blk-mq.c 90.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/kmemleak.h>
14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
24
#include <linux/sched/topology.h>
25
#include <linux/sched/signal.h>
26
#include <linux/delay.h>
27
#include <linux/crash_dump.h>
28
#include <linux/prefetch.h>
29
#include <linux/blk-crypto.h>
30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
34
#include <linux/t10-pi.h>
35 36
#include "blk.h"
#include "blk-mq.h"
37
#include "blk-mq-debugfs.h"
38
#include "blk-mq-tag.h"
39
#include "blk-pm.h"
40
#include "blk-stat.h"
41
#include "blk-mq-sched.h"
42
#include "blk-rq-qos.h"
43

44 45 46
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

47 48
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
49
	int ddir, sectors, bucket;
50

J
Jens Axboe 已提交
51
	ddir = rq_data_dir(rq);
52
	sectors = blk_rq_stats_sectors(rq);
53

54
	bucket = ddir + 2 * ilog2(sectors);
55 56 57 58 59 60 61 62 63

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

64
/*
65 66
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
67
 */
68
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69
{
70 71
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
72
			blk_mq_sched_has_work(hctx);
73 74
}

75 76 77 78 79 80
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
81 82 83 84
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
85 86 87 88 89
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
90 91 92
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
93 94
}

95 96
struct mq_inflight {
	struct hd_struct *part;
97
	unsigned int inflight[2];
98 99
};

100
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
101 102 103 104 105
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

106
	if (rq->part == mi->part)
107
		mi->inflight[rq_data_dir(rq)]++;
108 109

	return true;
110 111
}

112
unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113
{
114
	struct mq_inflight mi = { .part = part };
115 116

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117

118
	return mi.inflight[0] + mi.inflight[1];
119 120 121 122 123
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
124
	struct mq_inflight mi = { .part = part };
125

126
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
127 128
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
129 130
}

131
void blk_freeze_queue_start(struct request_queue *q)
132
{
133 134
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
135
		percpu_ref_kill(&q->q_usage_counter);
136
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
137
		if (queue_is_mq(q))
138
			blk_mq_run_hw_queues(q, false);
139 140
	} else {
		mutex_unlock(&q->mq_freeze_lock);
141
	}
142
}
143
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
144

145
void blk_mq_freeze_queue_wait(struct request_queue *q)
146
{
147
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
148
}
149
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
150

151 152 153 154 155 156 157 158
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
159

160 161 162 163
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
164
void blk_freeze_queue(struct request_queue *q)
165
{
166 167 168 169 170 171 172
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
173
	blk_freeze_queue_start(q);
174 175
	blk_mq_freeze_queue_wait(q);
}
176 177 178 179 180 181 182 183 184

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
185
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
186

187
void blk_mq_unfreeze_queue(struct request_queue *q)
188
{
189 190 191 192
	mutex_lock(&q->mq_freeze_lock);
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
193
		percpu_ref_resurrect(&q->q_usage_counter);
194
		wake_up_all(&q->mq_freeze_wq);
195
	}
196
	mutex_unlock(&q->mq_freeze_lock);
197
}
198
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199

200 201 202 203 204 205
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
206
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
207 208 209
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

210
/**
211
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
212 213 214
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
215 216 217
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
218 219 220 221 222 223 224
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

225
	blk_mq_quiesce_queue_nowait(q);
226

227 228
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
229
			synchronize_srcu(hctx->srcu);
230 231 232 233 234 235 236 237
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

238 239 240 241 242 243 244 245 246
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
247
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
248

249 250
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
251 252 253
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

254 255 256 257 258 259 260 261 262 263
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

264
/*
265 266
 * Only need start/end time stamping if we have iostat or
 * blk stats enabled, or using an IO scheduler.
267 268 269
 */
static inline bool blk_mq_need_time_stamp(struct request *rq)
{
270
	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
271 272
}

273
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274
		unsigned int tag, u64 alloc_time_ns)
275
{
276 277
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
278
	req_flags_t rq_flags = 0;
279

280 281 282 283
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
284
		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
285
			rq_flags = RQF_MQ_INFLIGHT;
286 287 288 289 290 291 292
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

293
	/* csd/requeue_work/fifo_time is initialized before use */
294 295
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
296
	rq->mq_hctx = data->hctx;
297
	rq->rq_flags = rq_flags;
298
	rq->cmd_flags = data->cmd_flags;
299 300
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
301
	if (blk_queue_io_stat(data->q))
302
		rq->rq_flags |= RQF_IO_STAT;
303
	INIT_LIST_HEAD(&rq->queuelist);
304 305 306 307
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
308 309 310
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
311 312 313 314
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
315
	rq->io_start_time_ns = 0;
316
	rq->stats_sectors = 0;
317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
321
	blk_crypto_rq_set_defaults(rq);
322
	/* tag was already set */
323
	WRITE_ONCE(rq->deadline, 0);
324

325 326
	rq->timeout = 0;

327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;

330
	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
K
Keith Busch 已提交
331
	refcount_set(&rq->ref, 1);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

	if (!op_is_flush(data->cmd_flags)) {
		struct elevator_queue *e = data->q->elevator;

		rq->elv.icq = NULL;
		if (e && e->type->ops.prepare_request) {
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);

			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

	data->hctx->queued++;
347
	return rq;
348 349
}

350
static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
351
{
352
	struct request_queue *q = data->q;
353
	struct elevator_queue *e = q->elevator;
354
	unsigned int tag;
355
	bool clear_ctx_on_error = false;
356
	u64 alloc_time_ns = 0;
357

