intel_ringbuffer.c 79.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178 179
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214 215
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288 289
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
374
	u32 flags = 0;
375
	int ret;
B
Ben Widawsky 已提交
376 377 378

	flags |= PIPE_CONTROL_CS_STALL;

379
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
380 381
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
382
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
383
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
384
	}
385
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
386 387 388 389 390 391 392 393
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
394 395

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
396
		ret = gen8_emit_pipe_control(req,
397 398 399 400 401
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
402 403
	}

404
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
405 406
}

407
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
408
{
409
	struct drm_i915_private *dev_priv = engine->i915;
410
	u64 acthd;
411

412
	if (INTEL_GEN(dev_priv) >= 8)
413 414
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
415
	else if (INTEL_GEN(dev_priv) >= 4)
416
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
417 418 419 420
	else
		acthd = I915_READ(ACTHD);

	return acthd;
421 422
}

423
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
424
{
425
	struct drm_i915_private *dev_priv = engine->i915;
426 427 428
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
429
	if (INTEL_GEN(dev_priv) >= 4)
430 431 432 433
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

434
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
435
{
436
	struct drm_i915_private *dev_priv = engine->i915;
437
	i915_reg_t mmio;
438 439 440 441

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
442
	if (IS_GEN7(dev_priv)) {
443
		switch (engine->id) {
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
462
	} else if (IS_GEN6(dev_priv)) {
463
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
464 465
	} else {
		/* XXX: gen8 returns to sanity */
466
		mmio = RING_HWS_PGA(engine->mmio_base);
467 468
	}

469
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
470 471 472 473 474 475 476 477 478
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
479
	if (IS_GEN(dev_priv, 6, 7)) {
480
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
481 482

		/* ring should be idle before issuing a sync flush*/
483
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
484 485 486 487

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
488 489 490
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
491
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
492
				  engine->name);
493 494 495
	}
}

496
static bool stop_ring(struct intel_engine_cs *engine)
497
{
498
	struct drm_i915_private *dev_priv = engine->i915;
499

500
	if (!IS_GEN2(dev_priv)) {
501
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
502 503 504 505 506
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
507 508
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
509 510 511 512
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
513
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
514
				return false;
515 516
		}
	}
517

518 519
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
520
	I915_WRITE_TAIL(engine, 0);
521

522
	if (!IS_GEN2(dev_priv)) {
523 524
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
525
	}
526

527
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
528
}
529

530
static int init_ring_common(struct intel_engine_cs *engine)
531
{
532
	struct drm_i915_private *dev_priv = engine->i915;
533 534
	struct intel_ring *ring = engine->buffer;
	struct drm_i915_gem_object *obj = ring->obj;
535 536
	int ret = 0;

537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538

539
	if (!stop_ring(engine)) {
540
		/* G45 ring initialization often fails to reset head to zero */
541 542
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
543 544 545 546 547
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
548

549
		if (!stop_ring(engine)) {
550 551
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
552 553 554 555 556
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
557 558
			ret = -EIO;
			goto out;
559
		}
560 561
	}

562
	if (I915_NEED_GFX_HWS(dev_priv))
563
		intel_ring_setup_status_page(engine);
564
	else
565
		ring_setup_phys_status_page(engine);
566

567
	/* Enforce ordering by reading HEAD register back */
568
	I915_READ_HEAD(engine);
569

570 571 572 573
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
574
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
575 576

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
577
	if (I915_READ_HEAD(engine))
578
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
579 580 581
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
582

583
	I915_WRITE_CTL(engine,
584
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
585
			| RING_VALID);
586 587

	/* If the head is still not zero, the ring is dead */
588 589 590
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
591
		DRM_ERROR("%s initialization failed "
592
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
593 594 595 596 597 598
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
599 600
		ret = -EIO;
		goto out;
601 602
	}

603 604 605 606
	ring->last_retired_head = -1;
	ring->head = I915_READ_HEAD(engine);
	ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
	intel_ring_update_space(ring);
607

608
	intel_engine_init_hangcheck(engine);
609

610
out:
611
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
612 613

	return ret;
614 615
}

616
void intel_fini_pipe_control(struct intel_engine_cs *engine)
617
{
618
	if (engine->scratch.obj == NULL)
619 620
		return;

621
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
622
	i915_gem_object_put(engine->scratch.obj);
623
	engine->scratch.obj = NULL;
624 625
}

626
int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
627
{
628
	struct drm_i915_gem_object *obj;
629 630
	int ret;

631
	WARN_ON(engine->scratch.obj);
632

633
	obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
634
	if (!obj)
635
		obj = i915_gem_object_create(&engine->i915->drm, size);
636 637 638
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		ret = PTR_ERR(obj);
639 640
		goto err;
	}
641

642
	ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
643 644
	if (ret)
		goto err_unref;
645

646 647
	engine->scratch.obj = obj;
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
648
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
649
			 engine->name, engine->scratch.gtt_offset);
650 651 652
	return 0;

err_unref:
653
	i915_gem_object_put(engine->scratch.obj);
654 655 656 657
err:
	return ret;
}

658
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
659
{
660
	struct intel_ring *ring = req->ring;
661 662
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
663

664
	if (w->count == 0)
665
		return 0;
666

667
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
668 669
	if (ret)
		return ret;
670

671
	ret = intel_ring_begin(req, (w->count * 2 + 2));
672 673 674
	if (ret)
		return ret;

675
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
676
	for (i = 0; i < w->count; i++) {
677 678
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
679
	}
680
	intel_ring_emit(ring, MI_NOOP);
681

682
	intel_ring_advance(ring);
683

684
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
685 686
	if (ret)
		return ret;
687

688
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
689

690
	return 0;
691 692
}

693
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
694 695 696
{
	int ret;

697
	ret = intel_ring_workarounds_emit(req);
698 699 700
	if (ret != 0)
		return ret;

