blk-mq.c 116.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/blk-integrity.h>
14
#include <linux/kmemleak.h>
15 16 17 18 19
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
20
#include <linux/interrupt.h>
21 22 23 24
#include <linux/llist.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
25
#include <linux/sched/topology.h>
26
#include <linux/sched/signal.h>
27
#include <linux/delay.h>
28
#include <linux/crash_dump.h>
29
#include <linux/prefetch.h>
30
#include <linux/blk-crypto.h>
31
#include <linux/part_stat.h>
32 33 34 35

#include <trace/events/block.h>

#include <linux/blk-mq.h>
36
#include <linux/t10-pi.h>
37 38
#include "blk.h"
#include "blk-mq.h"
39
#include "blk-mq-debugfs.h"
40
#include "blk-mq-tag.h"
41
#include "blk-pm.h"
42
#include "blk-stat.h"
43
#include "blk-mq-sched.h"
44
#include "blk-rq-qos.h"
45

46
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47

48 49 50
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

51 52
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
53
	int ddir, sectors, bucket;
54

J
Jens Axboe 已提交
55
	ddir = rq_data_dir(rq);
56
	sectors = blk_rq_stats_sectors(rq);
57

58
	bucket = ddir + 2 * ilog2(sectors);
59 60 61 62 63 64 65 66 67

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

68 69 70
#define BLK_QC_T_SHIFT		16
#define BLK_QC_T_INTERNAL	(1U << 31)

71 72 73 74 75 76
static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
		blk_qc_t qc)
{
	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
}

77 78 79
static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
		blk_qc_t qc)
{
80 81 82 83 84
	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);

	if (qc & BLK_QC_T_INTERNAL)
		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
	return blk_mq_tag_to_rq(hctx->tags, tag);
85 86
}

87 88 89 90 91 92 93
static inline blk_qc_t blk_rq_to_qc(struct request *rq)
{
	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
		(rq->tag != -1 ?
		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
}

94
/*
95 96
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
97
 */
98
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99
{
100 101
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
102
			blk_mq_sched_has_work(hctx);
103 104
}

105 106 107 108 109 110
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
111 112 113 114
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
115 116 117 118 119
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
120 121 122
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
123 124
}

125
struct mq_inflight {
126
	struct block_device *part;
127
	unsigned int inflight[2];
128 129
};

130
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
131 132 133 134 135
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

136 137
	if ((!mi->part->bd_partno || rq->part == mi->part) &&
	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138
		mi->inflight[rq_data_dir(rq)]++;
139 140

	return true;
141 142
}

143 144
unsigned int blk_mq_in_flight(struct request_queue *q,
		struct block_device *part)
145
{
146
	struct mq_inflight mi = { .part = part };
147 148

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149

150
	return mi.inflight[0] + mi.inflight[1];
151 152
}

153 154
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
		unsigned int inflight[2])
155
{
156
	struct mq_inflight mi = { .part = part };
157

158
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159 160
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
161 162
}

163
void blk_freeze_queue_start(struct request_queue *q)
164
{
165 166
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
167
		percpu_ref_kill(&q->q_usage_counter);
168
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
169
		if (queue_is_mq(q))
170
			blk_mq_run_hw_queues(q, false);
171 172
	} else {
		mutex_unlock(&q->mq_freeze_lock);
173
	}
174
}
175
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176

177
void blk_mq_freeze_queue_wait(struct request_queue *q)
178
{
179
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180
}
181
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182

183 184 185 186 187 188 189 190
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191

192 193 194 195
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
196
void blk_freeze_queue(struct request_queue *q)
197
{
198 199 200 201 202 203 204
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
205
	blk_freeze_queue_start(q);
206 207
	blk_mq_freeze_queue_wait(q);
}
208 209 210 211 212 213 214 215 216

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
217
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218

219
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220
{
221
	mutex_lock(&q->mq_freeze_lock);
222 223
	if (force_atomic)
		q->q_usage_counter.data->force_atomic = true;
224 225 226
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
227
		percpu_ref_resurrect(&q->q_usage_counter);
228
		wake_up_all(&q->mq_freeze_wq);
229
	}
230
	mutex_unlock(&q->mq_freeze_lock);
231
}
232 233 234 235 236

void blk_mq_unfreeze_queue(struct request_queue *q)
{
	__blk_mq_unfreeze_queue(q, false);
}
237
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238

239 240 241 242 243 244
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
245 246 247 248 249 250
	unsigned long flags;

	spin_lock_irqsave(&q->queue_lock, flags);
	if (!q->quiesce_depth++)
		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(&q->queue_lock, flags);
251 252 253
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

254
/**
255
 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256 257
 * @q: request queue.
 *
258 259
 * Note: it is driver's responsibility for making sure that quiesce has
 * been started.
260
 */
261
void blk_mq_wait_quiesce_done(struct request_queue *q)
262
{
263 264 265
	if (blk_queue_has_srcu(q))
		synchronize_srcu(q->srcu);
	else
266 267
		synchronize_rcu();
}
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);

/**
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	blk_mq_quiesce_queue_nowait(q);
	blk_mq_wait_quiesce_done(q);
}
284 285
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

286 287 288 289 290 291 292 293 294
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
295 296 297 298 299 300 301 302 303 304 305
	unsigned long flags;
	bool run_queue = false;

	spin_lock_irqsave(&q->queue_lock, flags);
	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
		;
	} else if (!--q->quiesce_depth) {
		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
		run_queue = true;
	}
	spin_unlock_irqrestore(&q->queue_lock, flags);
306

307
	/* dispatch requests which are inserted during quiescing */
308 309
	if (run_queue)
		blk_mq_run_hw_queues(q, true);
310 311 312
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

313 314 315 316 317 318 319 320 321 322
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
void blk_rq_init(struct request_queue *q, struct request *rq)
{
	memset(rq, 0, sizeof(*rq));

	INIT_LIST_HEAD(&rq->queuelist);
	rq->q = q;
	rq->__sector = (sector_t) -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->tag = BLK_MQ_NO_TAG;
	rq->internal_tag = BLK_MQ_NO_TAG;
	rq->start_time_ns = ktime_get_ns();
	rq->part = NULL;
	blk_crypto_rq_set_defaults(rq);
}
EXPORT_SYMBOL(blk_rq_init);

340
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341
		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342
{
343 344 345
	struct blk_mq_ctx *ctx = data->ctx;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	struct request_queue *q = data->q;
346
	struct request *rq = tags->static_rqs[tag];
347

J
Jens Axboe 已提交
348 349 350 351 352 353 354 355 356 357 358
	rq->q = q;
	rq->mq_ctx = ctx;
	rq->mq_hctx = hctx;
	rq->cmd_flags = data->cmd_flags;

	if (data->flags & BLK_MQ_REQ_PM)
		data->rq_flags |= RQF_PM;
	if (blk_queue_io_stat(q))
		data->rq_flags |= RQF_IO_STAT;
	rq->rq_flags = data->rq_flags;

359
	if (!(data->rq_flags & RQF_ELV)) {
360
		rq->tag = tag;
361
		rq->internal_tag = BLK_MQ_NO_TAG;
362 363 364
	} else {
		rq->tag = BLK_MQ_NO_TAG;
		rq->internal_tag = tag;
365
	}
J
Jens Axboe 已提交
366
	rq->timeout = 0;
367

368 369 370 371
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
372
	rq->part = NULL;
373 374 375
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
376
	rq->io_start_time_ns = 0;
377
	rq->stats_sectors = 0;
378 379 380 381 382 383 384
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->end_io = NULL;
	rq->end_io_data = NULL;

385 386 387 388
	blk_crypto_rq_set_defaults(rq);
	INIT_LIST_HEAD(&rq->queuelist);
	/* tag was already set */
	WRITE_ONCE(rq->deadline, 0);
389
	req_ref_set(rq, 1);
390

391
	if (rq->rq_flags & RQF_ELV) {
392 393
		struct elevator_queue *e = data->q->elevator;

394 395 396 397 398
		INIT_HLIST_NODE(&rq->hash);
		RB_CLEAR_NODE(&rq->rb_node);

		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.prepare_request) {
399 400 401 402 403
			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

404
	return rq;
405 406
}

J
Jens Axboe 已提交
407 408 409 410 411
static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
		u64 alloc_time_ns)
{
	unsigned int tag, tag_offset;
412
	struct blk_mq_tags *tags;
J
Jens Axboe 已提交
413
	struct request *rq;
414
	unsigned long tag_mask;
J
Jens Axboe 已提交
415 416
	int i, nr = 0;

417 418
	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
	if (unlikely(!tag_mask))
J
Jens Axboe 已提交
419 420
		return NULL;

421 422 423
	tags = blk_mq_tags_from_data(data);
	for (i = 0; tag_mask; i++) {
		if (!(tag_mask & (1UL << i)))
J
Jens Axboe 已提交
424 425
			continue;
		tag = tag_offset + i;
426
		prefetch(tags->static_rqs[tag]);
427 428
		tag_mask &= ~(1UL << i);
		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
429
		rq_list_add(data->cached_rq, rq);
430
		nr++;
J
Jens Axboe 已提交
431
	}
432 433
	/* caller already holds a reference, add for remainder */
	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
J
Jens Axboe 已提交
434 435
	data->nr_tags -= nr;

436
	return rq_list_pop(data->cached_rq);
J
Jens Axboe 已提交
437 438
}

439
static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
440
{
441
	struct request_queue *q = data->q;
442
	u64 alloc_time_ns = 0;
443
	struct request *rq;
444
	unsigned int tag;
445

446 447 448 449
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

450
	if (data->cmd_flags & REQ_NOWAIT)
451
		data->flags |= BLK_MQ_REQ_NOWAIT;
452

453 454 455 456 457
	if (q->elevator) {
		struct elevator_queue *e = q->elevator;

		data->rq_flags |= RQF_ELV;

458
		/*
459
		 * Flush/passthrough requests are special and go directly to the
460 461
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
462
		 */
463
		if (!op_is_flush(data->cmd_flags) &&
464
		    !blk_op_is_passthrough(data->cmd_flags) &&
465
		    e->type->ops.limit_depth &&
466
		    !(data->flags & BLK_MQ_REQ_RESERVED))
467
			e->type->ops.limit_depth(data->cmd_flags, data);
468 469
	}

470
retry:
471 472
	data->ctx = blk_mq_get_ctx(q);
	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
473
	if (!(data->rq_flags & RQF_ELV))
474 475
		blk_mq_tag_busy(data->hctx);

J
Jens Axboe 已提交
476 477 478 479 480 481 482 483 484 485
	/*
	 * Try batched alloc if we want more than 1 tag.
	 */
	if (data->nr_tags > 1) {
		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
		if (rq)
			return rq;
		data->nr_tags = 1;
	}

486 487 488 489 490
	/*
	 * Waiting allocations only fail because of an inactive hctx.  In that
	 * case just retry the hctx assignment and tag allocation as CPU hotplug
	 * should have migrated us to an online CPU by now.
	 */
491
	tag = blk_mq_get_tag(data);
492 493 494 495
	if (tag == BLK_MQ_NO_TAG) {
		if (data->flags & BLK_MQ_REQ_NOWAIT)
			return NULL;
		/*
J
Jens Axboe 已提交
496 497 498 499
		 * Give up the CPU and sleep for a random short time to
		 * ensure that thread using a realtime scheduling class
		 * are migrated off the CPU, and thus off the hctx that
		 * is going away.
500 501 502 503
		 */
		msleep(3);
		goto retry;
	}
504

505 506
	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
					alloc_time_ns);
507 508
}

509
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
510
		blk_mq_req_flags_t flags)
511
{
512 513 514 515
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
516
		.nr_tags	= 1,
517
	};
518
	struct request *rq;
519
	int ret;
520

521
	ret = blk_queue_enter(q, flags);
522 523
	if (ret)
		return ERR_PTR(ret);
524

