intel_ringbuffer.c 59.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42 43 44
static unsigned int __intel_ring_space(unsigned int head,
				       unsigned int tail,
				       unsigned int size)
45
{
46 47 48 49 50 51 52
	/*
	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
	 * same cacheline, the Head Pointer must not be greater than the Tail
	 * Pointer."
	 */
	GEM_BUG_ON(!is_power_of_2(size));
	return (head - tail - CACHELINE_BYTES) & (size - 1);
53 54
}

55
void intel_ring_update_space(struct intel_ring *ring)
56
{
57
	ring->space = __intel_ring_space(ring->head, ring->emit, ring->size);
58 59
}

60
static int
61
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
62
{
63
	u32 cmd, *cs;
64 65 66

	cmd = MI_FLUSH;

67
	if (mode & EMIT_INVALIDATE)
68 69
		cmd |= MI_READ_FLUSH;

70 71 72
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
73

74 75 76
	*cs++ = cmd;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
77 78 79 80 81

	return 0;
}

static int
82
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
83
{
84
	u32 cmd, *cs;
85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

114
	cmd = MI_FLUSH;
115
	if (mode & EMIT_INVALIDATE) {
116
		cmd |= MI_EXE_FLUSH;
117 118 119
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
120

121 122 123
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
124

125 126 127
	*cs++ = cmd;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
128 129

	return 0;
130 131
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
170
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
171
{
172
	u32 scratch_addr =
173
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	u32 *cs;

	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);

	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
199 200 201 202 203

	return 0;
}

static int
204
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
205
{
206
	u32 scratch_addr =
207
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
208
	u32 *cs, flags = 0;
209 210
	int ret;

211
	/* Force SNB workarounds for PIPE_CONTROL flushes */
212
	ret = intel_emit_post_sync_nonzero_flush(req);
213 214 215
	if (ret)
		return ret;

216 217 218 219
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
220
	if (mode & EMIT_FLUSH) {
221 222 223 224 225 226
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
227
		flags |= PIPE_CONTROL_CS_STALL;
228
	}
229
	if (mode & EMIT_INVALIDATE) {
230 231 232 233 234 235 236 237 238
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
239
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
240
	}
241

242 243 244
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
245

246 247 248 249 250
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	intel_ring_advance(req, cs);
251 252 253 254

	return 0;
}

255
static int
256
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
257
{
258
	u32 *cs;
259

260 261 262
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
263

264 265 266 267 268
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
	intel_ring_advance(req, cs);
269 270 271 272

	return 0;
}

273
static int
274
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
275
{
276
	u32 scratch_addr =
277
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
278
	u32 *cs, flags = 0;
279

280 281 282 283 284 285 286 287 288 289
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

290 291 292 293
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
294
	if (mode & EMIT_FLUSH) {
295 296
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
297
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
298
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
299
	}
300
	if (mode & EMIT_INVALIDATE) {
301 302 303 304 305 306
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
307
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
308 309 310 311
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
312
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
313

314 315
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

316 317 318
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
319
		gen7_render_ring_cs_stall_wa(req);
320 321
	}

322 323 324
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
325

326 327 328 329 330
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
	intel_ring_advance(req, cs);
331 332 333 334

	return 0;
}

335
static int
336
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
337
{
338
	u32 flags;
339
	u32 *cs;
340

341
	cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
342 343
	if (IS_ERR(cs))
		return PTR_ERR(cs);
344

345
	flags = PIPE_CONTROL_CS_STALL;
B
Ben Widawsky 已提交
346

347
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
348 349
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
351
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
352
	}
353
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
354 355 356 357 358 359 360 361
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
362 363

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
364 365 366 367
		cs = gen8_emit_pipe_control(cs,
					    PIPE_CONTROL_CS_STALL |
					    PIPE_CONTROL_STALL_AT_SCOREBOARD,
					    0);
B
Ben Widawsky 已提交
368 369
	}

370 371 372 373 374 375 376
	cs = gen8_emit_pipe_control(cs, flags,
				    i915_ggtt_offset(req->engine->scratch) +
				    2 * CACHELINE_BYTES);

	intel_ring_advance(req, cs);

	return 0;
B
Ben Widawsky 已提交
377 378
}

379
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
380
{
381
	struct drm_i915_private *dev_priv = engine->i915;
382 383 384
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
385
	if (INTEL_GEN(dev_priv) >= 4)
386 387 388 389
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

390
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
391
{
392
	struct drm_i915_private *dev_priv = engine->i915;
393
	i915_reg_t mmio;
394 395 396 397

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
398
	if (IS_GEN7(dev_priv)) {
399
		switch (engine->id) {
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
418
	} else if (IS_GEN6(dev_priv)) {
419
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
420 421
	} else {
		/* XXX: gen8 returns to sanity */
422
		mmio = RING_HWS_PGA(engine->mmio_base);
423 424
	}

425
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
426 427 428 429 430 431 432 433 434
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
435
	if (IS_GEN(dev_priv, 6, 7)) {
436
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
437 438

		/* ring should be idle before issuing a sync flush*/
439
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
440 441 442 443

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
444 445 446
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
447
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
448
				  engine->name);
449 450 451
	}
}

452
static bool stop_ring(struct intel_engine_cs *engine)
453
{
454
	struct drm_i915_private *dev_priv = engine->i915;
455