701
	ret = i915_gem_render_state_init(req);
702
	if (ret)
703
		return ret;
704

705
	return 0;
706 707
}

708
static int wa_add(struct drm_i915_private *dev_priv,
709 710
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
711 712 713 714 715 716 717 718 719 720 721 722 723
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
724 725
}

726
#define WA_REG(addr, mask, val) do { \
727
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
728 729
		if (r) \
			return r; \
730
	} while (0)
731 732

#define WA_SET_BIT_MASKED(addr, mask) \
733
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
734 735

#define WA_CLR_BIT_MASKED(addr, mask) \
736
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
737

738
#define WA_SET_FIELD_MASKED(addr, mask, value) \
739
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
740

741 742
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
743

744
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
745

746 747
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
748
{
749
	struct drm_i915_private *dev_priv = engine->i915;
750
	struct i915_workarounds *wa = &dev_priv->workarounds;
751
	const uint32_t index = wa->hw_whitelist_count[engine->id];
752 753 754 755

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

756
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
757
		 i915_mmio_reg_offset(reg));
758
	wa->hw_whitelist_count[engine->id]++;
759 760 761 762

	return 0;
}

763
static int gen8_init_workarounds(struct intel_engine_cs *engine)
764
{
765
	struct drm_i915_private *dev_priv = engine->i915;
766 767

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
768

769 770 771
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

772 773 774 775
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

776 777 778 779 780
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
781
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
782
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
783
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
784 785
			  HDC_FORCE_NON_COHERENT);

786 787 788 789 790 791 792 793 794 795
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

796 797 798
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

799 800 801 802 803 804 805 806 807 808 809 810
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

811 812 813
	return 0;
}

814
static int bdw_init_workarounds(struct intel_engine_cs *engine)
815
{
816
	struct drm_i915_private *dev_priv = engine->i915;
817
	int ret;
818

819
	ret = gen8_init_workarounds(engine);
820 821 822
	if (ret)
		return ret;

823
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
824
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
825

826
	/* WaDisableDopClockGating:bdw */
827 828
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
829

830 831
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
832

833
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
834 835 836
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
837
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
838 839 840 841

	return 0;
}

842
static int chv_init_workarounds(struct intel_engine_cs *engine)
843
{
844
	struct drm_i915_private *dev_priv = engine->i915;
845
	int ret;
846

847
	ret = gen8_init_workarounds(engine);
848 849 850
	if (ret)
		return ret;

851
	/* WaDisableThreadStallDopClockGating:chv */
852
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
853

854 855 856
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

857 858 859
	return 0;
}

860
static int gen9_init_workarounds(struct intel_engine_cs *engine)
861
{
862
	struct drm_i915_private *dev_priv = engine->i915;
863
	int ret;
864

865 866 867
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

868
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
869 870 871
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

872
	/* WaDisableKillLogic:bxt,skl,kbl */
873 874 875
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

876 877
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
878
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
879
			  FLOW_CONTROL_ENABLE |
880 881
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

882
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
883 884 885
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

886
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
887 888
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
889 890
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
891

892
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
893 894
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
895 896
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
897 898 899 900 901
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
902 903
	}

904 905
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
906 907 908
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
909

910 911
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
912 913
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
914

915
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
916 917 918
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

919
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
920 921
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
922 923 924
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

925 926 927 928
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
929

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

951 952 953 954
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
955 956 957
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

958
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
959 960
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

961
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
962 963 964
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

965 966 967 968 969
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

970
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
971
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
972 973 974
	if (ret)
		return ret;

975
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
976
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
977 978 979
	if (ret)
		return ret;

980 981 982
	return 0;
}

983
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
984
{
985
	struct drm_i915_private *dev_priv = engine->i915;
986 987 988 989 990 991 992 993 994 995
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
996
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1024
static int skl_init_workarounds(struct intel_engine_cs *engine)
1025
{
1026
	struct drm_i915_private *dev_priv = engine->i915;
1027
	int ret;
1028

1029
	ret = gen9_init_workarounds(engine);
1030 1031
	if (ret)
		return ret;
1032

1033 1034 1035 1036 1037
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1038
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1039 1040 1041 1042
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1043
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1044 1045 1046 1047 1048 1049 1050 1051
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1052
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1053 1054 1055 1056 1057
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1058
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1059 1060 1061 1062
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1063
	/* WaDisablePowerCompilerClockGating:skl */
1064
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1065 1066 1067
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1068
	/* WaBarrierPerformanceFixDisable:skl */
1069
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1070 1071 1072 1073
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1074
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1075
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1076 1077 1078 1079
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1080 1081 1082
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1083 1084 1085 1086 1087
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1088
	/* WaDisableLSQCROPERFforOCL:skl */
1089
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1090 1091 1092
	if (ret)
		return ret;

1093
	return skl_tune_iz_hashing(engine);
1094 1095
}

1096
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1097
{
1098
	struct drm_i915_private *dev_priv = engine->i915;
1099
	int ret;
1100

1101
	ret = gen9_init_workarounds(engine);
1102 1103
	if (ret)
		return ret;
1104

1105 1106
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1107
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1108 1109 1110
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1111
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1112 1113 1114 1115
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1116 1117 1118 1119
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1120 1121 1122 1123 1124 1125
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1126
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1127
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1128 1129 1130 1131 1132
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1133 1134 1135
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1136
	/* WaDisableLSQCROPERFforOCL:bxt */
1137
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1138
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1139 1140
		if (ret)
			return ret;
1141

1142
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1143 1144
		if (ret)
			return ret;
1145 1146
	}

1147
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1148
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1149 1150
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1151

1152 1153 1154 1155 1156
	/* WaInsertDummyPushConstPs:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1157 1158 1159 1160 1161
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1162 1163 1164
	return 0;
}

