:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1183 1184 1185 1186 1187
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1188 1189 1190
	return 0;
}

1191 1192
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1193
	struct drm_i915_private *dev_priv = engine->i915;
1194 1195 1196 1197 1198 1199
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1200 1201 1202 1203
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1204 1205 1206 1207 1208
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1209 1210 1211 1212 1213
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1214 1215 1216 1217 1218 1219 1220 1221
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1222 1223 1224 1225 1226
	/* WaInsertDummyPushConstPs:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1227 1228 1229
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1230 1231 1232 1233 1234
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1235 1236 1237 1238
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1239 1240 1241 1242 1243
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1244 1245 1246
	return 0;
}

1247
int init_workarounds_ring(struct intel_engine_cs *engine)
1248
{
1249
	struct drm_i915_private *dev_priv = engine->i915;
1250

1251
	WARN_ON(engine->id != RCS);
1252 1253

	dev_priv->workarounds.count = 0;
1254
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1255

1256
	if (IS_BROADWELL(dev_priv))
1257
		return bdw_init_workarounds(engine);
1258

1259
	if (IS_CHERRYVIEW(dev_priv))
1260
		return chv_init_workarounds(engine);
1261

1262
	if (IS_SKYLAKE(dev_priv))
1263
		return skl_init_workarounds(engine);
1264

1265
	if (IS_BROXTON(dev_priv))
1266
		return bxt_init_workarounds(engine);
1267

1268 1269 1270
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1271 1272 1273
	return 0;
}

1274
static int init_render_ring(struct intel_engine_cs *engine)
1275
{
1276
	struct drm_i915_private *dev_priv = engine->i915;
1277
	int ret = init_ring_common(engine);
1278 1279
	if (ret)
		return ret;
1280

1281
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1282
	if (IS_GEN(dev_priv, 4, 6))
1283
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1284 1285 1286 1287

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1288
	 *
1289
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1290
	 */
1291
	if (IS_GEN(dev_priv, 6, 7))
1292 1293
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1294
	/* Required for the hardware to program scanline values for waiting */
1295
	/* WaEnableFlushTlbInvalidationMode:snb */
1296
	if (IS_GEN6(dev_priv))
1297
		I915_WRITE(GFX_MODE,
1298
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1299

1300
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1301
	if (IS_GEN7(dev_priv))
1302
		I915_WRITE(GFX_MODE_GEN7,
1303
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1304
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1305

1306
	if (IS_GEN6(dev_priv)) {
1307 1308 1309 1310 1311 1312
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1313
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1314 1315
	}

1316
	if (IS_GEN(dev_priv, 6, 7))
1317
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1318

1319 1320
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1321

1322
	return init_workarounds_ring(engine);
1323 1324
}

1325
static void render_ring_cleanup(struct intel_engine_cs *engine)
1326
{
1327
	struct drm_i915_private *dev_priv = engine->i915;
1328 1329 1330

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1331
		i915_gem_object_put(dev_priv->semaphore_obj);
1332 1333
		dev_priv->semaphore_obj = NULL;
	}
1334

1335
	intel_fini_pipe_control(engine);
1336 1337
}

1338
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1339 1340 1341
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1342
	struct intel_ring *signaller = signaller_req->ring;
1343
	struct drm_i915_private *dev_priv = signaller_req->i915;
1344
	struct intel_engine_cs *waiter;
1345 1346
	enum intel_engine_id id;
	int ret, num_rings;
1347

1348
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1349 1350 1351
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1352
	ret = intel_ring_begin(signaller_req, num_dwords);
1353 1354 1355
	if (ret)
		return ret;

1356
	for_each_engine_id(waiter, dev_priv, id) {
1357 1358
		u64 gtt_offset =
			signaller_req->engine->semaphore.signal_ggtt[id];
1359 1360 1361 1362
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1363 1364 1365 1366
		intel_ring_emit(signaller,
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1367 1368
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1369
		intel_ring_emit(signaller, signaller_req->fence.seqno);
1370
		intel_ring_emit(signaller, 0);
1371 1372 1373
		intel_ring_emit(signaller,
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1374 1375 1376 1377 1378 1379
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1380
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1381 1382 1383
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1384
	struct intel_ring *signaller = signaller_req->ring;
1385
	struct drm_i915_private *dev_priv = signaller_req->i915;
1386
	struct intel_engine_cs *waiter;
1387 1388
	enum intel_engine_id id;
	int ret, num_rings;
1389

1390
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1391 1392 1393
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1394
	ret = intel_ring_begin(signaller_req, num_dwords);
1395 1396 1397
	if (ret)
		return ret;