358 359 360 361
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

362 363
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
364
		clear_ctx_on_error = true;
365
	}
366
	if (likely(!data->hctx))
367
		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
368
						data->ctx);
369
	if (data->cmd_flags & REQ_NOWAIT)
370
		data->flags |= BLK_MQ_REQ_NOWAIT;
371 372 373 374 375 376

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
377 378
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
379
		 */
380 381
		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.limit_depth &&
382
		    !(data->flags & BLK_MQ_REQ_RESERVED))
383
			e->type->ops.limit_depth(data->cmd_flags, data);
384 385
	} else {
		blk_mq_tag_busy(data->hctx);
386 387
	}

388
	tag = blk_mq_get_tag(data);
389
	if (tag == BLK_MQ_NO_TAG) {
390
		if (clear_ctx_on_error)
391
			data->ctx = NULL;
392
		return NULL;
393 394
	}

395
	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
396 397
}

398
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
399
		blk_mq_req_flags_t flags)
400
{
401 402 403 404 405
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
	};
406
	struct request *rq;
407
	int ret;
408

409
	ret = blk_queue_enter(q, flags);
410 411
	if (ret)
		return ERR_PTR(ret);
412

413
	rq = __blk_mq_alloc_request(&data);
414
	if (!rq)
415
		goto out_queue_exit;
416 417 418
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
419
	return rq;
420 421 422
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
423
}
424
EXPORT_SYMBOL(blk_mq_alloc_request);
425

426
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
427
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
428
{
429 430 431 432 433
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
	};
M
Ming Lin 已提交
434
	struct request *rq;
435
	unsigned int cpu;
M
Ming Lin 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

450
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
451 452 453
	if (ret)
		return ERR_PTR(ret);

454 455 456 457
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
458
	ret = -EXDEV;
459 460
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
461
		goto out_queue_exit;
462 463
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
464

465
	ret = -EWOULDBLOCK;
466
	rq = __blk_mq_alloc_request(&data);
467
	if (!rq)
468
		goto out_queue_exit;
469
	return rq;
470 471 472
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
473 474 475
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
476 477 478 479
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
480
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
481 482
	const int sched_tag = rq->internal_tag;

483
	blk_crypto_free_request(rq);
484
	blk_pm_mark_last_busy(rq);
485
	rq->mq_hctx = NULL;
K
Keith Busch 已提交
486
	if (rq->tag != -1)
487
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
K
Keith Busch 已提交
488
	if (sched_tag != -1)
489
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
490 491 492 493
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

494
void blk_mq_free_request(struct request *rq)
495 496
{
	struct request_queue *q = rq->q;
497 498
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
499
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
500

501
	if (rq->rq_flags & RQF_ELVPRIV) {
502 503
		if (e && e->type->ops.finish_request)
			e->type->ops.finish_request(rq);
504 505 506 507 508
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
509

510
	ctx->rq_completed[rq_is_sync(rq)]++;
511
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
512
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
513

514 515 516
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

517
	rq_qos_done(q, rq);
518

K
Keith Busch 已提交
519 520 521
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
522
}
J
Jens Axboe 已提交
523
EXPORT_SYMBOL_GPL(blk_mq_free_request);
524

525
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
526
{
527 528 529 530
	u64 now = 0;

	if (blk_mq_need_time_stamp(rq))
		now = ktime_get_ns();
531

532 533
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
534
		blk_stat_add(rq, now);
535 536
	}

537 538 539
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq, now);

540
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
541

C
Christoph Hellwig 已提交
542
	if (rq->end_io) {
543
		rq_qos_done(rq->q, rq);
544
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
545
	} else {
546
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
547
	}
548
}
549
EXPORT_SYMBOL(__blk_mq_end_request);
550

551
void blk_mq_end_request(struct request *rq, blk_status_t error)
552 553 554
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
555
	__blk_mq_end_request(rq, error);
556
}
557
EXPORT_SYMBOL(blk_mq_end_request);
558

559
static void __blk_mq_complete_request_remote(void *data)
560
{
561
	struct request *rq = data;
562
	struct request_queue *q = rq->q;
563

564
	q->mq_ops->complete(rq);
565 566
}

567 568 569 570 571 572 573 574 575 576 577
/**
 * blk_mq_force_complete_rq() - Force complete the request, bypassing any error
 * 				injection that could drop the completion.
 * @rq: Request to be force completed
 *
 * Drivers should use blk_mq_complete_request() to complete requests in their
 * normal IO path. For timeout error recovery, drivers may call this forced
 * completion routine after they've reclaimed timed out requests to bypass
 * potentially subsequent fake timeouts.
 */
void blk_mq_force_complete_rq(struct request *rq)
578 579
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
580
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
581
	bool shared = false;
582 583
	int cpu;

584
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
585 586 587 588 589 590 591 592 593
	/*
	 * Most of single queue controllers, there is only one irq vector
	 * for handling IO completion, and the only irq's affinity is set
	 * as all possible CPUs. On most of ARCHs, this affinity means the
	 * irq is handled on one specific CPU.
	 *
	 * So complete IO reqeust in softirq context in case of single queue
	 * for not degrading IO performance by irqsoff latency.
	 */
594
	if (q->nr_hw_queues == 1) {
595 596 597 598
		__blk_complete_request(rq);
		return;
	}

599 600 601 602 603 604
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
	if ((rq->cmd_flags & REQ_HIPRI) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
605
		q->mq_ops->complete(rq);
606 607
		return;
	}
608 609

	cpu = get_cpu();
610
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
C
Christoph Hellwig 已提交
611 612 613
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
614
		rq->csd.func = __blk_mq_complete_request_remote;
615 616
		rq->csd.info = rq;
		rq->csd.flags = 0;
617
		smp_call_function_single_async(ctx->cpu, &rq->csd);
618
	} else {
619
		q->mq_ops->complete(rq);
620
	}
621 622
	put_cpu();
}
623
EXPORT_SYMBOL_GPL(blk_mq_force_complete_rq);
624