1165 1166
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1167
	struct drm_i915_private *dev_priv = engine->i915;
1168 1169 1170 1171 1172 1173
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1174 1175 1176 1177
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1178 1179 1180 1181 1182
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1183 1184 1185 1186 1187
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1188 1189 1190 1191 1192 1193 1194 1195
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1196 1197 1198 1199 1200
	/* WaInsertDummyPushConstPs:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1201 1202 1203
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1204 1205 1206 1207 1208
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1209 1210 1211 1212
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1213 1214 1215 1216 1217
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1218 1219 1220
	return 0;
}

1221
int init_workarounds_ring(struct intel_engine_cs *engine)
1222
{
1223
	struct drm_i915_private *dev_priv = engine->i915;
1224

1225
	WARN_ON(engine->id != RCS);
1226 1227

	dev_priv->workarounds.count = 0;
1228
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1229

1230
	if (IS_BROADWELL(dev_priv))
1231
		return bdw_init_workarounds(engine);
1232

1233
	if (IS_CHERRYVIEW(dev_priv))
1234
		return chv_init_workarounds(engine);
1235

1236
	if (IS_SKYLAKE(dev_priv))
1237
		return skl_init_workarounds(engine);
1238

1239
	if (IS_BROXTON(dev_priv))
1240
		return bxt_init_workarounds(engine);
1241

1242 1243 1244
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1245 1246 1247
	return 0;
}

1248
static int init_render_ring(struct intel_engine_cs *engine)
1249
{
1250
	struct drm_i915_private *dev_priv = engine->i915;
1251
	int ret = init_ring_common(engine);
1252 1253
	if (ret)
		return ret;
1254

1255
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1256
	if (IS_GEN(dev_priv, 4, 6))
1257
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1258 1259 1260 1261

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1262
	 *
1263
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1264
	 */
1265
	if (IS_GEN(dev_priv, 6, 7))
1266 1267
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1268
	/* Required for the hardware to program scanline values for waiting */
1269
	/* WaEnableFlushTlbInvalidationMode:snb */
1270
	if (IS_GEN6(dev_priv))
1271
		I915_WRITE(GFX_MODE,
1272
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1273

1274
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1275
	if (IS_GEN7(dev_priv))
1276
		I915_WRITE(GFX_MODE_GEN7,
1277
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1278
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1279

1280
	if (IS_GEN6(dev_priv)) {
1281 1282 1283 1284 1285 1286
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1287
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1288 1289
	}

1290
	if (IS_GEN(dev_priv, 6, 7))
1291
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1292

1293 1294
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1295

1296
	return init_workarounds_ring(engine);
1297 1298
}

1299
static void render_ring_cleanup(struct intel_engine_cs *engine)
1300
{
1301
	struct drm_i915_private *dev_priv = engine->i915;
1302 1303 1304

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1305
		i915_gem_object_put(dev_priv->semaphore_obj);
1306 1307
		dev_priv->semaphore_obj = NULL;
	}
1308

1309
	intel_fini_pipe_control(engine);
1310 1311
}

1312
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req)
1313
{
1314
	struct intel_ring *signaller = signaller_req->ring;
1315
	struct drm_i915_private *dev_priv = signaller_req->i915;
1316
	struct intel_engine_cs *waiter;
1317 1318
	enum intel_engine_id id;
	int ret, num_rings;
1319

1320
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1321
	ret = intel_ring_begin(signaller_req, (num_rings-1) * 8);
1322 1323 1324
	if (ret)
		return ret;

1325
	for_each_engine_id(waiter, dev_priv, id) {
1326 1327
		u64 gtt_offset =
			signaller_req->engine->semaphore.signal_ggtt[id];
1328 1329 1330 1331
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1332 1333 1334 1335
		intel_ring_emit(signaller,
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1336 1337
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1338
		intel_ring_emit(signaller, signaller_req->fence.seqno);
1339
		intel_ring_emit(signaller, 0);
1340 1341 1342
		intel_ring_emit(signaller,
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1343 1344
		intel_ring_emit(signaller, 0);
	}
1345
	intel_ring_advance(signaller);
1346 1347 1348 1349

	return 0;
}

1350
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req)
1351
{
1352
	struct intel_ring *signaller = signaller_req->ring;
1353
	struct drm_i915_private *dev_priv = signaller_req->i915;
1354
	struct intel_engine_cs *waiter;
1355 1356
	enum intel_engine_id id;
	int ret, num_rings;
1357

1358
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1359
	ret = intel_ring_begin(signaller_req, (num_rings-1) * 6);
1360 1361 1362
	if (ret)
		return ret;

1363
	for_each_engine_id(waiter, dev_priv, id) {
1364 1365
		u64 gtt_offset =
			signaller_req->engine->semaphore.signal_ggtt[id];
1366 1367 1368
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1369 1370 1371 1372 1373
		intel_ring_emit(signaller,
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller,
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1374
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1375
		intel_ring_emit(signaller, signaller_req->fence.seqno);
1376 1377 1378
		intel_ring_emit(signaller,
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1379 1380
		intel_ring_emit(signaller, 0);
	}
1381
	intel_ring_advance(signaller);
1382 1383 1384 1385

	return 0;
}

1386
static int gen6_signal(struct drm_i915_gem_request *signaller_req)
1387
{
1388
	struct intel_ring *signaller = signaller_req->ring;
1389
	struct drm_i915_private *dev_priv = signaller_req->i915;
1390
	struct intel_engine_cs *useless;
1391 1392
	enum intel_engine_id id;
	int ret, num_rings;
1393

1394
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1395
	ret = intel_ring_begin(signaller_req, round_up((num_rings-1) * 3, 2));
1396 1397 1398
	if (ret)
		return ret;