1398
	for_each_engine_id(waiter, dev_priv, id) {
1399 1400
		u64 gtt_offset =
			signaller_req->engine->semaphore.signal_ggtt[id];
1401 1402 1403
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1404 1405 1406 1407 1408
		intel_ring_emit(signaller,
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller,
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1409
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1410
		intel_ring_emit(signaller, signaller_req->fence.seqno);
1411 1412 1413
		intel_ring_emit(signaller,
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1414 1415 1416 1417 1418 1419
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1420
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1421
		       unsigned int num_dwords)
1422
{
1423
	struct intel_ring *signaller = signaller_req->ring;
1424
	struct drm_i915_private *dev_priv = signaller_req->i915;
1425
	struct intel_engine_cs *useless;
1426 1427
	enum intel_engine_id id;
	int ret, num_rings;
1428

1429
#define MBOX_UPDATE_DWORDS 3
1430
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1431 1432
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1433

1434
	ret = intel_ring_begin(signaller_req, num_dwords);
1435 1436 1437
	if (ret)
		return ret;

1438
	for_each_engine_id(useless, dev_priv, id) {
1439 1440
		i915_reg_t mbox_reg =
			signaller_req->engine->semaphore.mbox.signal[id];
1441 1442

		if (i915_mmio_reg_valid(mbox_reg)) {
1443
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1444
			intel_ring_emit_reg(signaller, mbox_reg);
1445
			intel_ring_emit(signaller, signaller_req->fence.seqno);
1446 1447
		}
	}
1448

1449 1450 1451 1452
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1453
	return 0;
1454 1455
}

1456 1457
/**
 * gen6_add_request - Update the semaphore mailbox registers
1458 1459
 *
 * @request - request to write to the ring
1460 1461 1462 1463
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1464
static int
1465
gen6_add_request(struct drm_i915_gem_request *req)
1466
{
1467
	struct intel_engine_cs *engine = req->engine;
1468
	struct intel_ring *ring = req->ring;
1469
	int ret;
1470

1471 1472
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1473
	else
1474
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1475

1476 1477 1478
	if (ret)
		return ret;

1479 1480 1481 1482 1483
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	__intel_engine_submit(engine);
1484 1485 1486 1487

	return 0;
}

1488 1489 1490 1491
static int
gen8_render_add_request(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
1492
	struct intel_ring *ring = req->ring;
1493 1494 1495 1496 1497 1498 1499 1500 1501
	int ret;

	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 8);
	else
		ret = intel_ring_begin(req, 8);
	if (ret)
		return ret;

1502 1503 1504 1505 1506 1507 1508
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1509
	/* We're thrashing one dword of HWS. */
1510 1511 1512 1513
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
	__intel_engine_submit(engine);
1514 1515 1516 1517

	return 0;
}

1518
static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1519 1520 1521 1522 1523
					      u32 seqno)
{
	return dev_priv->last_seqno < seqno;
}

1524 1525 1526 1527 1528 1529 1530
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1531 1532

static int
1533
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1534 1535 1536
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1537
	struct intel_ring *waiter = waiter_req->ring;
1538
	struct drm_i915_private *dev_priv = waiter_req->i915;
1539
	u64 offset = GEN8_WAIT_OFFSET(waiter_req->engine, signaller->id);
1540
	struct i915_hw_ppgtt *ppgtt;
1541 1542
	int ret;

1543
	ret = intel_ring_begin(waiter_req, 4);
1544 1545 1546 1547 1548 1549 1550
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
1551 1552
	intel_ring_emit(waiter, lower_32_bits(offset));
	intel_ring_emit(waiter, upper_32_bits(offset));
1553
	intel_ring_advance(waiter);
1554 1555 1556 1557 1558 1559 1560 1561 1562

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
	ppgtt = waiter_req->ctx->ppgtt;
	if (ppgtt && waiter_req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1563 1564 1565
	return 0;
}

1566
static int
1567
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1568
	       struct intel_engine_cs *signaller,
1569
	       u32 seqno)
1570
{
1571
	struct intel_ring *waiter = waiter_req->ring;
1572 1573 1574
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1575
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter_req->engine->id];
1576
	int ret;
1577

1578 1579 1580 1581 1582 1583
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1584
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1585

1586
	ret = intel_ring_begin(waiter_req, 4);
1587 1588 1589
	if (ret)
		return ret;