456
	if (INTEL_GEN(dev_priv) > 2) {
457
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
458 459 460 461 462
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
463 464
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
465 466 467 468
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
469
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
470
				return false;
471 472
		}
	}
473

474 475
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
476
	I915_WRITE_TAIL(engine, 0);
477

478
	if (INTEL_GEN(dev_priv) > 2) {
479 480
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
481
	}
482

483
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
484
}
485

486
static int init_ring_common(struct intel_engine_cs *engine)
487
{
488
	struct drm_i915_private *dev_priv = engine->i915;
489
	struct intel_ring *ring = engine->buffer;
490 491
	int ret = 0;

492
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
493

494
	if (!stop_ring(engine)) {
495
		/* G45 ring initialization often fails to reset head to zero */
496 497
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
498 499 500 501 502
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
503

504
		if (!stop_ring(engine)) {
505 506
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
507 508 509 510 511
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
512 513
			ret = -EIO;
			goto out;
514
		}
515 516
	}

517
	if (HWS_NEEDS_PHYSICAL(dev_priv))
518
		ring_setup_phys_status_page(engine);
519 520
	else
		intel_ring_setup_status_page(engine);
521

522
	intel_engine_reset_breadcrumbs(engine);
523

524
	/* Enforce ordering by reading HEAD register back */
525
	I915_READ_HEAD(engine);
526

527 528 529 530
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
531
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
532 533

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
534
	if (I915_READ_HEAD(engine))
535
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
536
			  engine->name, I915_READ_HEAD(engine));
537 538 539 540 541

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
542

543
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
544 545

	/* If the head is still not zero, the ring is dead */
546 547 548
	if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
				    RING_VALID, RING_VALID,
				    50)) {
549
		DRM_ERROR("%s initialization failed "
550
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
551 552 553
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
554 555
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
556
			  I915_READ_START(engine),
557
			  i915_ggtt_offset(ring->vma));
558 559
		ret = -EIO;
		goto out;
560 561
	}

562
	intel_engine_init_hangcheck(engine);
563

564
out:
565
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
566 567

	return ret;
568 569
}

570 571 572
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	/* Try to restore the logical GPU state to match the continuation
	 * of the request queue. If we skip the context/PD restore, then
	 * the next request may try to execute assuming that its context
	 * is valid and loaded on the GPU and so may try to access invalid
	 * memory, prompting repeated GPU hangs.
	 *
	 * If the request was guilty, we still restore the logical state
	 * in case the next request requires it (e.g. the aliasing ppgtt),
	 * but skip over the hung batch.
	 *
	 * If the request was innocent, we try to replay the request with
	 * the restored context.
	 */
	if (request) {
		struct drm_i915_private *dev_priv = request->i915;
		struct intel_context *ce = &request->ctx->engine[engine->id];
		struct i915_hw_ppgtt *ppgtt;

		/* FIXME consider gen8 reset */

		if (ce->state) {
			I915_WRITE(CCID,
				   i915_ggtt_offset(ce->state) |
				   BIT(8) /* must be set! */ |
				   CCID_EXTENDED_STATE_SAVE |
				   CCID_EXTENDED_STATE_RESTORE |
				   CCID_EN);
		}

		ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
		if (ppgtt) {
			u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;

			I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
			I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);

			/* Wait for the PD reload to complete */
			if (intel_wait_for_register(dev_priv,
						    RING_PP_DIR_BASE(engine),
						    BIT(0), 0,
						    10))
				DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
615

616 617 618 619
			ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
		}

		/* If the rq hung, jump to its breadcrumb and skip the batch */
620 621
		if (request->fence.error == -EIO)
			request->ring->head = request->postfix;
622 623 624
	} else {
		engine->legacy_active_context = NULL;
	}
625 626
}

627
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
628 629 630
{
	int ret;

631
	ret = intel_ring_workarounds_emit(req);
632 633 634
	if (ret != 0)
		return ret;

635
	ret = i915_gem_render_state_emit(req);
636
	if (ret)
637
		return ret;
638

639
	return 0;
640 641
}

642
static int init_render_ring(struct intel_engine_cs *engine)
643
{
644
	struct drm_i915_private *dev_priv = engine->i915;
645
	int ret = init_ring_common(engine);
646 647
	if (ret)
		return ret;
648

649
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
650
	if (IS_GEN(dev_priv, 4, 6))
651
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
652 653 654 655

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
656
	 *
657
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
658
	 */
659
	if (IS_GEN(dev_priv, 6, 7))
660 661
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

662
	/* Required for the hardware to program scanline values for waiting */
663
	/* WaEnableFlushTlbInvalidationMode:snb */
664
	if (IS_GEN6(dev_priv))
665
		I915_WRITE(GFX_MODE,
666
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
667

668
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
669
	if (IS_GEN7(dev_priv))
670
		I915_WRITE(GFX_MODE_GEN7,
671
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
672
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
673

674
	if (IS_GEN6(dev_priv)) {
675 676 677 678 679 680
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
681
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
682 683
	}

684
	if (IS_GEN(dev_priv, 6, 7))
685
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
686

687 688
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
689

690
	return init_workarounds_ring(engine);
691 692
}

693
static void render_ring_cleanup(struct intel_engine_cs *engine)
694
{
695
	struct drm_i915_private *dev_priv = engine->i915;
696

697
	i915_vma_unpin_and_release(&dev_priv->semaphore);
698 699
}

700
static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
701
{
702
	struct drm_i915_private *dev_priv = req->i915;
703
	struct intel_engine_cs *waiter;
704
	enum intel_engine_id id;
705

