blk-mq.c 105.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/blk-integrity.h>
14
#include <linux/kmemleak.h>
15 16 17 18 19
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
20
#include <linux/interrupt.h>
21 22 23 24 25
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
26
#include <linux/sched/topology.h>
27
#include <linux/sched/signal.h>
28
#include <linux/delay.h>
29
#include <linux/crash_dump.h>
30
#include <linux/prefetch.h>
31
#include <linux/blk-crypto.h>
32 33 34 35

#include <trace/events/block.h>

#include <linux/blk-mq.h>
36
#include <linux/t10-pi.h>
37 38
#include "blk.h"
#include "blk-mq.h"
39
#include "blk-mq-debugfs.h"
40
#include "blk-mq-tag.h"
41
#include "blk-pm.h"
42
#include "blk-stat.h"
43
#include "blk-mq-sched.h"
44
#include "blk-rq-qos.h"
45

46
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47

48 49 50
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

51 52
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
53
	int ddir, sectors, bucket;
54

J
Jens Axboe 已提交
55
	ddir = rq_data_dir(rq);
56
	sectors = blk_rq_stats_sectors(rq);
57

58
	bucket = ddir + 2 * ilog2(sectors);
59 60 61 62 63 64 65 66 67

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

68 69 70
#define BLK_QC_T_SHIFT		16
#define BLK_QC_T_INTERNAL	(1U << 31)

71 72 73 74 75 76
static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
		blk_qc_t qc)
{
	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
}

77 78 79
static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
		blk_qc_t qc)
{
80 81 82 83 84
	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);

	if (qc & BLK_QC_T_INTERNAL)
		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
	return blk_mq_tag_to_rq(hctx->tags, tag);
85 86
}

87 88 89 90 91 92 93
static inline blk_qc_t blk_rq_to_qc(struct request *rq)
{
	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
		(rq->tag != -1 ?
		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
}

94
/*
95 96
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
97
 */
98
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99
{
100 101
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
102
			blk_mq_sched_has_work(hctx);
103 104
}

105 106 107 108 109 110
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
111 112 113 114
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
115 116 117 118 119
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
120 121 122
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
123 124
}

125
struct mq_inflight {
126
	struct block_device *part;
127
	unsigned int inflight[2];
128 129
};

130
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
131 132 133 134 135
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

136 137
	if ((!mi->part->bd_partno || rq->part == mi->part) &&
	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138
		mi->inflight[rq_data_dir(rq)]++;
139 140

	return true;
141 142
}

143 144
unsigned int blk_mq_in_flight(struct request_queue *q,
		struct block_device *part)
145
{
146
	struct mq_inflight mi = { .part = part };
147 148

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149

150
	return mi.inflight[0] + mi.inflight[1];
151 152
}

153 154
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
		unsigned int inflight[2])
155
{
156
	struct mq_inflight mi = { .part = part };
157

158
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159 160
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
161 162
}

163
void blk_freeze_queue_start(struct request_queue *q)
164
{
165 166
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
167
		percpu_ref_kill(&q->q_usage_counter);
168
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
169
		if (queue_is_mq(q))
170
			blk_mq_run_hw_queues(q, false);
171 172
	} else {
		mutex_unlock(&q->mq_freeze_lock);
173
	}
174
}
175
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176

177
void blk_mq_freeze_queue_wait(struct request_queue *q)
178
{
179
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180
}
181
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182

183 184 185 186 187 188 189 190
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191

192 193 194 195
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
196
void blk_freeze_queue(struct request_queue *q)
197
{
198 199 200 201 202 203 204
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
205
	blk_freeze_queue_start(q);
206 207
	blk_mq_freeze_queue_wait(q);
}
208 209 210 211 212 213 214 215 216

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
217
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218

219
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220
{
221
	mutex_lock(&q->mq_freeze_lock);
222 223
	if (force_atomic)
		q->q_usage_counter.data->force_atomic = true;
224 225 226
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
227
		percpu_ref_resurrect(&q->q_usage_counter);
228
		wake_up_all(&q->mq_freeze_wq);
229
	}
230
	mutex_unlock(&q->mq_freeze_lock);
231
}
232 233 234 235 236

void blk_mq_unfreeze_queue(struct request_queue *q)
{
	__blk_mq_unfreeze_queue(q, false);
}
237
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238

239 240 241 242 243 244
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
245
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
246 247 248
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

249
/**
250
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
251 252 253
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
254 255 256
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
257 258 259 260 261 262 263
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

264
	blk_mq_quiesce_queue_nowait(q);
265

266 267
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
268
			synchronize_srcu(hctx->srcu);
269 270 271 272 273 274 275 276
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

277 278 279 280 281 282 283 284 285
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
286
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
287

288 289
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
290 291 292
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

293 294 295 296 297 298 299 300 301 302
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

303
/*
304 305
 * Only need start/end time stamping if we have iostat or
 * blk stats enabled, or using an IO scheduler.
306 307 308
 */
static inline bool blk_mq_need_time_stamp(struct request *rq)
{
309
	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_ELV));
310 311
}

312
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
313
		unsigned int tag, u64 alloc_time_ns)
314
{
315 316
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
317

318
	if (data->q->elevator) {
319
		rq->rq_flags = RQF_ELV;
320
		rq->tag = BLK_MQ_NO_TAG;
321 322
		rq->internal_tag = tag;
	} else {
323
		rq->rq_flags = 0;
324
		rq->tag = tag;
325
		rq->internal_tag = BLK_MQ_NO_TAG;
326 327
	}

328
	/* csd/requeue_work/fifo_time is initialized before use */
329 330
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
331
	rq->mq_hctx = data->hctx;
332
	rq->cmd_flags = data->cmd_flags;
333 334
	if (data->flags & BLK_MQ_REQ_PM)
		rq->rq_flags |= RQF_PM;
335
	if (blk_queue_io_stat(data->q))
336
		rq->rq_flags |= RQF_IO_STAT;
337
	INIT_LIST_HEAD(&rq->queuelist);
338 339 340 341
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
342 343 344
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
345 346 347 348
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
349
	rq->io_start_time_ns = 0;
350
	rq->stats_sectors = 0;
351 352 353 354
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
355
	blk_crypto_rq_set_defaults(rq);
356
	/* tag was already set */
357
	WRITE_ONCE(rq->deadline, 0);
358

359 360
	rq->timeout = 0;

361 362 363
	rq->end_io = NULL;
	rq->end_io_data = NULL;

364
	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
K
Keith Busch 已提交
365
	refcount_set(&rq->ref, 1);
366

367
	if (!op_is_flush(data->cmd_flags) && (rq->rq_flags & RQF_ELV)) {
368 369 370
		struct elevator_queue *e = data->q->elevator;

		rq->elv.icq = NULL;
371
		if (e->type->ops.prepare_request) {
372 373 374 375 376 377 378 379 380
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);

			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

	data->hctx->queued++;
381
	return rq;
382 383
}

J
Jens Axboe 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
		u64 alloc_time_ns)
{
	unsigned int tag, tag_offset;
	struct request *rq;
	unsigned long tags;
	int i, nr = 0;

	tags = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
	if (unlikely(!tags))
		return NULL;

	for (i = 0; tags; i++) {
		if (!(tags & (1UL << i)))
			continue;
		tag = tag_offset + i;
		tags &= ~(1UL << i);
		rq = blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
		rq->rq_next = *data->cached_rq;
		*data->cached_rq = rq;
	}
	data->nr_tags -= nr;

	if (!data->cached_rq)
		return NULL;

	rq = *data->cached_rq;
	*data->cached_rq = rq->rq_next;
	return rq;
}

416
static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
417
{
418
	struct request_queue *q = data->q;
419
	struct elevator_queue *e = q->elevator;
420
	u64 alloc_time_ns = 0;
421
	struct request *rq;
422
	unsigned int tag;
423

424 425 426 427
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

428
	if (data->cmd_flags & REQ_NOWAIT)
429
		data->flags |= BLK_MQ_REQ_NOWAIT;
430 431 432

	if (e) {
		/*
433
		 * Flush/passthrough requests are special and go directly to the
434 435
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
436
		 */
437
		if (!op_is_flush(data->cmd_flags) &&
438
		    !blk_op_is_passthrough(data->cmd_flags) &&
439
		    e->type->ops.limit_depth &&
440
		    !(data->flags & BLK_MQ_REQ_RESERVED))
441
			e->type->ops.limit_depth(data->cmd_flags, data);
442 443
	}

444
retry:
445 446
	data->ctx = blk_mq_get_ctx(q);
	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
447
	if (!e)
448 449
		blk_mq_tag_busy(data->hctx);

J
Jens Axboe 已提交
450 451 452 453 454 455 456 457 458 459
	/*
	 * Try batched alloc if we want more than 1 tag.
	 */
	if (data->nr_tags > 1) {
		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
		if (rq)
			return rq;
		data->nr_tags = 1;
	}

460 461 462 463 464
	/*
	 * Waiting allocations only fail because of an inactive hctx.  In that
	 * case just retry the hctx assignment and tag allocation as CPU hotplug
	 * should have migrated us to an online CPU by now.
	 */
J
Jens Axboe 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_NO_TAG) {
		if (data->flags & BLK_MQ_REQ_NOWAIT)
			return NULL;
		/*
		 * Give up the CPU and sleep for a random short time to
		 * ensure that thread using a realtime scheduling class
		 * are migrated off the CPU, and thus off the hctx that
		 * is going away.
		 */
		msleep(3);
		goto retry;
	}
478

J
Jens Axboe 已提交
479
	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
480 481
}

482
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
483
		blk_mq_req_flags_t flags)
484
{
485 486 487 488
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
489
		.nr_tags	= 1,
490
	};
491
	struct request *rq;
492
	int ret;
493

494
	ret = blk_queue_enter(q, flags);
495 496
	if (ret)
		return ERR_PTR(ret);
497