525
	rq = __blk_mq_alloc_requests(&data);
526
	if (!rq)
527
		goto out_queue_exit;
528 529 530
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
531
	return rq;
532 533 534
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
535
}
536
EXPORT_SYMBOL(blk_mq_alloc_request);
537

538
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
539
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
540
{
541 542 543 544
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
545
		.nr_tags	= 1,
546
	};
547
	u64 alloc_time_ns = 0;
548
	unsigned int cpu;
549
	unsigned int tag;
M
Ming Lin 已提交
550 551
	int ret;

552 553 554 555
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

M
Ming Lin 已提交
556 557 558 559 560 561
	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
562
	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
M
Ming Lin 已提交
563 564 565 566 567
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

568
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
569 570 571
	if (ret)
		return ERR_PTR(ret);

572 573 574 575
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
576
	ret = -EXDEV;
577 578
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
579
		goto out_queue_exit;
580 581
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
582

583
	if (!q->elevator)
584
		blk_mq_tag_busy(data.hctx);
585 586
	else
		data.rq_flags |= RQF_ELV;
587

588
	ret = -EWOULDBLOCK;
589 590
	tag = blk_mq_get_tag(&data);
	if (tag == BLK_MQ_NO_TAG)
591
		goto out_queue_exit;
592 593
	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
					alloc_time_ns);
594

595 596 597
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
598 599 600
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
601 602 603 604
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
605
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
606 607
	const int sched_tag = rq->internal_tag;

608
	blk_crypto_free_request(rq);
609
	blk_pm_mark_last_busy(rq);
610
	rq->mq_hctx = NULL;
611
	if (rq->tag != BLK_MQ_NO_TAG)
612
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
613
	if (sched_tag != BLK_MQ_NO_TAG)
614
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
615 616 617 618
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

619
void blk_mq_free_request(struct request *rq)
620 621
{
	struct request_queue *q = rq->q;
622
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
623

624 625 626
	if ((rq->rq_flags & RQF_ELVPRIV) &&
	    q->elevator->type->ops.finish_request)
		q->elevator->type->ops.finish_request(rq);
627

628
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
629
		__blk_mq_dec_active_requests(hctx);
J
Jens Axboe 已提交
630

631
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
632
		laptop_io_completion(q->disk->bdi);
633

634
	rq_qos_done(q, rq);
635

K
Keith Busch 已提交
636
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
637
	if (req_ref_put_and_test(rq))
K
Keith Busch 已提交
638
		__blk_mq_free_request(rq);
639
}
J
Jens Axboe 已提交
640
EXPORT_SYMBOL_GPL(blk_mq_free_request);
641

642
void blk_mq_free_plug_rqs(struct blk_plug *plug)
643
{
644
	struct request *rq;
645

646
	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
647 648
		blk_mq_free_request(rq);
}
649

650 651 652
void blk_dump_rq_flags(struct request *rq, char *msg)
{
	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
653
		rq->q->disk ? rq->q->disk->disk_name : "?",
654 655 656 657 658 659 660 661 662 663
		(unsigned long long) rq->cmd_flags);

	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
	       (unsigned long long)blk_rq_pos(rq),
	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
	       rq->bio, rq->biotail, blk_rq_bytes(rq));
}
EXPORT_SYMBOL(blk_dump_rq_flags);

664 665 666
static void req_bio_endio(struct request *rq, struct bio *bio,
			  unsigned int nbytes, blk_status_t error)
{
P
Pavel Begunkov 已提交
667
	if (unlikely(error)) {
668
		bio->bi_status = error;
P
Pavel Begunkov 已提交
669
	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
670 671 672 673
		/*
		 * Partial zone append completions cannot be supported as the
		 * BIO fragments may end up not being written sequentially.
		 */
674
		if (bio->bi_iter.bi_size != nbytes)
675 676 677 678 679
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_iter.bi_sector = rq->__sector;
	}

P
Pavel Begunkov 已提交
680 681 682 683
	bio_advance(bio, nbytes);

	if (unlikely(rq->rq_flags & RQF_QUIET))
		bio_set_flag(bio, BIO_QUIET);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	/* don't actually finish bio if it's part of flush sequence */
	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
		bio_endio(bio);
}

static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
	if (req->part && blk_do_io_stat(req)) {
		const int sgrp = op_stat_group(req_op(req));

		part_stat_lock();
		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
		part_stat_unlock();
	}
}

700 701 702 703 704 705
static void blk_print_req_error(struct request *req, blk_status_t status)
{
	printk_ratelimited(KERN_ERR
		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
		"phys_seg %u prio class %u\n",
		blk_status_to_str(status),
706
		req->q->disk ? req->q->disk->disk_name : "?",
707 708 709 710 711 712
		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
		req->cmd_flags & ~REQ_OP_MASK,
		req->nr_phys_segments,
		IOPRIO_PRIO_CLASS(req->ioprio));
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
/**
 * blk_update_request - Complete multiple bytes without completing the request
 * @req:      the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete for @req
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 *     the request structure even if @req doesn't have leftover.
 *     If @req has leftover, sets it up for the next range of segments.
 *
 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 *     %false return from this function.
 *
 * Note:
 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 *      except in the consistency check at the end of this function.
 *
 * Return:
 *     %false - this request doesn't have any more data
 *     %true  - this request has more data
 **/
bool blk_update_request(struct request *req, blk_status_t error,
		unsigned int nr_bytes)
{
	int total_bytes;

740
	trace_block_rq_complete(req, error, nr_bytes);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

	if (!req->bio)
		return false;

#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
	    error == BLK_STS_OK)
		req->q->integrity.profile->complete_fn(req, nr_bytes);
#endif

	if (unlikely(error && !blk_rq_is_passthrough(req) &&
		     !(req->rq_flags & RQF_QUIET)))
		blk_print_req_error(req, error);

	blk_account_io_completion(req, nr_bytes);

	total_bytes = 0;
	while (req->bio) {
		struct bio *bio = req->bio;
		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);

		if (bio_bytes == bio->bi_iter.bi_size)
			req->bio = bio->bi_next;

		/* Completion has already been traced */
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
		req_bio_endio(req, bio, bio_bytes, error);

		total_bytes += bio_bytes;
		nr_bytes -= bio_bytes;

		if (!nr_bytes)
			break;
	}

	/*
	 * completely done
	 */
	if (!req->bio) {
		/*
		 * Reset counters so that the request stacking driver
		 * can find how many bytes remain in the request
		 * later.
		 */
		req->__data_len = 0;
		return false;
	}

	req->__data_len -= total_bytes;

	/* update sector only for requests with clear definition of sector */
	if (!blk_rq_is_passthrough(req))
		req->__sector += total_bytes >> 9;

	/* mixed attributes always follow the first bio */
	if (req->rq_flags & RQF_MIXED_MERGE) {
		req->cmd_flags &= ~REQ_FAILFAST_MASK;
		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
	}

	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
		/*
		 * If total number of sectors is less than the first segment
		 * size, something has gone terribly wrong.
		 */
		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
			blk_dump_rq_flags(req, "request botched");
			req->__data_len = blk_rq_cur_bytes(req);
		}

		/* recalculate the number of segments */
		req->nr_phys_segments = blk_recalc_rq_segments(req);
	}

	return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static void __blk_account_io_done(struct request *req, u64 now)
{
	const int sgrp = op_stat_group(req_op(req));

	part_stat_lock();
	update_io_ticks(req->part, jiffies, true);
	part_stat_inc(req->part, ios[sgrp]);
	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
	part_stat_unlock();
}

static inline void blk_account_io_done(struct request *req, u64 now)
{
	/*
	 * Account IO completion.  flush_rq isn't accounted as a
	 * normal IO on queueing nor completion.  Accounting the
	 * containing request is enough.
	 */
	if (blk_do_io_stat(req) && req->part &&
	    !(req->rq_flags & RQF_FLUSH_SEQ))
		__blk_account_io_done(req, now);
}

static void __blk_account_io_start(struct request *rq)
{
	/* passthrough requests can hold bios that do not have ->bi_bdev set */
	if (rq->bio && rq->bio->bi_bdev)
		rq->part = rq->bio->bi_bdev;
847 848
	else if (rq->q->disk)
		rq->part = rq->q->disk->part0;
849 850 851 852 853 854 855 856 857 858 859 860

	part_stat_lock();
	update_io_ticks(rq->part, jiffies, false);
	part_stat_unlock();
}

static inline void blk_account_io_start(struct request *req)
{
	if (blk_do_io_stat(req))
		__blk_account_io_start(req);
}

861
static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
862
{
863 864
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
865
		blk_stat_add(rq, now);
866 867
	}

868
	blk_mq_sched_completed_request(rq, now);
869
	blk_account_io_done(rq, now);
870
}
871

872 873 874 875
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
{
	if (blk_mq_need_time_stamp(rq))
		__blk_mq_end_request_acct(rq, ktime_get_ns());
M
Ming Lei 已提交
876

C
Christoph Hellwig 已提交
877
	if (rq->end_io) {
878
		rq_qos_done(rq->q, rq);
879
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
880
	} else {
881
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
882
	}
883
}
884
EXPORT_SYMBOL(__blk_mq_end_request);
885

886
void blk_mq_end_request(struct request *rq, blk_status_t error)
887 888 889
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
890
	__blk_mq_end_request(rq, error);
891
}
892
EXPORT_SYMBOL(blk_mq_end_request);
893

894 895 896 897 898 899 900
#define TAG_COMP_BATCH		32

static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
					  int *tag_array, int nr_tags)
{
	struct request_queue *q = hctx->queue;

901 902 903 904 905 906 907
	/*
	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
	 * update hctx->nr_active in batch
	 */
	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
		__blk_mq_sub_active_requests(hctx, nr_tags);

908 909 910 911 912 913 914
	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
}

void blk_mq_end_request_batch(struct io_comp_batch *iob)
{
	int tags[TAG_COMP_BATCH], nr_tags = 0;
915
	struct blk_mq_hw_ctx *cur_hctx = NULL;
916 917 918 919 920 921 922 923 924 925 926 927 928 929
	struct request *rq;
	u64 now = 0;

	if (iob->need_ts)
		now = ktime_get_ns();

	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
		prefetch(rq->bio);
		prefetch(rq->rq_next);

		blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
		if (iob->need_ts)
			__blk_mq_end_request_acct(rq, now);

930 931
		rq_qos_done(rq->q, rq);

932
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
933
		if (!req_ref_put_and_test(rq))
934 935 936 937 938
			continue;

		blk_crypto_free_request(rq);
		blk_pm_mark_last_busy(rq);

939 940 941
		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
			if (cur_hctx)
				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
942
			nr_tags = 0;
943
			cur_hctx = rq->mq_hctx;
944 945 946 947 948
		}
		tags[nr_tags++] = rq->tag;
	}

	if (nr_tags)
949
		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
950 951 952
}
EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);

953
static void blk_complete_reqs(struct llist_head *list)
954
{
955 956
	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
	struct request *rq, *next;
957

958
	llist_for_each_entry_safe(rq, next, entry, ipi_list)
959
		rq->q->mq_ops->complete(rq);
960 961
}

962
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
963
{
964
	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
965 966
}

967 968
static int blk_softirq_cpu_dead(unsigned int cpu)
{
969
	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
970 971 972
	return 0;
}

973
static void __blk_mq_complete_request_remote(void *data)
974
{
975
	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
976 977
}

978 979 980 981 982 983 984
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
	int cpu = raw_smp_processor_id();

	if (!IS_ENABLED(CONFIG_SMP) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
		return false;
985 986 987 988 989 990
	/*
	 * With force threaded interrupts enabled, raising softirq from an SMP
	 * function call will always result in waking the ksoftirqd thread.
	 * This is probably worse than completing the request on a different
	 * cache domain.
	 */
991
	if (force_irqthreads())
992
		return false;
993 994 995 996 997 998 999 1000 1001 1002 1003