625
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
626
	__releases(hctx->srcu)
627 628 629 630
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
631
		srcu_read_unlock(hctx->srcu, srcu_idx);
632 633 634
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
635
	__acquires(hctx->srcu)
636
{
637 638 639
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
640
		rcu_read_lock();
641
	} else
642
		*srcu_idx = srcu_read_lock(hctx->srcu);
643 644
}

645 646 647 648 649 650 651 652
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
653
bool blk_mq_complete_request(struct request *rq)
654
{
K
Keith Busch 已提交
655
	if (unlikely(blk_should_fake_timeout(rq->q)))
656
		return false;
657
	blk_mq_force_complete_rq(rq);
658
	return true;
659 660
}
EXPORT_SYMBOL(blk_mq_complete_request);
661

662 663 664 665 666 667 668 669
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
670
void blk_mq_start_request(struct request *rq)
671 672 673 674 675
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

676
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
677
		rq->io_start_time_ns = ktime_get_ns();
678
		rq->stats_sectors = blk_rq_sectors(rq);
679
		rq->rq_flags |= RQF_STATS;
680
		rq_qos_issue(q, rq);
681 682
	}

683
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684

685
	blk_add_timer(rq);
K
Keith Busch 已提交
686
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687

688 689 690 691
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
692
}
693
EXPORT_SYMBOL(blk_mq_start_request);
694

695
static void __blk_mq_requeue_request(struct request *rq)
696 697 698
{
	struct request_queue *q = rq->q;

699 700
	blk_mq_put_driver_tag(rq);

701
	trace_block_rq_requeue(q, rq);
702
	rq_qos_requeue(q, rq);
703

K
Keith Busch 已提交
704 705
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
706
		rq->rq_flags &= ~RQF_TIMED_OUT;
707
	}
708 709
}

710
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
711 712 713
{
	__blk_mq_requeue_request(rq);

714 715 716
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
717
	BUG_ON(!list_empty(&rq->queuelist));
718
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
719 720 721
}
EXPORT_SYMBOL(blk_mq_requeue_request);

722 723 724
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
725
		container_of(work, struct request_queue, requeue_work.work);
726 727 728
	LIST_HEAD(rq_list);
	struct request *rq, *next;

729
	spin_lock_irq(&q->requeue_lock);
730
	list_splice_init(&q->requeue_list, &rq_list);
731
	spin_unlock_irq(&q->requeue_lock);
732 733

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
734
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
735 736
			continue;

737
		rq->rq_flags &= ~RQF_SOFTBARRIER;
738
		list_del_init(&rq->queuelist);
739 740 741 742 743 744
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
745
			blk_mq_request_bypass_insert(rq, false, false);
746 747
		else
			blk_mq_sched_insert_request(rq, true, false, false);
748 749 750 751 752
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
753
		blk_mq_sched_insert_request(rq, false, false, false);
754 755
	}

756
	blk_mq_run_hw_queues(q, false);
757 758
}

759 760
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
761 762 763 764 765 766
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
767
	 * request head insertion from the workqueue.
768
	 */
769
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
770 771 772

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
773
		rq->rq_flags |= RQF_SOFTBARRIER;
774 775 776 777 778
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
779 780 781

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
782 783 784 785
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
786
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
787 788 789
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

790 791 792
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
793 794
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
795 796 797
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

798 799
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
800 801
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
802
		return tags->rqs[tag];
803
	}
804 805

	return NULL;
806 807 808
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

809 810
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
811 812
{
	/*
813 814
	 * If we find a request that is inflight and the queue matches,
	 * we know the queue is busy. Return false to stop the iteration.
815
	 */
816
	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
817 818 819 820 821 822 823 824 825
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

826
bool blk_mq_queue_inflight(struct request_queue *q)
827 828 829
{
	bool busy = false;

830
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
831 832
	return busy;
}
833
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
834

835
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
836
{
837
	req->rq_flags |= RQF_TIMED_OUT;
838 839 840 841 842 843 844
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
845
	}
846 847

	blk_add_timer(req);
848
}
849

K
Keith Busch 已提交
850
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
851
{
K
Keith Busch 已提交
852
	unsigned long deadline;
853

K
Keith Busch 已提交
854 855
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
856 857
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
858

859
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
860 861
	if (time_after_eq(jiffies, deadline))
		return true;
862

K
Keith Busch 已提交
863 864 865 866 867
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
868 869
}

870
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
871 872
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
873 874 875 876 877 878 879
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
880
		return true;
K
Keith Busch 已提交
881 882 883 884 885 886 887 888 889 890 891

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
892
		return true;
K
Keith Busch 已提交
893

894
	/*
K
Keith Busch 已提交
895 896 897 898
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
899
	 */
K
Keith Busch 已提交
900
	if (blk_mq_req_expired(rq, next))
901
		blk_mq_rq_timed_out(rq, reserved);
902 903 904 905

	if (is_flush_rq(rq, hctx))
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
K
Keith Busch 已提交
906
		__blk_mq_free_request(rq);
907 908

	return true;
909 910
}

911
static void blk_mq_timeout_work(struct work_struct *work)
912
{
913 914
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
915
	unsigned long next = 0;
916
	struct blk_mq_hw_ctx *hctx;
917
	int i;
918

919 920 921 922 923 924 925 926 927
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
928
	 * blk_freeze_queue_start, and the moment the last request is
929 930 931 932
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
933 934
		return;