1399
	for_each_engine_id(useless, dev_priv, id) {
1400 1401
		i915_reg_t mbox_reg =
			signaller_req->engine->semaphore.mbox.signal[id];
1402 1403

		if (i915_mmio_reg_valid(mbox_reg)) {
1404
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1405
			intel_ring_emit_reg(signaller, mbox_reg);
1406
			intel_ring_emit(signaller, signaller_req->fence.seqno);
1407 1408
		}
	}
1409

1410 1411 1412
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);
1413
	intel_ring_advance(signaller);
1414

1415
	return 0;
1416 1417
}

1418 1419 1420 1421 1422 1423 1424 1425 1426
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1427
{
1428
	struct intel_ring *ring = req->ring;
1429
	int ret;
1430

1431
	ret = intel_ring_begin(req, 4);
1432 1433 1434
	if (ret)
		return ret;

1435 1436 1437 1438
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1439 1440 1441
	intel_ring_advance(ring);

	req->tail = ring->tail;
1442 1443 1444 1445

	return 0;
}

1446
/**
1447
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1448 1449 1450 1451 1452 1453
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1454
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1455
{
1456
	int ret;
1457

1458 1459 1460
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1461 1462 1463 1464

	return i9xx_emit_request(req);
}

1465
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1466 1467
{
	struct intel_engine_cs *engine = req->engine;
1468
	struct intel_ring *ring = req->ring;
1469 1470
	int ret;

1471 1472 1473 1474 1475 1476 1477
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1478 1479 1480
	if (ret)
		return ret;

1481 1482 1483 1484 1485 1486 1487
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1488
	/* We're thrashing one dword of HWS. */
1489 1490 1491
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1492
	intel_ring_advance(ring);
1493 1494

	req->tail = ring->tail;
1495 1496 1497 1498

	return 0;
}

1499
static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1500 1501 1502 1503 1504
					      u32 seqno)
{
	return dev_priv->last_seqno < seqno;
}

1505 1506 1507 1508 1509 1510 1511
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1512 1513

static int
1514
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1515 1516 1517
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1518
	struct intel_ring *waiter = waiter_req->ring;
1519
	struct drm_i915_private *dev_priv = waiter_req->i915;
1520
	u64 offset = GEN8_WAIT_OFFSET(waiter_req->engine, signaller->id);
1521
	struct i915_hw_ppgtt *ppgtt;
1522 1523
	int ret;

1524
	ret = intel_ring_begin(waiter_req, 4);
1525 1526 1527 1528 1529 1530 1531
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
1532 1533
	intel_ring_emit(waiter, lower_32_bits(offset));
	intel_ring_emit(waiter, upper_32_bits(offset));
1534
	intel_ring_advance(waiter);
1535 1536 1537 1538 1539 1540 1541 1542 1543

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
	ppgtt = waiter_req->ctx->ppgtt;
	if (ppgtt && waiter_req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1544 1545 1546
	return 0;
}

1547
static int
1548
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1549
	       struct intel_engine_cs *signaller,
1550
	       u32 seqno)
1551
{
1552
	struct intel_ring *waiter = waiter_req->ring;
1553 1554 1555
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1556
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter_req->engine->id];
1557
	int ret;
1558

1559 1560 1561 1562 1563 1564
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1565
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1566

1567
	ret = intel_ring_begin(waiter_req, 4);
1568 1569 1570
	if (ret)
		return ret;

1571
	/* If seqno wrap happened, omit the wait with no-ops */
1572
	if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1573
		intel_ring_emit(waiter, dw1 | wait_mbox);
1574 1575 1576 1577 1578 1579 1580 1581 1582
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1583
	intel_ring_advance(waiter);
1584 1585 1586 1587

	return 0;
}

1588
static void
1589
gen5_seqno_barrier(struct intel_engine_cs *engine)
1590
{
1591 1592 1593
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1594
	 *
1595 1596 1597 1598 1599 1600 1601
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1602
	 */
1603
	usleep_range(125, 250);
1604 1605
}

1606 1607
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1608
{
1609
	struct drm_i915_private *dev_priv = engine->i915;
1610

1611 1612
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1613 1614 1615 1616 1617 1618 1619 1620 1621
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1622 1623 1624
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1625
	 */
1626
	spin_lock_irq(&dev_priv->uncore.lock);
1627
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1628
	spin_unlock_irq(&dev_priv->uncore.lock);
1629 1630
}

1631 1632
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1633
{
1634
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1635 1636 1637
}

static void
1638
gen5_irq_disable(struct intel_engine_cs *engine)
1639
{
1640
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1641 1642
}

1643 1644
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1645
{
1646
	struct drm_i915_private *dev_priv = engine->i915;
1647

1648 1649 1650
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1651 1652
}

1653
static void
1654
i9xx_irq_disable(struct intel_engine_cs *engine)
1655
{
1656
	struct drm_i915_private *dev_priv = engine->i915;
1657

1658 1659
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1660 1661
}

1662 1663
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1664
{
1665
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1666

1667 1668 1669
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1670 1671 1672
}

static void
1673
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1674
{
1675
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1676

1677 1678
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1679 1680
}

1681
static int
1682
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1683
{
1684
	struct intel_ring *ring = req->ring;
1685 1686
	int ret;

1687
	ret = intel_ring_begin(req, 2);
1688 1689 1690
	if (ret)
		return ret;

1691 1692 1693
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1694
	return 0;
1695 1696
}

1697 1698
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1699
{
1700
	struct drm_i915_private *dev_priv = engine->i915;
1701

1702 1703 1704
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1705
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1706 1707 1708
}

static void
1709
gen6_irq_disable(struct intel_engine_cs *engine)
1710
{
1711
	struct drm_i915_private *dev_priv = engine->i915;
1712

1713
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1714
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1715 1716
}

1717 1718
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1719
{
1720
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1721

1722 1723
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1724 1725 1726
}

static void
1727
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1728
{
1729
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1730

1731 1732
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1733 1734
}

1735 1736
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1737
{
1738
	struct drm_i915_private *dev_priv = engine->i915;
1739