706
	for_each_engine(waiter, dev_priv, id) {
707
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
708 709 710
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

711 712 713 714 715 716 717 718 719 720
		*cs++ = GFX_OP_PIPE_CONTROL(6);
		*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
			PIPE_CONTROL_CS_STALL;
		*cs++ = lower_32_bits(gtt_offset);
		*cs++ = upper_32_bits(gtt_offset);
		*cs++ = req->global_seqno;
		*cs++ = 0;
		*cs++ = MI_SEMAPHORE_SIGNAL |
			MI_SEMAPHORE_TARGET(waiter->hw_id);
		*cs++ = 0;
721 722
	}

723
	return cs;
724 725
}

726
static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
727
{
728
	struct drm_i915_private *dev_priv = req->i915;
729
	struct intel_engine_cs *waiter;
730
	enum intel_engine_id id;
731

732
	for_each_engine(waiter, dev_priv, id) {
733
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
734 735 736
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

737 738 739 740 741 742 743
		*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
		*cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
		*cs++ = upper_32_bits(gtt_offset);
		*cs++ = req->global_seqno;
		*cs++ = MI_SEMAPHORE_SIGNAL |
			MI_SEMAPHORE_TARGET(waiter->hw_id);
		*cs++ = 0;
744 745
	}

746
	return cs;
747 748
}

749
static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
750
{
751
	struct drm_i915_private *dev_priv = req->i915;
752
	struct intel_engine_cs *engine;
753
	enum intel_engine_id id;
C
Chris Wilson 已提交
754
	int num_rings = 0;
755

756
	for_each_engine(engine, dev_priv, id) {
757 758 759 760
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
761

762
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
763
		if (i915_mmio_reg_valid(mbox_reg)) {
764 765 766
			*cs++ = MI_LOAD_REGISTER_IMM(1);
			*cs++ = i915_mmio_reg_offset(mbox_reg);
			*cs++ = req->global_seqno;
C
Chris Wilson 已提交
767
			num_rings++;
768 769
		}
	}
C
Chris Wilson 已提交
770
	if (num_rings & 1)
771
		*cs++ = MI_NOOP;
772

773
	return cs;
774 775
}

776 777 778 779
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

780 781
	i915_gem_request_submit(request);

782 783
	I915_WRITE_TAIL(request->engine,
			intel_ring_set_tail(request->ring, request->tail));
784 785
}

786
static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
787
{
788 789 790 791
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
	*cs++ = req->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
792

793
	req->tail = intel_ring_offset(req, cs);
794
	assert_ring_tail_valid(req->ring, req->tail);
795 796
}

797 798
static const int i9xx_emit_breadcrumb_sz = 4;

799
/**
800
 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
801 802 803 804 805 806
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
807
static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
808
{
C
Chris Wilson 已提交
809
	return i9xx_emit_breadcrumb(req,
810
				    req->engine->semaphore.signal(req, cs));
811 812
}

C
Chris Wilson 已提交
813
static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
814
					u32 *cs)
815 816
{
	struct intel_engine_cs *engine = req->engine;
817

C
Chris Wilson 已提交
818
	if (engine->semaphore.signal)
819 820 821 822 823 824 825 826
		cs = engine->semaphore.signal(req, cs);

	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(engine);
	*cs++ = 0;
	*cs++ = req->global_seqno;
827
	/* We're thrashing one dword of HWS. */
828 829 830
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
831

832
	req->tail = intel_ring_offset(req, cs);
833
	assert_ring_tail_valid(req->ring, req->tail);
834 835
}

836 837
static const int gen8_render_emit_breadcrumb_sz = 8;

838 839 840 841 842 843 844
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
845 846

static int
847 848
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
849
{
850 851
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
852
	struct i915_hw_ppgtt *ppgtt;
853
	u32 *cs;
854

855 856 857
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
858

859 860 861 862 863 864
	*cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_SAD_GTE_SDD;
	*cs++ = signal->global_seqno;
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
865 866 867 868 869 870

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
871 872 873
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
874 875 876
	return 0;
}

877
static int
878 879
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
880
{
881 882 883
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
884
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
885
	u32 *cs;
886

887
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
888

889 890 891
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
892

893
	*cs++ = dw1 | wait_mbox;
894 895 896 897
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
898 899 900 901
	*cs++ = signal->global_seqno - 1;
	*cs++ = 0;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
902 903 904 905

	return 0;
}

906
static void
907
gen5_seqno_barrier(struct intel_engine_cs *engine)
908
{
909 910 911
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
912
	 *
913 914 915 916 917 918 919
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
920
	 */
921
	usleep_range(125, 250);
922 923
}

924 925
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
926
{
927
	struct drm_i915_private *dev_priv = engine->i915;
928

929 930
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
931 932 933 934 935 936 937 938 939
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
940 941 942
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
943
	 */
944
	spin_lock_irq(&dev_priv->uncore.lock);
945
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
946
	spin_unlock_irq(&dev_priv->uncore.lock);
947 948
}

949 950
static void
gen5_irq_enable(struct intel_engine_cs *engine)
951
{
952
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
953 954 955
}

static void
956
gen5_irq_disable(struct intel_engine_cs *engine)
957
{
958
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
959 960
}

961 962
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
963
{
964
	struct drm_i915_private *dev_priv = engine->i915;
965

