intel_ringbuffer.c 59.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31

32 33
#include <drm/drmP.h>
#include <drm/i915_drm.h>
34 35 36

#include "i915_drv.h"
#include "i915_gem_render_state.h"
37
#include "i915_trace.h"
38
#include "intel_drv.h"
39
#include "intel_workarounds.h"
40

41 42 43 44 45
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

46 47 48
static unsigned int __intel_ring_space(unsigned int head,
				       unsigned int tail,
				       unsigned int size)
49
{
50 51 52 53 54 55 56
	/*
	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
	 * same cacheline, the Head Pointer must not be greater than the Tail
	 * Pointer."
	 */
	GEM_BUG_ON(!is_power_of_2(size));
	return (head - tail - CACHELINE_BYTES) & (size - 1);
57 58
}

59
unsigned int intel_ring_update_space(struct intel_ring *ring)
60
{
61 62 63 64 65 66
	unsigned int space;

	space = __intel_ring_space(ring->head, ring->emit, ring->size);

	ring->space = space;
	return space;
67 68
}

69
static int
70
gen2_render_ring_flush(struct i915_request *rq, u32 mode)
71
{
72
	u32 cmd, *cs;
73 74 75

	cmd = MI_FLUSH;

76
	if (mode & EMIT_INVALIDATE)
77 78
		cmd |= MI_READ_FLUSH;

79
	cs = intel_ring_begin(rq, 2);
80 81
	if (IS_ERR(cs))
		return PTR_ERR(cs);
82

83 84
	*cs++ = cmd;
	*cs++ = MI_NOOP;
85
	intel_ring_advance(rq, cs);
86 87 88 89 90

	return 0;
}

static int
91
gen4_render_ring_flush(struct i915_request *rq, u32 mode)
92
{
93
	u32 cmd, *cs;
94
	int i;
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

124
	cmd = MI_FLUSH;
125
	if (mode & EMIT_INVALIDATE) {
126
		cmd |= MI_EXE_FLUSH;
127
		if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
128 129
			cmd |= MI_INVALIDATE_ISP;
	}
130

131 132 133 134 135
	i = 2;
	if (mode & EMIT_INVALIDATE)
		i += 20;

	cs = intel_ring_begin(rq, i);
136 137
	if (IS_ERR(cs))
		return PTR_ERR(cs);
138

139
	*cs++ = cmd;
140 141 142 143 144 145 146 147 148 149 150 151 152

	/*
	 * A random delay to let the CS invalidate take effect? Without this
	 * delay, the GPU relocation path fails as the CS does not see
	 * the updated contents. Just as important, if we apply the flushes
	 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
	 * write and before the invalidate on the next batch), the relocations
	 * still fail. This implies that is a delay following invalidation
	 * that is required to reset the caches as opposed to a delay to
	 * ensure the memory is written.
	 */
	if (mode & EMIT_INVALIDATE) {
		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
153
		*cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
154 155 156 157 158 159 160
		*cs++ = 0;
		*cs++ = 0;

		for (i = 0; i < 12; i++)
			*cs++ = MI_FLUSH;

		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
161
		*cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
162 163 164 165 166 167
		*cs++ = 0;
		*cs++ = 0;
	}

	*cs++ = cmd;

168
	intel_ring_advance(rq, cs);
169 170

	return 0;
171 172
}

173
/*
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
211
intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
212
{
213
	u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
214 215
	u32 *cs;

216
	cs = intel_ring_begin(rq, 6);
217 218 219 220 221 222 223 224 225
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
226
	intel_ring_advance(rq, cs);
227

228
	cs = intel_ring_begin(rq, 6);
229 230 231 232 233 234 235 236 237
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
238
	intel_ring_advance(rq, cs);
239 240 241 242 243

	return 0;
}

static int
244
gen6_render_ring_flush(struct i915_request *rq, u32 mode)
245
{
246
	u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
247
	u32 *cs, flags = 0;
248 249
	int ret;

250
	/* Force SNB workarounds for PIPE_CONTROL flushes */
251
	ret = intel_emit_post_sync_nonzero_flush(rq);
252 253 254
	if (ret)
		return ret;

255 256 257 258
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
259
	if (mode & EMIT_FLUSH) {
260 261 262 263 264 265
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
266
		flags |= PIPE_CONTROL_CS_STALL;
267
	}
268
	if (mode & EMIT_INVALIDATE) {
269 270 271 272 273 274 275 276 277
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
278
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
279
	}
280

281
	cs = intel_ring_begin(rq, 4);
282 283
	if (IS_ERR(cs))
		return PTR_ERR(cs);
284

285 286 287 288
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
289
	intel_ring_advance(rq, cs);
290 291 292 293

	return 0;
}

294
static int
295
gen7_render_ring_cs_stall_wa(struct i915_request *rq)
296
{
297
	u32 *cs;
298

299
	cs = intel_ring_begin(rq, 4);
300 301
	if (IS_ERR(cs))
		return PTR_ERR(cs);
302

303 304 305 306
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
307
	intel_ring_advance(rq, cs);
308 309 310 311

	return 0;
}

312
static int
313
gen7_render_ring_flush(struct i915_request *rq, u32 mode)
314
{
315
	u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
316
	u32 *cs, flags = 0;
317

318 319 320 321 322 323 324 325 326 327
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

328 329 330 331
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
332
	if (mode & EMIT_FLUSH) {
333 334
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
335
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
336
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
337
	}
338
	if (mode & EMIT_INVALIDATE) {
339 340 341 342 343 344
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
345
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
346 347 348 349
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
350
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
351

352 353
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

354 355 356
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
357
		gen7_render_ring_cs_stall_wa(rq);
358 359
	}

360
	cs = intel_ring_begin(rq, 4);
361 362
	if (IS_ERR(cs))
		return PTR_ERR(cs);
363

364 365 366 367
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
368
	intel_ring_advance(rq, cs);
369 370 371 372

	return 0;
}

373
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
374
{
375
	struct drm_i915_private *dev_priv = engine->i915;
376 377
	struct page *page = virt_to_page(engine->status_page.page_addr);
	phys_addr_t phys = PFN_PHYS(page_to_pfn(page));
378 379
	u32 addr;

380
	addr = lower_32_bits(phys);
381
	if (INTEL_GEN(dev_priv) >= 4)
382 383
		addr |= (phys >> 28) & 0xf0;

384 385 386
	I915_WRITE(HWS_PGA, addr);
}

387
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
388
{
389
	struct drm_i915_private *dev_priv = engine->i915;
390
	i915_reg_t mmio;
391 392 393 394

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
395
	if (IS_GEN7(dev_priv)) {
396
		switch (engine->id) {
397 398 399 400 401 402
		/*
		 * No more rings exist on Gen7. Default case is only to shut up
		 * gcc switch check warning.
		 */
		default:
			GEM_BUG_ON(engine->id);
403 404 405 406 407 408 409 410 411 412 413 414 415
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
416
	} else if (IS_GEN6(dev_priv)) {
417
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
418
	} else {
419
		mmio = RING_HWS_PGA(engine->mmio_base);
420 421
	}