1740 1741 1742
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1743
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1744 1745 1746
}

static void
1747
gen8_irq_disable(struct intel_engine_cs *engine)
1748
{
1749
	struct drm_i915_private *dev_priv = engine->i915;
1750

1751
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1752 1753
}

1754
static int
1755 1756 1757
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1758
{
1759
	struct intel_ring *ring = req->ring;
1760
	int ret;
1761

1762
	ret = intel_ring_begin(req, 2);
1763 1764 1765
	if (ret)
		return ret;

1766
	intel_ring_emit(ring,
1767 1768
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1769 1770
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1771 1772
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1773

1774 1775 1776
	return 0;
}

1777 1778
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1779 1780
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1781
static int
1782 1783 1784
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1785
{
1786
	struct intel_ring *ring = req->ring;
1787
	u32 cs_offset = req->engine->scratch.gtt_offset;
1788
	int ret;
1789

1790
	ret = intel_ring_begin(req, 6);
1791 1792
	if (ret)
		return ret;
1793

1794
	/* Evict the invalid PTE TLBs */
1795 1796 1797 1798 1799 1800 1801
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1802

1803
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1804 1805 1806
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1807
		ret = intel_ring_begin(req, 6 + 2);
1808 1809
		if (ret)
			return ret;
1810 1811 1812 1813 1814

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1815 1816
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1817
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1818 1819 1820 1821
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1822

1823 1824 1825
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1826 1827

		/* ... and execute it. */
1828
		offset = cs_offset;
1829
	}
1830

1831
	ret = intel_ring_begin(req, 2);
1832 1833 1834
	if (ret)
		return ret;

1835 1836 1837 1838
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1839

1840 1841 1842 1843
	return 0;
}

static int
1844 1845 1846
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1847
{
1848
	struct intel_ring *ring = req->ring;
1849 1850
	int ret;

1851
	ret = intel_ring_begin(req, 2);
1852 1853 1854
	if (ret)
		return ret;

1855 1856 1857 1858
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1859 1860 1861 1862

	return 0;
}

1863
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1864
{
1865
	struct drm_i915_private *dev_priv = engine->i915;
1866 1867 1868 1869

	if (!dev_priv->status_page_dmah)
		return;

1870
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1871
	engine->status_page.page_addr = NULL;
1872 1873
}

1874
static void cleanup_status_page(struct intel_engine_cs *engine)
1875
{
1876
	struct drm_i915_gem_object *obj;
1877

1878
	obj = engine->status_page.obj;
1879
	if (obj == NULL)
1880 1881
		return;

1882
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
1883
	i915_gem_object_ggtt_unpin(obj);
1884
	i915_gem_object_put(obj);
1885
	engine->status_page.obj = NULL;
1886 1887
}

1888
static int init_status_page(struct intel_engine_cs *engine)
1889
{
1890
	struct drm_i915_gem_object *obj = engine->status_page.obj;
1891

1892
	if (obj == NULL) {
1893
		unsigned flags;
1894
		int ret;
1895

1896
		obj = i915_gem_object_create(&engine->i915->drm, 4096);
1897
		if (IS_ERR(obj)) {
1898
			DRM_ERROR("Failed to allocate status page\n");
1899
			return PTR_ERR(obj);
1900
		}
1901

1902 1903 1904 1905
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

1906
		flags = 0;
1907
		if (!HAS_LLC(engine->i915))
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1920 1921
		if (ret) {
err_unref:
1922
			i915_gem_object_put(obj);
1923 1924 1925
			return ret;
		}

1926
		engine->status_page.obj = obj;
1927
	}
1928

1929 1930 1931
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1932

1933
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1934
			engine->name, engine->status_page.gfx_addr);
1935 1936 1937 1938

	return 0;
}

1939
static int init_phys_status_page(struct intel_engine_cs *engine)
1940
{
1941
	struct drm_i915_private *dev_priv = engine->i915;
1942 1943 1944

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
1945
			drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1946 1947 1948 1949
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

1950 1951
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1952 1953 1954 1955

	return 0;
}

1956
int intel_ring_pin(struct intel_ring *ring)
1957
{
1958
	struct drm_i915_private *dev_priv = ring->engine->i915;
1959
	struct drm_i915_gem_object *obj = ring->obj;
1960 1961
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
1962
	void *addr;
1963 1964
	int ret;

1965
	if (HAS_LLC(dev_priv) && !obj->stolen) {
1966
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
1967 1968
		if (ret)
			return ret;
1969

1970
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
1971 1972
		if (ret)
			goto err_unpin;
1973

1974 1975 1976
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
1977
			goto err_unpin;
1978 1979
		}
	} else {
1980 1981
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
1982 1983
		if (ret)
			return ret;
1984

1985
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
1986 1987
		if (ret)
			goto err_unpin;
1988

1989 1990 1991
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

1992 1993
		addr = (void __force *)
			i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
1994 1995
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
1996
			goto err_unpin;
1997
		}
1998 1999
	}

2000 2001
	ring->vaddr = addr;
	ring->vma = i915_gem_obj_to_ggtt(obj);
2002
	return 0;
2003 2004 2005 2006

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2007 2008
}

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

	if (HAS_LLC(ring->engine->i915) && !ring->obj->stolen)
		i915_gem_object_unpin_map(ring->obj);
	else
		i915_vma_unpin_iomap(ring->vma);
	ring->vaddr = NULL;

	i915_gem_object_ggtt_unpin(ring->obj);
	ring->vma = NULL;
}

2024
static void intel_destroy_ringbuffer_obj(struct intel_ring *ring)
2025
{
2026 2027
	i915_gem_object_put(ring->obj);
	ring->obj = NULL;
2028 2029
}

2030
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2031
				      struct intel_ring *ring)
2032
{
2033
	struct drm_i915_gem_object *obj;
2034