498
	rq = __blk_mq_alloc_requests(&data);
499
	if (!rq)
500
		goto out_queue_exit;
501 502 503
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
504
	return rq;
505 506 507
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
508
}
509
EXPORT_SYMBOL(blk_mq_alloc_request);
510

511
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
512
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
513
{
514 515 516 517
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
518
		.nr_tags	= 1,
519
	};
520
	u64 alloc_time_ns = 0;
521
	unsigned int cpu;
522
	unsigned int tag;
M
Ming Lin 已提交
523 524
	int ret;

525 526 527 528
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

M
Ming Lin 已提交
529 530 531 532 533 534
	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
535
	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
M
Ming Lin 已提交
536 537 538 539 540
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

541
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
542 543 544
	if (ret)
		return ERR_PTR(ret);

545 546 547 548
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
549
	ret = -EXDEV;
550 551
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
552
		goto out_queue_exit;
553 554
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
555

556
	if (!q->elevator)
557 558
		blk_mq_tag_busy(data.hctx);

559
	ret = -EWOULDBLOCK;
560 561
	tag = blk_mq_get_tag(&data);
	if (tag == BLK_MQ_NO_TAG)
562
		goto out_queue_exit;
563 564
	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);

565 566 567
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
568 569 570
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
571 572 573 574
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
575
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
576 577
	const int sched_tag = rq->internal_tag;

578
	blk_crypto_free_request(rq);
579
	blk_pm_mark_last_busy(rq);
580
	rq->mq_hctx = NULL;
581
	if (rq->tag != BLK_MQ_NO_TAG)
582
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
583
	if (sched_tag != BLK_MQ_NO_TAG)
584
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
585 586 587 588
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

589
void blk_mq_free_request(struct request *rq)
590 591
{
	struct request_queue *q = rq->q;
592
	struct blk_mq_ctx *ctx = rq->mq_ctx;
593
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
594

595 596 597 598
	if (rq->rq_flags & (RQF_ELVPRIV | RQF_ELV)) {
		struct elevator_queue *e = q->elevator;

		if (e->type->ops.finish_request)
599
			e->type->ops.finish_request(rq);
600 601 602 603 604
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
605

606
	ctx->rq_completed[rq_is_sync(rq)]++;
607
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
608
		__blk_mq_dec_active_requests(hctx);
J
Jens Axboe 已提交
609

610
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
611
		laptop_io_completion(q->disk->bdi);
612

613
	rq_qos_done(q, rq);
614

K
Keith Busch 已提交
615 616 617
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
618
}
J
Jens Axboe 已提交
619
EXPORT_SYMBOL_GPL(blk_mq_free_request);
620

621 622 623 624 625 626 627 628 629 630 631 632
void blk_mq_free_plug_rqs(struct blk_plug *plug)
{
	while (plug->cached_rq) {
		struct request *rq;

		rq = plug->cached_rq;
		plug->cached_rq = rq->rq_next;
		percpu_ref_get(&rq->q->q_usage_counter);
		blk_mq_free_request(rq);
	}
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static void req_bio_endio(struct request *rq, struct bio *bio,
			  unsigned int nbytes, blk_status_t error)
{
	if (error)
		bio->bi_status = error;

	if (unlikely(rq->rq_flags & RQF_QUIET))
		bio_set_flag(bio, BIO_QUIET);

	bio_advance(bio, nbytes);

	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
		/*
		 * Partial zone append completions cannot be supported as the
		 * BIO fragments may end up not being written sequentially.
		 */
		if (bio->bi_iter.bi_size)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_iter.bi_sector = rq->__sector;
	}

	/* don't actually finish bio if it's part of flush sequence */
	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
		bio_endio(bio);
}

static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
	if (req->part && blk_do_io_stat(req)) {
		const int sgrp = op_stat_group(req_op(req));

		part_stat_lock();
		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
		part_stat_unlock();
	}
}

/**
 * blk_update_request - Complete multiple bytes without completing the request
 * @req:      the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete for @req
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 *     the request structure even if @req doesn't have leftover.
 *     If @req has leftover, sets it up for the next range of segments.
 *
 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 *     %false return from this function.
 *
 * Note:
 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 *      except in the consistency check at the end of this function.
 *
 * Return:
 *     %false - this request doesn't have any more data
 *     %true  - this request has more data
 **/
bool blk_update_request(struct request *req, blk_status_t error,
		unsigned int nr_bytes)
{
	int total_bytes;

	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);

	if (!req->bio)
		return false;

#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
	    error == BLK_STS_OK)
		req->q->integrity.profile->complete_fn(req, nr_bytes);
#endif

	if (unlikely(error && !blk_rq_is_passthrough(req) &&
		     !(req->rq_flags & RQF_QUIET)))
		blk_print_req_error(req, error);

	blk_account_io_completion(req, nr_bytes);

	total_bytes = 0;
	while (req->bio) {
		struct bio *bio = req->bio;
		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);

		if (bio_bytes == bio->bi_iter.bi_size)
			req->bio = bio->bi_next;

		/* Completion has already been traced */
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
		req_bio_endio(req, bio, bio_bytes, error);

		total_bytes += bio_bytes;
		nr_bytes -= bio_bytes;

		if (!nr_bytes)
			break;
	}

	/*
	 * completely done
	 */
	if (!req->bio) {
		/*
		 * Reset counters so that the request stacking driver
		 * can find how many bytes remain in the request
		 * later.
		 */
		req->__data_len = 0;
		return false;
	}

	req->__data_len -= total_bytes;

	/* update sector only for requests with clear definition of sector */
	if (!blk_rq_is_passthrough(req))
		req->__sector += total_bytes >> 9;

	/* mixed attributes always follow the first bio */
	if (req->rq_flags & RQF_MIXED_MERGE) {
		req->cmd_flags &= ~REQ_FAILFAST_MASK;
		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
	}

	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
		/*
		 * If total number of sectors is less than the first segment
		 * size, something has gone terribly wrong.
		 */
		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
			blk_dump_rq_flags(req, "request botched");
			req->__data_len = blk_rq_cur_bytes(req);
		}

		/* recalculate the number of segments */
		req->nr_phys_segments = blk_recalc_rq_segments(req);
	}

	return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);

777
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
778
{
779 780
	if (blk_mq_need_time_stamp(rq)) {
		u64 now = ktime_get_ns();
781

782 783 784 785
		if (rq->rq_flags & RQF_STATS) {
			blk_mq_poll_stats_start(rq->q);
			blk_stat_add(rq, now);
		}
786

787 788
		blk_mq_sched_completed_request(rq, now);
		blk_account_io_done(rq, now);
789 790
	}

C
Christoph Hellwig 已提交
791
	if (rq->end_io) {
792
		rq_qos_done(rq->q, rq);
793
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
794
	} else {
795
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
796
	}
797
}
798
EXPORT_SYMBOL(__blk_mq_end_request);
799

800
void blk_mq_end_request(struct request *rq, blk_status_t error)
801 802 803
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
804
	__blk_mq_end_request(rq, error);
805
}
806
EXPORT_SYMBOL(blk_mq_end_request);
807

808
static void blk_complete_reqs(struct llist_head *list)
809
{
810 811
	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
	struct request *rq, *next;
812

813
	llist_for_each_entry_safe(rq, next, entry, ipi_list)
814
		rq->q->mq_ops->complete(rq);
815 816
}

817
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
818
{
819
	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
820 821
}

822 823
static int blk_softirq_cpu_dead(unsigned int cpu)
{
824
	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
825 826 827
	return 0;
}

828
static void __blk_mq_complete_request_remote(void *data)
829
{
830
	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
831 832
}

833 834 835 836 837 838 839
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
	int cpu = raw_smp_processor_id();

	if (!IS_ENABLED(CONFIG_SMP) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
		return false;
840 841 842 843 844 845
	/*
	 * With force threaded interrupts enabled, raising softirq from an SMP
	 * function call will always result in waking the ksoftirqd thread.
	 * This is probably worse than completing the request on a different
	 * cache domain.
	 */
846
	if (force_irqthreads())
847
		return false;
848 849 850 851 852 853 854 855 856 857 858

	/* same CPU or cache domain?  Complete locally */
	if (cpu == rq->mq_ctx->cpu ||
	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
		return false;

	/* don't try to IPI to an offline CPU */
	return cpu_online(rq->mq_ctx->cpu);
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static void blk_mq_complete_send_ipi(struct request *rq)
{
	struct llist_head *list;
	unsigned int cpu;

	cpu = rq->mq_ctx->cpu;
	list = &per_cpu(blk_cpu_done, cpu);
	if (llist_add(&rq->ipi_list, list)) {
		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
		smp_call_function_single_async(cpu, &rq->csd);
	}
}

static void blk_mq_raise_softirq(struct request *rq)
{
	struct llist_head *list;

	preempt_disable();
	list = this_cpu_ptr(&blk_cpu_done);
	if (llist_add(&rq->ipi_list, list))
		raise_softirq(BLOCK_SOFTIRQ);
	preempt_enable();
}

883
bool blk_mq_complete_request_remote(struct request *rq)
884
{
885
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
886

887 888 889 890
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
891
	if (rq->cmd_flags & REQ_POLLED)
892
		return false;
C
Christoph Hellwig 已提交
893

894
	if (blk_mq_complete_need_ipi(rq)) {
895 896
		blk_mq_complete_send_ipi(rq);
		return true;
897
	}
898

899 900 901 902 903
	if (rq->q->nr_hw_queues == 1) {
		blk_mq_raise_softirq(rq);
		return true;
	}
	return false;
904 905 906 907 908 909 910 911 912 913 914 915 916 917
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Complete a request by scheduling the ->complete_rq operation.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (!blk_mq_complete_request_remote(rq))
		rq->q->mq_ops->complete(rq);
918
}
919
EXPORT_SYMBOL(blk_mq_complete_request);
920