1590
	/* If seqno wrap happened, omit the wait with no-ops */
1591
	if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1592
		intel_ring_emit(waiter, dw1 | wait_mbox);
1593 1594 1595 1596 1597 1598 1599 1600 1601
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1602
	intel_ring_advance(waiter);
1603 1604 1605 1606

	return 0;
}

1607
static void
1608
gen5_seqno_barrier(struct intel_engine_cs *engine)
1609
{
1610 1611 1612
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1613
	 *
1614 1615 1616 1617 1618 1619 1620
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1621
	 */
1622
	usleep_range(125, 250);
1623 1624
}

1625 1626
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1627
{
1628
	struct drm_i915_private *dev_priv = engine->i915;
1629

1630 1631
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1632 1633 1634 1635 1636 1637 1638 1639 1640
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1641 1642 1643
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1644
	 */
1645
	spin_lock_irq(&dev_priv->uncore.lock);
1646
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1647
	spin_unlock_irq(&dev_priv->uncore.lock);
1648 1649
}

1650 1651
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1652
{
1653
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1654 1655 1656
}

static void
1657
gen5_irq_disable(struct intel_engine_cs *engine)
1658
{
1659
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1660 1661
}

1662 1663
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1664
{
1665
	struct drm_i915_private *dev_priv = engine->i915;
1666

1667 1668 1669
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1670 1671
}

1672
static void
1673
i9xx_irq_disable(struct intel_engine_cs *engine)
1674
{
1675
	struct drm_i915_private *dev_priv = engine->i915;
1676

1677 1678
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1679 1680
}

1681 1682
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1683
{
1684
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1685

1686 1687 1688
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1689 1690 1691
}

static void
1692
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1693
{
1694
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1695

1696 1697
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1698 1699
}

1700
static int
1701
bsd_ring_flush(struct drm_i915_gem_request *req,
1702 1703
	       u32     invalidate_domains,
	       u32     flush_domains)
1704
{
1705
	struct intel_ring *ring = req->ring;
1706 1707
	int ret;

1708
	ret = intel_ring_begin(req, 2);
1709 1710 1711
	if (ret)
		return ret;

1712 1713 1714
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1715
	return 0;
1716 1717
}

1718
static int
1719
i9xx_add_request(struct drm_i915_gem_request *req)
1720
{
1721
	struct intel_ring *ring = req->ring;
1722 1723
	int ret;

1724
	ret = intel_ring_begin(req, 4);
1725 1726
	if (ret)
		return ret;
1727

1728 1729 1730 1731 1732
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	__intel_engine_submit(req->engine);
1733

1734
	return 0;
1735 1736
}

1737 1738
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1739
{
1740
	struct drm_i915_private *dev_priv = engine->i915;
1741

1742 1743 1744
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1745
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1746 1747 1748
}

static void
1749
gen6_irq_disable(struct intel_engine_cs *engine)
1750
{
1751
	struct drm_i915_private *dev_priv = engine->i915;
1752

1753
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1754
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1755 1756
}

1757 1758
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1759
{
1760
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1761

1762 1763
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1764 1765 1766
}

static void
1767
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1768
{
1769
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1770

1771 1772
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1773 1774
}

1775 1776
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1777
{
1778
	struct drm_i915_private *dev_priv = engine->i915;
1779

1780 1781 1782
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1783
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1784 1785 1786
}

static void
1787
gen8_irq_disable(struct intel_engine_cs *engine)
1788
{
1789
	struct drm_i915_private *dev_priv = engine->i915;
1790

1791
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1792 1793
}

1794
static int
1795
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1796
			 u64 offset, u32 length,
1797
			 unsigned dispatch_flags)
1798
{
1799
	struct intel_ring *ring = req->ring;
1800
	int ret;
1801

1802
	ret = intel_ring_begin(req, 2);
1803 1804 1805
	if (ret)
		return ret;

1806
	intel_ring_emit(ring,
1807 1808
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1809 1810
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1811 1812
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1813

1814 1815 1816
	return 0;
}

1817 1818
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1819 1820
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1821
static int
1822
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1823 1824
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
1825
{
1826
	struct intel_ring *ring = req->ring;
1827
	u32 cs_offset = req->engine->scratch.gtt_offset;
1828
	int ret;
1829

1830
	ret = intel_ring_begin(req, 6);
1831 1832
	if (ret)
		return ret;
1833

1834
	/* Evict the invalid PTE TLBs */
1835 1836 1837 1838 1839 1840 1841
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1842

1843
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1844 1845 1846
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1847
		ret = intel_ring_begin(req, 6 + 2);
1848 1849
		if (ret)
			return ret;
1850 1851 1852 1853 1854

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1855 1856
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1857
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1858 1859 1860 1861
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1862