	/* same CPU or cache domain?  Complete locally */
	if (cpu == rq->mq_ctx->cpu ||
	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
		return false;

	/* don't try to IPI to an offline CPU */
	return cpu_online(rq->mq_ctx->cpu);
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static void blk_mq_complete_send_ipi(struct request *rq)
{
	struct llist_head *list;
	unsigned int cpu;

	cpu = rq->mq_ctx->cpu;
	list = &per_cpu(blk_cpu_done, cpu);
	if (llist_add(&rq->ipi_list, list)) {
		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
		smp_call_function_single_async(cpu, &rq->csd);
	}
}

static void blk_mq_raise_softirq(struct request *rq)
{
	struct llist_head *list;

	preempt_disable();
	list = this_cpu_ptr(&blk_cpu_done);
	if (llist_add(&rq->ipi_list, list))
		raise_softirq(BLOCK_SOFTIRQ);
	preempt_enable();
}

1028
bool blk_mq_complete_request_remote(struct request *rq)
1029
{
1030
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1031

1032 1033 1034 1035
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
1036
	if (rq->cmd_flags & REQ_POLLED)
1037
		return false;
C
Christoph Hellwig 已提交
1038

1039
	if (blk_mq_complete_need_ipi(rq)) {
1040 1041
		blk_mq_complete_send_ipi(rq);
		return true;
1042
	}
1043

1044 1045 1046 1047 1048
	if (rq->q->nr_hw_queues == 1) {
		blk_mq_raise_softirq(rq);
		return true;
	}
	return false;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Complete a request by scheduling the ->complete_rq operation.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (!blk_mq_complete_request_remote(rq))
		rq->q->mq_ops->complete(rq);
1063
}
1064
EXPORT_SYMBOL(blk_mq_complete_request);
1065

1066 1067 1068 1069 1070 1071 1072 1073
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
1074
void blk_mq_start_request(struct request *rq)
1075 1076 1077
{
	struct request_queue *q = rq->q;

1078
	trace_block_rq_issue(rq);
1079

1080
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1081 1082 1083 1084 1085 1086 1087 1088
		u64 start_time;
#ifdef CONFIG_BLK_CGROUP
		if (rq->bio)
			start_time = bio_issue_time(&rq->bio->bi_issue);
		else
#endif
			start_time = ktime_get_ns();
		rq->io_start_time_ns = start_time;
1089
		rq->stats_sectors = blk_rq_sectors(rq);
1090
		rq->rq_flags |= RQF_STATS;
1091
		rq_qos_issue(q, rq);
1092 1093
	}

1094
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1095

1096
	blk_add_timer(rq);
K
Keith Busch 已提交
1097
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1098

1099 1100 1101 1102
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
1103 1104
	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1105
}
1106
EXPORT_SYMBOL(blk_mq_start_request);
1107

C
Christoph Hellwig 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
/**
 * blk_end_sync_rq - executes a completion event on a request
 * @rq: request to complete
 * @error: end I/O status of the request
 */
static void blk_end_sync_rq(struct request *rq, blk_status_t error)
{
	struct completion *waiting = rq->end_io_data;

	rq->end_io_data = (void *)(uintptr_t)error;

	/*
	 * complete last, if this is a stack request the process (and thus
	 * the rq pointer) could be invalid right after this complete()
	 */
	complete(waiting);
}

/**
 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
 * @rq:		request to insert
 * @at_head:    insert request at head or tail of queue
 * @done:	I/O completion handler
 *
 * Description:
 *    Insert a fully prepared request at the back of the I/O scheduler queue
 *    for execution.  Don't wait for completion.
 *
 * Note:
 *    This function will invoke @done directly if the queue is dead.
 */
1139
void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
C
Christoph Hellwig 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
{
	WARN_ON(irqs_disabled());
	WARN_ON(!blk_rq_is_passthrough(rq));

	rq->end_io = done;

	blk_account_io_start(rq);

	/*
	 * don't check dying flag for MQ because the request won't
	 * be reused after dying flag is set
	 */
	blk_mq_sched_insert_request(rq, at_head, true, false);
}
EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);

static bool blk_rq_is_poll(struct request *rq)
{
	if (!rq->mq_hctx)
		return false;
	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
		return false;
	if (WARN_ON_ONCE(!rq->bio))
		return false;
	return true;
}

static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
{
	do {
		bio_poll(rq->bio, NULL, 0);
		cond_resched();
	} while (!completion_done(wait));
}

/**
 * blk_execute_rq - insert a request into queue for execution
 * @rq:		request to insert
 * @at_head:    insert request at head or tail of queue
 *
 * Description:
 *    Insert a fully prepared request at the back of the I/O scheduler queue
 *    for execution and wait for completion.
 * Return: The blk_status_t result provided to blk_mq_end_request().
 */
1185
blk_status_t blk_execute_rq(struct request *rq, bool at_head)
C
Christoph Hellwig 已提交
1186 1187 1188 1189 1190
{
	DECLARE_COMPLETION_ONSTACK(wait);
	unsigned long hang_check;

	rq->end_io_data = &wait;
1191
	blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
C
Christoph Hellwig 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;

	if (blk_rq_is_poll(rq))
		blk_rq_poll_completion(rq, &wait);
	else if (hang_check)
		while (!wait_for_completion_io_timeout(&wait,
				hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&wait);

	return (blk_status_t)(uintptr_t)rq->end_io_data;
}
EXPORT_SYMBOL(blk_execute_rq);

1209
static void __blk_mq_requeue_request(struct request *rq)
1210 1211 1212
{
	struct request_queue *q = rq->q;

1213 1214
	blk_mq_put_driver_tag(rq);

1215
	trace_block_rq_requeue(rq);
1216
	rq_qos_requeue(q, rq);
1217

K
Keith Busch 已提交
1218 1219
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1220
		rq->rq_flags &= ~RQF_TIMED_OUT;
1221
	}
1222 1223
}

1224
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1225 1226 1227
{
	__blk_mq_requeue_request(rq);

1228 1229 1230
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

1231
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1232 1233 1234
}
EXPORT_SYMBOL(blk_mq_requeue_request);

1235 1236 1237
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
1238
		container_of(work, struct request_queue, requeue_work.work);
1239 1240 1241
	LIST_HEAD(rq_list);
	struct request *rq, *next;

1242
	spin_lock_irq(&q->requeue_lock);
1243
	list_splice_init(&q->requeue_list, &rq_list);
1244
	spin_unlock_irq(&q->requeue_lock);
1245 1246

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1247
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1248 1249
			continue;

1250
		rq->rq_flags &= ~RQF_SOFTBARRIER;
1251
		list_del_init(&rq->queuelist);
1252 1253 1254 1255 1256 1257
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
1258
			blk_mq_request_bypass_insert(rq, false, false);
1259 1260
		else
			blk_mq_sched_insert_request(rq, true, false, false);
1261 1262 1263 1264 1265
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
1266
		blk_mq_sched_insert_request(rq, false, false, false);
1267 1268
	}

1269
	blk_mq_run_hw_queues(q, false);
1270 1271
}

1272 1273
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
1274 1275 1276 1277 1278 1279
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
1280
	 * request head insertion from the workqueue.
1281
	 */
1282
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1283 1284 1285

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
1286
		rq->rq_flags |= RQF_SOFTBARRIER;
1287 1288 1289 1290 1291
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
1292 1293 1294

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
1295 1296 1297 1298
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
1299
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1300 1301 1302
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

1303 1304 1305
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
1306 1307
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
1308 1309 1310
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

1311 1312
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
1313 1314
{
	/*
1315
	 * If we find a request that isn't idle and the queue matches,
1316
	 * we know the queue is busy. Return false to stop the iteration.
1317
	 */
1318
	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1319 1320 1321 1322 1323 1324 1325 1326 1327
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

1328
bool blk_mq_queue_inflight(struct request_queue *q)
1329 1330 1331
{
	bool busy = false;

1332
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1333 1334
	return busy;
}
1335
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1336

1337
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1338
{
1339
	req->rq_flags |= RQF_TIMED_OUT;
1340 1341 1342 1343 1344 1345 1346
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1347
	}
1348 1349

	blk_add_timer(req);
1350
}
1351

K
Keith Busch 已提交
1352
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1353
{
K
Keith Busch 已提交
1354
	unsigned long deadline;
1355

K
Keith Busch 已提交
1356 1357
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
1358 1359
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
1360

1361
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
1362 1363
	if (time_after_eq(jiffies, deadline))
		return true;
1364

K
Keith Busch 已提交
1365 1366 1367 1368 1369
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
1370 1371
}

1372 1373
void blk_mq_put_rq_ref(struct request *rq)
{
M
Ming Lei 已提交
1374
	if (is_flush_rq(rq))
1375
		rq->end_io(rq, 0);
1376
	else if (req_ref_put_and_test(rq))
1377 1378 1379
		__blk_mq_free_request(rq);
}

1380
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1381 1382
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
1383 1384 1385
	unsigned long *next = priv;

	/*
1386 1387 1388 1389 1390
	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
	 * be reallocated underneath the timeout handler's processing, then
	 * the expire check is reliable. If the request is not expired, then
	 * it was completed and reallocated as a new request after returning
	 * from blk_mq_check_expired().
1391
	 */
K
Keith Busch 已提交
1392
	if (blk_mq_req_expired(rq, next))
1393
		blk_mq_rq_timed_out(rq, reserved);
1394
	return true;
1395 1396
}

1397
static void blk_mq_timeout_work(struct work_struct *work)
1398
{
1399 1400
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
1401
	unsigned long next = 0;
1402
	struct blk_mq_hw_ctx *hctx;
1403
	int i;
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
1414
	 * blk_freeze_queue_start, and the moment the last request is
1415 1416 1417 1418
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
1419 1420
		return;

K
Keith Busch 已提交
1421
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1422

K
Keith Busch 已提交
1423 1424
	if (next != 0) {
		mod_timer(&q->timeout, next);
1425
	} else {
1426 1427 1428 1429 1430 1431
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
1432 1433 1434 1435 1436
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
1437
	}
1438
	blk_queue_exit(q);
1439 1440
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1451
	enum hctx_type type = hctx->type;
1452 1453

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1454
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1455
	sbitmap_clear_bit(sb, bitnr);
1456 1457 1458 1459
	spin_unlock(&ctx->lock);
	return true;
}

1460 1461 1462 1463
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1464
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1465
{
1466 1467 1468 1469
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1470

1471
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1472
}
1473
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1486
	enum hctx_type type = hctx->type;
1487 1488

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1489 1490
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1491
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1492
		if (list_empty(&ctx->rq_lists[type]))
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1503
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1515
static bool __blk_mq_alloc_driver_tag(struct request *rq)
1516
{
1517
	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1518 1519 1520
	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
	int tag;

1521 1522
	blk_mq_tag_busy(rq->mq_hctx);

1523
	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1524
		bt = &rq->mq_hctx->tags->breserved_tags;
1525
		tag_offset = 0;
1526 1527 1528
	} else {
		if (!hctx_may_queue(rq->mq_hctx, bt))
			return false;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	}

	tag = __sbitmap_queue_get(bt);
	if (tag == BLK_MQ_NO_TAG)
		return false;

	rq->tag = tag + tag_offset;
	return true;
}

1539
bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1540
{
1541
	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1542 1543
		return false;

1544
	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1545 1546
			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
		rq->rq_flags |= RQF_MQ_INFLIGHT;
1547
		__blk_mq_inc_active_requests(hctx);
1548 1549 1550
	}
	hctx->tags->rqs[rq->tag] = rq;
	return true;
1551 1552
}

1553 1554
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1555 1556 1557 1558 1559
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1560
	spin_lock(&hctx->dispatch_wait_lock);
1561 1562 1563 1564
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
1565
		sbq = &hctx->tags->bitmap_tags;
1566 1567
		atomic_dec(&sbq->ws_active);
	}
1568 1569
	spin_unlock(&hctx->dispatch_wait_lock);