422 423 424 425 426 427 428 429 430 431 432 433
	if (INTEL_GEN(dev_priv) >= 6) {
		u32 mask = ~0u;

		/*
		 * Keep the render interrupt unmasked as this papers over
		 * lost interrupts following a reset.
		 */
		if (engine->id == RCS)
			mask &= ~BIT(0);

		I915_WRITE(RING_HWSTAM(engine->mmio_base), mask);
	}
434

435
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
436 437
	POSTING_READ(mmio);

438
	/* Flush the TLB for this page */
439
	if (IS_GEN(dev_priv, 6, 7)) {
440
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
441 442

		/* ring should be idle before issuing a sync flush*/
443
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
444 445 446 447

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
448 449 450
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
451
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
452
				  engine->name);
453 454 455
	}
}

456
static bool stop_ring(struct intel_engine_cs *engine)
457
{
458
	struct drm_i915_private *dev_priv = engine->i915;
459

460
	if (INTEL_GEN(dev_priv) > 2) {
461
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
462 463 464 465 466
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
467 468
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
469 470 471 472
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
473
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
474
				return false;
475 476
		}
	}
477

478 479
	I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));

480
	I915_WRITE_HEAD(engine, 0);
481
	I915_WRITE_TAIL(engine, 0);
482

483 484 485
	/* The ring must be empty before it is disabled */
	I915_WRITE_CTL(engine, 0);

486
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
487
}
488

489
static int init_ring_common(struct intel_engine_cs *engine)
490
{
491
	struct drm_i915_private *dev_priv = engine->i915;
492
	struct intel_ring *ring = engine->buffer;
493 494
	int ret = 0;

495
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
496

497
	if (!stop_ring(engine)) {
498
		/* G45 ring initialization often fails to reset head to zero */
499 500 501 502 503 504 505
		DRM_DEBUG_DRIVER("%s head not reset to zero "
				"ctl %08x head %08x tail %08x start %08x\n",
				engine->name,
				I915_READ_CTL(engine),
				I915_READ_HEAD(engine),
				I915_READ_TAIL(engine),
				I915_READ_START(engine));
506

507
		if (!stop_ring(engine)) {
508 509
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
510 511 512 513 514
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
515 516
			ret = -EIO;
			goto out;
517
		}
518 519
	}

520
	if (HWS_NEEDS_PHYSICAL(dev_priv))
521
		ring_setup_phys_status_page(engine);
522 523
	else
		intel_ring_setup_status_page(engine);
524

525
	intel_engine_reset_breadcrumbs(engine);
526

527 528 529 530 531 532 533
	if (HAS_LEGACY_SEMAPHORES(engine->i915)) {
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
		if (HAS_VEBOX(dev_priv))
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
	}

534
	/* Enforce ordering by reading HEAD register back */
535
	I915_READ_HEAD(engine);
536

537 538 539 540
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
541
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
542 543

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
544
	if (I915_READ_HEAD(engine))
545 546
		DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
				 engine->name, I915_READ_HEAD(engine));
547

548 549 550
	/* Check that the ring offsets point within the ring! */
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
551
	intel_ring_update_space(ring);
C
Chris Wilson 已提交
552 553

	/* First wake the ring up to an empty/idle ring */
554
	I915_WRITE_HEAD(engine, ring->head);
C
Chris Wilson 已提交
555
	I915_WRITE_TAIL(engine, ring->head);
556
	(void)I915_READ_TAIL(engine);
557

558
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
559 560

	/* If the head is still not zero, the ring is dead */
561 562 563
	if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
				    RING_VALID, RING_VALID,
				    50)) {
564
		DRM_ERROR("%s initialization failed "
565
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
566 567 568
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
569 570
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
571
			  I915_READ_START(engine),
572
			  i915_ggtt_offset(ring->vma));
573 574
		ret = -EIO;
		goto out;
575 576
	}

577 578 579
	if (INTEL_GEN(dev_priv) > 2)
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));

C
Chris Wilson 已提交
580 581 582 583 584 585
	/* Now awake, let it get started */
	if (ring->tail != ring->head) {
		I915_WRITE_TAIL(engine, ring->tail);
		(void)I915_READ_TAIL(engine);
	}

586 587
	/* Papering over lost _interrupts_ immediately following the restart */
	intel_engine_wakeup(engine);
588
out:
589
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
590 591

	return ret;
592 593
}

594
static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
595
{
596 597
	intel_engine_stop_cs(engine);

598 599 600 601 602 603
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

	return i915_gem_find_active_request(engine);
}

604
static void skip_request(struct i915_request *rq)
605
{
606 607
	void *vaddr = rq->ring->vaddr;
	u32 head;
608

609 610 611 612 613 614 615 616 617 618 619
	head = rq->infix;
	if (rq->postfix < head) {
		memset32(vaddr + head, MI_NOOP,
			 (rq->ring->size - head) / sizeof(u32));
		head = 0;
	}
	memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
}

static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
{
620 621 622
	GEM_TRACE("%s request global=%d, current=%d\n",
		  engine->name, rq ? rq->global_seqno : 0,
		  intel_engine_get_seqno(engine));
623 624 625

	/*
	 * Try to restore the logical GPU state to match the continuation
626 627 628 629 630 631 632 633 634 635 636 637
	 * of the request queue. If we skip the context/PD restore, then
	 * the next request may try to execute assuming that its context
	 * is valid and loaded on the GPU and so may try to access invalid
	 * memory, prompting repeated GPU hangs.
	 *
	 * If the request was guilty, we still restore the logical state
	 * in case the next request requires it (e.g. the aliasing ppgtt),
	 * but skip over the hung batch.
	 *
	 * If the request was innocent, we try to replay the request with
	 * the restored context.
	 */
638
	if (rq) {
639
		/* If the rq hung, jump to its breadcrumb and skip the batch */
640 641 642
		rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
		if (rq->fence.error == -EIO)
			skip_request(rq);
643
	}
644 645
}

646 647 648 649
static void reset_finish(struct intel_engine_cs *engine)
{
}

650
static int intel_rcs_ctx_init(struct i915_request *rq)
651 652 653
{
	int ret;

654
	ret = intel_engine_emit_ctx_wa(rq);
655 656 657
	if (ret != 0)
		return ret;

658
	ret = i915_gem_render_state_emit(rq);
659
	if (ret)
660
		return ret;
661

662
	return 0;
663 664
}

665
static int init_render_ring(struct intel_engine_cs *engine)
666
{
667
	struct drm_i915_private *dev_priv = engine->i915;
668
	int ret = init_ring_common(engine);
669 670
	if (ret)
		return ret;
671