966 967 968
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
969 970
}

971
static void
972
i9xx_irq_disable(struct intel_engine_cs *engine)
973
{
974
	struct drm_i915_private *dev_priv = engine->i915;
975

976 977
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
978 979
}

980 981
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
982
{
983
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
984

985 986 987
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
988 989 990
}

static void
991
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
992
{
993
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
994

995 996
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
997 998
}

999
static int
1000
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1001
{
1002
	u32 *cs;
1003

1004 1005 1006
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1007

1008 1009 1010
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1011
	return 0;
1012 1013
}

1014 1015
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1016
{
1017
	struct drm_i915_private *dev_priv = engine->i915;
1018

1019 1020 1021
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1022
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1023 1024 1025
}

static void
1026
gen6_irq_disable(struct intel_engine_cs *engine)
1027
{
1028
	struct drm_i915_private *dev_priv = engine->i915;
1029

1030
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1031
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1032 1033
}

1034 1035
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1036
{
1037
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1038

1039
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1040
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1041 1042 1043
}

static void
1044
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1045
{
1046
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1047

1048
	I915_WRITE_IMR(engine, ~0);
1049
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1050 1051
}

1052 1053
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1054
{
1055
	struct drm_i915_private *dev_priv = engine->i915;
1056

1057 1058 1059
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1060
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1061 1062 1063
}

static void
1064
gen8_irq_disable(struct intel_engine_cs *engine)
1065
{
1066
	struct drm_i915_private *dev_priv = engine->i915;
1067

1068
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1069 1070
}

1071
static int
1072 1073 1074
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1075
{
1076
	u32 *cs;
1077

1078 1079 1080
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1081

1082 1083 1084 1085
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
	intel_ring_advance(req, cs);
1086

1087 1088 1089
	return 0;
}

1090 1091
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1092 1093
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1094
static int
1095 1096 1097
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1098
{
1099
	u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1100

1101 1102 1103
	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1104

1105
	/* Evict the invalid PTE TLBs */
1106 1107 1108 1109 1110 1111 1112
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1113

1114
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1115 1116 1117
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1118 1119 1120
		cs = intel_ring_begin(req, 6 + 2);
		if (IS_ERR(cs))
			return PTR_ERR(cs);
1121 1122 1123 1124 1125

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
		intel_ring_advance(req, cs);
1136 1137

		/* ... and execute it. */
1138
		offset = cs_offset;
1139
	}
1140

1141 1142 1143
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1144

1145 1146 1147 1148
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
	intel_ring_advance(req, cs);
1149

1150 1151 1152 1153
	return 0;
}

static int
1154 1155 1156
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1157
{
1158
	u32 *cs;
1159

1160 1161 1162
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1163

1164 1165 1166 1167
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
	intel_ring_advance(req, cs);
1168 1169 1170 1171

	return 0;
}

1172
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1173
{
1174
	struct drm_i915_private *dev_priv = engine->i915;
1175 1176 1177 1178

	if (!dev_priv->status_page_dmah)
		return;

1179
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1180
	engine->status_page.page_addr = NULL;
1181 1182
}

1183
static void cleanup_status_page(struct intel_engine_cs *engine)
1184
{
1185
	struct i915_vma *vma;
1186
	struct drm_i915_gem_object *obj;
1187

1188 1189
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1190 1191
		return;

1192 1193
	obj = vma->obj;

1194
	i915_vma_unpin(vma);
1195 1196 1197 1198
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
1199 1200
}

1201
static int init_status_page(struct intel_engine_cs *engine)
1202
{
1203 1204 1205
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
1206
	void *vaddr;
1207
	int ret;
1208

1209
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1210 1211 1212 1213
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1214

1215 1216 1217
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1218

1219
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1220 1221 1222
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1223
	}
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1241

1242 1243 1244 1245 1246 1247
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

1248
	engine->status_page.vma = vma;
1249
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1250
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1251

1252 1253
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1254
	return 0;
1255

1256 1257
err_unpin:
	i915_vma_unpin(vma);
1258 1259 1260
err:
	i915_gem_object_put(obj);
	return ret;
1261 1262
}

1263
static int init_phys_status_page(struct intel_engine_cs *engine)
1264
{
1265
	struct drm_i915_private *dev_priv = engine->i915;
1266

1267 1268
	GEM_BUG_ON(engine->id != RCS);

1269 1270 1271 1272
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1273

1274 1275
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1276 1277 1278 1279

	return 0;
}

1280 1281 1282
int intel_ring_pin(struct intel_ring *ring,
		   struct drm_i915_private *i915,
		   unsigned int offset_bias)
1283
{
1284
	enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1285
	struct i915_vma *vma = ring->vma;
1286
	unsigned int flags;
1287
	void *addr;
1288 1289
	int ret;

1290
	GEM_BUG_ON(ring->vaddr);
1291

1292

1293 1294 1295
	flags = PIN_GLOBAL;
	if (offset_bias)
		flags |= PIN_OFFSET_BIAS | offset_bias;
1296
	if (vma->obj->stolen)
1297
		flags |= PIN_MAPPABLE;
1298

1299
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1300
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1301 1302 1303 1304
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1305
			return ret;
1306
	}
1307

1308 1309 1310
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1311

1312
	if (i915_vma_is_map_and_fenceable(vma))
1313 1314
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1315
		addr = i915_gem_object_pin_map(vma->obj, map);
1316 1317
	if (IS_ERR(addr))
		goto err;
1318