921
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
922
	__releases(hctx->srcu)
923 924 925 926
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
927
		srcu_read_unlock(hctx->srcu, srcu_idx);
928 929 930
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
931
	__acquires(hctx->srcu)
932
{
933 934 935
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
936
		rcu_read_lock();
937
	} else
938
		*srcu_idx = srcu_read_lock(hctx->srcu);
939 940
}

941 942 943 944 945 946 947 948
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
949
void blk_mq_start_request(struct request *rq)
950 951 952
{
	struct request_queue *q = rq->q;

953
	trace_block_rq_issue(rq);
954

955
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
956 957 958 959 960 961 962 963
		u64 start_time;
#ifdef CONFIG_BLK_CGROUP
		if (rq->bio)
			start_time = bio_issue_time(&rq->bio->bi_issue);
		else
#endif
			start_time = ktime_get_ns();
		rq->io_start_time_ns = start_time;
964
		rq->stats_sectors = blk_rq_sectors(rq);
965
		rq->rq_flags |= RQF_STATS;
966
		rq_qos_issue(q, rq);
967 968
	}

969
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
970

971
	blk_add_timer(rq);
K
Keith Busch 已提交
972
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
973

974 975 976 977
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
978 979
	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
980
}
981
EXPORT_SYMBOL(blk_mq_start_request);
982

983
static void __blk_mq_requeue_request(struct request *rq)
984 985 986
{
	struct request_queue *q = rq->q;

987 988
	blk_mq_put_driver_tag(rq);

989
	trace_block_rq_requeue(rq);
990
	rq_qos_requeue(q, rq);
991

K
Keith Busch 已提交
992 993
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
994
		rq->rq_flags &= ~RQF_TIMED_OUT;
995
	}
996 997
}

998
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
999 1000 1001
{
	__blk_mq_requeue_request(rq);

1002 1003 1004
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
1005
	BUG_ON(!list_empty(&rq->queuelist));
1006
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1007 1008 1009
}
EXPORT_SYMBOL(blk_mq_requeue_request);

1010 1011 1012
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
1013
		container_of(work, struct request_queue, requeue_work.work);
1014 1015 1016
	LIST_HEAD(rq_list);
	struct request *rq, *next;

1017
	spin_lock_irq(&q->requeue_lock);
1018
	list_splice_init(&q->requeue_list, &rq_list);
1019
	spin_unlock_irq(&q->requeue_lock);
1020 1021

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1022
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1023 1024
			continue;

1025
		rq->rq_flags &= ~RQF_SOFTBARRIER;
1026
		list_del_init(&rq->queuelist);
1027 1028 1029 1030 1031 1032
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
1033
			blk_mq_request_bypass_insert(rq, false, false);
1034 1035
		else
			blk_mq_sched_insert_request(rq, true, false, false);
1036 1037 1038 1039 1040
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
1041
		blk_mq_sched_insert_request(rq, false, false, false);
1042 1043
	}

1044
	blk_mq_run_hw_queues(q, false);
1045 1046
}

1047 1048
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
1049 1050 1051 1052 1053 1054
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
1055
	 * request head insertion from the workqueue.
1056
	 */
1057
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1058 1059 1060

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
1061
		rq->rq_flags |= RQF_SOFTBARRIER;
1062 1063 1064 1065 1066
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
1067 1068 1069

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
1070 1071 1072 1073
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
1074
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1075 1076 1077
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

1078 1079 1080
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
1081 1082
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
1083 1084 1085
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

1086 1087
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
1088 1089
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
1090
		return tags->rqs[tag];
1091
	}
1092 1093

	return NULL;
1094 1095 1096
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

1097 1098
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
1099 1100
{
	/*
1101
	 * If we find a request that isn't idle and the queue matches,
1102
	 * we know the queue is busy. Return false to stop the iteration.
1103
	 */
1104
	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1105 1106 1107 1108 1109 1110 1111 1112 1113
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

1114
bool blk_mq_queue_inflight(struct request_queue *q)
1115 1116 1117
{
	bool busy = false;

1118
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1119 1120
	return busy;
}
1121
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1122

1123
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1124
{
1125
	req->rq_flags |= RQF_TIMED_OUT;
1126 1127 1128 1129 1130 1131 1132
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1133
	}
1134 1135

	blk_add_timer(req);
1136
}
1137

K
Keith Busch 已提交
1138
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1139
{
K
Keith Busch 已提交
1140
	unsigned long deadline;
1141

K
Keith Busch 已提交
1142 1143
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
1144 1145
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
1146

1147
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
1148 1149
	if (time_after_eq(jiffies, deadline))
		return true;
1150

K
Keith Busch 已提交
1151 1152 1153 1154 1155
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
1156 1157
}

1158 1159
void blk_mq_put_rq_ref(struct request *rq)
{
M
Ming Lei 已提交
1160
	if (is_flush_rq(rq))
1161 1162 1163 1164 1165
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
}

1166
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1167 1168
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
1169 1170 1171
	unsigned long *next = priv;

	/*
1172 1173 1174 1175 1176
	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
	 * be reallocated underneath the timeout handler's processing, then
	 * the expire check is reliable. If the request is not expired, then
	 * it was completed and reallocated as a new request after returning
	 * from blk_mq_check_expired().
1177
	 */
K
Keith Busch 已提交
1178
	if (blk_mq_req_expired(rq, next))
1179
		blk_mq_rq_timed_out(rq, reserved);
1180
	return true;
1181 1182
}

1183
static void blk_mq_timeout_work(struct work_struct *work)
1184
{
1185 1186
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
1187
	unsigned long next = 0;
1188
	struct blk_mq_hw_ctx *hctx;
1189
	int i;
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
1200
	 * blk_freeze_queue_start, and the moment the last request is
1201 1202 1203 1204
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
1205 1206
		return;

K
Keith Busch 已提交
1207
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1208

K
Keith Busch 已提交
1209 1210
	if (next != 0) {
		mod_timer(&q->timeout, next);
1211
	} else {
1212 1213 1214 1215 1216 1217
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
1218 1219 1220 1221 1222
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
1223
	}
1224
	blk_queue_exit(q);
1225 1226
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1237
	enum hctx_type type = hctx->type;
1238 1239

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1240
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1241
	sbitmap_clear_bit(sb, bitnr);
1242 1243 1244 1245
	spin_unlock(&ctx->lock);
	return true;
}

1246 1247 1248 1249
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1250
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1251
{
1252 1253 1254 1255
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1256

1257
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1258
}
1259
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1272
	enum hctx_type type = hctx->type;
1273 1274

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1275 1276
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1277
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1278
		if (list_empty(&ctx->rq_lists[type]))
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1289
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1301 1302 1303 1304
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1305

1306
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1307 1308
}

1309 1310
static bool __blk_mq_get_driver_tag(struct request *rq)
{
1311
	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1312 1313 1314
	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
	int tag;

1315 1316
	blk_mq_tag_busy(rq->mq_hctx);

1317
	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1318
		bt = &rq->mq_hctx->tags->breserved_tags;
1319
		tag_offset = 0;
1320 1321 1322
	} else {
		if (!hctx_may_queue(rq->mq_hctx, bt))
			return false;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	}

	tag = __sbitmap_queue_get(bt);
	if (tag == BLK_MQ_NO_TAG)
		return false;

	rq->tag = tag + tag_offset;
	return true;
}

1333
bool blk_mq_get_driver_tag(struct request *rq)
1334
{
1335 1336 1337 1338 1339
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
		return false;

1340
	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1341 1342
			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
		rq->rq_flags |= RQF_MQ_INFLIGHT;
1343
		__blk_mq_inc_active_requests(hctx);
1344 1345 1346
	}
	hctx->tags->rqs[rq->tag] = rq;
	return true;
1347 1348
}

1349 1350
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1351 1352 1353 1354 1355
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1356
	spin_lock(&hctx->dispatch_wait_lock);
1357 1358 1359 1360
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
1361
		sbq = &hctx->tags->bitmap_tags;
1362 1363
		atomic_dec(&sbq->ws_active);
	}
1364 1365
	spin_unlock(&hctx->dispatch_wait_lock);

1366 1367 1368 1369
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1370 1371
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1372 1373
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1374 1375
 * marking us as waiting.
 */
1376
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1377
				 struct request *rq)
1378
{
1379
	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1380
	struct wait_queue_head *wq;
1381 1382
	wait_queue_entry_t *wait;
	bool ret;
1383

1384
	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1385
		blk_mq_sched_mark_restart_hctx(hctx);
1386

1387 1388 1389 1390 1391 1392 1393 1394
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1395
		return blk_mq_get_driver_tag(rq);
1396 1397
	}

1398
	wait = &hctx->dispatch_wait;
1399 1400 1401
	if (!list_empty_careful(&wait->entry))
		return false;

1402
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1403 1404 1405

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1406
	if (!list_empty(&wait->entry)) {
1407 1408
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1409
		return false;
1410 1411
	}

1412
	atomic_inc(&sbq->ws_active);
1413 1414
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1415

1416
	/*
1417 1418 1419
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1420
	 */
1421
	ret = blk_mq_get_driver_tag(rq);
1422
	if (!ret) {
1423 1424
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1425
		return false;
1426
	}
1427 1428 1429 1430 1431 1432

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1433
	atomic_dec(&sbq->ws_active);
1434 1435
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1436 1437

	return true;
1438 1439
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1466 1467
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
enum prep_dispatch {
	PREP_DISPATCH_OK,
	PREP_DISPATCH_NO_TAG,
	PREP_DISPATCH_NO_BUDGET,
};

static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
						  bool need_budget)
{
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1508
	int budget_token = -1;
1509