672
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
673
	if (IS_GEN(dev_priv, 4, 6))
674
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
675 676 677 678

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
679
	 *
680
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
681
	 */
682
	if (IS_GEN(dev_priv, 6, 7))
683 684
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

685
	/* Required for the hardware to program scanline values for waiting */
686
	/* WaEnableFlushTlbInvalidationMode:snb */
687
	if (IS_GEN6(dev_priv))
688
		I915_WRITE(GFX_MODE,
689
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
690

691
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
692
	if (IS_GEN7(dev_priv))
693
		I915_WRITE(GFX_MODE_GEN7,
694
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
695
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
696

697
	if (IS_GEN6(dev_priv)) {
698 699 700 701 702 703
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
704
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
705 706
	}

707
	if (IS_GEN(dev_priv, 6, 7))
708
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
709

710
	if (INTEL_GEN(dev_priv) >= 6)
711
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
712

713
	return 0;
714 715
}

716
static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
717
{
718
	struct drm_i915_private *dev_priv = rq->i915;
719
	struct intel_engine_cs *engine;
720
	enum intel_engine_id id;
C
Chris Wilson 已提交
721
	int num_rings = 0;
722

723
	for_each_engine(engine, dev_priv, id) {
724 725 726 727
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
728

729
		mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
730
		if (i915_mmio_reg_valid(mbox_reg)) {
731 732
			*cs++ = MI_LOAD_REGISTER_IMM(1);
			*cs++ = i915_mmio_reg_offset(mbox_reg);
733
			*cs++ = rq->global_seqno;
C
Chris Wilson 已提交
734
			num_rings++;
735 736
		}
	}
C
Chris Wilson 已提交
737
	if (num_rings & 1)
738
		*cs++ = MI_NOOP;
739

740
	return cs;
741 742
}

743 744
static void cancel_requests(struct intel_engine_cs *engine)
{
745
	struct i915_request *request;
746 747
	unsigned long flags;

748
	spin_lock_irqsave(&engine->timeline.lock, flags);
749 750

	/* Mark all submitted requests as skipped. */
751
	list_for_each_entry(request, &engine->timeline.requests, link) {
752
		GEM_BUG_ON(!request->global_seqno);
753 754 755 756 757 758

		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			     &request->fence.flags))
			continue;

		dma_fence_set_error(&request->fence, -EIO);
759
	}
760 761 762 763 764

	intel_write_status_page(engine,
				I915_GEM_HWS_INDEX,
				intel_engine_last_submit(engine));

765 766
	/* Remaining _unready_ requests will be nop'ed when submitted */

767
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
768 769
}

770
static void i9xx_submit_request(struct i915_request *request)
771 772 773
{
	struct drm_i915_private *dev_priv = request->i915;

774
	i915_request_submit(request);
775

776 777
	I915_WRITE_TAIL(request->engine,
			intel_ring_set_tail(request->ring, request->tail));
778 779
}

780
static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
781
{
782 783
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
784
	*cs++ = rq->global_seqno;
785
	*cs++ = MI_USER_INTERRUPT;
786

787 788
	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
789 790
}

791 792
static const int i9xx_emit_breadcrumb_sz = 4;

793
static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
794
{
795
	return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
796 797
}

798
static int
799
gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
800
{
801 802 803
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
804
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
805
	u32 *cs;
806

807
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
808

809
	cs = intel_ring_begin(rq, 4);
810 811
	if (IS_ERR(cs))
		return PTR_ERR(cs);
812

813
	*cs++ = dw1 | wait_mbox;
814 815 816 817
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
818 819 820
	*cs++ = signal->global_seqno - 1;
	*cs++ = 0;
	*cs++ = MI_NOOP;
821
	intel_ring_advance(rq, cs);
822 823 824 825

	return 0;
}

826
static void
827
gen5_seqno_barrier(struct intel_engine_cs *engine)
828
{
829 830 831
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
832
	 *
833 834 835 836 837 838 839
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
840
	 */
841
	usleep_range(125, 250);
842 843
}

844 845
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
846
{
847
	struct drm_i915_private *dev_priv = engine->i915;
848

849 850
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
851 852 853 854 855 856 857 858 859
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
860 861 862
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
863
	 */
864
	spin_lock_irq(&dev_priv->uncore.lock);
865
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
866
	spin_unlock_irq(&dev_priv->uncore.lock);
867 868
}

869 870
static void
gen5_irq_enable(struct intel_engine_cs *engine)
871
{
872
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
873 874 875
}

static void
876
gen5_irq_disable(struct intel_engine_cs *engine)
877
{
878
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
879 880
}

881 882
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
883
{
884
	struct drm_i915_private *dev_priv = engine->i915;
885

886 887 888
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
889 890
}

891
static void
892
i9xx_irq_disable(struct intel_engine_cs *engine)
893
{
894
	struct drm_i915_private *dev_priv = engine->i915;
895

896 897
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
898 899
}

900 901
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
902
{
903
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
904

905 906 907
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
908 909 910
}

static void
911
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
912
{
913
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
914

915 916
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
917 918
}

919
static int
920
bsd_ring_flush(struct i915_request *rq, u32 mode)
921
{
922
	u32 *cs;
923

924
	cs = intel_ring_begin(rq, 2);
925 926
	if (IS_ERR(cs))
		return PTR_ERR(cs);
927

928 929
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
930
	intel_ring_advance(rq, cs);
931
	return 0;
932 933
}

934 935
static void
gen6_irq_enable(struct intel_engine_cs *engine)
936
{
937
	struct drm_i915_private *dev_priv = engine->i915;
938

939 940 941
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
942
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
943 944 945
}

static void
946
gen6_irq_disable(struct intel_engine_cs *engine)
947
{
948
	struct drm_i915_private *dev_priv = engine->i915;
949

950
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
951
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
952 953
}

954 955
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
956
{
957
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
958

959
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
960
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
961 962 963
}

static void
964
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
965
{
966
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
967

968
	I915_WRITE_IMR(engine, ~0);
969
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
970 971
}

972
static int
973
i965_emit_bb_start(struct i915_request *rq,
974 975
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
976
{
977
	u32 *cs;
978

979
	cs = intel_ring_begin(rq, 2);
980 981
	if (IS_ERR(cs))
		return PTR_ERR(cs);
982

983 984 985
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
986
	intel_ring_advance(rq, cs);
987

988 989 990
	return 0;
}

991
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
992
#define I830_BATCH_LIMIT SZ_256K
993 994
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
995
static int
996
i830_emit_bb_start(struct i915_request *rq,
997 998
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
999
{
1000 1001 1002
	u32 *cs, cs_offset = i915_scratch_offset(rq->i915);

	GEM_BUG_ON(rq->i915->gt.scratch->size < I830_WA_SIZE);
1003

1004
	cs = intel_ring_begin(rq, 6);
1005 1006
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1007