1319
	ring->vaddr = addr;
1320
	return 0;
1321

1322 1323 1324
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334 1335
void intel_ring_reset(struct intel_ring *ring, u32 tail)
{
	GEM_BUG_ON(!list_empty(&ring->request_list));
	ring->tail = tail;
	ring->head = tail;
	ring->emit = tail;
	intel_ring_update_space(ring);
}

1336 1337 1338 1339 1340
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1341 1342 1343
	/* Discard any unused bytes beyond that submitted to hw. */
	intel_ring_reset(ring, ring->tail);

1344
	if (i915_vma_is_map_and_fenceable(ring->vma))
1345
		i915_vma_unpin_iomap(ring->vma);
1346 1347
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1348 1349
	ring->vaddr = NULL;

1350
	i915_vma_unpin(ring->vma);
1351 1352
}

1353 1354
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1355
{
1356
	struct drm_i915_gem_object *obj;
1357
	struct i915_vma *vma;
1358

1359
	obj = i915_gem_object_create_stolen(dev_priv, size);
1360
	if (!obj)
1361
		obj = i915_gem_object_create_internal(dev_priv, size);
1362 1363
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1364

1365 1366 1367
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1368
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1369 1370 1371 1372
	if (IS_ERR(vma))
		goto err;

	return vma;
1373

1374 1375 1376
err:
	i915_gem_object_put(obj);
	return vma;
1377 1378
}

1379 1380
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1381
{
1382
	struct intel_ring *ring;
1383
	struct i915_vma *vma;
1384

1385
	GEM_BUG_ON(!is_power_of_2(size));
1386
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1387

1388
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1389
	if (!ring)
1390 1391
		return ERR_PTR(-ENOMEM);

1392 1393
	INIT_LIST_HEAD(&ring->request_list);

1394 1395 1396 1397 1398 1399
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1400
	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1401 1402 1403 1404
		ring->effective_size -= 2 * CACHELINE_BYTES;

	intel_ring_update_space(ring);

1405 1406
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1407
		kfree(ring);
1408
		return ERR_CAST(vma);
1409
	}
1410
	ring->vma = vma;
1411 1412 1413 1414 1415

	return ring;
}

void
1416
intel_ring_free(struct intel_ring *ring)
1417
{
1418 1419 1420 1421 1422
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1423 1424 1425
	kfree(ring);
}

1426
static int context_pin(struct i915_gem_context *ctx)
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	struct i915_vma *vma = ctx->engine[RCS].state;
	int ret;

	/* Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
		if (ret)
			return ret;
	}

1441 1442
	return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
			    PIN_GLOBAL | PIN_HIGH);
1443 1444
}

1445 1446 1447 1448 1449 1450 1451
static struct i915_vma *
alloc_context_vma(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;

1452
	obj = i915_gem_object_create(i915, engine->context_size);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	if (IS_ERR(obj))
		return ERR_CAST(obj);

	/*
	 * Try to make the context utilize L3 as well as LLC.
	 *
	 * On VLV we don't have L3 controls in the PTEs so we
	 * shouldn't touch the cache level, especially as that
	 * would make the object snooped which might have a
	 * negative performance impact.
	 *
	 * Snooping is required on non-llc platforms in execlist
	 * mode, but since all GGTT accesses use PAT entry 0 we
	 * get snooping anyway regardless of cache_level.
	 *
	 * This is only applicable for Ivy Bridge devices since
	 * later platforms don't have L3 control bits in the PTE.
	 */
	if (IS_IVYBRIDGE(i915)) {
		/* Ignore any error, regard it as a simple optimisation */
		i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
	if (IS_ERR(vma))
		i915_gem_object_put(obj);

	return vma;
}

1483 1484 1485
static struct intel_ring *
intel_ring_context_pin(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
1486 1487 1488 1489
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1490
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1491

1492 1493
	if (likely(ce->pin_count++))
		goto out;
1494
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1495

1496
	if (!ce->state && engine->context_size) {
1497 1498 1499 1500 1501
		struct i915_vma *vma;

		vma = alloc_context_vma(engine);
		if (IS_ERR(vma)) {
			ret = PTR_ERR(vma);
1502
			goto err;
1503 1504 1505 1506 1507
		}

		ce->state = vma;
	}

1508
	if (ce->state) {
1509
		ret = context_pin(ctx);
1510
		if (ret)
1511
			goto err;
1512 1513

		ce->state->obj->mm.dirty = true;
1514 1515
	}

1516 1517 1518 1519 1520 1521 1522
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
1523
	if (i915_gem_context_is_kernel(ctx))
1524 1525
		ce->initialised = true;

1526
	i915_gem_context_get(ctx);
1527

1528 1529 1530 1531 1532
out:
	/* One ringbuffer to rule them all */
	return engine->buffer;

err:
1533
	ce->pin_count = 0;
1534
	return ERR_PTR(ret);
1535 1536
}

1537 1538
static void intel_ring_context_unpin(struct intel_engine_cs *engine,
				     struct i915_gem_context *ctx)
1539 1540 1541
{
	struct intel_context *ce = &ctx->engine[engine->id];

1542
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1543
	GEM_BUG_ON(ce->pin_count == 0);
1544 1545 1546 1547 1548

	if (--ce->pin_count)
		return;

	if (ce->state)
1549
		i915_vma_unpin(ce->state);
1550

1551
	i915_gem_context_put(ctx);
1552 1553
}

1554
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1555
{
1556
	struct intel_ring *ring;
1557
	int err;
1558