1510 1511 1512 1513 1514 1515 1516
	if (need_budget) {
		budget_token = blk_mq_get_dispatch_budget(rq->q);
		if (budget_token < 0) {
			blk_mq_put_driver_tag(rq);
			return PREP_DISPATCH_NO_BUDGET;
		}
		blk_mq_set_rq_budget_token(rq, budget_token);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	}

	if (!blk_mq_get_driver_tag(rq)) {
		/*
		 * The initial allocation attempt failed, so we need to
		 * rerun the hardware queue when a tag is freed. The
		 * waitqueue takes care of that. If the queue is run
		 * before we add this entry back on the dispatch list,
		 * we'll re-run it below.
		 */
		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1528 1529 1530 1531 1532
			/*
			 * All budgets not got from this function will be put
			 * together during handling partial dispatch
			 */
			if (need_budget)
1533
				blk_mq_put_dispatch_budget(rq->q, budget_token);
1534 1535 1536 1537 1538 1539 1540
			return PREP_DISPATCH_NO_TAG;
		}
	}

	return PREP_DISPATCH_OK;
}

1541 1542
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
1543
		struct list_head *list)
1544
{
1545
	struct request *rq;
1546

1547 1548
	list_for_each_entry(rq, list, queuelist) {
		int budget_token = blk_mq_get_rq_budget_token(rq);
1549

1550 1551 1552
		if (budget_token >= 0)
			blk_mq_put_dispatch_budget(q, budget_token);
	}
1553 1554
}

1555 1556 1557
/*
 * Returns true if we did some work AND can potentially do more.
 */
1558
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1559
			     unsigned int nr_budgets)
1560
{
1561
	enum prep_dispatch prep;
1562
	struct request_queue *q = hctx->queue;
1563
	struct request *rq, *nxt;
1564
	int errors, queued;
1565
	blk_status_t ret = BLK_STS_OK;
1566
	LIST_HEAD(zone_list);
1567

1568 1569 1570
	if (list_empty(list))
		return false;

1571 1572 1573
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1574
	errors = queued = 0;
1575
	do {
1576
		struct blk_mq_queue_data bd;
1577

1578
		rq = list_first_entry(list, struct request, queuelist);
1579

1580
		WARN_ON_ONCE(hctx != rq->mq_hctx);
1581
		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1582
		if (prep != PREP_DISPATCH_OK)
1583
			break;
1584

1585 1586
		list_del_init(&rq->queuelist);

1587
		bd.rq = rq;
1588 1589 1590 1591 1592 1593 1594 1595 1596

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1597
			bd.last = !blk_mq_get_driver_tag(nxt);
1598
		}
1599

1600 1601 1602 1603 1604 1605
		/*
		 * once the request is queued to lld, no need to cover the
		 * budget any more
		 */
		if (nr_budgets)
			nr_budgets--;
1606
		ret = q->mq_ops->queue_rq(hctx, &bd);
1607 1608 1609
		switch (ret) {
		case BLK_STS_OK:
			queued++;
1610
			break;
1611 1612 1613 1614 1615
		case BLK_STS_RESOURCE:
		case BLK_STS_DEV_RESOURCE:
			blk_mq_handle_dev_resource(rq, list);
			goto out;
		case BLK_STS_ZONE_RESOURCE:
1616 1617 1618 1619 1620 1621
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
1622 1623
			break;
		default:
1624
			errors++;
1625
			blk_mq_end_request(rq, ret);
1626
		}
1627
	} while (!list_empty(list));
1628
out:
1629 1630 1631
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1632
	hctx->dispatched[queued_to_index(queued)]++;
1633

1634 1635 1636 1637 1638
	/* If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
		q->mq_ops->commit_rqs(hctx);
1639 1640 1641 1642
	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1643
	if (!list_empty(list)) {
1644
		bool needs_restart;
1645 1646
		/* For non-shared tags, the RESTART check will suffice */
		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1647
			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1648
		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1649

1650 1651
		if (nr_budgets)
			blk_mq_release_budgets(q, list);
1652

1653
		spin_lock(&hctx->lock);
1654
		list_splice_tail_init(list, &hctx->dispatch);
1655
		spin_unlock(&hctx->lock);
1656

1657 1658 1659 1660 1661 1662 1663 1664 1665
		/*
		 * Order adding requests to hctx->dispatch and checking
		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
		 * in blk_mq_sched_restart(). Avoid restart code path to
		 * miss the new added requests to hctx->dispatch, meantime
		 * SCHED_RESTART is observed here.
		 */
		smp_mb();

1666
		/*
1667 1668 1669
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1670
		 *
1671 1672 1673 1674
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1675
		 *
1676 1677 1678 1679 1680 1681 1682
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1683
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1684
		 *   and dm-rq.
1685 1686 1687
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1688 1689
		 * that could otherwise occur if the queue is idle.  We'll do
		 * similar if we couldn't get budget and SCHED_RESTART is set.
1690
		 */
1691 1692
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1693
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1694
			blk_mq_run_hw_queue(hctx, true);
1695 1696
		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
					   no_budget_avail))
1697
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1698

1699
		blk_mq_update_dispatch_busy(hctx, true);
1700
		return false;
1701 1702
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1703

1704
	return (queued + errors) != 0;
1705 1706
}

1707 1708 1709 1710 1711 1712
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1713 1714 1715 1716
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1717 1718 1719 1720 1721 1722
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1723
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1724

1725 1726 1727
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1728 1729
}

1730 1731 1732 1733 1734 1735 1736 1737 1738
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1739 1740 1741 1742 1743 1744 1745 1746
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1747
	bool tried = false;
1748
	int next_cpu = hctx->next_cpu;
1749

1750 1751
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1752 1753

	if (--hctx->next_cpu_batch <= 0) {
1754
select_cpu:
1755
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1756
				cpu_online_mask);
1757
		if (next_cpu >= nr_cpu_ids)
1758
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1759 1760 1761
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1762 1763 1764 1765
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1766
	if (!cpu_online(next_cpu)) {
1767 1768 1769 1770 1771 1772 1773 1774 1775
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1776
		hctx->next_cpu = next_cpu;
1777 1778 1779
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1780 1781 1782

	hctx->next_cpu = next_cpu;
	return next_cpu;
1783 1784
}

1785 1786 1787 1788
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
1789
 * @msecs: Milliseconds of delay to wait before running the queue.
1790 1791 1792 1793
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1794 1795
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1796
{
1797
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1798 1799
		return;

1800
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1801 1802
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1803
			__blk_mq_run_hw_queue(hctx);
1804
			put_cpu();
1805 1806
			return;
		}
1807

1808
		put_cpu();
1809
	}
1810

1811 1812
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1813 1814
}

1815 1816 1817
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
1818
 * @msecs: Milliseconds of delay to wait before running the queue.
1819 1820 1821
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
1822 1823 1824 1825 1826 1827
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1828 1829 1830 1831 1832 1833 1834 1835 1836
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
1837
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1838
{
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1850 1851 1852 1853
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1854

1855
	if (need_run)
1856
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1857
}
O
Omar Sandoval 已提交
1858
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
/*
 * Is the request queue handled by an IO scheduler that does not respect
 * hardware queues when dispatching?
 */
static bool blk_mq_has_sqsched(struct request_queue *q)
{
	struct elevator_queue *e = q->elevator;

	if (e && e->type->ops.dispatch_request &&
	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
		return true;
	return false;
}

/*
 * Return prefered queue to dispatch from (if any) for non-mq aware IO
 * scheduler.
 */
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;

	/*
	 * If the IO scheduler does not respect hardware queues when
	 * dispatching, we just don't bother with multiple HW queues and
	 * dispatch from hctx for the current CPU since running multiple queues
	 * just causes lock contention inside the scheduler and pointless cache
	 * bouncing.
	 */
	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
				     raw_smp_processor_id());
	if (!blk_mq_hctx_stopped(hctx))
		return hctx;
	return NULL;
}

1896
/**
1897
 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1898 1899 1900
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
1901
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1902
{
1903
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1904 1905
	int i;

1906 1907 1908
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
1909
	queue_for_each_hw_ctx(q, hctx, i) {
1910
		if (blk_mq_hctx_stopped(hctx))
1911
			continue;
1912 1913 1914 1915 1916 1917 1918 1919
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_run_hw_queue(hctx, async);
1920 1921
	}
}
1922
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1923

1924 1925 1926
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
1927
 * @msecs: Milliseconds of delay to wait before running the queues.
1928 1929 1930
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
1931
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1932 1933
	int i;

1934 1935 1936
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
1937 1938 1939
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;
1940 1941 1942 1943 1944 1945 1946 1947
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_delay_run_hw_queue(hctx, msecs);
1948 1949 1950 1951
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1972 1973 1974
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1975
 * BLK_STS_RESOURCE is usually returned.
1976 1977 1978 1979 1980
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1981 1982
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1983
	cancel_delayed_work(&hctx->run_work);
1984

1985
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1986
}
1987
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1988

1989 1990 1991
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1992
 * BLK_STS_RESOURCE is usually returned.
1993 1994 1995 1996 1997
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1998 1999
void blk_mq_stop_hw_queues(struct request_queue *q)
{
2000 2001 2002 2003 2004
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
2005 2006 2007
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

2008 2009 2010
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2011

2012
	blk_mq_run_hw_queue(hctx, false);
2013 2014 2015
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

2036
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2037 2038 2039 2040
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2041 2042
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
2043 2044 2045
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

2046
static void blk_mq_run_work_fn(struct work_struct *work)
2047 2048 2049
{
	struct blk_mq_hw_ctx *hctx;

2050
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2051

2052
	/*
M
Ming Lei 已提交
2053
	 * If we are stopped, don't run the queue.
2054
	 */
2055
	if (blk_mq_hctx_stopped(hctx))
2056
		return;
2057 2058 2059 2060

	__blk_mq_run_hw_queue(hctx);
}

2061 2062 2063
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
2064
{
J
Jens Axboe 已提交
2065
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
2066
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
2067