1863 1864 1865
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1866 1867

		/* ... and execute it. */
1868
		offset = cs_offset;
1869
	}
1870

1871
	ret = intel_ring_begin(req, 2);
1872 1873 1874
	if (ret)
		return ret;

1875 1876 1877 1878
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1879

1880 1881 1882 1883
	return 0;
}

static int
1884
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1885
			 u64 offset, u32 len,
1886
			 unsigned dispatch_flags)
1887
{
1888
	struct intel_ring *ring = req->ring;
1889 1890
	int ret;

1891
	ret = intel_ring_begin(req, 2);
1892 1893 1894
	if (ret)
		return ret;

1895 1896 1897 1898
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1899 1900 1901 1902

	return 0;
}

1903
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1904
{
1905
	struct drm_i915_private *dev_priv = engine->i915;
1906 1907 1908 1909

	if (!dev_priv->status_page_dmah)
		return;

1910
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1911
	engine->status_page.page_addr = NULL;
1912 1913
}

1914
static void cleanup_status_page(struct intel_engine_cs *engine)
1915
{
1916
	struct drm_i915_gem_object *obj;
1917

1918
	obj = engine->status_page.obj;
1919
	if (obj == NULL)
1920 1921
		return;

1922
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
1923
	i915_gem_object_ggtt_unpin(obj);
1924
	i915_gem_object_put(obj);
1925
	engine->status_page.obj = NULL;
1926 1927
}

1928
static int init_status_page(struct intel_engine_cs *engine)
1929
{
1930
	struct drm_i915_gem_object *obj = engine->status_page.obj;
1931

1932
	if (obj == NULL) {
1933
		unsigned flags;
1934
		int ret;
1935

1936
		obj = i915_gem_object_create(&engine->i915->drm, 4096);
1937
		if (IS_ERR(obj)) {
1938
			DRM_ERROR("Failed to allocate status page\n");
1939
			return PTR_ERR(obj);
1940
		}
1941

1942 1943 1944 1945
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

1946
		flags = 0;
1947
		if (!HAS_LLC(engine->i915))
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1960 1961
		if (ret) {
err_unref:
1962
			i915_gem_object_put(obj);
1963 1964 1965
			return ret;
		}

1966
		engine->status_page.obj = obj;
1967
	}
1968

1969 1970 1971
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1972

1973
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1974
			engine->name, engine->status_page.gfx_addr);
1975 1976 1977 1978

	return 0;
}

1979
static int init_phys_status_page(struct intel_engine_cs *engine)
1980
{
1981
	struct drm_i915_private *dev_priv = engine->i915;
1982 1983 1984

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
1985
			drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1986 1987 1988 1989
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

1990 1991
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1992 1993 1994 1995

	return 0;
}

1996
int intel_ring_pin(struct intel_ring *ring)
1997
{
1998
	struct drm_i915_private *dev_priv = ring->engine->i915;
1999
	struct drm_i915_gem_object *obj = ring->obj;
2000 2001
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2002
	void *addr;
2003 2004
	int ret;

2005
	if (HAS_LLC(dev_priv) && !obj->stolen) {
2006
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2007 2008
		if (ret)
			return ret;
2009

2010
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2011 2012
		if (ret)
			goto err_unpin;
2013

2014 2015 2016
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2017
			goto err_unpin;
2018 2019
		}
	} else {
2020 2021
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
2022 2023
		if (ret)
			return ret;
2024

2025
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2026 2027
		if (ret)
			goto err_unpin;
2028

2029 2030 2031
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2032 2033
		addr = (void __force *)
			i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2034 2035
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2036
			goto err_unpin;
2037
		}
2038 2039
	}

2040 2041
	ring->vaddr = addr;
	ring->vma = i915_gem_obj_to_ggtt(obj);
2042
	return 0;
2043 2044 2045 2046

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2047 2048
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

	if (HAS_LLC(ring->engine->i915) && !ring->obj->stolen)
		i915_gem_object_unpin_map(ring->obj);
	else
		i915_vma_unpin_iomap(ring->vma);
	ring->vaddr = NULL;

	i915_gem_object_ggtt_unpin(ring->obj);
	ring->vma = NULL;
}

2064
static void intel_destroy_ringbuffer_obj(struct intel_ring *ring)
2065
{
2066 2067
	i915_gem_object_put(ring->obj);
	ring->obj = NULL;
2068 2069
}

2070
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2071
				      struct intel_ring *ring)
2072
{
2073
	struct drm_i915_gem_object *obj;
2074