1570 1571 1572 1573
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1574 1575
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1576 1577
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1578 1579
 * marking us as waiting.
 */
1580
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1581
				 struct request *rq)
1582
{
1583
	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1584
	struct wait_queue_head *wq;
1585 1586
	wait_queue_entry_t *wait;
	bool ret;
1587

1588
	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1589
		blk_mq_sched_mark_restart_hctx(hctx);
1590

1591 1592 1593 1594 1595 1596 1597 1598
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1599
		return blk_mq_get_driver_tag(rq);
1600 1601
	}

1602
	wait = &hctx->dispatch_wait;
1603 1604 1605
	if (!list_empty_careful(&wait->entry))
		return false;

1606
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1607 1608 1609

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1610
	if (!list_empty(&wait->entry)) {
1611 1612
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1613
		return false;
1614 1615
	}

1616
	atomic_inc(&sbq->ws_active);
1617 1618
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1619

1620
	/*
1621 1622 1623
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1624
	 */
1625
	ret = blk_mq_get_driver_tag(rq);
1626
	if (!ret) {
1627 1628
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1629
		return false;
1630
	}
1631 1632 1633 1634 1635 1636

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1637
	atomic_dec(&sbq->ws_active);
1638 1639
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1640 1641

	return true;
1642 1643
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1670 1671
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
enum prep_dispatch {
	PREP_DISPATCH_OK,
	PREP_DISPATCH_NO_TAG,
	PREP_DISPATCH_NO_BUDGET,
};

static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
						  bool need_budget)
{
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1712
	int budget_token = -1;
1713

1714 1715 1716 1717 1718 1719 1720
	if (need_budget) {
		budget_token = blk_mq_get_dispatch_budget(rq->q);
		if (budget_token < 0) {
			blk_mq_put_driver_tag(rq);
			return PREP_DISPATCH_NO_BUDGET;
		}
		blk_mq_set_rq_budget_token(rq, budget_token);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	}

	if (!blk_mq_get_driver_tag(rq)) {
		/*
		 * The initial allocation attempt failed, so we need to
		 * rerun the hardware queue when a tag is freed. The
		 * waitqueue takes care of that. If the queue is run
		 * before we add this entry back on the dispatch list,
		 * we'll re-run it below.
		 */
		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1732 1733 1734 1735 1736
			/*
			 * All budgets not got from this function will be put
			 * together during handling partial dispatch
			 */
			if (need_budget)
1737
				blk_mq_put_dispatch_budget(rq->q, budget_token);
1738 1739 1740 1741 1742 1743 1744
			return PREP_DISPATCH_NO_TAG;
		}
	}

	return PREP_DISPATCH_OK;
}

1745 1746
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
1747
		struct list_head *list)
1748
{
1749
	struct request *rq;
1750

1751 1752
	list_for_each_entry(rq, list, queuelist) {
		int budget_token = blk_mq_get_rq_budget_token(rq);
1753

1754 1755 1756
		if (budget_token >= 0)
			blk_mq_put_dispatch_budget(q, budget_token);
	}
1757 1758
}

1759 1760 1761
/*
 * Returns true if we did some work AND can potentially do more.
 */
1762
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1763
			     unsigned int nr_budgets)
1764
{
1765
	enum prep_dispatch prep;
1766
	struct request_queue *q = hctx->queue;
1767
	struct request *rq, *nxt;
1768
	int errors, queued;
1769
	blk_status_t ret = BLK_STS_OK;
1770
	LIST_HEAD(zone_list);
1771
	bool needs_resource = false;
1772

1773 1774 1775
	if (list_empty(list))
		return false;

1776 1777 1778
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1779
	errors = queued = 0;
1780
	do {
1781
		struct blk_mq_queue_data bd;
1782

1783
		rq = list_first_entry(list, struct request, queuelist);
1784

1785
		WARN_ON_ONCE(hctx != rq->mq_hctx);
1786
		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1787
		if (prep != PREP_DISPATCH_OK)
1788
			break;
1789

1790 1791
		list_del_init(&rq->queuelist);

1792
		bd.rq = rq;
1793 1794 1795 1796 1797 1798 1799 1800 1801

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1802
			bd.last = !blk_mq_get_driver_tag(nxt);
1803
		}
1804

1805 1806 1807 1808 1809 1810
		/*
		 * once the request is queued to lld, no need to cover the
		 * budget any more
		 */
		if (nr_budgets)
			nr_budgets--;
1811
		ret = q->mq_ops->queue_rq(hctx, &bd);
1812 1813 1814
		switch (ret) {
		case BLK_STS_OK:
			queued++;
1815
			break;
1816
		case BLK_STS_RESOURCE:
1817 1818
			needs_resource = true;
			fallthrough;
1819 1820 1821 1822
		case BLK_STS_DEV_RESOURCE:
			blk_mq_handle_dev_resource(rq, list);
			goto out;
		case BLK_STS_ZONE_RESOURCE:
1823 1824 1825 1826 1827 1828
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
1829
			needs_resource = true;
1830 1831
			break;
		default:
1832
			errors++;
1833
			blk_mq_end_request(rq, ret);
1834
		}
1835
	} while (!list_empty(list));
1836
out:
1837 1838 1839
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1840 1841 1842 1843 1844
	/* If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
		q->mq_ops->commit_rqs(hctx);
1845 1846 1847 1848
	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1849
	if (!list_empty(list)) {
1850
		bool needs_restart;
1851 1852
		/* For non-shared tags, the RESTART check will suffice */
		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1853
			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1854

1855 1856
		if (nr_budgets)
			blk_mq_release_budgets(q, list);
1857

1858
		spin_lock(&hctx->lock);
1859
		list_splice_tail_init(list, &hctx->dispatch);
1860
		spin_unlock(&hctx->lock);
1861

1862 1863 1864 1865 1866 1867 1868 1869 1870
		/*
		 * Order adding requests to hctx->dispatch and checking
		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
		 * in blk_mq_sched_restart(). Avoid restart code path to
		 * miss the new added requests to hctx->dispatch, meantime
		 * SCHED_RESTART is observed here.
		 */
		smp_mb();

1871
		/*
1872 1873 1874
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1875
		 *
1876 1877 1878 1879
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1880
		 *
1881 1882 1883 1884 1885 1886 1887
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1888
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1889
		 *   and dm-rq.
1890 1891 1892
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1893
		 * that could otherwise occur if the queue is idle.  We'll do
1894 1895
		 * similar if we couldn't get budget or couldn't lock a zone
		 * and SCHED_RESTART is set.
1896
		 */
1897
		needs_restart = blk_mq_sched_needs_restart(hctx);
1898 1899
		if (prep == PREP_DISPATCH_NO_BUDGET)
			needs_resource = true;
1900
		if (!needs_restart ||
1901
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1902
			blk_mq_run_hw_queue(hctx, true);
1903
		else if (needs_restart && needs_resource)
1904
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1905

1906
		blk_mq_update_dispatch_busy(hctx, true);
1907
		return false;
1908 1909
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1910

1911
	return (queued + errors) != 0;
1912 1913
}

1914 1915 1916 1917 1918 1919
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1920 1921
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1922 1923 1924 1925 1926 1927
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1928 1929
	blk_mq_run_dispatch_ops(hctx->queue,
			blk_mq_sched_dispatch_requests(hctx));
1930 1931
}

1932 1933 1934 1935 1936 1937 1938 1939 1940
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1941 1942 1943 1944 1945 1946 1947 1948
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1949
	bool tried = false;
1950
	int next_cpu = hctx->next_cpu;
1951

1952 1953
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1954 1955

	if (--hctx->next_cpu_batch <= 0) {
1956
select_cpu:
1957
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1958
				cpu_online_mask);
1959
		if (next_cpu >= nr_cpu_ids)
1960
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1961 1962 1963
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1964 1965 1966 1967
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1968
	if (!cpu_online(next_cpu)) {
1969 1970 1971 1972 1973 1974 1975 1976 1977
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1978
		hctx->next_cpu = next_cpu;
1979 1980 1981
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1982 1983 1984

	hctx->next_cpu = next_cpu;
	return next_cpu;
1985 1986
}

1987 1988 1989 1990
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
1991
 * @msecs: Milliseconds of delay to wait before running the queue.
1992 1993 1994 1995
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1996 1997
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1998
{
1999
	if (unlikely(blk_mq_hctx_stopped(hctx)))
2000 2001
		return;

2002
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2003 2004
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2005
			__blk_mq_run_hw_queue(hctx);
2006
			put_cpu();
2007 2008
			return;
		}
2009

2010
		put_cpu();
2011
	}
2012

2013 2014
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
2015 2016
}

2017 2018 2019
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
2020
 * @msecs: Milliseconds of delay to wait before running the queue.
2021 2022 2023
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
2024 2025 2026 2027 2028 2029
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

2030 2031 2032 2033 2034 2035 2036 2037 2038
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
2039
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2040
{
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
2051
	blk_mq_run_dispatch_ops(hctx->queue,
2052 2053
		need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx));
2054

2055
	if (need_run)
2056
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2057
}
O
Omar Sandoval 已提交
2058
EXPORT_SYMBOL(blk_mq_run_hw_queue);
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
/*
 * Is the request queue handled by an IO scheduler that does not respect
 * hardware queues when dispatching?
 */
static bool blk_mq_has_sqsched(struct request_queue *q)
{
	struct elevator_queue *e = q->elevator;

	if (e && e->type->ops.dispatch_request &&
	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
		return true;
	return false;
}

/*
 * Return prefered queue to dispatch from (if any) for non-mq aware IO
 * scheduler.
 */
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;

	/*
	 * If the IO scheduler does not respect hardware queues when
	 * dispatching, we just don't bother with multiple HW queues and
	 * dispatch from hctx for the current CPU since running multiple queues
	 * just causes lock contention inside the scheduler and pointless cache
	 * bouncing.
	 */
	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
				     raw_smp_processor_id());
	if (!blk_mq_hctx_stopped(hctx))
		return hctx;
	return NULL;
}

2096
/**
2097
 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2098 2099 2100
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
2101
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2102
{
2103
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2104 2105
	int i;

2106 2107 2108
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
2109
	queue_for_each_hw_ctx(q, hctx, i) {
2110
		if (blk_mq_hctx_stopped(hctx))
2111
			continue;
2112 2113 2114 2115 2116 2117 2118 2119
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_run_hw_queue(hctx, async);
2120 2121
	}
}
2122
EXPORT_SYMBOL(blk_mq_run_hw_queues);
2123

2124 2125 2126
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
2127
 * @msecs: Milliseconds of delay to wait before running the queues.
2128 2129 2130
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
2131
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2132 2133
	int i;

2134 2135 2136
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
2137 2138 2139
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;
2140 2141 2142 2143 2144 2145 2146 2147
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_delay_run_hw_queue(hctx, msecs);
2148 2149 2150 2151
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

2172 2173 2174
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
2175
 * BLK_STS_RESOURCE is usually returned.
2176 2177 2178 2179 2180
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
2181 2182
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
2183
	cancel_delayed_work(&hctx->run_work);
2184

2185
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2186
}
2187
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2188

2189 2190 2191
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
2192
 * BLK_STS_RESOURCE is usually returned.
2193 2194 2195 2196 2197
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
2198 2199
void blk_mq_stop_hw_queues(struct request_queue *q)
{
2200 2201 2202 2203 2204
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
2205 2206 2207
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

2208 2209 2210
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2211

2212
	blk_mq_run_hw_queue(hctx, false);
2213 2214 2215
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

2236
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2237 2238 2239 2240
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2241 2242
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
2243 2244 2245
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

2246
static void blk_mq_run_work_fn(struct work_struct *work)
2247 2248 2249
{
	struct blk_mq_hw_ctx *hctx;