1008
	/* Evict the invalid PTE TLBs */
1009 1010 1011 1012 1013 1014
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
1015
	intel_ring_advance(rq, cs);
1016

1017
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1018 1019 1020
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1021
		cs = intel_ring_begin(rq, 6 + 2);
1022 1023
		if (IS_ERR(cs))
			return PTR_ERR(cs);
1024 1025 1026 1027 1028

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1029 1030 1031 1032 1033 1034 1035 1036 1037
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
1038
		intel_ring_advance(rq, cs);
1039 1040

		/* ... and execute it. */
1041
		offset = cs_offset;
1042
	}
1043

1044
	cs = intel_ring_begin(rq, 2);
1045 1046
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1047

1048 1049 1050
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1051
	intel_ring_advance(rq, cs);
1052

1053 1054 1055 1056
	return 0;
}

static int
1057
i915_emit_bb_start(struct i915_request *rq,
1058 1059
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1060
{
1061
	u32 *cs;
1062

1063
	cs = intel_ring_begin(rq, 2);
1064 1065
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1066

1067 1068 1069
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1070
	intel_ring_advance(rq, cs);
1071 1072 1073 1074

	return 0;
}

1075
int intel_ring_pin(struct intel_ring *ring)
1076
{
1077
	struct i915_vma *vma = ring->vma;
1078
	enum i915_map_type map = i915_coherent_map_type(vma->vm->i915);
1079
	unsigned int flags;
1080
	void *addr;
1081 1082
	int ret;

1083
	GEM_BUG_ON(ring->vaddr);
1084

1085
	flags = PIN_GLOBAL;
1086 1087 1088 1089

	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);

1090
	if (vma->obj->stolen)
1091
		flags |= PIN_MAPPABLE;
C
Chris Wilson 已提交
1092 1093
	else
		flags |= PIN_HIGH;
1094

1095
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1096
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1097 1098 1099 1100
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1101
			return ret;
1102
	}
1103

1104
	ret = i915_vma_pin(vma, 0, 0, flags);
1105 1106
	if (unlikely(ret))
		return ret;
1107

1108
	if (i915_vma_is_map_and_fenceable(vma))
1109 1110
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1111
		addr = i915_gem_object_pin_map(vma->obj, map);
1112 1113
	if (IS_ERR(addr))
		goto err;
1114

1115 1116
	vma->obj->pin_global++;

1117
	ring->vaddr = addr;
1118
	return 0;
1119

1120 1121 1122
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1123 1124
}

1125 1126
void intel_ring_reset(struct intel_ring *ring, u32 tail)
{
1127 1128
	GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));

1129 1130 1131 1132 1133 1134
	ring->tail = tail;
	ring->head = tail;
	ring->emit = tail;
	intel_ring_update_space(ring);
}

1135 1136 1137 1138 1139
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1140 1141 1142
	/* Discard any unused bytes beyond that submitted to hw. */
	intel_ring_reset(ring, ring->tail);

1143
	if (i915_vma_is_map_and_fenceable(ring->vma))
1144
		i915_vma_unpin_iomap(ring->vma);
1145 1146
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1147 1148
	ring->vaddr = NULL;

1149
	ring->vma->obj->pin_global--;
1150
	i915_vma_unpin(ring->vma);
1151 1152
}

1153 1154
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1155
{
1156
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
1157
	struct drm_i915_gem_object *obj;
1158
	struct i915_vma *vma;
1159

1160
	obj = i915_gem_object_create_stolen(dev_priv, size);
1161
	if (!obj)
1162
		obj = i915_gem_object_create_internal(dev_priv, size);
1163 1164
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1165

1166 1167 1168 1169 1170
	/*
	 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
	 * if supported by the platform's GGTT.
	 */
	if (vm->has_read_only)
1171
		i915_gem_object_set_readonly(obj);
1172

1173
	vma = i915_vma_instance(obj, vm, NULL);
1174 1175 1176 1177
	if (IS_ERR(vma))
		goto err;

	return vma;
1178

1179 1180 1181
err:
	i915_gem_object_put(obj);
	return vma;
1182 1183
}

1184
struct intel_ring *
1185
intel_engine_create_ring(struct intel_engine_cs *engine,
1186
			 struct i915_timeline *timeline,
1187
			 int size)
1188
{
1189
	struct intel_ring *ring;
1190
	struct i915_vma *vma;
1191

1192
	GEM_BUG_ON(!is_power_of_2(size));
1193
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1194
	GEM_BUG_ON(timeline == &engine->timeline);
1195
	lockdep_assert_held(&engine->i915->drm.struct_mutex);
1196

1197
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1198
	if (!ring)
1199 1200
		return ERR_PTR(-ENOMEM);

1201
	INIT_LIST_HEAD(&ring->request_list);
1202
	ring->timeline = i915_timeline_get(timeline);
1203

1204 1205 1206 1207 1208 1209
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1210
	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1211 1212 1213 1214
		ring->effective_size -= 2 * CACHELINE_BYTES;

	intel_ring_update_space(ring);

1215 1216
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1217
		kfree(ring);
1218
		return ERR_CAST(vma);
1219
	}
1220
	ring->vma = vma;
1221 1222 1223 1224 1225

	return ring;
}

void
1226
intel_ring_free(struct intel_ring *ring)
1227
{
1228 1229 1230 1231 1232
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1233
	i915_timeline_put(ring->timeline);
1234 1235 1236
	kfree(ring);
}

1237 1238 1239 1240
static void intel_ring_context_destroy(struct intel_context *ce)
{
	GEM_BUG_ON(ce->pin_count);

1241 1242 1243 1244 1245
	if (!ce->state)
		return;

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1246 1247
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
static int __context_pin_ppgtt(struct i915_gem_context *ctx)
{
	struct i915_hw_ppgtt *ppgtt;
	int err = 0;

	ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
	if (ppgtt)
		err = gen6_ppgtt_pin(ppgtt);

	return err;
}

static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
{
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
	if (ppgtt)
		gen6_ppgtt_unpin(ppgtt);
}

1269
static int __context_pin(struct intel_context *ce)
1270
{
1271 1272 1273 1274 1275 1276
	struct i915_vma *vma;
	int err;

	vma = ce->state;
	if (!vma)
		return 0;
1277

1278 1279
	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
1280 1281 1282 1283
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1284 1285 1286
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
1287 1288
	}

1289
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	if (err)
		return err;

	/*
	 * And mark is as a globally pinned object to let the shrinker know
	 * it cannot reclaim the object until we release it.
	 */
	vma->obj->pin_global++;

	return 0;
}

static void __context_unpin(struct intel_context *ce)
{
	struct i915_vma *vma;

	vma = ce->state;
	if (!vma)
		return;

	vma->obj->pin_global--;
	i915_vma_unpin(vma);
}

static void intel_ring_context_unpin(struct intel_context *ce)
{
1316
	__context_unpin_ppgtt(ce->gem_context);
1317 1318 1319
	__context_unpin(ce);

	i915_gem_context_put(ce->gem_context);
1320 1321
}

1322 1323 1324 1325 1326 1327
static struct i915_vma *
alloc_context_vma(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
1328
	int err;
1329