K
Keith Busch 已提交
935
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
936

K
Keith Busch 已提交
937 938
	if (next != 0) {
		mod_timer(&q->timeout, next);
939
	} else {
940 941 942 943 944 945
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
946 947 948 949 950
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
951
	}
952
	blk_queue_exit(q);
953 954
}

955 956 957 958 959 960 961 962 963 964
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
965
	enum hctx_type type = hctx->type;
966 967

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
968
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
969
	sbitmap_clear_bit(sb, bitnr);
970 971 972 973
	spin_unlock(&ctx->lock);
	return true;
}

974 975 976 977
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
978
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
979
{
980 981 982 983
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
984

985
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
986
}
987
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
988

989 990 991 992 993 994 995 996 997 998 999
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1000
	enum hctx_type type = hctx->type;
1001 1002

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1003 1004
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1005
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1006
		if (list_empty(&ctx->rq_lists[type]))
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1017
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1029 1030 1031 1032
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1033

1034
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1035 1036
}

1037
bool blk_mq_get_driver_tag(struct request *rq)
1038 1039 1040
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
1041
		.hctx = rq->mq_hctx,
1042
		.flags = BLK_MQ_REQ_NOWAIT,
1043
		.cmd_flags = rq->cmd_flags,
1044
	};
1045
	bool shared;
1046

1047
	if (rq->tag != -1)
1048
		return true;
1049

1050 1051 1052
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1053
	shared = blk_mq_tag_busy(data.hctx);
1054 1055
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1056
		if (shared) {
1057 1058 1059
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1060 1061 1062
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1063
	return rq->tag != -1;
1064 1065
}

1066 1067
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1068 1069 1070 1071 1072
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1073
	spin_lock(&hctx->dispatch_wait_lock);
1074 1075 1076 1077 1078 1079 1080
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
		sbq = &hctx->tags->bitmap_tags;
		atomic_dec(&sbq->ws_active);
	}
1081 1082
	spin_unlock(&hctx->dispatch_wait_lock);

1083 1084 1085 1086
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1087 1088
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1089 1090
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1091 1092
 * marking us as waiting.
 */
1093
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1094
				 struct request *rq)
1095
{
1096
	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1097
	struct wait_queue_head *wq;
1098 1099
	wait_queue_entry_t *wait;
	bool ret;
1100

1101
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1102
		blk_mq_sched_mark_restart_hctx(hctx);
1103

1104 1105 1106 1107 1108 1109 1110 1111
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1112
		return blk_mq_get_driver_tag(rq);
1113 1114
	}

1115
	wait = &hctx->dispatch_wait;
1116 1117 1118
	if (!list_empty_careful(&wait->entry))
		return false;

1119
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1120 1121 1122

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1123
	if (!list_empty(&wait->entry)) {
1124 1125
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1126
		return false;
1127 1128
	}

1129
	atomic_inc(&sbq->ws_active);
1130 1131
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1132

1133
	/*
1134 1135 1136
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1137
	 */
1138
	ret = blk_mq_get_driver_tag(rq);
1139
	if (!ret) {
1140 1141
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1142
		return false;
1143
	}
1144 1145 1146 1147 1148 1149

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1150
	atomic_dec(&sbq->ws_active);
1151 1152
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1153 1154

	return true;
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1186 1187
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1218 1219 1220
/*
 * Returns true if we did some work AND can potentially do more.
 */
1221
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1222
			     bool got_budget)
1223
{
1224
	struct blk_mq_hw_ctx *hctx;
1225
	struct request *rq, *nxt;
1226
	bool no_tag = false;
1227
	int errors, queued;
1228
	blk_status_t ret = BLK_STS_OK;
1229
	bool no_budget_avail = false;
1230
	LIST_HEAD(zone_list);
1231

1232 1233 1234
	if (list_empty(list))
		return false;

1235 1236
	WARN_ON(!list_is_singular(list) && got_budget);

1237 1238 1239
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1240
	errors = queued = 0;
1241
	do {
1242
		struct blk_mq_queue_data bd;
1243

1244
		rq = list_first_entry(list, struct request, queuelist);
1245

1246
		hctx = rq->mq_hctx;
1247 1248
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1249
			no_budget_avail = true;
1250
			break;
1251
		}
1252

1253
		if (!blk_mq_get_driver_tag(rq)) {
1254
			/*
1255
			 * The initial allocation attempt failed, so we need to
1256 1257 1258 1259
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1260
			 */
1261
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1262
				blk_mq_put_dispatch_budget(hctx);
1263 1264 1265 1266 1267 1268
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1269 1270 1271 1272
				break;
			}
		}

1273 1274
		list_del_init(&rq->queuelist);

1275
		bd.rq = rq;
1276 1277 1278 1279 1280 1281 1282 1283 1284

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1285
			bd.last = !blk_mq_get_driver_tag(nxt);
1286
		}
1287 1288

		ret = q->mq_ops->queue_rq(hctx, &bd);
1289
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1290
			blk_mq_handle_dev_resource(rq, list);
1291
			break;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		} else if (ret == BLK_STS_ZONE_RESOURCE) {
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
			if (list_empty(list))
				break;
			continue;
1302 1303 1304
		}

		if (unlikely(ret != BLK_STS_OK)) {
1305
			errors++;
1306
			blk_mq_end_request(rq, BLK_STS_IOERR);
1307
			continue;
1308 1309
		}

1310
		queued++;
1311
	} while (!list_empty(list));
1312

1313 1314 1315
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1316
	hctx->dispatched[queued_to_index(queued)]++;
1317 1318 1319 1320 1321