2035 2036
	obj = NULL;
	if (!HAS_LLC(dev))
2037
		obj = i915_gem_object_create_stolen(dev, ring->size);
2038
	if (obj == NULL)
2039
		obj = i915_gem_object_create(dev, ring->size);
2040 2041
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2042

2043 2044 2045
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2046
	ring->obj = obj;
2047

2048
	return 0;
2049 2050
}

2051 2052
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
2053
{
2054
	struct intel_ring *ring;
2055 2056
	int ret;

2057 2058
	GEM_BUG_ON(!is_power_of_2(size));

2059
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2060 2061 2062
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2063
		return ERR_PTR(-ENOMEM);
2064
	}
2065

2066
	ring->engine = engine;
2067
	list_add(&ring->link, &engine->buffers);
2068 2069 2070 2071 2072 2073 2074

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2075
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2076 2077 2078 2079 2080
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2081
	ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2082
	if (ret) {
2083 2084 2085
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2086 2087 2088 2089 2090 2091 2092 2093
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
2094
intel_ring_free(struct intel_ring *ring)
2095 2096
{
	intel_destroy_ringbuffer_obj(ring);
2097
	list_del(&ring->link);
2098 2099 2100
	kfree(ring);
}

2101 2102 2103 2104 2105 2106
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2107
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
		ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
		if (ret)
			goto error;
	}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2128
	i915_gem_context_get(ctx);
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2141
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2142 2143 2144 2145 2146 2147 2148

	if (--ce->pin_count)
		return;

	if (ce->state)
		i915_gem_object_ggtt_unpin(ce->state);

2149
	i915_gem_context_put(ctx);
2150 2151
}

2152
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2153
{
2154
	struct drm_i915_private *dev_priv = engine->i915;
2155
	struct intel_ring *ring;
2156 2157
	int ret;

2158
	WARN_ON(engine->buffer);
2159

2160 2161
	intel_engine_setup_common(engine);

2162 2163
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2164

2165
	ret = intel_engine_init_common(engine);
2166 2167
	if (ret)
		goto error;
2168

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2180 2181 2182
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2183 2184
		goto error;
	}
2185
	engine->buffer = ring;
2186

2187
	if (I915_NEED_GFX_HWS(dev_priv)) {
2188
		ret = init_status_page(engine);
2189
		if (ret)
2190
			goto error;
2191
	} else {
2192 2193
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2194
		if (ret)
2195
			goto error;
2196 2197
	}

2198
	ret = intel_ring_pin(ring);
2199 2200
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2201
				engine->name, ret);
2202
		intel_destroy_ringbuffer_obj(ring);
2203
		goto error;
2204
	}
2205

2206
	return 0;
2207

2208
error:
2209
	intel_engine_cleanup(engine);
2210
	return ret;
2211 2212
}

2213
void intel_engine_cleanup(struct intel_engine_cs *engine)
2214
{
2215
	struct drm_i915_private *dev_priv;
2216

2217
	if (!intel_engine_initialized(engine))
2218 2219
		return;

2220
	dev_priv = engine->i915;
2221

2222
	if (engine->buffer) {
2223
		intel_engine_stop(engine);
2224
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2225

2226
		intel_ring_unpin(engine->buffer);
2227
		intel_ring_free(engine->buffer);
2228
		engine->buffer = NULL;
2229
	}
2230

2231 2232
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2233

2234
	if (I915_NEED_GFX_HWS(dev_priv)) {
2235
		cleanup_status_page(engine);
2236
	} else {
2237 2238
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2239
	}
2240

2241
	intel_engine_cleanup_cmd_parser(engine);
2242
	i915_gem_batch_pool_fini(&engine->batch_pool);
2243
	intel_engine_fini_breadcrumbs(engine);
2244 2245 2246

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2247
	engine->i915 = NULL;
2248 2249
}

2250
int intel_engine_idle(struct intel_engine_cs *engine)
2251
{
2252
	struct drm_i915_gem_request *req;
2253 2254

	/* Wait upon the last request to be completed */
2255
	if (list_empty(&engine->request_list))
2256 2257
		return 0;

2258 2259 2260
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2261 2262 2263

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2264
				   req->i915->mm.interruptible,
2265
				   NULL, NULL);
2266 2267
}

2268
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2269
{
2270 2271 2272 2273 2274 2275
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2276
	request->reserved_space += LEGACY_REQUEST_SIZE;
2277

2278
	request->ring = request->engine->buffer;
2279 2280 2281 2282 2283

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2284
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2285
	return 0;
2286 2287
}

2288 2289
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2290
	struct intel_ring *ring = req->ring;
2291 2292 2293
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *target;

2294 2295
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2307
	GEM_BUG_ON(!req->reserved_space);
2308 2309 2310 2311

	list_for_each_entry(target, &engine->request_list, list) {
		unsigned space;

2312
		/*
2313 2314 2315
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
2316
		 */
2317
		if (target->ring != ring)
2318 2319 2320
			continue;

		/* Would completion of this request free enough space? */
2321 2322
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2323 2324
		if (space >= bytes)
			break;
2325
	}
2326

2327 2328 2329 2330
	if (WARN_ON(&target->list == &engine->request_list))
		return -ENOSPC;

	return i915_wait_request(target);
2331 2332
}

2333
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2334
{
2335
	struct intel_ring *ring = req->ring;
2336 2337
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2338 2339
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2340
	bool need_wrap = false;
2341

2342
	total_bytes = bytes + req->reserved_space;
2343

2344 2345 2346 2347 2348 2349 2350
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2351 2352 2353 2354 2355 2356 2357
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2358
		wait_bytes = remain_actual + req->reserved_space;
2359
	} else {
2360 2361
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2362 2363
	}

2364
	if (wait_bytes > ring->space) {
2365
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2366 2367
		if (unlikely(ret))
			return ret;
2368