2068 2069
	lockdep_assert_held(&ctx->lock);

2070
	trace_block_rq_insert(rq);
2071

2072
	if (at_head)
M
Ming Lei 已提交
2073
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2074
	else
M
Ming Lei 已提交
2075
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2076
}
2077

2078 2079
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
2080 2081 2082
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

2083 2084
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
2085
	__blk_mq_insert_req_list(hctx, rq, at_head);
2086 2087 2088
	blk_mq_hctx_mark_pending(hctx, ctx);
}

2089 2090 2091
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
2092
 * @at_head: true if the request should be inserted at the head of the list.
2093 2094
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
2095 2096 2097
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
2098 2099
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
2100
{
2101
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2102 2103

	spin_lock(&hctx->lock);
2104 2105 2106 2107
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
2108 2109
	spin_unlock(&hctx->lock);

2110 2111
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
2112 2113
}

2114 2115
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
2116 2117

{
2118
	struct request *rq;
M
Ming Lei 已提交
2119
	enum hctx_type type = hctx->type;
2120

2121 2122 2123 2124
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
2125
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
2126
		BUG_ON(rq->mq_ctx != ctx);
2127
		trace_block_rq_insert(rq);
2128
	}
2129 2130

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2131
	list_splice_tail_init(list, &ctx->rq_lists[type]);
2132
	blk_mq_hctx_mark_pending(hctx, ctx);
2133 2134 2135
	spin_unlock(&ctx->lock);
}

2136 2137
static int plug_rq_cmp(void *priv, const struct list_head *a,
		       const struct list_head *b)
2138 2139 2140 2141
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

P
Pavel Begunkov 已提交
2142 2143 2144 2145
	if (rqa->mq_ctx != rqb->mq_ctx)
		return rqa->mq_ctx > rqb->mq_ctx;
	if (rqa->mq_hctx != rqb->mq_hctx)
		return rqa->mq_hctx > rqb->mq_hctx;
J
Jens Axboe 已提交
2146 2147

	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
2148 2149 2150 2151 2152 2153
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(list);

2154 2155
	if (list_empty(&plug->mq_list))
		return;
2156 2157
	list_splice_init(&plug->mq_list, &list);

2158 2159
	if (plug->rq_count > 2 && plug->multiple_queues)
		list_sort(NULL, &list, plug_rq_cmp);
2160

2161 2162
	plug->rq_count = 0;

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	do {
		struct list_head rq_list;
		struct request *rq, *head_rq = list_entry_rq(list.next);
		struct list_head *pos = &head_rq->queuelist; /* skip first */
		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
		unsigned int depth = 1;

		list_for_each_continue(pos, &list) {
			rq = list_entry_rq(pos);
			BUG_ON(!rq->q);
			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
				break;
			depth++;
2177 2178
		}

2179 2180
		list_cut_before(&rq_list, &list, pos);
		trace_block_unplug(head_rq->q, depth, !from_schedule);
2181
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
2182
						from_schedule);
2183
	} while(!list_empty(&list));
2184 2185
}

2186 2187
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
2188
{
2189 2190
	int err;

2191 2192 2193 2194 2195
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
2196
	blk_rq_bio_prep(rq, bio, nr_segs);
2197 2198 2199 2200

	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
	WARN_ON_ONCE(err);
2201

2202
	blk_account_io_start(rq);
2203 2204
}

2205
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2206
					    struct request *rq, bool last)
2207 2208 2209 2210
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
2211
		.last = last,
2212
	};
2213
	blk_status_t ret;
2214 2215 2216 2217 2218 2219 2220 2221 2222

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
2223
		blk_mq_update_dispatch_busy(hctx, false);
2224 2225
		break;
	case BLK_STS_RESOURCE:
2226
	case BLK_STS_DEV_RESOURCE:
2227
		blk_mq_update_dispatch_busy(hctx, true);
2228 2229 2230
		__blk_mq_requeue_request(rq);
		break;
	default:
2231
		blk_mq_update_dispatch_busy(hctx, false);
2232 2233 2234 2235 2236 2237
		break;
	}

	return ret;
}

2238
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2239
						struct request *rq,
2240
						bool bypass_insert, bool last)
2241 2242
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
2243
	bool run_queue = true;
2244
	int budget_token;
M
Ming Lei 已提交
2245

2246
	/*
2247
	 * RCU or SRCU read lock is needed before checking quiesced flag.
2248
	 *
2249 2250 2251
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
2252
	 */
2253
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
2254
		run_queue = false;
2255 2256
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
2257
	}
2258

2259
	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2260
		goto insert;
2261

2262 2263
	budget_token = blk_mq_get_dispatch_budget(q);
	if (budget_token < 0)
2264
		goto insert;
2265

2266 2267
	blk_mq_set_rq_budget_token(rq, budget_token);

2268
	if (!blk_mq_get_driver_tag(rq)) {
2269
		blk_mq_put_dispatch_budget(q, budget_token);
2270
		goto insert;
2271
	}
2272

2273
	return __blk_mq_issue_directly(hctx, rq, last);
2274 2275 2276 2277
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

2278 2279
	blk_mq_sched_insert_request(rq, false, run_queue, false);

2280 2281 2282
	return BLK_STS_OK;
}

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
2293
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2294
		struct request *rq)
2295 2296 2297 2298 2299 2300 2301 2302
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

2303
	ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2304
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2305
		blk_mq_request_bypass_insert(rq, false, true);
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
	blk_status_t ret;
	int srcu_idx;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
2319
	ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2320
	hctx_unlock(hctx, srcu_idx);
2321 2322

	return ret;
2323 2324
}

2325 2326 2327
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
2328
	int queued = 0;
2329
	int errors = 0;
2330

2331
	while (!list_empty(list)) {
2332
		blk_status_t ret;
2333 2334 2335 2336
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
2337 2338 2339 2340
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
2341
				blk_mq_request_bypass_insert(rq, false,
2342
							list_empty(list));
2343 2344 2345
				break;
			}
			blk_mq_end_request(rq, ret);
2346
			errors++;
2347 2348
		} else
			queued++;
2349
	}
J
Jens Axboe 已提交
2350 2351 2352 2353 2354 2355

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2356 2357
	if ((!list_empty(list) || errors) &&
	     hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2358
		hctx->queue->mq_ops->commit_rqs(hctx);
2359 2360
}

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	plug->rq_count++;
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

2375
/*
2376
 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2377 2378 2379 2380 2381 2382
 * queues. This is important for md arrays to benefit from merging
 * requests.
 */
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
{
	if (plug->multiple_queues)
2383
		return BLK_MAX_REQUEST_COUNT * 2;
2384 2385 2386
	return BLK_MAX_REQUEST_COUNT;
}

2387
/**
2388
 * blk_mq_submit_bio - Create and send a request to block device.
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 */
2400
void blk_mq_submit_bio(struct bio *bio)
2401
{
2402
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2403
	const int is_sync = op_is_sync(bio->bi_opf);
2404
	const int is_flush_fua = op_is_flush(bio->bi_opf);
2405
	struct request *rq;
2406
	struct blk_plug *plug;
2407
	struct request *same_queue_rq = NULL;
2408
	unsigned int nr_segs = 1;
2409
	blk_status_t ret;
2410 2411

	blk_queue_bounce(q, &bio);
2412 2413
	if (blk_may_split(q, bio))
		__blk_queue_split(q, &bio, &nr_segs);
2414

2415
	if (!bio_integrity_prep(bio))
2416
		goto queue_exit;
2417

2418
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2419
	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2420
		goto queue_exit;
2421

2422
	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2423
		goto queue_exit;
2424

2425
	rq_qos_throttle(q, bio);
J
Jens Axboe 已提交
2426

2427 2428 2429 2430 2431 2432
	plug = blk_mq_plug(q, bio);
	if (plug && plug->cached_rq) {
		rq = plug->cached_rq;
		plug->cached_rq = rq->rq_next;
		INIT_LIST_HEAD(&rq->queuelist);
	} else {
2433 2434 2435 2436 2437 2438
		struct blk_mq_alloc_data data = {
			.q		= q,
			.nr_tags	= 1,
			.cmd_flags	= bio->bi_opf,
		};

2439 2440 2441 2442 2443
		if (plug) {
			data.nr_tags = plug->nr_ios;
			plug->nr_ios = 1;
			data.cached_rq = &plug->cached_rq;
		}
2444
		rq = __blk_mq_alloc_requests(&data);
2445 2446 2447 2448 2449 2450
		if (unlikely(!rq)) {
			rq_qos_cleanup(q, bio);
			if (bio->bi_opf & REQ_NOWAIT)
				bio_wouldblock_error(bio);
			goto queue_exit;
		}
J
Jens Axboe 已提交
2451 2452
	}

2453
	trace_block_getrq(bio);
2454

2455
	rq_qos_track(q, rq, bio);
2456

2457 2458
	blk_mq_bio_to_request(rq, bio, nr_segs);

2459 2460 2461 2462 2463
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
2464
		return;
2465 2466
	}

2467
	if (unlikely(is_flush_fua)) {
2468
		struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2469
		/* Bypass scheduler for flush requests */
2470
		blk_insert_flush(rq);
2471
		blk_mq_run_hw_queue(hctx, true);
2472
	} else if (plug && (q->nr_hw_queues == 1 ||
2473
		   blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2474
		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2475 2476 2477
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
M
Ming Lei 已提交
2478 2479 2480
		 *
		 * Use normal plugging if this disk is slow HDD, as sequential
		 * IO may benefit a lot from plug merging.
2481
		 */
2482
		unsigned int request_count = plug->rq_count;
2483 2484
		struct request *last = NULL;

M
Ming Lei 已提交
2485
		if (!request_count)
2486
			trace_block_plug(q);
2487 2488
		else
			last = list_entry_rq(plug->mq_list.prev);
2489