1559 1560
	intel_engine_setup_common(engine);

1561 1562 1563
	err = intel_engine_init_common(engine);
	if (err)
		goto err;
1564

1565 1566 1567 1568 1569 1570
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		err = init_phys_status_page(engine);
	else
		err = init_status_page(engine);
	if (err)
		goto err;
1571

1572 1573
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
1574 1575
		err = PTR_ERR(ring);
		goto err_hws;
1576 1577
	}

1578
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1579 1580 1581 1582 1583
	err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
	if (err)
		goto err_ring;

	GEM_BUG_ON(engine->buffer);
1584
	engine->buffer = ring;
1585

1586
	return 0;
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
err_ring:
	intel_ring_free(ring);
err_hws:
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		cleanup_phys_status_page(engine);
	else
		cleanup_status_page(engine);
err:
	intel_engine_cleanup_common(engine);
	return err;
1598 1599
}

1600
void intel_engine_cleanup(struct intel_engine_cs *engine)
1601
{
1602
	struct drm_i915_private *dev_priv = engine->i915;
1603

1604 1605
	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
		(I915_READ_MODE(engine) & MODE_IDLE) == 0);
1606

1607 1608
	intel_ring_unpin(engine->buffer);
	intel_ring_free(engine->buffer);
1609

1610 1611
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
1612

1613
	if (HWS_NEEDS_PHYSICAL(dev_priv))
1614
		cleanup_phys_status_page(engine);
1615
	else
1616
		cleanup_status_page(engine);
1617

1618
	intel_engine_cleanup_common(engine);
1619

1620 1621
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1622 1623
}

1624 1625 1626
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1627
	enum intel_engine_id id;
1628

1629
	/* Restart from the beginning of the rings for convenience */
1630
	for_each_engine(engine, dev_priv, id)
1631
		intel_ring_reset(engine->buffer, 0);
1632 1633
}

1634
static int ring_request_alloc(struct drm_i915_gem_request *request)
1635
{
1636
	u32 *cs;
1637

1638 1639
	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);

1640 1641 1642 1643
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1644
	request->reserved_space += LEGACY_REQUEST_SIZE;
1645

1646 1647 1648
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1649

1650
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1651
	return 0;
1652 1653
}

1654 1655
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
1656
	struct intel_ring *ring = req->ring;
1657
	struct drm_i915_gem_request *target;
1658 1659 1660
	long timeout;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
1661

1662 1663
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
1675
	GEM_BUG_ON(!req->reserved_space);
1676

1677
	list_for_each_entry(target, &ring->request_list, ring_link) {
1678
		/* Would completion of this request free enough space? */
1679 1680
		if (bytes <= __intel_ring_space(target->postfix,
						ring->emit, ring->size))
1681
			break;
1682
	}
1683

1684
	if (WARN_ON(&target->ring_link == &ring->request_list))
1685 1686
		return -ENOSPC;

1687 1688 1689 1690 1691
	timeout = i915_wait_request(target,
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
1692 1693 1694 1695 1696 1697

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
1698 1699
}

1700
u32 *intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
1701
{
1702
	struct intel_ring *ring = req->ring;
1703 1704
	int remain_actual = ring->size - ring->emit;
	int remain_usable = ring->effective_size - ring->emit;
1705 1706
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
1707
	bool need_wrap = false;
1708
	u32 *cs;
1709

1710
	total_bytes = bytes + req->reserved_space;
1711

1712 1713 1714 1715 1716 1717 1718
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
1719 1720 1721 1722 1723 1724 1725
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
1726
		wait_bytes = remain_actual + req->reserved_space;
1727
	} else {
1728 1729
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
1730 1731
	}

1732
	if (wait_bytes > ring->space) {
1733
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
1734
		if (unlikely(ret))
1735
			return ERR_PTR(ret);
M
Mika Kuoppala 已提交
1736 1737
	}

1738
	if (unlikely(need_wrap)) {
1739
		GEM_BUG_ON(remain_actual > ring->space);
1740
		GEM_BUG_ON(ring->emit + remain_actual > ring->size);
1741

1742
		/* Fill the tail with MI_NOOP */
1743 1744
		memset(ring->vaddr + ring->emit, 0, remain_actual);
		ring->emit = 0;
1745
		ring->space -= remain_actual;
1746
	}
1747

1748
	GEM_BUG_ON(ring->emit > ring->size - bytes);
1749
	GEM_BUG_ON(ring->space < bytes);
1750
	cs = ring->vaddr + ring->emit;
1751
	GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1752
	ring->emit += bytes;
1753
	ring->space -= bytes;
1754 1755

	return cs;
1756
}
1757

1758
/* Align the ring tail to a cacheline boundary */
1759
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1760
{
1761
	int num_dwords =
1762
		(req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1763
	u32 *cs;
1764 1765 1766 1767

	if (num_dwords == 0)
		return 0;

1768
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1769 1770 1771
	cs = intel_ring_begin(req, num_dwords);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1772 1773

	while (num_dwords--)
1774
		*cs++ = MI_NOOP;
1775

1776
	intel_ring_advance(req, cs);
1777 1778 1779 1780

	return 0;
}

1781
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1782
{
1783
	struct drm_i915_private *dev_priv = request->i915;
1784