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1322
	if (!list_empty(list)) {
1323 1324
		bool needs_restart;

J
Jens Axboe 已提交
1325 1326 1327 1328 1329
		/*
		 * If we didn't flush the entire list, we could have told
		 * the driver there was more coming, but that turned out to
		 * be a lie.
		 */
1330
		if (q->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
1331 1332
			q->mq_ops->commit_rqs(hctx);

1333
		spin_lock(&hctx->lock);
1334
		list_splice_tail_init(list, &hctx->dispatch);
1335
		spin_unlock(&hctx->lock);
1336

1337
		/*
1338 1339 1340
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1341
		 *
1342 1343 1344 1345
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1346
		 *
1347 1348 1349 1350 1351 1352 1353
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1354
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1355
		 *   and dm-rq.
1356 1357 1358
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1359 1360
		 * that could otherwise occur if the queue is idle.  We'll do
		 * similar if we couldn't get budget and SCHED_RESTART is set.
1361
		 */
1362 1363
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1364
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1365
			blk_mq_run_hw_queue(hctx, true);
1366 1367
		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
					   no_budget_avail))
1368
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1369

1370
		blk_mq_update_dispatch_busy(hctx, true);
1371
		return false;
1372 1373
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1374

1375 1376 1377 1378 1379 1380 1381
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1382
	return (queued + errors) != 0;
1383 1384
}

1385 1386 1387 1388 1389 1390
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1391 1392 1393 1394
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1395 1396 1397
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1411
	 */
1412 1413 1414 1415 1416 1417 1418
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1419

1420 1421 1422 1423 1424 1425
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1426
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1427

1428 1429 1430
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1431 1432
}

1433 1434 1435 1436 1437 1438 1439 1440 1441
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1442 1443 1444 1445 1446 1447 1448 1449
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1450
	bool tried = false;
1451
	int next_cpu = hctx->next_cpu;
1452

1453 1454
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1455 1456

	if (--hctx->next_cpu_batch <= 0) {
1457
select_cpu:
1458
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1459
				cpu_online_mask);
1460
		if (next_cpu >= nr_cpu_ids)
1461
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1462 1463 1464
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1465 1466 1467 1468
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1469
	if (!cpu_online(next_cpu)) {
1470 1471 1472 1473 1474 1475 1476 1477 1478
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1479
		hctx->next_cpu = next_cpu;
1480 1481 1482
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1483 1484 1485

	hctx->next_cpu = next_cpu;
	return next_cpu;
1486 1487
}

1488 1489 1490 1491 1492 1493 1494 1495 1496
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 * @msecs: Microseconds of delay to wait before running the queue.
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1497 1498
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1499
{
1500
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1501 1502
		return;

1503
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1504 1505
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1506
			__blk_mq_run_hw_queue(hctx);
1507
			put_cpu();
1508 1509
			return;
		}
1510

1511
		put_cpu();
1512
	}
1513

1514 1515
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1516 1517
}

1518 1519 1520 1521 1522 1523 1524
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
 * @msecs: Microseconds of delay to wait before running the queue.
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
1525 1526 1527 1528 1529 1530
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1531 1532 1533 1534 1535 1536 1537 1538 1539
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
1540
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1541
{
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1553 1554 1555 1556
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1557

1558
	if (need_run)
1559
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1560
}
O
Omar Sandoval 已提交
1561
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1562

1563 1564 1565 1566 1567
/**
 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
1568
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1569 1570 1571 1572 1573
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1574
		if (blk_mq_hctx_stopped(hctx))
1575 1576
			continue;

1577
		blk_mq_run_hw_queue(hctx, async);
1578 1579
	}
}
1580
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
 * @msecs: Microseconds of delay to wait before running the queues.
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;

		blk_mq_delay_run_hw_queue(hctx, msecs);
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1621 1622 1623
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1624
 * BLK_STS_RESOURCE is usually returned.
1625 1626 1627 1628 1629
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1630 1631
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1632
	cancel_delayed_work(&hctx->run_work);
1633

1634
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1635
}
1636
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1637

1638 1639 1640
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1641
 * BLK_STS_RESOURCE is usually returned.
1642 1643 1644 1645 1646
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1647 1648
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1649 1650 1651 1652 1653
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1654 1655 1656
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1657 1658 1659
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1660

1661
	blk_mq_run_hw_queue(hctx, false);
1662 1663 1664
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1685
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1686 1687 1688 1689
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1690 1691
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1692 1693 1694
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1695
static void blk_mq_run_work_fn(struct work_struct *work)
1696 1697 1698
{
	struct blk_mq_hw_ctx *hctx;

1699
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1700

1701
	/*
M
Ming Lei 已提交
1702
	 * If we are stopped, don't run the queue.
1703
	 */
M
Ming Lei 已提交
1704
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1705
		return;
1706 1707 1708 1709

	__blk_mq_run_hw_queue(hctx);
}

1710 1711 1712
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1713
{
J
Jens Axboe 已提交
1714
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
1715
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
1716

1717 1718
	lockdep_assert_held(&ctx->lock);

1719 1720
	trace_block_rq_insert(hctx->queue, rq);

1721
	if (at_head)
M
Ming Lei 已提交
1722
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1723
	else
M
Ming Lei 已提交
1724
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1725
}
1726

1727 1728
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1729 1730 1731
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1732 1733
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1734
	__blk_mq_insert_req_list(hctx, rq, at_head);
1735 1736 1737
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1738 1739 1740 1741 1742
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
1743 1744 1745
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1746 1747
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
1748
{
1749
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1750 1751

	spin_lock(&hctx->lock);
1752 1753 1754 1755
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
1756 1757
	spin_unlock(&hctx->lock);