2490
		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2491
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2492 2493
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
2494
		}
2495

2496
		blk_add_rq_to_plug(plug, rq);
2497
	} else if (rq->rq_flags & RQF_ELV) {
2498
		/* Insert the request at the IO scheduler queue */
2499
		blk_mq_sched_insert_request(rq, false, true, true);
2500
	} else if (plug && !blk_queue_nomerges(q)) {
2501
		/*
2502
		 * We do limited plugging. If the bio can be merged, do that.
2503 2504
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
2505 2506
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
2507
		 */
2508 2509
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
2510
		if (same_queue_rq) {
2511
			list_del_init(&same_queue_rq->queuelist);
2512 2513
			plug->rq_count--;
		}
2514
		blk_add_rq_to_plug(plug, rq);
2515
		trace_block_plug(q);
2516

2517
		if (same_queue_rq) {
2518
			trace_block_unplug(q, 1, true);
2519
			blk_mq_try_issue_directly(same_queue_rq->mq_hctx,
2520
						  same_queue_rq);
2521
		}
2522
	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2523
		   !rq->mq_hctx->dispatch_busy) {
2524 2525 2526 2527
		/*
		 * There is no scheduler and we can try to send directly
		 * to the hardware.
		 */
2528
		blk_mq_try_issue_directly(rq->mq_hctx, rq);
2529
	} else {
2530
		/* Default case. */
2531
		blk_mq_sched_insert_request(rq, false, true, true);
2532
	}
2533

2534
	return;
2535 2536
queue_exit:
	blk_queue_exit(q);
2537 2538
}

2539 2540 2541 2542 2543 2544
static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

/* called before freeing request pool in @tags */
2545 2546
static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
				    struct blk_mq_tags *tags)
2547 2548 2549 2550
{
	struct page *page;
	unsigned long flags;

2551 2552 2553 2554
	/* There is no need to clear a driver tags own mapping */
	if (drv_tags == tags)
		return;

2555 2556 2557 2558 2559
	list_for_each_entry(page, &tags->page_list, lru) {
		unsigned long start = (unsigned long)page_address(page);
		unsigned long end = start + order_to_size(page->private);
		int i;

2560
		for (i = 0; i < drv_tags->nr_tags; i++) {
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
			struct request *rq = drv_tags->rqs[i];
			unsigned long rq_addr = (unsigned long)rq;

			if (rq_addr >= start && rq_addr < end) {
				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
				cmpxchg(&drv_tags->rqs[i], rq, NULL);
			}
		}
	}

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&drv_tags->lock, flags);
	spin_unlock_irqrestore(&drv_tags->lock, flags);
}

2581 2582
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2583
{
2584
	struct blk_mq_tags *drv_tags;
2585
	struct page *page;
2586

2587 2588
	if (blk_mq_is_shared_tags(set->flags))
		drv_tags = set->shared_tags;
2589 2590
	else
		drv_tags = set->tags[hctx_idx];
2591

2592
	if (tags->static_rqs && set->ops->exit_request) {
2593
		int i;
2594

2595
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2596 2597 2598
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2599
				continue;
2600
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2601
			tags->static_rqs[i] = NULL;
2602
		}
2603 2604
	}

2605
	blk_mq_clear_rq_mapping(drv_tags, tags);
2606

2607 2608
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2609
		list_del_init(&page->lru);
2610 2611
		/*
		 * Remove kmemleak object previously allocated in
2612
		 * blk_mq_alloc_rqs().
2613 2614
		 */
		kmemleak_free(page_address(page));
2615 2616
		__free_pages(page, page->private);
	}
2617
}
2618

2619
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2620
{
2621
	kfree(tags->rqs);
2622
	tags->rqs = NULL;
J
Jens Axboe 已提交
2623 2624
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2625

2626
	blk_mq_free_tags(tags);
2627 2628
}

2629 2630 2631
static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					       unsigned int hctx_idx,
					       unsigned int nr_tags,
2632
					       unsigned int reserved_tags)
2633
{
2634
	struct blk_mq_tags *tags;
2635
	int node;
2636

2637
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2638 2639 2640
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

2641 2642
	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2643 2644
	if (!tags)
		return NULL;
2645

2646
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2647
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2648
				 node);
2649
	if (!tags->rqs) {
2650
		blk_mq_free_tags(tags);
2651 2652
		return NULL;
	}
2653

2654 2655 2656
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2657 2658
	if (!tags->static_rqs) {
		kfree(tags->rqs);
2659
		blk_mq_free_tags(tags);
J
Jens Axboe 已提交
2660 2661 2662
		return NULL;
	}

2663 2664 2665
	return tags;
}

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2677
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2678 2679 2680
	return 0;
}

2681 2682 2683
static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
			    struct blk_mq_tags *tags,
			    unsigned int hctx_idx, unsigned int depth)
2684 2685 2686
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2687 2688
	int node;

2689
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2690 2691
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2692 2693 2694

	INIT_LIST_HEAD(&tags->page_list);

2695 2696 2697 2698
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2699
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2700
				cache_line_size());
2701
	left = rq_size * depth;
2702

2703
	for (i = 0; i < depth; ) {
2704 2705 2706 2707 2708
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2709
		while (this_order && left < order_to_size(this_order - 1))
2710 2711 2712
			this_order--;

		do {
2713
			page = alloc_pages_node(node,
2714
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2715
				this_order);
2716 2717 2718 2719 2720 2721 2722 2723 2724
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2725
			goto fail;
2726 2727

		page->private = this_order;
2728
		list_add_tail(&page->lru, &tags->page_list);
2729 2730

		p = page_address(page);
2731 2732 2733 2734
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2735
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2736
		entries_per_page = order_to_size(this_order) / rq_size;
2737
		to_do = min(entries_per_page, depth - i);
2738 2739
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2740 2741 2742
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2743 2744 2745
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2746 2747
			}

2748 2749 2750 2751
			p += rq_size;
			i++;
		}
	}
2752
	return 0;
2753

2754
fail:
2755 2756
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2757 2758
}

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
struct rq_iter_data {
	struct blk_mq_hw_ctx *hctx;
	bool has_rq;
};

static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
{
	struct rq_iter_data *iter_data = data;

	if (rq->mq_hctx != iter_data->hctx)
		return true;
	iter_data->has_rq = true;
	return false;
}

static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->sched_tags ?
			hctx->sched_tags : hctx->tags;
	struct rq_iter_data data = {
		.hctx	= hctx,
	};

	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
	return data.has_rq;
}

static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
		struct blk_mq_hw_ctx *hctx)
{
	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
		return false;
	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
		return false;
	return true;
}

static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
		return 0;

	/*
	 * Prevent new request from being allocated on the current hctx.
	 *
	 * The smp_mb__after_atomic() Pairs with the implied barrier in
	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
	 * seen once we return from the tag allocator.
	 */
	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	smp_mb__after_atomic();

	/*
	 * Try to grab a reference to the queue and wait for any outstanding
	 * requests.  If we could not grab a reference the queue has been
	 * frozen and there are no requests.
	 */
	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
		while (blk_mq_hctx_has_requests(hctx))
			msleep(5);
		percpu_ref_put(&hctx->queue->q_usage_counter);
	}

	return 0;
}

static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (cpumask_test_cpu(cpu, hctx->cpumask))
		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	return 0;
}

J
Jens Axboe 已提交
2839 2840 2841 2842 2843
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2844
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2845
{
2846
	struct blk_mq_hw_ctx *hctx;
2847 2848
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
2849
	enum hctx_type type;
2850

2851
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2852 2853 2854
	if (!cpumask_test_cpu(cpu, hctx->cpumask))
		return 0;

J
Jens Axboe 已提交
2855
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
2856
	type = hctx->type;
2857 2858

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2859 2860
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
2861 2862 2863 2864 2865
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2866
		return 0;
2867

J
Jens Axboe 已提交
2868 2869 2870
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2871 2872

	blk_mq_run_hw_queue(hctx, true);
2873
	return 0;
2874 2875
}

2876
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2877
{
2878 2879 2880
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
						    &hctx->cpuhp_online);
2881 2882
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2883 2884
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
/*
 * Before freeing hw queue, clearing the flush request reference in
 * tags->rqs[] for avoiding potential UAF.
 */
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
		unsigned int queue_depth, struct request *flush_rq)
{
	int i;
	unsigned long flags;

	/* The hw queue may not be mapped yet */
	if (!tags)
		return;

	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);

	for (i = 0; i < queue_depth; i++)
		cmpxchg(&tags->rqs[i], flush_rq, NULL);

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&tags->lock, flags);
	spin_unlock_irqrestore(&tags->lock, flags);
}

2914
/* hctx->ctxs will be freed in queue's release handler */
2915 2916 2917 2918
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2919 2920
	struct request *flush_rq = hctx->fq->flush_rq;

2921 2922
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2923

2924 2925
	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
			set->queue_depth, flush_rq);
2926
	if (set->ops->exit_request)
2927
		set->ops->exit_request(set, flush_rq, hctx_idx);
2928

2929 2930 2931
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2932
	blk_mq_remove_cpuhp(hctx);
2933 2934 2935 2936

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
2937 2938
}

M
Ming Lei 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2948
		blk_mq_debugfs_unregister_hctx(hctx);
2949
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2950 2951 2952
	}
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2967 2968 2969
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2970
{
2971 2972
	hctx->queue_num = hctx_idx;

2973 2974 2975
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
				&hctx->cpuhp_online);
2976 2977 2978 2979 2980 2981 2982
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
2983

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
3012
	if (node == NUMA_NO_NODE)
3013 3014
		node = set->numa_node;
	hctx->numa_node = node;
3015

3016
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3017 3018 3019
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
3020
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3021

3022 3023
	INIT_LIST_HEAD(&hctx->hctx_list);

3024
	/*
3025 3026
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
3027
	 */
3028
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3029
			gfp, node);
3030
	if (!hctx->ctxs)
3031
		goto free_cpumask;
3032