2250
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2251

2252
	/*
M
Ming Lei 已提交
2253
	 * If we are stopped, don't run the queue.
2254
	 */
2255
	if (blk_mq_hctx_stopped(hctx))
2256
		return;
2257 2258 2259 2260

	__blk_mq_run_hw_queue(hctx);
}

2261 2262 2263
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
2264
{
J
Jens Axboe 已提交
2265
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
2266
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
2267

2268 2269
	lockdep_assert_held(&ctx->lock);

2270
	trace_block_rq_insert(rq);
2271

2272
	if (at_head)
M
Ming Lei 已提交
2273
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2274
	else
M
Ming Lei 已提交
2275
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2276
}
2277

2278 2279
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
2280 2281 2282
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

2283 2284
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
2285
	__blk_mq_insert_req_list(hctx, rq, at_head);
2286 2287 2288
	blk_mq_hctx_mark_pending(hctx, ctx);
}

2289 2290 2291
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
2292
 * @at_head: true if the request should be inserted at the head of the list.
2293 2294
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
2295 2296 2297
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
2298 2299
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
2300
{
2301
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2302 2303

	spin_lock(&hctx->lock);
2304 2305 2306 2307
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
2308 2309
	spin_unlock(&hctx->lock);

2310 2311
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
2312 2313
}

2314 2315
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
2316 2317

{
2318
	struct request *rq;
M
Ming Lei 已提交
2319
	enum hctx_type type = hctx->type;
2320

2321 2322 2323 2324
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
2325
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
2326
		BUG_ON(rq->mq_ctx != ctx);
2327
		trace_block_rq_insert(rq);
2328
	}
2329 2330

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2331
	list_splice_tail_init(list, &ctx->rq_lists[type]);
2332
	blk_mq_hctx_mark_pending(hctx, ctx);
2333 2334 2335
	spin_unlock(&ctx->lock);
}

2336 2337
static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
			      bool from_schedule)
2338
{
2339 2340 2341 2342 2343 2344
	if (hctx->queue->mq_ops->commit_rqs) {
		trace_block_unplug(hctx->queue, *queued, !from_schedule);
		hctx->queue->mq_ops->commit_rqs(hctx);
	}
	*queued = 0;
}
2345

2346 2347
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
2348
{
2349 2350
	int err;

2351 2352 2353 2354 2355
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
2356
	blk_rq_bio_prep(rq, bio, nr_segs);
2357 2358 2359 2360

	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
	WARN_ON_ONCE(err);
2361

2362
	blk_account_io_start(rq);
2363 2364
}

2365
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2366
					    struct request *rq, bool last)
2367 2368 2369 2370
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
2371
		.last = last,
2372
	};
2373
	blk_status_t ret;
2374 2375 2376 2377 2378 2379 2380 2381 2382

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
2383
		blk_mq_update_dispatch_busy(hctx, false);
2384 2385
		break;
	case BLK_STS_RESOURCE:
2386
	case BLK_STS_DEV_RESOURCE:
2387
		blk_mq_update_dispatch_busy(hctx, true);
2388 2389 2390
		__blk_mq_requeue_request(rq);
		break;
	default:
2391
		blk_mq_update_dispatch_busy(hctx, false);
2392 2393 2394 2395 2396 2397
		break;
	}

	return ret;
}

2398
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2399
						struct request *rq,
2400
						bool bypass_insert, bool last)
2401 2402
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
2403
	bool run_queue = true;
2404
	int budget_token;
M
Ming Lei 已提交
2405

2406
	/*
2407
	 * RCU or SRCU read lock is needed before checking quiesced flag.
2408
	 *
2409 2410 2411
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
2412
	 */
2413
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
2414
		run_queue = false;
2415 2416
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
2417
	}
2418

2419
	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2420
		goto insert;
2421

2422 2423
	budget_token = blk_mq_get_dispatch_budget(q);
	if (budget_token < 0)
2424
		goto insert;
2425

2426 2427
	blk_mq_set_rq_budget_token(rq, budget_token);

2428
	if (!blk_mq_get_driver_tag(rq)) {
2429
		blk_mq_put_dispatch_budget(q, budget_token);
2430
		goto insert;
2431
	}
2432

2433
	return __blk_mq_issue_directly(hctx, rq, last);
2434 2435 2436 2437
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

2438 2439
	blk_mq_sched_insert_request(rq, false, run_queue, false);

2440 2441 2442
	return BLK_STS_OK;
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
2453
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2454
		struct request *rq)
2455
{
2456 2457
	blk_status_t ret =
		__blk_mq_try_issue_directly(hctx, rq, false, true);
2458 2459

	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2460
		blk_mq_request_bypass_insert(rq, false, true);
2461 2462 2463 2464
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);
}

2465
static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2466
{
2467
	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2468 2469
}

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_hw_ctx *hctx = NULL;
	struct request *rq;
	int queued = 0;
	int errors = 0;

	while ((rq = rq_list_pop(&plug->mq_list))) {
		bool last = rq_list_empty(plug->mq_list);
		blk_status_t ret;

		if (hctx != rq->mq_hctx) {
			if (hctx)
				blk_mq_commit_rqs(hctx, &queued, from_schedule);
			hctx = rq->mq_hctx;
		}

		ret = blk_mq_request_issue_directly(rq, last);
		switch (ret) {
		case BLK_STS_OK:
			queued++;
			break;
		case BLK_STS_RESOURCE:
		case BLK_STS_DEV_RESOURCE:
			blk_mq_request_bypass_insert(rq, false, last);
			blk_mq_commit_rqs(hctx, &queued, from_schedule);
			return;
		default:
			blk_mq_end_request(rq, ret);
			errors++;
			break;
		}
	}

	/*
	 * If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if (errors)
		blk_mq_commit_rqs(hctx, &queued, from_schedule);
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_hw_ctx *this_hctx;
	struct blk_mq_ctx *this_ctx;
	unsigned int depth;
	LIST_HEAD(list);

	if (rq_list_empty(plug->mq_list))
		return;
	plug->rq_count = 0;

	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2524 2525
		blk_mq_run_dispatch_ops(plug->mq_list->q,
				blk_mq_plug_issue_direct(plug, false));
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
		if (rq_list_empty(plug->mq_list))
			return;
	}

	this_hctx = NULL;
	this_ctx = NULL;
	depth = 0;
	do {
		struct request *rq;

		rq = rq_list_pop(&plug->mq_list);

		if (!this_hctx) {
			this_hctx = rq->mq_hctx;
			this_ctx = rq->mq_ctx;
		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
			trace_block_unplug(this_hctx->queue, depth,
						!from_schedule);
			blk_mq_sched_insert_requests(this_hctx, this_ctx,
						&list, from_schedule);
			depth = 0;
			this_hctx = rq->mq_hctx;
			this_ctx = rq->mq_ctx;

		}

		list_add(&rq->queuelist, &list);
		depth++;
	} while (!rq_list_empty(plug->mq_list));

	if (!list_empty(&list)) {
		trace_block_unplug(this_hctx->queue, depth, !from_schedule);
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
						from_schedule);
	}
}

2563 2564 2565
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
2566
	int queued = 0;
2567
	int errors = 0;
2568

2569
	while (!list_empty(list)) {
2570
		blk_status_t ret;
2571 2572 2573 2574
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
2575 2576 2577 2578
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
2579
				blk_mq_request_bypass_insert(rq, false,
2580
							list_empty(list));
2581 2582 2583
				break;
			}
			blk_mq_end_request(rq, ret);
2584
			errors++;
2585 2586
		} else
			queued++;
2587
	}
J
Jens Axboe 已提交
2588 2589 2590 2591 2592 2593

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2594 2595
	if ((!list_empty(list) || errors) &&
	     hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2596
		hctx->queue->mq_ops->commit_rqs(hctx);
2597 2598
}

2599
/*
2600
 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2601 2602 2603 2604 2605 2606
 * queues. This is important for md arrays to benefit from merging
 * requests.
 */
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
{
	if (plug->multiple_queues)
2607
		return BLK_MAX_REQUEST_COUNT * 2;
2608 2609 2610
	return BLK_MAX_REQUEST_COUNT;
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	struct request *last = rq_list_peek(&plug->mq_list);

	if (!plug->rq_count) {
		trace_block_plug(rq->q);
	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
		   (!blk_queue_nomerges(rq->q) &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
		blk_mq_flush_plug_list(plug, false);
		trace_block_plug(rq->q);
	}

	if (!plug->multiple_queues && last && last->q != rq->q)
		plug->multiple_queues = true;
	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
		plug->has_elevator = true;
	rq->rq_next = NULL;
	rq_list_add(&plug->mq_list, rq);
	plug->rq_count++;
}

M
Ming Lei 已提交
2633
static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2634
				     struct bio *bio, unsigned int nr_segs)
2635 2636
{
	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2637
		if (blk_attempt_plug_merge(q, bio, nr_segs))
2638 2639 2640 2641 2642 2643 2644
			return true;
		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
			return true;
	}
	return false;
}

2645 2646
static struct request *blk_mq_get_new_requests(struct request_queue *q,
					       struct blk_plug *plug,
2647
					       struct bio *bio,
2648
					       unsigned int nsegs)
2649 2650 2651 2652 2653 2654 2655
{
	struct blk_mq_alloc_data data = {
		.q		= q,
		.nr_tags	= 1,
	};
	struct request *rq;

2656
	if (unlikely(bio_queue_enter(bio)))
2657
		return NULL;
2658 2659 2660 2661
	if (unlikely(!submit_bio_checks(bio)))
		goto queue_exit;
	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
		goto queue_exit;
2662 2663 2664

	rq_qos_throttle(q, bio);

2665 2666
	/* ->bi_opf is finalized after submit_bio_checks() returns */
	data.cmd_flags	= bio->bi_opf;
2667 2668 2669 2670 2671 2672 2673
	if (plug) {
		data.nr_tags = plug->nr_ios;
		plug->nr_ios = 1;
		data.cached_rq = &plug->cached_rq;
	}

	rq = __blk_mq_alloc_requests(&data);
2674 2675
	if (rq)
		return rq;
2676 2677 2678
	rq_qos_cleanup(q, bio);
	if (bio->bi_opf & REQ_NOWAIT)
		bio_wouldblock_error(bio);
2679 2680
queue_exit:
	blk_queue_exit(q);
2681 2682 2683
	return NULL;
}

2684
static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2685
		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2686
{
2687 2688
	struct request *rq;

2689 2690 2691 2692 2693
	if (!plug)
		return NULL;
	rq = rq_list_peek(&plug->cached_rq);
	if (!rq || rq->q != q)
		return NULL;
2694

2695
	if (unlikely(!submit_bio_checks(*bio)))
2696
		return NULL;
2697 2698
	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
		*bio = NULL;
2699
		return NULL;
2700 2701
	}
	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2702
		return NULL;
2703
	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2704 2705
		return NULL;

2706
	rq->cmd_flags = (*bio)->bi_opf;
2707 2708
	plug->cached_rq = rq_list_next(rq);
	INIT_LIST_HEAD(&rq->queuelist);
2709
	rq_qos_throttle(q, *bio);
2710
	return rq;
2711 2712
}

2713
/**
2714
 * blk_mq_submit_bio - Create and send a request to block device.
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 */
2726
void blk_mq_submit_bio(struct bio *bio)
2727
{
2728
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2729
	struct blk_plug *plug = blk_mq_plug(q, bio);
2730
	const int is_sync = op_is_sync(bio->bi_opf);
2731
	struct request *rq;
2732
	unsigned int nr_segs = 1;
2733
	blk_status_t ret;
2734

2735 2736 2737
	if (unlikely(!blk_crypto_bio_prep(&bio)))
		return;

2738
	blk_queue_bounce(q, &bio);
2739 2740
	if (blk_may_split(q, bio))
		__blk_queue_split(q, &bio, &nr_segs);
2741