1330
	obj = i915_gem_object_create(i915, engine->context_size);
1331 1332 1333
	if (IS_ERR(obj))
		return ERR_CAST(obj);

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	if (engine->default_state) {
		void *defaults, *vaddr;

		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_obj;
		}

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults)) {
			err = PTR_ERR(defaults);
			goto err_map;
		}

		memcpy(vaddr, defaults, engine->context_size);

		i915_gem_object_unpin_map(engine->default_state);
		i915_gem_object_unpin_map(obj);
	}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	/*
	 * Try to make the context utilize L3 as well as LLC.
	 *
	 * On VLV we don't have L3 controls in the PTEs so we
	 * shouldn't touch the cache level, especially as that
	 * would make the object snooped which might have a
	 * negative performance impact.
	 *
	 * Snooping is required on non-llc platforms in execlist
	 * mode, but since all GGTT accesses use PAT entry 0 we
	 * get snooping anyway regardless of cache_level.
	 *
	 * This is only applicable for Ivy Bridge devices since
	 * later platforms don't have L3 control bits in the PTE.
	 */
	if (IS_IVYBRIDGE(i915)) {
		/* Ignore any error, regard it as a simple optimisation */
		i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
	}

1376
	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1377 1378 1379 1380
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err_obj;
	}
1381 1382

	return vma;
1383 1384 1385 1386 1387 1388

err_map:
	i915_gem_object_unpin_map(obj);
err_obj:
	i915_gem_object_put(obj);
	return ERR_PTR(err);
1389 1390
}

1391 1392 1393 1394
static struct intel_context *
__ring_context_pin(struct intel_engine_cs *engine,
		   struct i915_gem_context *ctx,
		   struct intel_context *ce)
1395
{
1396
	int err;
1397

1398
	if (!ce->state && engine->context_size) {
1399 1400 1401 1402
		struct i915_vma *vma;

		vma = alloc_context_vma(engine);
		if (IS_ERR(vma)) {
1403
			err = PTR_ERR(vma);
1404
			goto err;
1405 1406 1407 1408 1409
		}

		ce->state = vma;
	}

1410 1411 1412
	err = __context_pin(ce);
	if (err)
		goto err;
1413

1414 1415 1416 1417
	err = __context_pin_ppgtt(ce->gem_context);
	if (err)
		goto err_unpin;

1418
	i915_gem_context_get(ctx);
1419

1420
	/* One ringbuffer to rule them all */
1421 1422 1423 1424
	GEM_BUG_ON(!engine->buffer);
	ce->ring = engine->buffer;

	return ce;
1425

1426 1427
err_unpin:
	__context_unpin(ce);
1428
err:
1429
	ce->pin_count = 0;
1430
	return ERR_PTR(err);
1431 1432
}

1433 1434 1435 1436 1437 1438 1439 1440
static const struct intel_context_ops ring_context_ops = {
	.unpin = intel_ring_context_unpin,
	.destroy = intel_ring_context_destroy,
};

static struct intel_context *
intel_ring_context_pin(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
1441
{
1442
	struct intel_context *ce = to_intel_context(ctx, engine);
1443

1444
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1445

1446 1447 1448
	if (likely(ce->pin_count++))
		return ce;
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1449

1450
	ce->ops = &ring_context_ops;
1451

1452
	return __ring_context_pin(engine, ctx, ce);
1453 1454
}

1455
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1456
{
1457
	struct i915_timeline *timeline;
1458
	struct intel_ring *ring;
1459
	int err;
1460

1461 1462
	intel_engine_setup_common(engine);

1463 1464 1465 1466 1467 1468 1469 1470
	timeline = i915_timeline_create(engine->i915, engine->name);
	if (IS_ERR(timeline)) {
		err = PTR_ERR(timeline);
		goto err;
	}

	ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
	i915_timeline_put(timeline);
1471
	if (IS_ERR(ring)) {
1472
		err = PTR_ERR(ring);
1473
		goto err;
1474 1475
	}

1476
	err = intel_ring_pin(ring);
1477 1478 1479 1480
	if (err)
		goto err_ring;

	GEM_BUG_ON(engine->buffer);
1481
	engine->buffer = ring;
1482

1483 1484
	err = intel_engine_init_common(engine);
	if (err)
1485
		goto err_unpin;
1486

1487
	return 0;
1488

1489 1490
err_unpin:
	intel_ring_unpin(ring);
1491 1492 1493 1494 1495
err_ring:
	intel_ring_free(ring);
err:
	intel_engine_cleanup_common(engine);
	return err;
1496 1497
}

1498
void intel_engine_cleanup(struct intel_engine_cs *engine)
1499
{
1500
	struct drm_i915_private *dev_priv = engine->i915;
1501

1502 1503
	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
		(I915_READ_MODE(engine) & MODE_IDLE) == 0);
1504

1505 1506
	intel_ring_unpin(engine->buffer);
	intel_ring_free(engine->buffer);
1507

1508 1509
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
1510

1511
	intel_engine_cleanup_common(engine);
1512

1513 1514
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1515 1516
}

1517 1518 1519
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1520
	enum intel_engine_id id;
1521

1522
	/* Restart from the beginning of the rings for convenience */
1523
	for_each_engine(engine, dev_priv, id)
1524
		intel_ring_reset(engine->buffer, 0);
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static int load_pd_dir(struct i915_request *rq,
		       const struct i915_hw_ppgtt *ppgtt)
{
	const struct intel_engine_cs * const engine = rq->engine;
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(1);
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
	*cs++ = PP_DIR_DCLV_2G;

	*cs++ = MI_LOAD_REGISTER_IMM(1);
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
	*cs++ = ppgtt->pd.base.ggtt_offset << 10;

	intel_ring_advance(rq, cs);

	return 0;
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
static int flush_pd_dir(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
	u32 *cs;

	cs = intel_ring_begin(rq, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Stall until the page table load is complete */
	*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1562
	*cs++ = i915_scratch_offset(rq->i915);
1563 1564 1565 1566 1567 1568
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);
	return 0;
}