2369 2370
		intel_ring_update_space(ring);
		if (unlikely(ring->space < wait_bytes))
2371
			return -EAGAIN;
M
Mika Kuoppala 已提交
2372 2373
	}

2374
	if (unlikely(need_wrap)) {
2375 2376
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2377

2378
		/* Fill the tail with MI_NOOP */
2379 2380 2381
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2382
	}
2383

2384 2385
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2386
	return 0;
2387
}
2388

2389
/* Align the ring tail to a cacheline boundary */
2390
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2391
{
2392
	struct intel_ring *ring = req->ring;
2393 2394
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2395 2396 2397 2398 2399
	int ret;

	if (num_dwords == 0)
		return 0;

2400
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2401
	ret = intel_ring_begin(req, num_dwords);
2402 2403 2404 2405
	if (ret)
		return ret;

	while (num_dwords--)
2406
		intel_ring_emit(ring, MI_NOOP);
2407

2408
	intel_ring_advance(ring);
2409 2410 2411 2412

	return 0;
}

2413
void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2414
{
2415
	struct drm_i915_private *dev_priv = engine->i915;
2416

2417 2418 2419 2420 2421 2422 2423 2424
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2425
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2426 2427
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2428
		if (HAS_VEBOX(dev_priv))
2429
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2430
	}
2431 2432 2433 2434 2435 2436 2437 2438
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2439 2440
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2441

2442 2443 2444
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);
2445
	engine->last_submitted_seqno = seqno;
2446

2447
	engine->hangcheck.seqno = seqno;
2448 2449 2450 2451 2452 2453 2454

	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	rcu_read_lock();
	intel_engine_wakeup(engine);
	rcu_read_unlock();
2455
}
2456

2457
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2458
{
2459
	struct drm_i915_private *dev_priv = request->i915;
2460

2461 2462
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2463
       /* Every tail move must follow the sequence below */
2464 2465 2466 2467

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2468 2469
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2470 2471

	/* Clear the context id. Here be magic! */
2472
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2473

2474
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2475 2476 2477 2478 2479
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2480
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2481

2482
	/* Now that the ring is fully powered up, update the tail */
2483
	i9xx_submit_request(request);
2484 2485 2486 2487

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2488 2489 2490 2491
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2492 2493
}

2494
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2495
{
2496
	struct intel_ring *ring = req->ring;
2497
	uint32_t cmd;
2498 2499
	int ret;

2500
	ret = intel_ring_begin(req, 4);
2501 2502 2503
	if (ret)
		return ret;

2504
	cmd = MI_FLUSH_DW;
2505
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2506
		cmd += 1;
2507 2508 2509 2510 2511 2512 2513 2514

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2515 2516 2517 2518 2519 2520
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2521
	if (mode & EMIT_INVALIDATE)
2522 2523
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2524 2525
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2526
	if (INTEL_GEN(req->i915) >= 8) {
2527 2528
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2529
	} else  {
2530 2531
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2532
	}
2533
	intel_ring_advance(ring);
2534
	return 0;
2535 2536
}

2537
static int
2538 2539 2540
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2541
{
2542
	struct intel_ring *ring = req->ring;
2543
	bool ppgtt = USES_PPGTT(req->i915) &&
2544
			!(dispatch_flags & I915_DISPATCH_SECURE);
2545 2546
	int ret;

2547
	ret = intel_ring_begin(req, 4);
2548 2549 2550 2551
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2552
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2553 2554
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2555 2556 2557 2558
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2559 2560 2561 2562

	return 0;
}

2563
static int
2564 2565 2566
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2567
{
2568
	struct intel_ring *ring = req->ring;
2569 2570
	int ret;

2571
	ret = intel_ring_begin(req, 2);
2572 2573 2574
	if (ret)
		return ret;

2575
	intel_ring_emit(ring,
2576
			MI_BATCH_BUFFER_START |
2577
			(dispatch_flags & I915_DISPATCH_SECURE ?
2578 2579 2580
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2581
	/* bit0-7 is the length on GEN6+ */
2582 2583
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2584 2585 2586 2587

	return 0;
}

2588
static int
2589 2590 2591
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2592
{
2593
	struct intel_ring *ring = req->ring;
2594
	int ret;
2595

2596
	ret = intel_ring_begin(req, 2);
2597 2598
	if (ret)
		return ret;
2599

2600
	intel_ring_emit(ring,
2601
			MI_BATCH_BUFFER_START |
2602 2603
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2604
	/* bit0-7 is the length on GEN6+ */
2605 2606
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2607

2608
	return 0;
2609 2610
}

2611 2612
/* Blitter support (SandyBridge+) */

2613
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2614
{
2615
	struct intel_ring *ring = req->ring;
2616
	uint32_t cmd;
2617 2618
	int ret;

2619
	ret = intel_ring_begin(req, 4);
2620 2621 2622
	if (ret)
		return ret;

2623
	cmd = MI_FLUSH_DW;
2624
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2625
		cmd += 1;
2626 2627 2628 2629 2630 2631 2632 2633

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2634 2635 2636 2637 2638 2639
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2640
	if (mode & EMIT_INVALIDATE)
2641
		cmd |= MI_INVALIDATE_TLB;
2642 2643
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2644
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2645
	if (INTEL_GEN(req->i915) >= 8) {
2646 2647
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2648
	} else  {
2649 2650
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2651
	}
2652
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2653

2654
	return 0;
Z
Zou Nan hai 已提交
2655 2656
}

2657 2658 2659
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2660
	struct drm_i915_gem_object *obj;
2661
	int ret, i;
2662