3033
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3034
				gfp, node, false, false))
3035 3036
		goto free_ctxs;
	hctx->nr_ctx = 0;
3037

3038
	spin_lock_init(&hctx->dispatch_wait_lock);
3039 3040 3041
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

3042
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3043
	if (!hctx->fq)
3044
		goto free_bitmap;
3045

3046
	if (hctx->flags & BLK_MQ_F_BLOCKING)
3047
		init_srcu_struct(hctx->srcu);
3048
	blk_mq_hctx_kobj_init(hctx);
3049

3050
	return hctx;
3051

3052
 free_bitmap:
3053
	sbitmap_free(&hctx->ctx_map);
3054 3055
 free_ctxs:
	kfree(hctx->ctxs);
3056 3057 3058 3059 3060 3061
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
3062
}
3063 3064 3065 3066

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
3067 3068
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
3069 3070 3071 3072

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
3073
		int k;
3074 3075 3076

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
3077 3078 3079
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

3080 3081 3082 3083 3084 3085
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
3086 3087 3088
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3089
				hctx->numa_node = cpu_to_node(i);
J
Jens Axboe 已提交
3090
		}
3091 3092 3093
	}
}

3094 3095 3096
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
					     unsigned int hctx_idx,
					     unsigned int depth)
3097
{
3098 3099
	struct blk_mq_tags *tags;
	int ret;
3100

3101
	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3102 3103
	if (!tags)
		return NULL;
3104

3105 3106
	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
	if (ret) {
3107
		blk_mq_free_rq_map(tags);
3108 3109
		return NULL;
	}
3110

3111 3112 3113 3114 3115 3116
	return tags;
}

static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
				       int hctx_idx)
{
3117 3118
	if (blk_mq_is_shared_tags(set->flags)) {
		set->tags[hctx_idx] = set->shared_tags;
3119 3120 3121 3122

		return true;
	}

3123 3124 3125 3126
	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
						       set->queue_depth);

	return set->tags[hctx_idx];
3127 3128
}

3129 3130 3131
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
			     struct blk_mq_tags *tags,
			     unsigned int hctx_idx)
3132
{
3133 3134
	if (tags) {
		blk_mq_free_rqs(set, tags, hctx_idx);
3135
		blk_mq_free_rq_map(tags);
3136
	}
3137 3138
}

3139 3140 3141
static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
				      unsigned int hctx_idx)
{
3142
	if (!blk_mq_is_shared_tags(set->flags))
3143 3144 3145 3146 3147
		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);

	set->tags[hctx_idx] = NULL;
}

3148
static void blk_mq_map_swqueue(struct request_queue *q)
3149
{
J
Jens Axboe 已提交
3150
	unsigned int i, j, hctx_idx;
3151 3152
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
3153
	struct blk_mq_tag_set *set = q->tag_set;
3154 3155

	queue_for_each_hw_ctx(q, hctx, i) {
3156
		cpumask_clear(hctx->cpumask);
3157
		hctx->nr_ctx = 0;
3158
		hctx->dispatch_from = NULL;
3159 3160 3161
	}

	/*
3162
	 * Map software to hardware queues.
3163 3164
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
3165
	 */
3166
	for_each_possible_cpu(i) {
3167

3168
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
3169
		for (j = 0; j < set->nr_maps; j++) {
3170 3171 3172
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
3173
				continue;
3174
			}
3175 3176 3177
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
3178
			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3179 3180 3181 3182 3183 3184 3185 3186
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
3187

J
Jens Axboe 已提交
3188
			hctx = blk_mq_map_queue_type(q, j, i);
3189
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
3209 3210 3211 3212

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
3213
	}
3214 3215

	queue_for_each_hw_ctx(q, hctx, i) {
3216 3217 3218 3219 3220 3221 3222 3223 3224
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
3225 3226
			if (i)
				__blk_mq_free_map_and_rqs(set, i);
3227 3228 3229 3230

			hctx->tags = NULL;
			continue;
		}
3231

M
Ming Lei 已提交
3232 3233 3234
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

3235 3236 3237 3238 3239
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
3240
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3241

3242 3243 3244
		/*
		 * Initialize batch roundrobin counts
		 */
3245
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3246 3247
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
3248 3249
}

3250 3251 3252 3253
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
3254
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3255 3256 3257 3258
{
	struct blk_mq_hw_ctx *hctx;
	int i;

3259
	queue_for_each_hw_ctx(q, hctx, i) {
3260
		if (shared) {
3261
			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3262 3263
		} else {
			blk_mq_tag_idle(hctx);
3264
			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3265
		}
3266 3267 3268
	}
}

3269 3270
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
					 bool shared)
3271 3272
{
	struct request_queue *q;
3273

3274 3275
	lockdep_assert_held(&set->tag_list_lock);

3276 3277
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
3278
		queue_set_hctx_shared(q, shared);
3279 3280 3281 3282 3283 3284 3285 3286 3287
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
3288
	list_del(&q->tag_set_list);
3289 3290
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
3291
		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3292
		/* update existing queue */
3293
		blk_mq_update_tag_set_shared(set, false);
3294
	}
3295
	mutex_unlock(&set->tag_list_lock);
3296
	INIT_LIST_HEAD(&q->tag_set_list);
3297 3298 3299 3300 3301 3302
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
3303

3304 3305 3306 3307
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
3308 3309
	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3310
		/* update existing queue */
3311
		blk_mq_update_tag_set_shared(set, true);
3312
	}
3313
	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3314
		queue_set_hctx_shared(q, true);
3315
	list_add_tail(&q->tag_set_list, &set->tag_list);
3316

3317 3318 3319
	mutex_unlock(&set->tag_list_lock);
}

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

3348 3349 3350 3351 3352 3353 3354 3355
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
3356 3357
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
3358

3359 3360 3361 3362 3363 3364
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
3365
		kobject_put(&hctx->kobj);
3366
	}
3367 3368 3369

	kfree(q->queue_hw_ctx);

3370 3371 3372 3373 3374
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
3375 3376
}

3377
static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3378
		void *queuedata)
3379
{
3380 3381
	struct request_queue *q;
	int ret;
3382

3383 3384
	q = blk_alloc_queue(set->numa_node);
	if (!q)
3385
		return ERR_PTR(-ENOMEM);
3386 3387 3388 3389 3390 3391
	q->queuedata = queuedata;
	ret = blk_mq_init_allocated_queue(set, q);
	if (ret) {
		blk_cleanup_queue(q);
		return ERR_PTR(ret);
	}
3392 3393
	return q;
}
3394 3395 3396 3397 3398

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
3399 3400
EXPORT_SYMBOL(blk_mq_init_queue);

3401 3402
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
		struct lock_class_key *lkclass)
3403 3404
{
	struct request_queue *q;
3405
	struct gendisk *disk;
3406

3407 3408 3409
	q = blk_mq_init_queue_data(set, queuedata);
	if (IS_ERR(q))
		return ERR_CAST(q);
3410

3411
	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3412 3413 3414
	if (!disk) {
		blk_cleanup_queue(q);
		return ERR_PTR(-ENOMEM);
3415
	}
3416
	return disk;
3417
}
3418
EXPORT_SYMBOL(__blk_mq_alloc_disk);
3419

3420 3421 3422 3423
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
3424
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3425

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
3440
	if (!hctx)
3441
		goto fail;
3442

3443 3444
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
3445 3446

	return hctx;
3447 3448 3449 3450 3451

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
3452 3453
}

K
Keith Busch 已提交
3454 3455
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
3456
{
3457
	int i, j, end;
K
Keith Busch 已提交
3458
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

3476 3477
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
3478
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
3479
		int node;
3480
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
3481

3482
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3483 3484 3485 3486 3487 3488 3489
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
3490

3491 3492
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
3493
			if (hctxs[i])
3494 3495 3496 3497 3498 3499 3500 3501 3502
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
3503
		}
3504
	}
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
3517

3518
	for (; j < end; j++) {
K
Keith Busch 已提交
3519 3520 3521
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
3522
			__blk_mq_free_map_and_rqs(set, j);
K
Keith Busch 已提交
3523 3524 3525 3526
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
3527
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
3528 3529
}

3530 3531
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
		struct request_queue *q)
K
Keith Busch 已提交
3532
{
M
Ming Lei 已提交
3533 3534 3535
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

3536
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3537 3538
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
3539 3540 3541
	if (!q->poll_cb)
		goto err_exit;

3542
	if (blk_mq_alloc_ctxs(q))
3543
		goto err_poll;
K
Keith Busch 已提交
3544

3545 3546 3547
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

3548 3549 3550
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
3551 3552 3553
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
3554

3555
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3556
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3557

J
Jens Axboe 已提交
3558
	q->tag_set = set;
3559

3560
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3561 3562
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
3563
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3564

3565
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3566 3567 3568
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

3569 3570
	q->nr_requests = set->queue_depth;

3571 3572 3573
	/*
	 * Default to classic polling
	 */
3574
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3575

3576
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3577
	blk_mq_add_queue_tag_set(set, q);
3578
	blk_mq_map_swqueue(q);
3579
	return 0;
3580

3581
err_hctxs:
K
Keith Busch 已提交
3582
	kfree(q->queue_hw_ctx);
3583
	q->nr_hw_queues = 0;
3584
	blk_mq_sysfs_deinit(q);
3585 3586 3587
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
3588 3589
err_exit:
	q->mq_ops = NULL;
3590
	return -ENOMEM;
3591
}
3592
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3593

3594 3595
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
3596
{
3597
	struct blk_mq_tag_set *set = q->tag_set;
3598

3599
	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
M
Ming Lei 已提交
3600
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3601 3602
	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
	blk_mq_del_queue_tag_set(q);
3603 3604
}