2075 2076
	obj = NULL;
	if (!HAS_LLC(dev))
2077
		obj = i915_gem_object_create_stolen(dev, ring->size);
2078
	if (obj == NULL)
2079
		obj = i915_gem_object_create(dev, ring->size);
2080 2081
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2082

2083 2084 2085
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2086
	ring->obj = obj;
2087

2088
	return 0;
2089 2090
}

2091 2092
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
2093
{
2094
	struct intel_ring *ring;
2095 2096 2097
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2098 2099 2100
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2101
		return ERR_PTR(-ENOMEM);
2102
	}
2103

2104
	ring->engine = engine;
2105
	list_add(&ring->link, &engine->buffers);
2106 2107 2108 2109 2110 2111 2112

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2113
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2114 2115 2116 2117 2118
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2119
	ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2120
	if (ret) {
2121 2122 2123
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2124 2125 2126 2127 2128 2129 2130 2131
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
2132
intel_ring_free(struct intel_ring *ring)
2133 2134
{
	intel_destroy_ringbuffer_obj(ring);
2135
	list_del(&ring->link);
2136 2137 2138
	kfree(ring);
}

2139 2140 2141 2142 2143 2144
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2145
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
		ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
		if (ret)
			goto error;
	}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2166
	i915_gem_context_get(ctx);
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2179
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2180 2181 2182 2183 2184 2185 2186

	if (--ce->pin_count)
		return;

	if (ce->state)
		i915_gem_object_ggtt_unpin(ce->state);

2187
	i915_gem_context_put(ctx);
2188 2189
}

2190
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2191
{
2192
	struct drm_i915_private *dev_priv = engine->i915;
2193
	struct intel_ring *ring;
2194 2195
	int ret;

2196
	WARN_ON(engine->buffer);
2197

2198 2199
	intel_engine_setup_common(engine);

2200 2201
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2202

2203
	ret = intel_engine_init_common(engine);
2204 2205
	if (ret)
		goto error;
2206

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2218 2219 2220
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2221 2222
		goto error;
	}
2223
	engine->buffer = ring;
2224

2225
	if (I915_NEED_GFX_HWS(dev_priv)) {
2226
		ret = init_status_page(engine);
2227
		if (ret)
2228
			goto error;
2229
	} else {
2230 2231
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2232
		if (ret)
2233
			goto error;
2234 2235
	}

2236
	ret = intel_ring_pin(ring);
2237 2238
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2239
				engine->name, ret);
2240
		intel_destroy_ringbuffer_obj(ring);
2241
		goto error;
2242
	}
2243

2244
	return 0;
2245

2246
error:
2247
	intel_engine_cleanup(engine);
2248
	return ret;
2249 2250
}

2251
void intel_engine_cleanup(struct intel_engine_cs *engine)
2252
{
2253
	struct drm_i915_private *dev_priv;
2254

2255
	if (!intel_engine_initialized(engine))
2256 2257
		return;

2258
	dev_priv = engine->i915;
2259

2260
	if (engine->buffer) {
2261
		intel_engine_stop(engine);
2262
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2263

2264
		intel_ring_unpin(engine->buffer);
2265
		intel_ring_free(engine->buffer);
2266
		engine->buffer = NULL;
2267
	}
2268

2269 2270
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2271

2272
	if (I915_NEED_GFX_HWS(dev_priv)) {
2273
		cleanup_status_page(engine);
2274
	} else {
2275 2276
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2277
	}
2278

2279
	intel_engine_cleanup_cmd_parser(engine);
2280
	i915_gem_batch_pool_fini(&engine->batch_pool);
2281
	intel_engine_fini_breadcrumbs(engine);
2282 2283 2284

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2285
	engine->i915 = NULL;
2286 2287
}

2288
int intel_engine_idle(struct intel_engine_cs *engine)
2289
{
2290
	struct drm_i915_gem_request *req;
2291 2292

	/* Wait upon the last request to be completed */
2293
	if (list_empty(&engine->request_list))
2294 2295
		return 0;

2296 2297 2298
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2299 2300 2301

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2302
				   req->i915->mm.interruptible,
2303
				   NULL, NULL);
2304 2305
}

2306
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2307
{
2308 2309 2310 2311 2312 2313
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2314
	request->reserved_space += LEGACY_REQUEST_SIZE;
2315

2316
	request->ring = request->engine->buffer;
2317 2318 2319 2320 2321

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2322
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2323
	return 0;
2324 2325
}

2326 2327
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2328
	struct intel_ring *ring = req->ring;
2329 2330 2331
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *target;