1785 1786
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

1787
       /* Every tail move must follow the sequence below */
1788 1789 1790 1791

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
1792 1793
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1794 1795

	/* Clear the context id. Here be magic! */
1796
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1797

1798
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1799 1800 1801 1802 1803
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_BSD_SLEEP_PSMI_CONTROL,
					 GEN6_BSD_SLEEP_INDICATOR,
					 0,
					 1000, 0, NULL))
1804
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1805

1806
	/* Now that the ring is fully powered up, update the tail */
1807
	i9xx_submit_request(request);
1808 1809 1810 1811

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
1812 1813 1814 1815
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1816 1817
}

1818
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1819
{
1820
	u32 cmd, *cs;
1821

1822 1823 1824
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1825

1826
	cmd = MI_FLUSH_DW;
1827
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
1828
		cmd += 1;
1829 1830 1831 1832 1833 1834 1835 1836

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1837 1838 1839 1840 1841 1842
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1843
	if (mode & EMIT_INVALIDATE)
1844 1845
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

1846 1847
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1848
	if (INTEL_GEN(req->i915) >= 8) {
1849 1850
		*cs++ = 0; /* upper addr */
		*cs++ = 0; /* value */
B
Ben Widawsky 已提交
1851
	} else  {
1852 1853
		*cs++ = 0;
		*cs++ = MI_NOOP;
B
Ben Widawsky 已提交
1854
	}
1855
	intel_ring_advance(req, cs);
1856
	return 0;
1857 1858
}

1859
static int
1860 1861 1862
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1863
{
1864
	bool ppgtt = USES_PPGTT(req->i915) &&
1865
			!(dispatch_flags & I915_DISPATCH_SECURE);
1866
	u32 *cs;
1867

1868 1869 1870
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1871 1872

	/* FIXME(BDW): Address space and security selectors. */
1873 1874 1875 1876 1877 1878
	*cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
		I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1879 1880 1881 1882

	return 0;
}

1883
static int
1884 1885 1886
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
1887
{
1888
	u32 *cs;
1889

1890 1891 1892
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1893

1894 1895 1896 1897
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
		(dispatch_flags & I915_DISPATCH_RS ?
		MI_BATCH_RESOURCE_STREAMER : 0);
1898
	/* bit0-7 is the length on GEN6+ */
1899 1900
	*cs++ = offset;
	intel_ring_advance(req, cs);
1901 1902 1903 1904

	return 0;
}

1905
static int
1906 1907 1908
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1909
{
1910
	u32 *cs;
1911

1912 1913 1914
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1915

1916 1917
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
1918
	/* bit0-7 is the length on GEN6+ */
1919 1920
	*cs++ = offset;
	intel_ring_advance(req, cs);
1921

1922
	return 0;
1923 1924
}

1925 1926
/* Blitter support (SandyBridge+) */

1927
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
1928
{
1929
	u32 cmd, *cs;
1930

1931 1932 1933
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1934

1935
	cmd = MI_FLUSH_DW;
1936
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
1937
		cmd += 1;
1938 1939 1940 1941 1942 1943 1944 1945

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1946 1947 1948 1949 1950 1951
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1952
	if (mode & EMIT_INVALIDATE)
1953
		cmd |= MI_INVALIDATE_TLB;
1954 1955
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1956
	if (INTEL_GEN(req->i915) >= 8) {
1957 1958
		*cs++ = 0; /* upper addr */
		*cs++ = 0; /* value */
B
Ben Widawsky 已提交
1959
	} else  {
1960 1961
		*cs++ = 0;
		*cs++ = MI_NOOP;
B
Ben Widawsky 已提交
1962
	}
1963
	intel_ring_advance(req, cs);
R
Rodrigo Vivi 已提交
1964

1965
	return 0;
Z
Zou Nan hai 已提交
1966 1967
}

1968 1969 1970
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
1971
	struct drm_i915_gem_object *obj;
1972
	int ret, i;
1973

1974
	if (!i915.semaphores)
1975 1976
		return;

1977 1978 1979
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

1980
		obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1981 1982
		if (IS_ERR(obj))
			goto err;
1983

1984
		vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
1998 1999

	if (INTEL_GEN(dev_priv) >= 8) {
2000
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2001

2002
		engine->semaphore.sync_to = gen8_ring_sync_to;
2003
		engine->semaphore.signal = gen8_xcs_signal;
2004 2005

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2006
			u32 ring_offset;
2007 2008 2009 2010 2011 2012 2013 2014

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2015
	} else if (INTEL_GEN(dev_priv) >= 6) {
2016
		engine->semaphore.sync_to = gen6_ring_sync_to;
2017
		engine->semaphore.signal = gen6_signal;
2018 2019 2020 2021 2022 2023 2024 2025

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
2026
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2027 2028 2029
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
2030 2031 2032 2033 2034
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2035
				},
2036 2037 2038 2039
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2040
				},
2041 2042 2043 2044
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2045
				},
2046 2047 2048 2049
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2050 2051 2052 2053 2054
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2055
			if (i == engine->hw_id) {
2056 2057 2058
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2059 2060
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2061 2062 2063 2064 2065
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2066
	}
2067 2068 2069 2070 2071 2072 2073 2074