1758 1759
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1760 1761
}

1762 1763
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1764 1765

{
1766
	struct request *rq;
M
Ming Lei 已提交
1767
	enum hctx_type type = hctx->type;
1768

1769 1770 1771 1772
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1773
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1774
		BUG_ON(rq->mq_ctx != ctx);
1775
		trace_block_rq_insert(hctx->queue, rq);
1776
	}
1777 1778

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1779
	list_splice_tail_init(list, &ctx->rq_lists[type]);
1780
	blk_mq_hctx_mark_pending(hctx, ctx);
1781 1782 1783
	spin_unlock(&ctx->lock);
}

J
Jens Axboe 已提交
1784
static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1785 1786 1787 1788
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

P
Pavel Begunkov 已提交
1789 1790 1791 1792
	if (rqa->mq_ctx != rqb->mq_ctx)
		return rqa->mq_ctx > rqb->mq_ctx;
	if (rqa->mq_hctx != rqb->mq_hctx)
		return rqa->mq_hctx > rqb->mq_hctx;
J
Jens Axboe 已提交
1793 1794

	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1795 1796 1797 1798 1799 1800
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(list);

1801 1802
	if (list_empty(&plug->mq_list))
		return;
1803 1804
	list_splice_init(&plug->mq_list, &list);

1805 1806
	if (plug->rq_count > 2 && plug->multiple_queues)
		list_sort(NULL, &list, plug_rq_cmp);
1807

1808 1809
	plug->rq_count = 0;

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	do {
		struct list_head rq_list;
		struct request *rq, *head_rq = list_entry_rq(list.next);
		struct list_head *pos = &head_rq->queuelist; /* skip first */
		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
		unsigned int depth = 1;

		list_for_each_continue(pos, &list) {
			rq = list_entry_rq(pos);
			BUG_ON(!rq->q);
			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
				break;
			depth++;
1824 1825
		}

1826 1827
		list_cut_before(&rq_list, &list, pos);
		trace_block_unplug(head_rq->q, depth, !from_schedule);
1828
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1829
						from_schedule);
1830
	} while(!list_empty(&list));
1831 1832
}

1833 1834
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
1835
{
1836 1837 1838 1839 1840
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
1841
	blk_rq_bio_prep(rq, bio, nr_segs);
1842
	blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1843

1844
	blk_account_io_start(rq);
1845 1846
}

1847 1848
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
1849
					    blk_qc_t *cookie, bool last)
1850 1851 1852 1853
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1854
		.last = last,
1855
	};
1856
	blk_qc_t new_cookie;
1857
	blk_status_t ret;
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1869
		blk_mq_update_dispatch_busy(hctx, false);
1870 1871 1872
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1873
	case BLK_STS_DEV_RESOURCE:
1874
		blk_mq_update_dispatch_busy(hctx, true);
1875 1876 1877
		__blk_mq_requeue_request(rq);
		break;
	default:
1878
		blk_mq_update_dispatch_busy(hctx, false);
1879 1880 1881 1882 1883 1884 1885
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

1886
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1887
						struct request *rq,
1888
						blk_qc_t *cookie,
1889
						bool bypass_insert, bool last)
1890 1891
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1892 1893
	bool run_queue = true;

1894
	/*
1895
	 * RCU or SRCU read lock is needed before checking quiesced flag.
1896
	 *
1897 1898 1899
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
1900
	 */
1901
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1902
		run_queue = false;
1903 1904
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
1905
	}
1906

1907 1908
	if (q->elevator && !bypass_insert)
		goto insert;
1909

1910
	if (!blk_mq_get_dispatch_budget(hctx))
1911
		goto insert;
1912

1913
	if (!blk_mq_get_driver_tag(rq)) {
1914
		blk_mq_put_dispatch_budget(hctx);
1915
		goto insert;
1916
	}
1917

1918 1919 1920 1921 1922
	return __blk_mq_issue_directly(hctx, rq, cookie, last);
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

1923
	blk_mq_request_bypass_insert(rq, false, run_queue);
1924 1925 1926
	return BLK_STS_OK;
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 * @cookie: Request queue cookie.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1950
		blk_mq_request_bypass_insert(rq, false, true);
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1966
	hctx_unlock(hctx, srcu_idx);
1967 1968

	return ret;
1969 1970
}

1971 1972 1973
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
1974 1975
	int queued = 0;

1976
	while (!list_empty(list)) {
1977
		blk_status_t ret;
1978 1979 1980 1981
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
1982 1983 1984 1985
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
1986
				blk_mq_request_bypass_insert(rq, false,
1987
							list_empty(list));
1988 1989 1990
				break;
			}
			blk_mq_end_request(rq, ret);
1991 1992
		} else
			queued++;
1993
	}
J
Jens Axboe 已提交
1994 1995 1996 1997 1998 1999

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2000
	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2001
		hctx->queue->mq_ops->commit_rqs(hctx);
2002 2003
}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	plug->rq_count++;
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
/**
 * blk_mq_make_request - Create and send a request to block device.
 * @q: Request queue pointer.
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 *
 * Returns: Request queue cookie.
 */
2034
blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
2035
{
2036
	const int is_sync = op_is_sync(bio->bi_opf);
2037
	const int is_flush_fua = op_is_flush(bio->bi_opf);
2038 2039 2040
	struct blk_mq_alloc_data data = {
		.q		= q,
	};
2041
	struct request *rq;
2042
	struct blk_plug *plug;
2043
	struct request *same_queue_rq = NULL;
2044
	unsigned int nr_segs;
2045
	blk_qc_t cookie;
2046
	blk_status_t ret;
2047 2048

	blk_queue_bounce(q, &bio);
2049
	__blk_queue_split(q, &bio, &nr_segs);
2050

2051
	if (!bio_integrity_prep(bio))
2052
		goto queue_exit;
2053

2054
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2055
	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2056
		goto queue_exit;
2057