2332 2333
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2345
	GEM_BUG_ON(!req->reserved_space);
2346 2347 2348 2349

	list_for_each_entry(target, &engine->request_list, list) {
		unsigned space;

2350
		/*
2351 2352 2353
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
2354
		 */
2355
		if (target->ring != ring)
2356 2357 2358
			continue;

		/* Would completion of this request free enough space? */
2359 2360
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2361 2362
		if (space >= bytes)
			break;
2363
	}
2364

2365 2366 2367 2368
	if (WARN_ON(&target->list == &engine->request_list))
		return -ENOSPC;

	return i915_wait_request(target);
2369 2370
}

2371
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2372
{
2373
	struct intel_ring *ring = req->ring;
2374 2375
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2376 2377
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2378
	bool need_wrap = false;
2379

2380
	total_bytes = bytes + req->reserved_space;
2381

2382 2383 2384 2385 2386 2387 2388
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2389 2390 2391 2392 2393 2394 2395
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2396
		wait_bytes = remain_actual + req->reserved_space;
2397
	} else {
2398 2399
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2400 2401
	}

2402
	if (wait_bytes > ring->space) {
2403
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2404 2405
		if (unlikely(ret))
			return ret;
2406

2407 2408
		intel_ring_update_space(ring);
		if (unlikely(ring->space < wait_bytes))
2409
			return -EAGAIN;
M
Mika Kuoppala 已提交
2410 2411
	}

2412
	if (unlikely(need_wrap)) {
2413 2414
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2415

2416
		/* Fill the tail with MI_NOOP */
2417 2418 2419
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2420
	}
2421

2422 2423
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2424
	return 0;
2425
}
2426

2427
/* Align the ring tail to a cacheline boundary */
2428
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2429
{
2430
	struct intel_ring *ring = req->ring;
2431 2432
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2433 2434 2435 2436 2437
	int ret;

	if (num_dwords == 0)
		return 0;

2438
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2439
	ret = intel_ring_begin(req, num_dwords);
2440 2441 2442 2443
	if (ret)
		return ret;

	while (num_dwords--)
2444
		intel_ring_emit(ring, MI_NOOP);
2445

2446
	intel_ring_advance(ring);
2447 2448 2449 2450

	return 0;
}

2451
void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2452
{
2453
	struct drm_i915_private *dev_priv = engine->i915;
2454

2455 2456 2457 2458 2459 2460 2461 2462
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2463
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2464 2465
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2466
		if (HAS_VEBOX(dev_priv))
2467
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2468
	}
2469 2470 2471 2472 2473 2474 2475 2476
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2477 2478
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2479

2480 2481 2482
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);
2483
	engine->last_submitted_seqno = seqno;
2484

2485
	engine->hangcheck.seqno = seqno;
2486 2487 2488 2489 2490 2491 2492

	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	rcu_read_lock();
	intel_engine_wakeup(engine);
	rcu_read_unlock();
2493
}
2494

2495
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2496
				     u32 value)
2497
{
2498
	struct drm_i915_private *dev_priv = engine->i915;
2499

2500 2501
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2502
       /* Every tail move must follow the sequence below */
2503 2504 2505 2506

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2507 2508
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2509 2510

	/* Clear the context id. Here be magic! */
2511
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2512

2513
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2514 2515 2516 2517 2518
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2519
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2520

2521
	/* Now that the ring is fully powered up, update the tail */
2522 2523
	I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
	POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2524 2525 2526 2527

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2528 2529 2530 2531
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2532 2533
}

2534
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2535
			       u32 invalidate, u32 flush)
2536
{
2537
	struct intel_ring *ring = req->ring;
2538
	uint32_t cmd;
2539 2540
	int ret;

2541
	ret = intel_ring_begin(req, 4);
2542 2543 2544
	if (ret)
		return ret;

2545
	cmd = MI_FLUSH_DW;
2546
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2547
		cmd += 1;
2548 2549 2550 2551 2552 2553 2554 2555

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2556 2557 2558 2559 2560 2561
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2562
	if (invalidate & I915_GEM_GPU_DOMAINS)
2563 2564
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2565 2566
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2567
	if (INTEL_GEN(req->i915) >= 8) {
2568 2569
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2570
	} else  {
2571 2572
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2573
	}
2574
	intel_ring_advance(ring);
2575
	return 0;
2576 2577
}

2578
static int
2579
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2580
			      u64 offset, u32 len,
2581
			      unsigned dispatch_flags)
2582
{
2583
	struct intel_ring *ring = req->ring;
2584
	bool ppgtt = USES_PPGTT(req->i915) &&
2585
			!(dispatch_flags & I915_DISPATCH_SECURE);
2586 2587
	int ret;