1569
static inline int mi_set_context(struct i915_request *rq, u32 flags)
1570 1571 1572 1573 1574 1575 1576 1577 1578
{
	struct drm_i915_private *i915 = rq->i915;
	struct intel_engine_cs *engine = rq->engine;
	enum intel_engine_id id;
	const int num_rings =
		/* Use an extended w/a on gen7 if signalling from other rings */
		(HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
		INTEL_INFO(i915)->num_rings - 1 :
		0;
1579
	bool force_restore = false;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	int len;
	u32 *cs;

	flags |= MI_MM_SPACE_GTT;
	if (IS_HASWELL(i915))
		/* These flags are for resource streamer on HSW+ */
		flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
	else
		flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;

	len = 4;
	if (IS_GEN7(i915))
		len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1593 1594 1595 1596 1597 1598
	if (flags & MI_FORCE_RESTORE) {
		GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
		flags &= ~MI_FORCE_RESTORE;
		force_restore = true;
		len += 2;
	}
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

	cs = intel_ring_begin(rq, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
	if (IS_GEN7(i915)) {
		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
		if (num_rings) {
			struct intel_engine_cs *signaller;

			*cs++ = MI_LOAD_REGISTER_IMM(num_rings);
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				*cs++ = i915_mmio_reg_offset(
					   RING_PSMI_CTL(signaller->mmio_base));
				*cs++ = _MASKED_BIT_ENABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}
		}
	}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	if (force_restore) {
		/*
		 * The HW doesn't handle being told to restore the current
		 * context very well. Quite often it likes goes to go off and
		 * sulk, especially when it is meant to be reloading PP_DIR.
		 * A very simple fix to force the reload is to simply switch
		 * away from the current context and back again.
		 *
		 * Note that the kernel_context will contain random state
		 * following the INHIBIT_RESTORE. We accept this since we
		 * never use the kernel_context state; it is merely a
		 * placeholder we use to flush other contexts.
		 */
		*cs++ = MI_SET_CONTEXT;
		*cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
							  engine)->state) |
			MI_MM_SPACE_GTT |
			MI_RESTORE_INHIBIT;
	}

1643 1644
	*cs++ = MI_NOOP;
	*cs++ = MI_SET_CONTEXT;
1645
	*cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	/*
	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
	 * WaMiSetContext_Hang:snb,ivb,vlv
	 */
	*cs++ = MI_NOOP;

	if (IS_GEN7(i915)) {
		if (num_rings) {
			struct intel_engine_cs *signaller;
			i915_reg_t last_reg = {}; /* keep gcc quiet */

			*cs++ = MI_LOAD_REGISTER_IMM(num_rings);
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				last_reg = RING_PSMI_CTL(signaller->mmio_base);
				*cs++ = i915_mmio_reg_offset(last_reg);
				*cs++ = _MASKED_BIT_DISABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}

			/* Insert a delay before the next switch! */
			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
			*cs++ = i915_mmio_reg_offset(last_reg);
1671
			*cs++ = i915_scratch_offset(rq->i915);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
			*cs++ = MI_NOOP;
		}
		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	}

	intel_ring_advance(rq, cs);

	return 0;
}

1682
static int remap_l3(struct i915_request *rq, int slice)
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
{
	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
	int i;

	if (!remap_info)
		return 0;

	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
		*cs++ = remap_info[i];
	}
	*cs++ = MI_NOOP;
	intel_ring_advance(rq, cs);

	return 0;
}

1710
static int switch_context(struct i915_request *rq)
1711 1712
{
	struct intel_engine_cs *engine = rq->engine;
1713 1714 1715
	struct i915_gem_context *ctx = rq->gem_context;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
	unsigned int unwind_mm = 0;
1716 1717 1718 1719 1720 1721
	u32 hw_flags = 0;
	int ret, i;

	lockdep_assert_held(&rq->i915->drm.struct_mutex);
	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));

1722
	if (ppgtt) {
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		int loops;

		/*
		 * Baytail takes a little more convincing that it really needs
		 * to reload the PD between contexts. It is not just a little
		 * longer, as adding more stalls after the load_pd_dir (i.e.
		 * adding a long loop around flush_pd_dir) is not as effective
		 * as reloading the PD umpteen times. 32 is derived from
		 * experimentation (gem_exec_parallel/fds) and has no good
		 * explanation.
		 */
		loops = 1;
		if (engine->id == BCS && IS_VALLEYVIEW(engine->i915))
			loops = 32;

		do {
			ret = load_pd_dir(rq, ppgtt);
			if (ret)
				goto err;
		} while (--loops);
1743

1744 1745 1746 1747 1748
		if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
			unwind_mm = intel_engine_flag(engine);
			ppgtt->pd_dirty_rings &= ~unwind_mm;
			hw_flags = MI_FORCE_RESTORE;
		}
1749 1750
	}

1751
	if (rq->hw_context->state) {
1752 1753 1754 1755 1756 1757 1758 1759 1760
		GEM_BUG_ON(engine->id != RCS);

		/*
		 * The kernel context(s) is treated as pure scratch and is not
		 * expected to retain any state (as we sacrifice it during
		 * suspend and on resume it may be corrupted). This is ok,
		 * as nothing actually executes using the kernel context; it
		 * is purely used for flushing user contexts.
		 */
1761
		if (i915_gem_context_is_kernel(ctx))
1762 1763 1764 1765 1766 1767 1768
			hw_flags = MI_RESTORE_INHIBIT;

		ret = mi_set_context(rq, hw_flags);
		if (ret)
			goto err_mm;
	}

1769
	if (ppgtt) {
1770 1771 1772 1773
		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (ret)
			goto err_mm;

1774 1775 1776
		ret = flush_pd_dir(rq);
		if (ret)
			goto err_mm;
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

		/*
		 * Not only do we need a full barrier (post-sync write) after
		 * invalidating the TLBs, but we need to wait a little bit
		 * longer. Whether this is merely delaying us, or the
		 * subsequent flush is a key part of serialising with the
		 * post-sync op, this extra pass appears vital before a
		 * mm switch!
		 */
		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (ret)
			goto err_mm;

		ret = engine->emit_flush(rq, EMIT_FLUSH);
		if (ret)
			goto err_mm;
1793 1794
	}

1795
	if (ctx->remap_slice) {
1796
		for (i = 0; i < MAX_L3_SLICES; i++) {
1797
			if (!(ctx->remap_slice & BIT(i)))
1798 1799 1800 1801
				continue;

			ret = remap_l3(rq, i);
			if (ret)
1802
				goto err_mm;
1803 1804
		}

1805
		ctx->remap_slice = 0;
1806 1807 1808 1809 1810
	}

	return 0;

err_mm:
1811 1812
	if (unwind_mm)
		ppgtt->pd_dirty_rings |= unwind_mm;
1813 1814 1815 1816
err:
	return ret;
}

1817
static int ring_request_alloc(struct i915_request *request)
1818
{
1819
	int ret;
1820

1821
	GEM_BUG_ON(!request->hw_context->pin_count);
1822

1823 1824 1825 1826
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1827
	request->reserved_space += LEGACY_REQUEST_SIZE;
1828

1829 1830 1831
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1832

1833
	ret = switch_context(request);
1834 1835 1836
	if (ret)
		return ret;

1837
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1838
	return 0;
1839 1840
}