2058
	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2059
		goto queue_exit;
2060

2061
	rq_qos_throttle(q, bio);
J
Jens Axboe 已提交
2062

2063
	data.cmd_flags = bio->bi_opf;
2064
	rq = __blk_mq_alloc_request(&data);
J
Jens Axboe 已提交
2065
	if (unlikely(!rq)) {
2066
		rq_qos_cleanup(q, bio);
J
Jens Axboe 已提交
2067
		if (bio->bi_opf & REQ_NOWAIT)
2068
			bio_wouldblock_error(bio);
2069
		goto queue_exit;
J
Jens Axboe 已提交
2070 2071
	}

2072 2073
	trace_block_getrq(q, bio, bio->bi_opf);

2074
	rq_qos_track(q, rq, bio);
2075

2076
	cookie = request_to_qc_t(data.hctx, rq);
2077

2078 2079
	blk_mq_bio_to_request(rq, bio, nr_segs);

2080 2081 2082 2083 2084 2085 2086 2087
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
		return BLK_QC_T_NONE;
	}

2088
	plug = blk_mq_plug(q, bio);
2089
	if (unlikely(is_flush_fua)) {
2090
		/* Bypass scheduler for flush requests */
2091 2092
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
M
Ming Lei 已提交
2093 2094
	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
				!blk_queue_nonrot(q))) {
2095 2096 2097
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
M
Ming Lei 已提交
2098 2099 2100
		 *
		 * Use normal plugging if this disk is slow HDD, as sequential
		 * IO may benefit a lot from plug merging.
2101
		 */
2102
		unsigned int request_count = plug->rq_count;
2103 2104
		struct request *last = NULL;

M
Ming Lei 已提交
2105
		if (!request_count)
2106
			trace_block_plug(q);
2107 2108
		else
			last = list_entry_rq(plug->mq_list.prev);
2109

2110 2111
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2112 2113
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
2114
		}
2115

2116
		blk_add_rq_to_plug(plug, rq);
2117
	} else if (q->elevator) {
2118
		/* Insert the request at the IO scheduler queue */
2119
		blk_mq_sched_insert_request(rq, false, true, true);
2120
	} else if (plug && !blk_queue_nomerges(q)) {
2121
		/*
2122
		 * We do limited plugging. If the bio can be merged, do that.
2123 2124
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
2125 2126
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
2127
		 */
2128 2129
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
2130
		if (same_queue_rq) {
2131
			list_del_init(&same_queue_rq->queuelist);
2132 2133
			plug->rq_count--;
		}
2134
		blk_add_rq_to_plug(plug, rq);
2135
		trace_block_plug(q);
2136

2137
		if (same_queue_rq) {
2138
			data.hctx = same_queue_rq->mq_hctx;
2139
			trace_block_unplug(q, 1, true);
2140
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2141
					&cookie);
2142
		}
2143 2144
	} else if ((q->nr_hw_queues > 1 && is_sync) ||
			!data.hctx->dispatch_busy) {
2145 2146 2147 2148
		/*
		 * There is no scheduler and we can try to send directly
		 * to the hardware.
		 */
2149
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2150
	} else {
2151
		/* Default case. */
2152
		blk_mq_sched_insert_request(rq, false, true, true);
2153
	}
2154

2155
	return cookie;
2156 2157 2158
queue_exit:
	blk_queue_exit(q);
	return BLK_QC_T_NONE;
2159
}
2160
EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
2161

2162 2163
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2164
{
2165
	struct page *page;
2166

2167
	if (tags->rqs && set->ops->exit_request) {
2168
		int i;
2169

2170
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2171 2172 2173
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2174
				continue;
2175
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2176
			tags->static_rqs[i] = NULL;
2177
		}
2178 2179
	}

2180 2181
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2182
		list_del_init(&page->lru);
2183 2184
		/*
		 * Remove kmemleak object previously allocated in
2185
		 * blk_mq_alloc_rqs().
2186 2187
		 */
		kmemleak_free(page_address(page));
2188 2189
		__free_pages(page, page->private);
	}
2190
}
2191

2192 2193
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2194
	kfree(tags->rqs);
2195
	tags->rqs = NULL;
J
Jens Axboe 已提交
2196 2197
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2198

2199
	blk_mq_free_tags(tags);
2200 2201
}

2202 2203 2204 2205
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2206
{
2207
	struct blk_mq_tags *tags;
2208
	int node;
2209

2210
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2211 2212 2213 2214
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2215
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2216 2217
	if (!tags)
		return NULL;
2218

2219
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2220
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2221
				 node);
2222 2223 2224 2225
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2226

2227 2228 2229
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2230 2231 2232 2233 2234 2235
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2236 2237 2238 2239 2240 2241 2242 2243
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2255
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2256 2257 2258
	return 0;
}

2259 2260 2261 2262 2263
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2264 2265
	int node;

2266
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2267 2268
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2269 2270 2271

	INIT_LIST_HEAD(&tags->page_list);

2272 2273 2274 2275
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2276
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2277
				cache_line_size());
2278
	left = rq_size * depth;
2279