2588
	ret = intel_ring_begin(req, 4);
2589 2590 2591 2592
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2593
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2594 2595
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2596 2597 2598 2599
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2600 2601 2602 2603

	return 0;
}

2604
static int
2605
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2606 2607
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2608
{
2609
	struct intel_ring *ring = req->ring;
2610 2611
	int ret;

2612
	ret = intel_ring_begin(req, 2);
2613 2614 2615
	if (ret)
		return ret;

2616
	intel_ring_emit(ring,
2617
			MI_BATCH_BUFFER_START |
2618
			(dispatch_flags & I915_DISPATCH_SECURE ?
2619 2620 2621
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2622
	/* bit0-7 is the length on GEN6+ */
2623 2624
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2625 2626 2627 2628

	return 0;
}

2629
static int
2630
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2631
			      u64 offset, u32 len,
2632
			      unsigned dispatch_flags)
2633
{
2634
	struct intel_ring *ring = req->ring;
2635
	int ret;
2636

2637
	ret = intel_ring_begin(req, 2);
2638 2639
	if (ret)
		return ret;
2640

2641
	intel_ring_emit(ring,
2642
			MI_BATCH_BUFFER_START |
2643 2644
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2645
	/* bit0-7 is the length on GEN6+ */
2646 2647
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2648

2649
	return 0;
2650 2651
}

2652 2653
/* Blitter support (SandyBridge+) */

2654
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2655
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2656
{
2657
	struct intel_ring *ring = req->ring;
2658
	uint32_t cmd;
2659 2660
	int ret;

2661
	ret = intel_ring_begin(req, 4);
2662 2663 2664
	if (ret)
		return ret;

2665
	cmd = MI_FLUSH_DW;
2666
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2667
		cmd += 1;
2668 2669 2670 2671 2672 2673 2674 2675

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2676 2677 2678 2679 2680 2681
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2682
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2683
		cmd |= MI_INVALIDATE_TLB;
2684 2685
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2686
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2687
	if (INTEL_GEN(req->i915) >= 8) {
2688 2689
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2690
	} else  {
2691 2692
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2693
	}
2694
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2695

2696
	return 0;
Z
Zou Nan hai 已提交
2697 2698
}

2699 2700 2701
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2702
	struct drm_i915_gem_object *obj;
2703
	int ret, i;
2704

2705
	if (!i915.semaphores)
2706 2707 2708
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2709
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2710 2711 2712 2713 2714 2715 2716
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
			ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
			if (ret != 0) {
2717
				i915_gem_object_put(obj);
2718 2719 2720 2721 2722 2723 2724 2725
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2726
	if (!i915.semaphores)
2727 2728 2729
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2730 2731
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2732 2733
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2745 2746 2747
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->semaphore.sync_to = gen6_ring_sync;
		engine->semaphore.signal = gen6_signal;
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2796 2797 2798
	}
}

2799 2800 2801
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2802 2803
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2804
	if (INTEL_GEN(dev_priv) >= 8) {
2805 2806
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2807 2808
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2809 2810
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2811 2812
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2813 2814
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2815
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2816
	} else if (INTEL_GEN(dev_priv) >= 3) {
2817 2818
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2819
	} else {
2820 2821
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2822 2823 2824
	}
}

2825 2826 2827
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2828
	engine->init_hw = init_ring_common;
2829
	engine->write_tail = ring_write_tail;
2830

2831 2832
	engine->add_request = i9xx_add_request;
	if (INTEL_GEN(dev_priv) >= 6)
2833
		engine->add_request = gen6_add_request;
2834 2835 2836 2837

	if (INTEL_GEN(dev_priv) >= 8)
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
	else if (INTEL_GEN(dev_priv) >= 6)
2838
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2839
	else if (INTEL_GEN(dev_priv) >= 4)
2840
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2841 2842 2843 2844
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
	else
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2845

2846
	intel_ring_init_irq(dev_priv, engine);
2847
	intel_ring_init_semaphores(dev_priv, engine);
2848 2849
}

2850
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2851
{
2852
	struct drm_i915_private *dev_priv = engine->i915;
2853
	int ret;
2854

2855 2856
	intel_ring_default_vfuncs(dev_priv, engine);