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2075 2076
}

2077 2078 2079
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2080 2081
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2082
	if (INTEL_GEN(dev_priv) >= 8) {
2083 2084
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2085 2086
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2087 2088
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2089 2090
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2091 2092
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2093
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2094
	} else if (INTEL_GEN(dev_priv) >= 3) {
2095 2096
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2097
	} else {
2098 2099
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2100 2101 2102
	}
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = i9xx_submit_request;
}

static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = gen6_bsd_submit_request;
}

2113 2114 2115
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2116 2117 2118
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2119
	engine->init_hw = init_ring_common;
2120
	engine->reset_hw = reset_ring_common;
2121

2122 2123 2124
	engine->context_pin = intel_ring_context_pin;
	engine->context_unpin = intel_ring_context_unpin;

2125 2126
	engine->request_alloc = ring_request_alloc;

2127
	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2128 2129 2130 2131
	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
	if (i915.semaphores) {
		int num_rings;

2132
		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

		num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
		if (INTEL_GEN(dev_priv) >= 8) {
			engine->emit_breadcrumb_sz += num_rings * 6;
		} else {
			engine->emit_breadcrumb_sz += num_rings * 3;
			if (num_rings & 1)
				engine->emit_breadcrumb_sz++;
		}
	}
2143 2144

	engine->set_default_submission = i9xx_set_default_submission;
2145 2146

	if (INTEL_GEN(dev_priv) >= 8)
2147
		engine->emit_bb_start = gen8_emit_bb_start;
2148
	else if (INTEL_GEN(dev_priv) >= 6)
2149
		engine->emit_bb_start = gen6_emit_bb_start;
2150
	else if (INTEL_GEN(dev_priv) >= 4)
2151
		engine->emit_bb_start = i965_emit_bb_start;
2152
	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2153
		engine->emit_bb_start = i830_emit_bb_start;
2154
	else
2155
		engine->emit_bb_start = i915_emit_bb_start;
2156 2157
}

2158
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2159
{
2160
	struct drm_i915_private *dev_priv = engine->i915;
2161
	int ret;
2162

2163 2164
	intel_ring_default_vfuncs(dev_priv, engine);

2165 2166
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2167

2168
	if (INTEL_GEN(dev_priv) >= 8) {
2169
		engine->init_context = intel_rcs_ctx_init;
2170
		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2171
		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2172
		engine->emit_flush = gen8_render_ring_flush;
2173 2174 2175
		if (i915.semaphores) {
			int num_rings;

2176
			engine->semaphore.signal = gen8_rcs_signal;
2177 2178 2179

			num_rings =
				hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2180
			engine->emit_breadcrumb_sz += num_rings * 8;
2181
		}
2182
	} else if (INTEL_GEN(dev_priv) >= 6) {
2183
		engine->init_context = intel_rcs_ctx_init;
2184
		engine->emit_flush = gen7_render_ring_flush;
2185
		if (IS_GEN6(dev_priv))
2186
			engine->emit_flush = gen6_render_ring_flush;
2187
	} else if (IS_GEN5(dev_priv)) {
2188
		engine->emit_flush = gen4_render_ring_flush;
2189
	} else {
2190
		if (INTEL_GEN(dev_priv) < 4)
2191
			engine->emit_flush = gen2_render_ring_flush;
2192
		else
2193
			engine->emit_flush = gen4_render_ring_flush;
2194
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2195
	}
B
Ben Widawsky 已提交
2196

2197
	if (IS_HASWELL(dev_priv))
2198
		engine->emit_bb_start = hsw_emit_bb_start;
2199

2200 2201
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2202

2203
	ret = intel_init_ring_buffer(engine);
2204 2205 2206
	if (ret)
		return ret;

2207
	if (INTEL_GEN(dev_priv) >= 6) {
2208
		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2209 2210 2211
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2212
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2213 2214 2215 2216 2217
		if (ret)
			return ret;
	}

	return 0;
2218 2219
}

2220
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2221
{
2222
	struct drm_i915_private *dev_priv = engine->i915;
2223

2224 2225
	intel_ring_default_vfuncs(dev_priv, engine);

2226
	if (INTEL_GEN(dev_priv) >= 6) {
2227
		/* gen6 bsd needs a special wa for tail updates */
2228
		if (IS_GEN6(dev_priv))
2229
			engine->set_default_submission = gen6_bsd_set_default_submission;
2230
		engine->emit_flush = gen6_bsd_ring_flush;
2231
		if (INTEL_GEN(dev_priv) < 8)
2232
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2233
	} else {
2234
		engine->mmio_base = BSD_RING_BASE;
2235
		engine->emit_flush = bsd_ring_flush;
2236
		if (IS_GEN5(dev_priv))
2237
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2238
		else
2239
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2240 2241
	}

2242
	return intel_init_ring_buffer(engine);
2243
}
2244

2245
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2246
{
2247
	struct drm_i915_private *dev_priv = engine->i915;
2248 2249 2250

	intel_ring_default_vfuncs(dev_priv, engine);

2251
	engine->emit_flush = gen6_ring_flush;
2252
	if (INTEL_GEN(dev_priv) < 8)
2253
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2254

2255
	return intel_init_ring_buffer(engine);
2256
}
2257

2258
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2259
{
2260
	struct drm_i915_private *dev_priv = engine->i915;
2261 2262 2263

	intel_ring_default_vfuncs(dev_priv, engine);

2264
	engine->emit_flush = gen6_ring_flush;
2265

2266
	if (INTEL_GEN(dev_priv) < 8) {
2267
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2268 2269
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2270
	}
B
Ben Widawsky 已提交
2271

2272
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2273
}