1841
static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1842
{
1843
	struct i915_request *target;
1844 1845
	long timeout;

1846
	lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1847

1848
	if (intel_ring_update_space(ring) >= bytes)
1849 1850
		return 0;

1851
	GEM_BUG_ON(list_empty(&ring->request_list));
1852
	list_for_each_entry(target, &ring->request_list, ring_link) {
1853
		/* Would completion of this request free enough space? */
1854 1855
		if (bytes <= __intel_ring_space(target->postfix,
						ring->emit, ring->size))
1856
			break;
1857
	}
1858

1859
	if (WARN_ON(&target->ring_link == &ring->request_list))
1860 1861
		return -ENOSPC;

1862
	timeout = i915_request_wait(target,
1863 1864 1865 1866
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
1867

1868
	i915_request_retire_upto(target);
1869 1870 1871 1872

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
1873 1874
}

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
{
	GEM_BUG_ON(bytes > ring->effective_size);
	if (unlikely(bytes > ring->effective_size - ring->emit))
		bytes += ring->size - ring->emit;

	if (unlikely(bytes > ring->space)) {
		int ret = wait_for_space(ring, bytes);
		if (unlikely(ret))
			return ret;
	}

	GEM_BUG_ON(ring->space < bytes);
	return 0;
}

1891
u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
M
Mika Kuoppala 已提交
1892
{
1893
	struct intel_ring *ring = rq->ring;
1894 1895 1896 1897
	const unsigned int remain_usable = ring->effective_size - ring->emit;
	const unsigned int bytes = num_dwords * sizeof(u32);
	unsigned int need_wrap = 0;
	unsigned int total_bytes;
1898
	u32 *cs;
1899

1900 1901 1902
	/* Packets must be qword aligned. */
	GEM_BUG_ON(num_dwords & 1);

1903
	total_bytes = bytes + rq->reserved_space;
1904
	GEM_BUG_ON(total_bytes > ring->effective_size);
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	if (unlikely(total_bytes > remain_usable)) {
		const int remain_actual = ring->size - ring->emit;

		if (bytes > remain_usable) {
			/*
			 * Not enough space for the basic request. So need to
			 * flush out the remainder and then wait for
			 * base + reserved.
			 */
			total_bytes += remain_actual;
			need_wrap = remain_actual | 1;
		} else  {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So we don't need an immediate
			 * wrap and only need to effectively wait for the
			 * reserved size from the start of ringbuffer.
			 */
1924
			total_bytes = rq->reserved_space + remain_actual;
1925
		}
M
Mika Kuoppala 已提交
1926 1927
	}

1928
	if (unlikely(total_bytes > ring->space)) {
1929 1930 1931 1932 1933 1934 1935 1936 1937
		int ret;

		/*
		 * Space is reserved in the ringbuffer for finalising the
		 * request, as that cannot be allowed to fail. During request
		 * finalisation, reserved_space is set to 0 to stop the
		 * overallocation and the assumption is that then we never need
		 * to wait (which has the risk of failing with EINTR).
		 *
1938
		 * See also i915_request_alloc() and i915_request_add().
1939
		 */
1940
		GEM_BUG_ON(!rq->reserved_space);
1941 1942

		ret = wait_for_space(ring, total_bytes);
M
Mika Kuoppala 已提交
1943
		if (unlikely(ret))
1944
			return ERR_PTR(ret);
M
Mika Kuoppala 已提交
1945 1946
	}

1947
	if (unlikely(need_wrap)) {
1948 1949 1950
		need_wrap &= ~1;
		GEM_BUG_ON(need_wrap > ring->space);
		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1951
		GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1952

1953
		/* Fill the tail with MI_NOOP */
1954
		memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1955
		ring->space -= need_wrap;
1956
		ring->emit = 0;
1957
	}
1958

1959
	GEM_BUG_ON(ring->emit > ring->size - bytes);
1960
	GEM_BUG_ON(ring->space < bytes);
1961
	cs = ring->vaddr + ring->emit;
1962
	GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1963
	ring->emit += bytes;
1964
	ring->space -= bytes;
1965 1966

	return cs;
1967
}
1968

1969
/* Align the ring tail to a cacheline boundary */
1970
int intel_ring_cacheline_align(struct i915_request *rq)
1971
{
1972 1973
	int num_dwords;
	void *cs;
1974

1975
	num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1976 1977 1978
	if (num_dwords == 0)
		return 0;

1979 1980 1981
	num_dwords = CACHELINE_DWORDS - num_dwords;
	GEM_BUG_ON(num_dwords & 1);

1982
	cs = intel_ring_begin(rq, num_dwords);
1983 1984
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1985

1986
	memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1987
	intel_ring_advance(rq, cs);
1988

1989
	GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1990 1991 1992
	return 0;
}

1993
static void gen6_bsd_submit_request(struct i915_request *request)
1994
{
1995
	struct drm_i915_private *dev_priv = request->i915;
1996

1997 1998
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

1999
       /* Every tail move must follow the sequence below */
2000 2001 2002 2003

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2004 2005
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2006 2007

	/* Clear the context id. Here be magic! */
2008
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2009

2010
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2011 2012 2013 2014 2015
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_BSD_SLEEP_PSMI_CONTROL,
					 GEN6_BSD_SLEEP_INDICATOR,
					 0,
					 1000, 0, NULL))
2016
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2017

2018
	/* Now that the ring is fully powered up, update the tail */
2019
	i9xx_submit_request(request);
2020 2021 2022 2023

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2024 2025 2026 2027
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2028 2029
}

2030
static int mi_flush_dw(struct i915_request *rq, u32 flags)
2031
{
2032
	u32 cmd, *cs;
2033

2034
	cs = intel_ring_begin(rq, 4);
2035 2036
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2037

2038
	cmd = MI_FLUSH_DW;
2039

2040 2041
	/*
	 * We always require a command barrier so that subsequent
2042 2043 2044 2045 2046 2047
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2048
	/*
2049
	 * Bspec vol 1c.3 - blitter engine command streamer:
2050 2051 2052 2053
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2054
	cmd |= flags;
2055

2056 2057
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2058
	*cs++ = 0;
2059
	*cs++ = MI_NOOP;
2060

2061
	intel_ring_advance(rq, cs);
2062

2063 2064 2065
	return 0;
}

2066 2067
static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
{
2068
	return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2069 2070 2071 2072 2073 2074 2075
}

static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
{
	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
}

2076
static int
2077
hsw_emit_bb_start(struct i915_request *rq,
2078 2079
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2080
{
2081
	u32 *cs;
2082

2083
	cs = intel_ring_begin(rq, 2);
2084 2085
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2086

2087
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2088
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2089
	/* bit0-7 is the length on GEN6+ */
2090
	*cs++ = offset;
2091
	intel_ring_advance(rq, cs);
2092 2093 2094 2095

	return 0;
}

2096
static int
2097
gen6_emit_bb_start(struct i915_request *rq,
2098 2099
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2100
{
2101
	u32 *cs;
2102