2857 2858
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2859

2860
	if (INTEL_GEN(dev_priv) >= 8) {
2861
		engine->init_context = intel_rcs_ctx_init;
2862
		engine->add_request = gen8_render_add_request;
2863
		engine->flush = gen8_render_ring_flush;
2864
		if (i915.semaphores)
2865
			engine->semaphore.signal = gen8_rcs_signal;
2866
	} else if (INTEL_GEN(dev_priv) >= 6) {
2867 2868
		engine->init_context = intel_rcs_ctx_init;
		engine->flush = gen7_render_ring_flush;
2869
		if (IS_GEN6(dev_priv))
2870
			engine->flush = gen6_render_ring_flush;
2871
	} else if (IS_GEN5(dev_priv)) {
2872
		engine->flush = gen4_render_ring_flush;
2873
	} else {
2874
		if (INTEL_GEN(dev_priv) < 4)
2875
			engine->flush = gen2_render_ring_flush;
2876
		else
2877 2878
			engine->flush = gen4_render_ring_flush;
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2879
	}
B
Ben Widawsky 已提交
2880

2881
	if (IS_HASWELL(dev_priv))
2882
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2883

2884 2885
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2886

2887
	ret = intel_init_ring_buffer(engine);
2888 2889 2890
	if (ret)
		return ret;

2891
	if (INTEL_GEN(dev_priv) >= 6) {
2892 2893 2894 2895 2896
		ret = intel_init_pipe_control(engine, 4096);
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
		ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2897 2898 2899 2900 2901
		if (ret)
			return ret;
	}

	return 0;
2902 2903
}

2904
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2905
{
2906
	struct drm_i915_private *dev_priv = engine->i915;
2907

2908 2909
	intel_ring_default_vfuncs(dev_priv, engine);

2910
	if (INTEL_GEN(dev_priv) >= 6) {
2911
		/* gen6 bsd needs a special wa for tail updates */
2912
		if (IS_GEN6(dev_priv))
2913 2914
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
2915
		if (INTEL_GEN(dev_priv) < 8)
2916
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2917
	} else {
2918 2919
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
2920
		if (IS_GEN5(dev_priv))
2921
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2922
		else
2923
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2924 2925
	}

2926
	return intel_init_ring_buffer(engine);
2927
}
2928

2929
/**
2930
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2931
 */
2932
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2933
{
2934
	struct drm_i915_private *dev_priv = engine->i915;
2935 2936 2937

	intel_ring_default_vfuncs(dev_priv, engine);

2938
	engine->flush = gen6_bsd_ring_flush;
2939

2940
	return intel_init_ring_buffer(engine);
2941 2942
}

2943
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2944
{
2945
	struct drm_i915_private *dev_priv = engine->i915;
2946 2947 2948

	intel_ring_default_vfuncs(dev_priv, engine);

2949
	engine->flush = gen6_ring_flush;
2950
	if (INTEL_GEN(dev_priv) < 8)
2951
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2952

2953
	return intel_init_ring_buffer(engine);
2954
}
2955

2956
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2957
{
2958
	struct drm_i915_private *dev_priv = engine->i915;
2959 2960 2961

	intel_ring_default_vfuncs(dev_priv, engine);

2962
	engine->flush = gen6_ring_flush;
2963

2964
	if (INTEL_GEN(dev_priv) < 8) {
2965
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2966 2967
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2968
	}
B
Ben Widawsky 已提交
2969

2970
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2971 2972
}

2973
int
2974
intel_engine_flush_all_caches(struct drm_i915_gem_request *req)
2975
{
2976
	struct intel_engine_cs *engine = req->engine;
2977 2978
	int ret;

2979
	if (!engine->gpu_caches_dirty)
2980 2981
		return 0;

2982
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
2983 2984 2985
	if (ret)
		return ret;

2986
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2987

2988
	engine->gpu_caches_dirty = false;
2989 2990 2991 2992
	return 0;
}

int
2993
intel_engine_invalidate_all_caches(struct drm_i915_gem_request *req)
2994
{
2995
	struct intel_engine_cs *engine = req->engine;
2996 2997 2998 2999
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
3000
	if (engine->gpu_caches_dirty)
3001 3002
		flush_domains = I915_GEM_GPU_DOMAINS;

3003
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3004 3005 3006
	if (ret)
		return ret;

3007
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3008

3009
	engine->gpu_caches_dirty = false;
3010 3011
	return 0;
}
3012

3013
void intel_engine_stop(struct intel_engine_cs *engine)
3014 3015 3016
{
	int ret;

3017
	if (!intel_engine_initialized(engine))
3018 3019
		return;

3020
	ret = intel_engine_idle(engine);
3021
	if (ret)
3022
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3023
			  engine->name, ret);
3024

3025
	stop_ring(engine);
3026
}