2663
	if (!i915.semaphores)
2664 2665 2666
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2667
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2668 2669 2670 2671 2672 2673 2674
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
			ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
			if (ret != 0) {
2675
				i915_gem_object_put(obj);
2676 2677 2678 2679 2680 2681 2682 2683
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2684
	if (!i915.semaphores)
2685 2686 2687
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2688 2689
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2690 2691
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2703 2704 2705
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->semaphore.sync_to = gen6_ring_sync;
		engine->semaphore.signal = gen6_signal;
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2754 2755 2756
	}
}

2757 2758 2759
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2760 2761
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2762
	if (INTEL_GEN(dev_priv) >= 8) {
2763 2764
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2765 2766
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2767 2768
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2769 2770
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2771 2772
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2773
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2774
	} else if (INTEL_GEN(dev_priv) >= 3) {
2775 2776
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2777
	} else {
2778 2779
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2780 2781 2782
	}
}

2783 2784 2785
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2786 2787 2788
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2789
	engine->init_hw = init_ring_common;
2790

2791
	engine->emit_request = i9xx_emit_request;
2792 2793
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2794
	engine->submit_request = i9xx_submit_request;
2795 2796

	if (INTEL_GEN(dev_priv) >= 8)
2797
		engine->emit_bb_start = gen8_emit_bb_start;
2798
	else if (INTEL_GEN(dev_priv) >= 6)
2799
		engine->emit_bb_start = gen6_emit_bb_start;
2800
	else if (INTEL_GEN(dev_priv) >= 4)
2801
		engine->emit_bb_start = i965_emit_bb_start;
2802
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2803
		engine->emit_bb_start = i830_emit_bb_start;
2804
	else
2805
		engine->emit_bb_start = i915_emit_bb_start;
2806 2807
}

2808
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2809
{
2810
	struct drm_i915_private *dev_priv = engine->i915;
2811
	int ret;
2812

2813 2814
	intel_ring_default_vfuncs(dev_priv, engine);

2815 2816
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2817

2818
	if (INTEL_GEN(dev_priv) >= 8) {
2819
		engine->init_context = intel_rcs_ctx_init;
2820
		engine->emit_request = gen8_render_emit_request;
2821
		engine->emit_flush = gen8_render_ring_flush;
2822
		if (i915.semaphores)
2823
			engine->semaphore.signal = gen8_rcs_signal;
2824
	} else if (INTEL_GEN(dev_priv) >= 6) {
2825
		engine->init_context = intel_rcs_ctx_init;
2826
		engine->emit_flush = gen7_render_ring_flush;
2827
		if (IS_GEN6(dev_priv))
2828
			engine->emit_flush = gen6_render_ring_flush;
2829
	} else if (IS_GEN5(dev_priv)) {
2830
		engine->emit_flush = gen4_render_ring_flush;
2831
	} else {
2832
		if (INTEL_GEN(dev_priv) < 4)
2833
			engine->emit_flush = gen2_render_ring_flush;
2834
		else
2835
			engine->emit_flush = gen4_render_ring_flush;
2836
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2837
	}
B
Ben Widawsky 已提交
2838

2839
	if (IS_HASWELL(dev_priv))
2840
		engine->emit_bb_start = hsw_emit_bb_start;
2841

2842 2843
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2844

2845
	ret = intel_init_ring_buffer(engine);
2846 2847 2848
	if (ret)
		return ret;

2849
	if (INTEL_GEN(dev_priv) >= 6) {
2850 2851 2852 2853 2854
		ret = intel_init_pipe_control(engine, 4096);
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
		ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2855 2856 2857 2858 2859
		if (ret)
			return ret;
	}

	return 0;
2860 2861
}

2862
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2863
{
2864
	struct drm_i915_private *dev_priv = engine->i915;
2865

2866 2867
	intel_ring_default_vfuncs(dev_priv, engine);

2868
	if (INTEL_GEN(dev_priv) >= 6) {
2869
		/* gen6 bsd needs a special wa for tail updates */
2870
		if (IS_GEN6(dev_priv))
2871
			engine->submit_request = gen6_bsd_submit_request;
2872
		engine->emit_flush = gen6_bsd_ring_flush;
2873
		if (INTEL_GEN(dev_priv) < 8)
2874
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2875
	} else {
2876
		engine->mmio_base = BSD_RING_BASE;
2877
		engine->emit_flush = bsd_ring_flush;
2878
		if (IS_GEN5(dev_priv))
2879
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2880
		else
2881
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2882 2883
	}

2884
	return intel_init_ring_buffer(engine);
2885
}
2886

2887
/**
2888
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2889
 */
2890
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2891
{
2892
	struct drm_i915_private *dev_priv = engine->i915;
2893 2894 2895

	intel_ring_default_vfuncs(dev_priv, engine);

2896
	engine->emit_flush = gen6_bsd_ring_flush;
2897

2898
	return intel_init_ring_buffer(engine);
2899 2900
}

2901
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2902
{
2903
	struct drm_i915_private *dev_priv = engine->i915;
2904 2905 2906

	intel_ring_default_vfuncs(dev_priv, engine);

2907
	engine->emit_flush = gen6_ring_flush;
2908
	if (INTEL_GEN(dev_priv) < 8)
2909
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2910

2911
	return intel_init_ring_buffer(engine);
2912
}
2913

2914
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2915
{
2916
	struct drm_i915_private *dev_priv = engine->i915;
2917 2918 2919

	intel_ring_default_vfuncs(dev_priv, engine);

2920
	engine->emit_flush = gen6_ring_flush;
2921

2922
	if (INTEL_GEN(dev_priv) < 8) {
2923
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2924 2925
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2926
	}
B
Ben Widawsky 已提交
2927

2928
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2929 2930
}

2931
void intel_engine_stop(struct intel_engine_cs *engine)
2932 2933 2934
{
	int ret;

2935
	if (!intel_engine_initialized(engine))
2936 2937
		return;

2938
	ret = intel_engine_idle(engine);
2939
	if (ret)
2940
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2941
			  engine->name, ret);
2942

2943
	stop_ring(engine);
2944
}