2103
	cs = intel_ring_begin(rq, 2);
2104 2105
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2106

2107 2108
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
2109
	/* bit0-7 is the length on GEN6+ */
2110
	*cs++ = offset;
2111
	intel_ring_advance(rq, cs);
2112

2113
	return 0;
2114 2115
}

2116 2117
/* Blitter support (SandyBridge+) */

2118
static int gen6_ring_flush(struct i915_request *rq, u32 mode)
Z
Zou Nan hai 已提交
2119
{
2120
	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
Z
Zou Nan hai 已提交
2121 2122
}

2123 2124 2125
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2126
	int i;
2127

2128
	if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2129 2130
		return;

2131 2132 2133
	GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
	engine->semaphore.sync_to = gen6_ring_sync_to;
	engine->semaphore.signal = gen6_signal;
2134

2135 2136 2137 2138 2139 2140 2141 2142
	/*
	 * The current semaphore is only applied on pre-gen8
	 * platform.  And there is no VCS2 ring on the pre-gen8
	 * platform. So the semaphore between RCS and VCS2 is
	 * initialized as INVALID.
	 */
	for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
		static const struct {
2143 2144
			u32 wait_mbox;
			i915_reg_t mbox_reg;
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
			[RCS_HW] = {
				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
			},
			[VCS_HW] = {
				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
			},
			[BCS_HW] = {
				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
			},
			[VECS_HW] = {
				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
			},
		};
		u32 wait_mbox;
		i915_reg_t mbox_reg;
2169

2170 2171 2172 2173 2174 2175
		if (i == engine->hw_id) {
			wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
			mbox_reg = GEN6_NOSYNC;
		} else {
			wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
			mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2176
		}
2177

2178 2179 2180
		engine->semaphore.mbox.wait[i] = wait_mbox;
		engine->semaphore.mbox.signal[i] = mbox_reg;
	}
2181 2182
}

2183 2184 2185
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2186
	if (INTEL_GEN(dev_priv) >= 6) {
2187 2188
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2189 2190
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2191 2192
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2193
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2194
	} else if (INTEL_GEN(dev_priv) >= 3) {
2195 2196
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2197
	} else {
2198 2199
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2200 2201 2202
	}
}

2203 2204 2205
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = i9xx_submit_request;
2206
	engine->cancel_requests = cancel_requests;
2207 2208 2209

	engine->park = NULL;
	engine->unpark = NULL;
2210 2211 2212 2213
}

static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
2214
	i9xx_set_default_submission(engine);
2215 2216 2217
	engine->submit_request = gen6_bsd_submit_request;
}

2218 2219 2220
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2221 2222 2223
	/* gen8+ are only supported with execlists */
	GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);

2224 2225 2226
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2227
	engine->init_hw = init_ring_common;
2228 2229 2230
	engine->reset.prepare = reset_prepare;
	engine->reset.reset = reset_ring;
	engine->reset.finish = reset_finish;
2231

2232
	engine->context_pin = intel_ring_context_pin;
2233 2234
	engine->request_alloc = ring_request_alloc;

2235
	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2236
	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2237
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2238 2239
		int num_rings;

2240
		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2241

2242
		num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2243 2244 2245
		engine->emit_breadcrumb_sz += num_rings * 3;
		if (num_rings & 1)
			engine->emit_breadcrumb_sz++;
2246
	}
2247 2248

	engine->set_default_submission = i9xx_set_default_submission;
2249

2250
	if (INTEL_GEN(dev_priv) >= 6)
2251
		engine->emit_bb_start = gen6_emit_bb_start;
2252
	else if (INTEL_GEN(dev_priv) >= 4)
2253
		engine->emit_bb_start = i965_emit_bb_start;
2254
	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2255
		engine->emit_bb_start = i830_emit_bb_start;
2256
	else
2257
		engine->emit_bb_start = i915_emit_bb_start;
2258 2259
}

2260
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2261
{
2262
	struct drm_i915_private *dev_priv = engine->i915;
2263
	int ret;
2264

2265 2266
	intel_ring_default_vfuncs(dev_priv, engine);

2267 2268
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2269

2270 2271
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;

2272
	if (INTEL_GEN(dev_priv) >= 6) {
2273
		engine->init_context = intel_rcs_ctx_init;
2274
		engine->emit_flush = gen7_render_ring_flush;
2275
		if (IS_GEN6(dev_priv))
2276
			engine->emit_flush = gen6_render_ring_flush;
2277
	} else if (IS_GEN5(dev_priv)) {
2278
		engine->emit_flush = gen4_render_ring_flush;
2279
	} else {
2280
		if (INTEL_GEN(dev_priv) < 4)
2281
			engine->emit_flush = gen2_render_ring_flush;
2282
		else
2283
			engine->emit_flush = gen4_render_ring_flush;
2284
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2285
	}
B
Ben Widawsky 已提交
2286

2287
	if (IS_HASWELL(dev_priv))
2288
		engine->emit_bb_start = hsw_emit_bb_start;
2289

2290
	engine->init_hw = init_render_ring;
2291

2292
	ret = intel_init_ring_buffer(engine);
2293 2294 2295 2296
	if (ret)
		return ret;

	return 0;
2297 2298
}

2299
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2300
{
2301
	struct drm_i915_private *dev_priv = engine->i915;
2302

2303 2304
	intel_ring_default_vfuncs(dev_priv, engine);

2305
	if (INTEL_GEN(dev_priv) >= 6) {
2306
		/* gen6 bsd needs a special wa for tail updates */
2307
		if (IS_GEN6(dev_priv))
2308
			engine->set_default_submission = gen6_bsd_set_default_submission;
2309
		engine->emit_flush = gen6_bsd_ring_flush;
2310
		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2311
	} else {
2312
		engine->emit_flush = bsd_ring_flush;
2313
		if (IS_GEN5(dev_priv))
2314
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2315
		else
2316
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2317 2318
	}

2319
	return intel_init_ring_buffer(engine);
2320
}
2321

2322
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2323
{
2324
	struct drm_i915_private *dev_priv = engine->i915;
2325 2326 2327

	intel_ring_default_vfuncs(dev_priv, engine);

2328
	engine->emit_flush = gen6_ring_flush;
2329
	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2330

2331
	return intel_init_ring_buffer(engine);
2332
}
2333

2334
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2335
{
2336
	struct drm_i915_private *dev_priv = engine->i915;
2337 2338 2339

	intel_ring_default_vfuncs(dev_priv, engine);

2340
	engine->emit_flush = gen6_ring_flush;
2341 2342 2343
	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
	engine->irq_enable = hsw_vebox_irq_enable;
	engine->irq_disable = hsw_vebox_irq_disable;
B
Ben Widawsky 已提交
2344

2345
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2346
}