2742
	if (!bio_integrity_prep(bio))
2743
		return;
J
Jens Axboe 已提交
2744

2745
	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2746
	if (!rq) {
2747 2748
		if (!bio)
			return;
2749 2750 2751 2752
		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
		if (unlikely(!rq))
			return;
	}
J
Jens Axboe 已提交
2753

2754
	trace_block_getrq(bio);
2755

2756
	rq_qos_track(q, rq, bio);
2757

2758 2759
	blk_mq_bio_to_request(rq, bio, nr_segs);

2760 2761 2762 2763 2764
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
2765
		return;
2766 2767
	}

2768 2769
	if (op_is_flush(bio->bi_opf)) {
		blk_insert_flush(rq);
2770
		return;
2771
	}
2772

2773
	if (plug)
2774
		blk_add_rq_to_plug(plug, rq);
2775 2776 2777
	else if ((rq->rq_flags & RQF_ELV) ||
		 (rq->mq_hctx->dispatch_busy &&
		  (q->nr_hw_queues == 1 || !is_sync)))
2778
		blk_mq_sched_insert_request(rq, false, true, true);
2779
	else
2780
		blk_mq_run_dispatch_ops(rq->q,
2781
				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2782 2783
}

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
/**
 * blk_cloned_rq_check_limits - Helper function to check a cloned request
 *                              for the new queue limits
 * @q:  the queue
 * @rq: the request being checked
 *
 * Description:
 *    @rq may have been made based on weaker limitations of upper-level queues
 *    in request stacking drivers, and it may violate the limitation of @q.
 *    Since the block layer and the underlying device driver trust @rq
 *    after it is inserted to @q, it should be checked against @q before
 *    the insertion using this generic function.
 *
 *    Request stacking drivers like request-based dm may change the queue
 *    limits when retrying requests on other queues. Those requests need
 *    to be checked against the new queue limits again during dispatch.
 */
static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
				      struct request *rq)
{
	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));

	if (blk_rq_sectors(rq) > max_sectors) {
		/*
		 * SCSI device does not have a good way to return if
		 * Write Same/Zero is actually supported. If a device rejects
		 * a non-read/write command (discard, write same,etc.) the
		 * low-level device driver will set the relevant queue limit to
		 * 0 to prevent blk-lib from issuing more of the offending
		 * operations. Commands queued prior to the queue limit being
		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
		 * errors being propagated to upper layers.
		 */
		if (max_sectors == 0)
			return BLK_STS_NOTSUPP;

		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
			__func__, blk_rq_sectors(rq), max_sectors);
		return BLK_STS_IOERR;
	}

	/*
	 * The queue settings related to segment counting may differ from the
	 * original queue.
	 */
	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
	if (rq->nr_phys_segments > queue_max_segments(q)) {
		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
			__func__, rq->nr_phys_segments, queue_max_segments(q));
		return BLK_STS_IOERR;
	}

	return BLK_STS_OK;
}

/**
 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
 * @q:  the queue to submit the request
 * @rq: the request being queued
 */
blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
{
	blk_status_t ret;

	ret = blk_cloned_rq_check_limits(q, rq);
	if (ret != BLK_STS_OK)
		return ret;

2852 2853
	if (rq->q->disk &&
	    should_fail_request(rq->q->disk->part0, blk_rq_bytes(rq)))
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
		return BLK_STS_IOERR;

	if (blk_crypto_insert_cloned_request(rq))
		return BLK_STS_IOERR;

	blk_account_io_start(rq);

	/*
	 * Since we have a scheduler attached on the top device,
	 * bypass a potential scheduler on the bottom device for
	 * insert.
	 */
2866 2867 2868
	blk_mq_run_dispatch_ops(rq->q,
			ret = blk_mq_request_issue_directly(rq, true));
	return ret;
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
}
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);

/**
 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
 * @rq: the clone request to be cleaned up
 *
 * Description:
 *     Free all bios in @rq for a cloned request.
 */
void blk_rq_unprep_clone(struct request *rq)
{
	struct bio *bio;

	while ((bio = rq->bio) != NULL) {
		rq->bio = bio->bi_next;

		bio_put(bio);
	}
}
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);

/**
 * blk_rq_prep_clone - Helper function to setup clone request
 * @rq: the request to be setup
 * @rq_src: original request to be cloned
 * @bs: bio_set that bios for clone are allocated from
 * @gfp_mask: memory allocation mask for bio
 * @bio_ctr: setup function to be called for each clone bio.
 *           Returns %0 for success, non %0 for failure.
 * @data: private data to be passed to @bio_ctr
 *
 * Description:
 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
 *     Also, pages which the original bios are pointing to are not copied
 *     and the cloned bios just point same pages.
 *     So cloned bios must be completed before original bios, which means
 *     the caller must complete @rq before @rq_src.
 */
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
		      struct bio_set *bs, gfp_t gfp_mask,
		      int (*bio_ctr)(struct bio *, struct bio *, void *),
		      void *data)
{
	struct bio *bio, *bio_src;

	if (!bs)
		bs = &fs_bio_set;

	__rq_for_each_bio(bio_src, rq_src) {
		bio = bio_clone_fast(bio_src, gfp_mask, bs);
		if (!bio)
			goto free_and_out;

		if (bio_ctr && bio_ctr(bio, bio_src, data))
			goto free_and_out;

		if (rq->bio) {
			rq->biotail->bi_next = bio;
			rq->biotail = bio;
		} else {
			rq->bio = rq->biotail = bio;
		}
		bio = NULL;
	}

	/* Copy attributes of the original request to the clone request. */
	rq->__sector = blk_rq_pos(rq_src);
	rq->__data_len = blk_rq_bytes(rq_src);
	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
		rq->special_vec = rq_src->special_vec;
	}
	rq->nr_phys_segments = rq_src->nr_phys_segments;
	rq->ioprio = rq_src->ioprio;

	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
		goto free_and_out;

	return 0;

free_and_out:
	if (bio)
		bio_put(bio);
	blk_rq_unprep_clone(rq);

	return -ENOMEM;
}
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
/*
 * Steal bios from a request and add them to a bio list.
 * The request must not have been partially completed before.
 */
void blk_steal_bios(struct bio_list *list, struct request *rq)
{
	if (rq->bio) {
		if (list->tail)
			list->tail->bi_next = rq->bio;
		else
			list->head = rq->bio;
		list->tail = rq->biotail;

		rq->bio = NULL;
		rq->biotail = NULL;
	}

	rq->__data_len = 0;
}
EXPORT_SYMBOL_GPL(blk_steal_bios);

2980 2981 2982 2983 2984 2985
static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

/* called before freeing request pool in @tags */
2986 2987
static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
				    struct blk_mq_tags *tags)
2988 2989 2990 2991
{
	struct page *page;
	unsigned long flags;

2992 2993 2994 2995
	/* There is no need to clear a driver tags own mapping */
	if (drv_tags == tags)
		return;

2996 2997 2998 2999 3000
	list_for_each_entry(page, &tags->page_list, lru) {
		unsigned long start = (unsigned long)page_address(page);
		unsigned long end = start + order_to_size(page->private);
		int i;

3001
		for (i = 0; i < drv_tags->nr_tags; i++) {
3002 3003 3004 3005
			struct request *rq = drv_tags->rqs[i];
			unsigned long rq_addr = (unsigned long)rq;

			if (rq_addr >= start && rq_addr < end) {
3006
				WARN_ON_ONCE(req_ref_read(rq) != 0);
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
				cmpxchg(&drv_tags->rqs[i], rq, NULL);
			}
		}
	}

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&drv_tags->lock, flags);
	spin_unlock_irqrestore(&drv_tags->lock, flags);
}

3022 3023
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
3024
{
3025
	struct blk_mq_tags *drv_tags;
3026
	struct page *page;
3027

3028 3029
	if (blk_mq_is_shared_tags(set->flags))
		drv_tags = set->shared_tags;
3030 3031
	else
		drv_tags = set->tags[hctx_idx];
3032

3033
	if (tags->static_rqs && set->ops->exit_request) {
3034
		int i;
3035

3036
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
3037 3038 3039
			struct request *rq = tags->static_rqs[i];

			if (!rq)
3040
				continue;
3041
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
3042
			tags->static_rqs[i] = NULL;
3043
		}
3044 3045
	}

3046
	blk_mq_clear_rq_mapping(drv_tags, tags);
3047

3048 3049
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
3050
		list_del_init(&page->lru);
3051 3052
		/*
		 * Remove kmemleak object previously allocated in
3053
		 * blk_mq_alloc_rqs().
3054 3055
		 */
		kmemleak_free(page_address(page));
3056 3057
		__free_pages(page, page->private);
	}
3058
}
3059

3060
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3061
{
3062
	kfree(tags->rqs);
3063
	tags->rqs = NULL;
J
Jens Axboe 已提交
3064 3065
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
3066

3067
	blk_mq_free_tags(tags);
3068 3069
}

3070 3071 3072
static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					       unsigned int hctx_idx,
					       unsigned int nr_tags,
3073
					       unsigned int reserved_tags)
3074
{
3075
	struct blk_mq_tags *tags;
3076
	int node;
3077

3078
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3079 3080 3081
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

3082 3083
	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3084 3085
	if (!tags)
		return NULL;
3086

3087
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3088
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3089
				 node);
3090
	if (!tags->rqs) {
3091
		blk_mq_free_tags(tags);
3092 3093
		return NULL;
	}
3094

3095 3096 3097
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
3098 3099
	if (!tags->static_rqs) {
		kfree(tags->rqs);
3100
		blk_mq_free_tags(tags);
J
Jens Axboe 已提交
3101 3102 3103
		return NULL;
	}

3104 3105 3106
	return tags;
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
3118
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3119 3120 3121
	return 0;
}

3122 3123 3124
static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
			    struct blk_mq_tags *tags,
			    unsigned int hctx_idx, unsigned int depth)
3125 3126 3127
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
3128 3129
	int node;

3130
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3131 3132
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
3133 3134 3135

	INIT_LIST_HEAD(&tags->page_list);

3136 3137 3138 3139
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
3140
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3141
				cache_line_size());
3142
	left = rq_size * depth;
3143

3144
	for (i = 0; i < depth; ) {
3145 3146 3147 3148 3149
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

3150
		while (this_order && left < order_to_size(this_order - 1))
3151 3152 3153
			this_order--;

		do {
3154
			page = alloc_pages_node(node,
3155
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3156
				this_order);
3157 3158 3159 3160 3161 3162 3163 3164 3165
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
3166
			goto fail;
3167 3168

		page->private = this_order;
3169
		list_add_tail(&page->lru, &tags->page_list);
3170 3171

		p = page_address(page);
3172 3173 3174 3175
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
3176
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3177
		entries_per_page = order_to_size(this_order) / rq_size;
3178
		to_do = min(entries_per_page, depth - i);
3179 3180
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
3181 3182 3183
			struct request *rq = p;

			tags->static_rqs[i] = rq;
3184 3185 3186
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
3187 3188
			}

3189 3190 3191 3192
			p += rq_size;
			i++;
		}
	}
3193
	return 0;
3194

3195
fail:
3196 3197
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
3198 3199
}

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
struct rq_iter_data {
	struct blk_mq_hw_ctx *hctx;
	bool has_rq;
};

static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
{
	struct rq_iter_data *iter_data = data;

	if (rq->mq_hctx != iter_data->hctx)
		return true;
	iter_data->has_rq = true;
	return false;
}

static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->sched_tags ?
			hctx->sched_tags : hctx->tags;
	struct rq_iter_data data = {
		.hctx	= hctx,
	};

	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
	return data.has_rq;
}

static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
		struct blk_mq_hw_ctx *hctx)
{
	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
		return false;
	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
		return false;
	return true;
}

static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
		return 0;

	/*
	 * Prevent new request from being allocated on the current hctx.
	 *
	 * The smp_mb__after_atomic() Pairs with the implied barrier in
	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
	 * seen once we return from the tag allocator.
	 */
	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	smp_mb__after_atomic();