3605 3606 3607 3608
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

3609 3610
	if (blk_mq_is_shared_tags(set->flags)) {
		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3611 3612
						BLK_MQ_NO_HCTX_IDX,
						set->queue_depth);
3613
		if (!set->shared_tags)
3614 3615 3616
			return -ENOMEM;
	}

3617
	for (i = 0; i < set->nr_hw_queues; i++) {
3618
		if (!__blk_mq_alloc_map_and_rqs(set, i))
3619
			goto out_unwind;
3620 3621
		cond_resched();
	}
3622 3623 3624 3625

	return 0;

out_unwind:
3626 3627 3628
	while (--i >= 0)
		__blk_mq_free_map_and_rqs(set, i);

3629 3630
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
3631
					BLK_MQ_NO_HCTX_IDX);
3632
	}
3633 3634 3635 3636 3637 3638 3639 3640 3641

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
3642
static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

3672 3673
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
3674 3675 3676 3677 3678 3679 3680 3681
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

3682
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
3683 3684
		int i;

3685 3686 3687 3688 3689 3690 3691
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
3692
		 * 		set->map[x].mq_map[cpu] = queue;
3693 3694 3695 3696 3697 3698
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
3699 3700
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
3701

3702
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
3703 3704
	} else {
		BUG_ON(set->nr_maps > 1);
3705
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
3706
	}
3707 3708
}

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

3732 3733 3734 3735 3736 3737
static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
				int new_nr_hw_queues)
{
	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
}

3738 3739 3740
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
3741
 * requested depth down, if it's too large. In that case, the set
3742 3743
 * value will be stored in set->queue_depth.
 */
3744 3745
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3746
	int i, ret;
3747

B
Bart Van Assche 已提交
3748 3749
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

3750 3751
	if (!set->nr_hw_queues)
		return -EINVAL;
3752
	if (!set->queue_depth)
3753 3754 3755 3756
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
3757
	if (!set->ops->queue_rq)
3758 3759
		return -EINVAL;

3760 3761 3762
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

3763 3764 3765 3766 3767
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
3768

J
Jens Axboe 已提交
3769 3770 3771 3772 3773
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

3774 3775 3776 3777 3778 3779 3780
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
3781
		set->nr_maps = 1;
3782 3783
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
3784
	/*
3785 3786
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
3787
	 */
3788
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3789
		set->nr_hw_queues = nr_cpu_ids;
3790

3791
	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3792
		return -ENOMEM;
3793

3794
	ret = -ENOMEM;
J
Jens Axboe 已提交
3795 3796
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3797
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
3798 3799 3800
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
3801
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
3802
	}
3803

3804
	ret = blk_mq_update_queue_map(set);
3805 3806 3807
	if (ret)
		goto out_free_mq_map;

3808
	ret = blk_mq_alloc_set_map_and_rqs(set);
3809
	if (ret)
3810
		goto out_free_mq_map;
3811

3812 3813 3814
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

3815
	return 0;
3816 3817

out_free_mq_map:
J
Jens Axboe 已提交
3818 3819 3820 3821
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
3822 3823
	kfree(set->tags);
	set->tags = NULL;
3824
	return ret;
3825 3826 3827
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
/* allocate and initialize a tagset for a simple single-queue device */
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
		const struct blk_mq_ops *ops, unsigned int queue_depth,
		unsigned int set_flags)
{
	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
	set->nr_maps = 1;
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;
	return blk_mq_alloc_tag_set(set);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);

3844 3845
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3846
	int i, j;
3847

3848 3849
	for (i = 0; i < set->nr_hw_queues; i++)
		__blk_mq_free_map_and_rqs(set, i);
3850

3851 3852
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
3853 3854
					BLK_MQ_NO_HCTX_IDX);
	}
3855

J
Jens Axboe 已提交
3856 3857 3858 3859
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
3860

M
Ming Lei 已提交
3861
	kfree(set->tags);
3862
	set->tags = NULL;
3863 3864 3865
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3866 3867 3868 3869 3870 3871
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3872
	if (!set)
3873 3874
		return -EINVAL;

3875 3876 3877
	if (q->nr_requests == nr)
		return 0;

3878
	blk_mq_freeze_queue(q);
3879
	blk_mq_quiesce_queue(q);
3880

3881 3882
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3883 3884
		if (!hctx->tags)
			continue;
3885 3886 3887 3888
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3889
		if (hctx->sched_tags) {
3890
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3891 3892 3893 3894
						      nr, true);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
						      false);
3895
		}
3896 3897
		if (ret)
			break;
3898 3899
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
3900
	}
3901
	if (!ret) {
3902
		q->nr_requests = nr;
3903
		if (blk_mq_is_shared_tags(set->flags)) {
3904
			if (q->elevator)
3905
				blk_mq_tag_update_sched_shared_tags(q);
3906
			else
3907
				blk_mq_tag_resize_shared_tags(set, nr);
3908
		}
3909
	}
3910

3911
	blk_mq_unquiesce_queue(q);
3912 3913
	blk_mq_unfreeze_queue(q);

3914 3915 3916
	return ret;
}

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3987 3988
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3989 3990
{
	struct request_queue *q;
3991
	LIST_HEAD(head);
3992
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3993

3994 3995
	lockdep_assert_held(&set->tag_list_lock);

3996
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3997
		nr_hw_queues = nr_cpu_ids;
3998 3999 4000
	if (nr_hw_queues < 1)
		return;
	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
K
Keith Busch 已提交
4001 4002 4003 4004
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
4005 4006 4007 4008 4009 4010 4011 4012
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
4013

4014 4015 4016 4017 4018
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

4019
	prev_nr_hw_queues = set->nr_hw_queues;
4020 4021 4022 4023
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
4024
	set->nr_hw_queues = nr_hw_queues;
4025
fallback:
4026
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
4027 4028
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
4029 4030 4031 4032
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
4033
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4034 4035
			goto fallback;
		}
4036 4037 4038
		blk_mq_map_swqueue(q);
	}

4039
reregister:
4040 4041 4042
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
4043 4044
	}

4045 4046 4047 4048
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
4049 4050 4051
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
4052 4053 4054 4055 4056 4057 4058

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
4059 4060
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

4061 4062 4063 4064
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4065
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
4087
	int bucket;
4088

4089 4090 4091 4092
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
4093 4094
}

4095 4096 4097 4098
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
4099
	int bucket;
4100 4101 4102 4103 4104

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
4105
	if (!blk_poll_stats_enable(q))
4106 4107 4108 4109 4110 4111 4112 4113
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
4114 4115
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
4116
	 */
4117 4118 4119 4120 4121 4122
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
4123 4124 4125 4126

	return ret;
}

4127
static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4128
{
4129 4130
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
	struct request *rq = blk_qc_to_rq(hctx, qc);
4131 4132
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
4133
	unsigned int nsecs;
4134 4135
	ktime_t kt;

4136 4137 4138 4139 4140
	/*
	 * If a request has completed on queue that uses an I/O scheduler, we
	 * won't get back a request from blk_qc_to_rq.
	 */
	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4141 4142 4143
		return false;

	/*
4144
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4145 4146 4147 4148
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
4149
	if (q->poll_nsec > 0)
4150 4151
		nsecs = q->poll_nsec;
	else
4152
		nsecs = blk_mq_poll_nsecs(q, rq);
4153 4154

	if (!nsecs)
4155 4156
		return false;

J
Jens Axboe 已提交
4157
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4158 4159 4160 4161 4162

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
4163
	kt = nsecs;
4164 4165

	mode = HRTIMER_MODE_REL;
4166
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4167 4168 4169
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
4170
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4171 4172
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
4173
		hrtimer_sleeper_start_expires(&hs, mode);
4174 4175 4176 4177 4178 4179 4180 4181
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
4182 4183 4184 4185 4186 4187 4188 4189

	/*
	 * If we sleep, have the caller restart the poll loop to reset the
	 * state.  Like for the other success return cases, the caller is
	 * responsible for checking if the IO completed.  If the IO isn't
	 * complete, we'll get called again and will go straight to the busy
	 * poll loop.
	 */
4190 4191 4192
	return true;
}

4193
static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4194
		unsigned int flags)
J
Jens Axboe 已提交
4195
{
4196 4197 4198
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
	long state = get_current_state();
	int ret;
4199

4200
	hctx->poll_considered++;
4201

4202 4203
	do {
		hctx->poll_invoked++;
4204

4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
		ret = q->mq_ops->poll(hctx);
		if (ret > 0) {
			hctx->poll_success++;
			__set_current_state(TASK_RUNNING);
			return ret;
		}

		if (signal_pending_state(state, current))
			__set_current_state(TASK_RUNNING);
		if (task_is_running(current))
			return 1;

4217
		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4218 4219 4220 4221 4222 4223
			break;
		cpu_relax();
	} while (!need_resched());

	__set_current_state(TASK_RUNNING);
	return 0;
4224 4225
}

4226
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, unsigned int flags)
4227
{
4228 4229
	if (!(flags & BLK_POLL_NOSLEEP) &&
	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4230
		if (blk_mq_poll_hybrid(q, cookie))
4231
			return 1;
4232
	}
4233
	return blk_mq_poll_classic(q, cookie, flags);
J
Jens Axboe 已提交
4234 4235
}

J
Jens Axboe 已提交
4236 4237 4238 4239 4240 4241
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

4242 4243
static int __init blk_mq_init(void)
{
4244 4245 4246
	int i;

	for_each_possible_cpu(i)
4247
		init_llist_head(&per_cpu(blk_cpu_done, i));
4248 4249 4250 4251 4252
	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);

	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
				  "block/softirq:dead", NULL,
				  blk_softirq_cpu_dead);
4253 4254
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
4255 4256 4257
	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
				blk_mq_hctx_notify_online,
				blk_mq_hctx_notify_offline);
4258 4259 4260
	return 0;
}
subsys_initcall(blk_mq_init);