	/*
	 * Try to grab a reference to the queue and wait for any outstanding
	 * requests.  If we could not grab a reference the queue has been
	 * frozen and there are no requests.
	 */
	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
		while (blk_mq_hctx_has_requests(hctx))
			msleep(5);
		percpu_ref_put(&hctx->queue->q_usage_counter);
	}

	return 0;
}

static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (cpumask_test_cpu(cpu, hctx->cpumask))
		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	return 0;
}

J
Jens Axboe 已提交
3280 3281 3282 3283 3284
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
3285
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3286
{
3287
	struct blk_mq_hw_ctx *hctx;
3288 3289
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
3290
	enum hctx_type type;
3291

3292
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3293 3294 3295
	if (!cpumask_test_cpu(cpu, hctx->cpumask))
		return 0;

J
Jens Axboe 已提交
3296
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
3297
	type = hctx->type;
3298 3299

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
3300 3301
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
3302 3303 3304 3305 3306
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
3307
		return 0;
3308

J
Jens Axboe 已提交
3309 3310 3311
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
3312 3313

	blk_mq_run_hw_queue(hctx, true);
3314
	return 0;
3315 3316
}

3317
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3318
{
3319 3320 3321
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
						    &hctx->cpuhp_online);
3322 3323
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
3324 3325
}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
/*
 * Before freeing hw queue, clearing the flush request reference in
 * tags->rqs[] for avoiding potential UAF.
 */
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
		unsigned int queue_depth, struct request *flush_rq)
{
	int i;
	unsigned long flags;

	/* The hw queue may not be mapped yet */
	if (!tags)
		return;

3340
	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354

	for (i = 0; i < queue_depth; i++)
		cmpxchg(&tags->rqs[i], flush_rq, NULL);

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&tags->lock, flags);
	spin_unlock_irqrestore(&tags->lock, flags);
}

3355
/* hctx->ctxs will be freed in queue's release handler */
3356 3357 3358 3359
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
3360 3361
	struct request *flush_rq = hctx->fq->flush_rq;

3362 3363
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
3364

3365 3366
	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
			set->queue_depth, flush_rq);
3367
	if (set->ops->exit_request)
3368
		set->ops->exit_request(set, flush_rq, hctx_idx);
3369

3370 3371 3372
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

3373
	blk_mq_remove_cpuhp(hctx);
3374 3375 3376 3377

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
3378 3379
}

M
Ming Lei 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
3389
		blk_mq_debugfs_unregister_hctx(hctx);
3390
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
3391 3392 3393
	}
}

3394 3395 3396
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3397
{
3398 3399
	hctx->queue_num = hctx_idx;

3400 3401 3402
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
				&hctx->cpuhp_online);
3403 3404 3405 3406 3407 3408 3409
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
3410

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

3431
	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3432 3433 3434 3435 3436 3437 3438
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
3439
	if (node == NUMA_NO_NODE)
3440 3441
		node = set->numa_node;
	hctx->numa_node = node;
3442

3443
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3444 3445 3446
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
3447
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3448

3449 3450
	INIT_LIST_HEAD(&hctx->hctx_list);

3451
	/*
3452 3453
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
3454
	 */
3455
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3456
			gfp, node);
3457
	if (!hctx->ctxs)
3458
		goto free_cpumask;
3459

3460
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3461
				gfp, node, false, false))
3462 3463
		goto free_ctxs;
	hctx->nr_ctx = 0;
3464

3465
	spin_lock_init(&hctx->dispatch_wait_lock);
3466 3467 3468
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

3469
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3470
	if (!hctx->fq)
3471
		goto free_bitmap;
3472

3473
	blk_mq_hctx_kobj_init(hctx);
3474

3475
	return hctx;
3476

3477
 free_bitmap:
3478
	sbitmap_free(&hctx->ctx_map);
3479 3480
 free_ctxs:
	kfree(hctx->ctxs);
3481 3482 3483 3484 3485 3486
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
3487
}
3488 3489 3490 3491

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
3492 3493
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
3494 3495 3496 3497

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
3498
		int k;
3499 3500 3501

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
3502 3503 3504
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

3505 3506 3507 3508 3509 3510
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
3511 3512 3513
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3514
				hctx->numa_node = cpu_to_node(i);
J
Jens Axboe 已提交
3515
		}
3516 3517 3518
	}
}

3519 3520 3521
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
					     unsigned int hctx_idx,
					     unsigned int depth)
3522
{
3523 3524
	struct blk_mq_tags *tags;
	int ret;
3525

3526
	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3527 3528
	if (!tags)
		return NULL;
3529

3530 3531
	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
	if (ret) {
3532
		blk_mq_free_rq_map(tags);
3533 3534
		return NULL;
	}
3535

3536
	return tags;
3537 3538
}

3539 3540
static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
				       int hctx_idx)
3541
{
3542 3543
	if (blk_mq_is_shared_tags(set->flags)) {
		set->tags[hctx_idx] = set->shared_tags;
3544

3545
		return true;
3546
	}
3547

3548 3549 3550 3551
	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
						       set->queue_depth);

	return set->tags[hctx_idx];
3552 3553
}

3554 3555 3556
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
			     struct blk_mq_tags *tags,
			     unsigned int hctx_idx)
3557
{
3558 3559
	if (tags) {
		blk_mq_free_rqs(set, tags, hctx_idx);
3560
		blk_mq_free_rq_map(tags);
3561
	}
3562 3563
}

3564 3565 3566
static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
				      unsigned int hctx_idx)
{
3567
	if (!blk_mq_is_shared_tags(set->flags))
3568 3569 3570
		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);

	set->tags[hctx_idx] = NULL;
3571 3572
}

3573
static void blk_mq_map_swqueue(struct request_queue *q)
3574
{
J
Jens Axboe 已提交
3575
	unsigned int i, j, hctx_idx;
3576 3577
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
3578
	struct blk_mq_tag_set *set = q->tag_set;
3579 3580

	queue_for_each_hw_ctx(q, hctx, i) {
3581
		cpumask_clear(hctx->cpumask);
3582
		hctx->nr_ctx = 0;
3583
		hctx->dispatch_from = NULL;
3584 3585 3586
	}

	/*
3587
	 * Map software to hardware queues.
3588 3589
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
3590
	 */
3591
	for_each_possible_cpu(i) {
3592

3593
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
3594
		for (j = 0; j < set->nr_maps; j++) {
3595 3596 3597
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
3598
				continue;
3599
			}
3600 3601 3602
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
3603
			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3604 3605 3606 3607 3608 3609 3610 3611
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
3612

J
Jens Axboe 已提交
3613
			hctx = blk_mq_map_queue_type(q, j, i);
3614
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
3634 3635 3636 3637

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
3638
	}
3639 3640

	queue_for_each_hw_ctx(q, hctx, i) {
3641 3642 3643 3644 3645 3646 3647 3648 3649
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
3650 3651
			if (i)
				__blk_mq_free_map_and_rqs(set, i);
3652 3653 3654 3655

			hctx->tags = NULL;
			continue;
		}
3656

M
Ming Lei 已提交
3657 3658 3659
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

3660 3661 3662 3663 3664
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
3665
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3666

3667 3668 3669
		/*
		 * Initialize batch roundrobin counts
		 */
3670
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3671 3672
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
3673 3674
}

3675 3676 3677 3678
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
3679
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3680 3681 3682 3683
{
	struct blk_mq_hw_ctx *hctx;
	int i;

3684
	queue_for_each_hw_ctx(q, hctx, i) {
3685
		if (shared) {
3686
			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3687 3688
		} else {
			blk_mq_tag_idle(hctx);
3689
			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3690
		}
3691 3692 3693
	}
}

3694 3695
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
					 bool shared)
3696 3697
{
	struct request_queue *q;
3698

3699 3700
	lockdep_assert_held(&set->tag_list_lock);

3701 3702
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
3703
		queue_set_hctx_shared(q, shared);
3704 3705 3706 3707 3708 3709 3710 3711 3712
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
3713
	list_del(&q->tag_set_list);
3714 3715
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
3716
		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3717
		/* update existing queue */
3718
		blk_mq_update_tag_set_shared(set, false);
3719
	}
3720
	mutex_unlock(&set->tag_list_lock);
3721
	INIT_LIST_HEAD(&q->tag_set_list);
3722 3723 3724 3725 3726 3727
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
3728

3729 3730 3731 3732
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
3733 3734
	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3735
		/* update existing queue */
3736
		blk_mq_update_tag_set_shared(set, true);
3737
	}
3738
	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3739
		queue_set_hctx_shared(q, true);
3740
	list_add_tail(&q->tag_set_list, &set->tag_list);
3741

3742 3743 3744
	mutex_unlock(&set->tag_list_lock);
}

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

3773 3774 3775 3776 3777 3778 3779 3780
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
3781 3782
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
3783

3784 3785 3786 3787 3788 3789
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
3790
		kobject_put(&hctx->kobj);
3791
	}
3792 3793 3794

	kfree(q->queue_hw_ctx);

3795 3796 3797 3798 3799
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
3800 3801
}

3802
static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3803
		void *queuedata)
3804
{
3805 3806
	struct request_queue *q;
	int ret;
3807

3808
	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3809
	if (!q)
3810
		return ERR_PTR(-ENOMEM);
3811 3812 3813 3814 3815 3816
	q->queuedata = queuedata;
	ret = blk_mq_init_allocated_queue(set, q);
	if (ret) {
		blk_cleanup_queue(q);
		return ERR_PTR(ret);
	}
3817 3818
	return q;
}
3819 3820 3821 3822 3823

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
3824 3825
EXPORT_SYMBOL(blk_mq_init_queue);

3826 3827
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
		struct lock_class_key *lkclass)
3828 3829
{
	struct request_queue *q;
3830
	struct gendisk *disk;
3831

3832 3833 3834
	q = blk_mq_init_queue_data(set, queuedata);
	if (IS_ERR(q))
		return ERR_CAST(q);
3835

3836
	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3837 3838 3839
	if (!disk) {
		blk_cleanup_queue(q);
		return ERR_PTR(-ENOMEM);
3840
	}
3841
	return disk;
3842
}
3843
EXPORT_SYMBOL(__blk_mq_alloc_disk);
3844

3845 3846 3847 3848
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
3849
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3850

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
3865
	if (!hctx)
3866
		goto fail;
3867

3868 3869
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
3870 3871

	return hctx;
3872 3873 3874 3875 3876

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
3877 3878
}

K
Keith Busch 已提交
3879 3880
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
3881
{
3882
	int i, j, end;
K
Keith Busch 已提交
3883
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3884

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

3901 3902
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
3903
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
3904
		int node;
3905
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
3906

3907
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3908 3909 3910 3911 3912 3913 3914
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
3915

3916 3917
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
3918
			if (hctxs[i])
3919 3920 3921 3922 3923 3924 3925 3926 3927
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
3928
		}
3929
	}
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
3942

3943
	for (; j < end; j++) {
K
Keith Busch 已提交
3944 3945 3946 3947 3948 3949 3950
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
3951
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
3952 3953
}

3954 3955
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
		struct request_queue *q)
K
Keith Busch 已提交
3956
{
3957 3958 3959
	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
			!!(set->flags & BLK_MQ_F_BLOCKING));

M
Ming Lei 已提交
3960 3961 3962
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

3963
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3964 3965
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
3966 3967 3968
	if (!q->poll_cb)
		goto err_exit;

3969
	if (blk_mq_alloc_ctxs(q))
3970
		goto err_poll;
K
Keith Busch 已提交
3971

3972 3973 3974
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

3975 3976 3977
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
3978 3979 3980
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
3981

3982
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3983
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3984

J
Jens Axboe 已提交
3985
	q->tag_set = set;
3986

3987
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3988 3989
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
3990
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3991

3992
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3993 3994 3995
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

3996 3997
	q->nr_requests = set->queue_depth;

3998 3999 4000
	/*
	 * Default to classic polling
	 */
4001
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4002

4003
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4004
	blk_mq_add_queue_tag_set(set, q);
4005
	blk_mq_map_swqueue(q);
4006
	return 0;
4007

4008
err_hctxs:
K
Keith Busch 已提交
4009
	kfree(q->queue_hw_ctx);
4010
	q->nr_hw_queues = 0;
4011
	blk_mq_sysfs_deinit(q);
4012 4013 4014
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
4015 4016
err_exit:
	q->mq_ops = NULL;
4017
	return -ENOMEM;
4018
}
4019
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4020

4021 4022
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
4023
{
4024
	struct blk_mq_tag_set *set = q->tag_set;
4025

4026
	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
M
Ming Lei 已提交
4027
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4028 4029
	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
	blk_mq_del_queue_tag_set(q);
4030 4031
}

4032 4033 4034 4035
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

4036 4037
	if (blk_mq_is_shared_tags(set->flags)) {
		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4038 4039
						BLK_MQ_NO_HCTX_IDX,
						set->queue_depth);
4040
		if (!set->shared_tags)
4041 4042 4043
			return -ENOMEM;
	}

4044
	for (i = 0; i < set->nr_hw_queues; i++) {
4045
		if (!__blk_mq_alloc_map_and_rqs(set, i))
4046
			goto out_unwind;
4047 4048
		cond_resched();
	}
4049 4050 4051 4052 4053

	return 0;

out_unwind:
	while (--i >= 0)
4054 4055
		__blk_mq_free_map_and_rqs(set, i);

4056 4057
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
4058
					BLK_MQ_NO_HCTX_IDX);
4059
	}
4060 4061 4062 4063 4064 4065 4066 4067 4068

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
4069
static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

4099 4100
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
4101 4102 4103 4104 4105 4106 4107 4108
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

4109
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
4110 4111
		int i;

4112 4113 4114 4115 4116 4117 4118
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
4119
		 * 		set->map[x].mq_map[cpu] = queue;
4120 4121 4122 4123 4124 4125
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
4126 4127
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
4128

4129
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
4130 4131
	} else {
		BUG_ON(set->nr_maps > 1);
4132
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
4133
	}
4134 4135
}

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

4159 4160 4161 4162 4163 4164
static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
				int new_nr_hw_queues)
{
	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
}

4165 4166 4167
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
4168
 * requested depth down, if it's too large. In that case, the set
4169 4170
 * value will be stored in set->queue_depth.
 */
4171 4172
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
4173
	int i, ret;
4174

B
Bart Van Assche 已提交
4175 4176
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

4177 4178
	if (!set->nr_hw_queues)
		return -EINVAL;
4179
	if (!set->queue_depth)
4180 4181 4182 4183
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
4184
	if (!set->ops->queue_rq)
4185 4186
		return -EINVAL;

4187 4188 4189
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

4190 4191 4192 4193 4194
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
4195

J
Jens Axboe 已提交
4196 4197 4198 4199 4200
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

4201 4202 4203 4204 4205 4206 4207
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
4208
		set->nr_maps = 1;
4209 4210
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
4211
	/*
4212 4213
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
4214
	 */
4215
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
4216
		set->nr_hw_queues = nr_cpu_ids;
4217

4218
	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4219
		return -ENOMEM;
4220

4221
	ret = -ENOMEM;
J
Jens Axboe 已提交
4222 4223
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4224
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
4225 4226 4227
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
4228
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
4229
	}
4230

4231
	ret = blk_mq_update_queue_map(set);
4232 4233 4234
	if (ret)
		goto out_free_mq_map;

4235
	ret = blk_mq_alloc_set_map_and_rqs(set);
4236
	if (ret)
4237
		goto out_free_mq_map;
4238

4239 4240 4241
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

4242
	return 0;
4243 4244

out_free_mq_map:
J
Jens Axboe 已提交
4245 4246 4247 4248
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
4249 4250
	kfree(set->tags);
	set->tags = NULL;
4251
	return ret;
4252 4253 4254
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
/* allocate and initialize a tagset for a simple single-queue device */
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
		const struct blk_mq_ops *ops, unsigned int queue_depth,
		unsigned int set_flags)
{
	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
	set->nr_maps = 1;
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;
	return blk_mq_alloc_tag_set(set);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);

4271 4272
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
4273
	int i, j;
4274

4275
	for (i = 0; i < set->nr_hw_queues; i++)
4276
		__blk_mq_free_map_and_rqs(set, i);
4277

4278 4279
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
4280 4281
					BLK_MQ_NO_HCTX_IDX);
	}
4282

J
Jens Axboe 已提交
4283 4284 4285 4286
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
4287

M
Ming Lei 已提交
4288
	kfree(set->tags);
4289
	set->tags = NULL;
4290 4291 4292
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

4293 4294 4295 4296 4297 4298
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

4299
	if (!set)
4300 4301
		return -EINVAL;

4302 4303 4304
	if (q->nr_requests == nr)
		return 0;

4305
	blk_mq_freeze_queue(q);
4306
	blk_mq_quiesce_queue(q);
4307

4308 4309
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
4310 4311
		if (!hctx->tags)
			continue;
4312 4313 4314 4315
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
4316
		if (hctx->sched_tags) {
4317
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4318 4319 4320 4321
						      nr, true);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
						      false);
4322
		}
4323 4324
		if (ret)
			break;
4325 4326
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
4327
	}
4328
	if (!ret) {
4329
		q->nr_requests = nr;
4330
		if (blk_mq_is_shared_tags(set->flags)) {
4331
			if (q->elevator)
4332
				blk_mq_tag_update_sched_shared_tags(q);
4333
			else
4334
				blk_mq_tag_resize_shared_tags(set, nr);
4335
		}
4336
	}
4337

4338
	blk_mq_unquiesce_queue(q);
4339 4340
	blk_mq_unfreeze_queue(q);

4341 4342 4343
	return ret;
}

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

4414 4415
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
4416 4417
{
	struct request_queue *q;
4418
	LIST_HEAD(head);
4419
	int prev_nr_hw_queues;
K
Keith Busch 已提交
4420

4421 4422
	lockdep_assert_held(&set->tag_list_lock);

4423
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
4424
		nr_hw_queues = nr_cpu_ids;
4425 4426 4427
	if (nr_hw_queues < 1)
		return;
	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
K
Keith Busch 已提交
4428 4429 4430 4431
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
4432 4433 4434 4435 4436 4437 4438 4439
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
4440

4441 4442 4443 4444 4445
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

4446
	prev_nr_hw_queues = set->nr_hw_queues;
4447 4448 4449 4450
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
4451
	set->nr_hw_queues = nr_hw_queues;
4452
fallback:
4453
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
4454 4455
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
4456
		if (q->nr_hw_queues != set->nr_hw_queues) {
4457 4458
			int i = prev_nr_hw_queues;

4459 4460
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
4461 4462 4463
			for (; i < set->nr_hw_queues; i++)
				__blk_mq_free_map_and_rqs(set, i);

4464
			set->nr_hw_queues = prev_nr_hw_queues;
4465
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4466 4467
			goto fallback;
		}
4468 4469 4470
		blk_mq_map_swqueue(q);
	}

4471
reregister:
4472 4473 4474
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
4475 4476
	}

4477 4478 4479 4480
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
4481 4482 4483
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
4484 4485 4486 4487 4488 4489 4490

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
4491 4492
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

4493 4494 4495
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
4496
	if (q->poll_stat)
4497
		return true;
4498 4499

	return blk_stats_alloc_enable(q);
4500 4501 4502 4503 4504 4505 4506 4507
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
4508
	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4509 4510 4511 4512 4513 4514 4515 4516
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
4517
	int bucket;
4518

4519 4520 4521 4522
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
4523 4524
}

4525 4526 4527 4528
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
4529
	int bucket;
4530 4531 4532 4533 4534

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
4535
	if (!blk_poll_stats_enable(q))
4536 4537 4538 4539 4540 4541 4542 4543
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
4544 4545
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
4546
	 */
4547 4548 4549 4550 4551 4552
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
4553 4554 4555 4556

	return ret;
}

4557
static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4558
{
4559 4560
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
	struct request *rq = blk_qc_to_rq(hctx, qc);
4561 4562
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
4563
	unsigned int nsecs;
4564 4565
	ktime_t kt;

4566 4567 4568 4569 4570
	/*
	 * If a request has completed on queue that uses an I/O scheduler, we
	 * won't get back a request from blk_qc_to_rq.
	 */
	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4571 4572 4573
		return false;

	/*
4574
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4575 4576 4577 4578
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
4579
	if (q->poll_nsec > 0)
4580 4581
		nsecs = q->poll_nsec;
	else
4582
		nsecs = blk_mq_poll_nsecs(q, rq);
4583 4584

	if (!nsecs)
4585 4586
		return false;

J
Jens Axboe 已提交
4587
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4588 4589 4590 4591 4592

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
4593
	kt = nsecs;
4594 4595

	mode = HRTIMER_MODE_REL;
4596
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4597 4598 4599
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
4600
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4601 4602
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
4603
		hrtimer_sleeper_start_expires(&hs, mode);
4604 4605 4606 4607 4608 4609 4610 4611
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
4612

4613
	/*
4614 4615 4616 4617 4618
	 * If we sleep, have the caller restart the poll loop to reset the
	 * state.  Like for the other success return cases, the caller is
	 * responsible for checking if the IO completed.  If the IO isn't
	 * complete, we'll get called again and will go straight to the busy
	 * poll loop.
4619 4620 4621 4622
	 */
	return true;
}

4623
static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4624
			       struct io_comp_batch *iob, unsigned int flags)
J
Jens Axboe 已提交
4625
{
4626 4627 4628
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
	long state = get_current_state();
	int ret;
J
Jens Axboe 已提交
4629

4630
	do {
4631
		ret = q->mq_ops->poll(hctx, iob);
J
Jens Axboe 已提交
4632
		if (ret > 0) {
4633
			__set_current_state(TASK_RUNNING);
4634
			return ret;
J
Jens Axboe 已提交
4635 4636 4637
		}

		if (signal_pending_state(state, current))
4638
			__set_current_state(TASK_RUNNING);
4639
		if (task_is_running(current))
4640
			return 1;
4641

4642
		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
J
Jens Axboe 已提交
4643 4644
			break;
		cpu_relax();
4645
	} while (!need_resched());
J
Jens Axboe 已提交
4646

4647
	__set_current_state(TASK_RUNNING);
4648
	return 0;
J
Jens Axboe 已提交
4649
}
4650

4651 4652
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
		unsigned int flags)
4653
{
4654 4655
	if (!(flags & BLK_POLL_NOSLEEP) &&
	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4656
		if (blk_mq_poll_hybrid(q, cookie))
4657
			return 1;
4658
	}
4659
	return blk_mq_poll_classic(q, cookie, iob, flags);
J
Jens Axboe 已提交
4660 4661
}

J
Jens Axboe 已提交
4662 4663 4664 4665 4666 4667
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
void blk_mq_cancel_work_sync(struct request_queue *q)
{
	if (queue_is_mq(q)) {
		struct blk_mq_hw_ctx *hctx;
		int i;

		cancel_delayed_work_sync(&q->requeue_work);

		queue_for_each_hw_ctx(q, hctx, i)
			cancel_delayed_work_sync(&hctx->run_work);
	}
}

4681 4682
static int __init blk_mq_init(void)
{
4683 4684 4685
	int i;

	for_each_possible_cpu(i)
4686
		init_llist_head(&per_cpu(blk_cpu_done, i));
4687 4688 4689 4690 4691
	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);

	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
				  "block/softirq:dead", NULL,
				  blk_softirq_cpu_dead);
4692 4693
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
4694 4695 4696
	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
				blk_mq_hctx_notify_online,
				blk_mq_hctx_notify_offline);
4697 4698 4699
	return 0;
}
subsys_initcall(blk_mq_init);