2280
	for (i = 0; i < depth; ) {
2281 2282 2283 2284 2285
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2286
		while (this_order && left < order_to_size(this_order - 1))
2287 2288 2289
			this_order--;

		do {
2290
			page = alloc_pages_node(node,
2291
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2292
				this_order);
2293 2294 2295 2296 2297 2298 2299 2300 2301
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2302
			goto fail;
2303 2304

		page->private = this_order;
2305
		list_add_tail(&page->lru, &tags->page_list);
2306 2307

		p = page_address(page);
2308 2309 2310 2311
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2312
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2313
		entries_per_page = order_to_size(this_order) / rq_size;
2314
		to_do = min(entries_per_page, depth - i);
2315 2316
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2317 2318 2319
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2320 2321 2322
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2323 2324
			}

2325 2326 2327 2328
			p += rq_size;
			i++;
		}
	}
2329
	return 0;
2330

2331
fail:
2332 2333
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2334 2335
}

J
Jens Axboe 已提交
2336 2337 2338 2339 2340
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2341
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2342
{
2343
	struct blk_mq_hw_ctx *hctx;
2344 2345
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
2346
	enum hctx_type type;
2347

2348
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2349
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
2350
	type = hctx->type;
2351 2352

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2353 2354
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
2355 2356 2357 2358 2359
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2360
		return 0;
2361

J
Jens Axboe 已提交
2362 2363 2364
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2365 2366

	blk_mq_run_hw_queue(hctx, true);
2367
	return 0;
2368 2369
}

2370
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2371
{
2372 2373
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2374 2375
}

2376
/* hctx->ctxs will be freed in queue's release handler */
2377 2378 2379 2380
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2381 2382
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2383

2384
	if (set->ops->exit_request)
2385
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2386

2387 2388 2389
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2390
	blk_mq_remove_cpuhp(hctx);
2391 2392 2393 2394

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
2395 2396
}

M
Ming Lei 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2406
		blk_mq_debugfs_unregister_hctx(hctx);
2407
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2408 2409 2410
	}
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2425 2426 2427
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2428
{
2429 2430 2431 2432 2433 2434 2435 2436 2437
	hctx->queue_num = hctx_idx;

	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
2438

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
2467
	if (node == NUMA_NO_NODE)
2468 2469
		node = set->numa_node;
	hctx->numa_node = node;
2470

2471
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2472 2473 2474
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2475
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2476

2477 2478
	INIT_LIST_HEAD(&hctx->hctx_list);

2479
	/*
2480 2481
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2482
	 */
2483
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2484
			gfp, node);
2485
	if (!hctx->ctxs)
2486
		goto free_cpumask;
2487

2488
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2489
				gfp, node))
2490 2491
		goto free_ctxs;
	hctx->nr_ctx = 0;
2492

2493
	spin_lock_init(&hctx->dispatch_wait_lock);
2494 2495 2496
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2497
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2498
	if (!hctx->fq)
2499
		goto free_bitmap;
2500

2501
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2502
		init_srcu_struct(hctx->srcu);
2503
	blk_mq_hctx_kobj_init(hctx);
2504

2505
	return hctx;
2506

2507
 free_bitmap:
2508
	sbitmap_free(&hctx->ctx_map);
2509 2510
 free_ctxs:
	kfree(hctx->ctxs);
2511 2512 2513 2514 2515 2516
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
2517
}
2518 2519 2520 2521

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
2522 2523
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
2524 2525 2526 2527

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
2528
		int k;
2529 2530 2531

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
2532 2533 2534
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

2535 2536 2537 2538 2539 2540
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
2541 2542 2543 2544 2545
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
				hctx->numa_node = local_memory_node(cpu_to_node(i));
		}
2546 2547 2548
	}
}

2549 2550
static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
					int hctx_idx)
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2572
	if (set->tags && set->tags[hctx_idx]) {
2573 2574 2575 2576
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2577 2578
}

2579
static void blk_mq_map_swqueue(struct request_queue *q)
2580
{
J
Jens Axboe 已提交
2581
	unsigned int i, j, hctx_idx;
2582 2583
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2584
	struct blk_mq_tag_set *set = q->tag_set;
2585 2586

	queue_for_each_hw_ctx(q, hctx, i) {
2587
		cpumask_clear(hctx->cpumask);
2588
		hctx->nr_ctx = 0;
2589
		hctx->dispatch_from = NULL;
2590 2591 2592
	}

	/*
2593
	 * Map software to hardware queues.
2594 2595
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2596
	 */
2597
	for_each_possible_cpu(i) {
2598

2599
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
2600
		for (j = 0; j < set->nr_maps; j++) {
2601 2602 2603
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
2604
				continue;
2605
			}
2606 2607 2608
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
2609
			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2610 2611 2612 2613 2614 2615 2616 2617
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
2618

J
Jens Axboe 已提交
2619
			hctx = blk_mq_map_queue_type(q, j, i);
2620
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
2640 2641 2642 2643

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
2644
	}
2645 2646

	queue_for_each_hw_ctx(q, hctx, i) {
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2662

M
Ming Lei 已提交
2663 2664 2665
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2666 2667 2668 2669 2670
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2671
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2672

2673 2674 2675
		/*
		 * Initialize batch roundrobin counts
		 */
2676
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2677 2678
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2679 2680
}

2681 2682 2683 2684
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2685
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2686 2687 2688 2689
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2690
	queue_for_each_hw_ctx(q, hctx, i) {
2691
		if (shared)
2692
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2693
		else
2694 2695 2696 2697
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2698 2699
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2700 2701
{
	struct request_queue *q;
2702

2703 2704
	lockdep_assert_held(&set->tag_list_lock);

2705 2706
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2707
		queue_set_hctx_shared(q, shared);
2708 2709 2710 2711 2712 2713 2714 2715 2716
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2717
	list_del_rcu(&q->tag_set_list);
2718 2719 2720 2721 2722 2723
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2724
	mutex_unlock(&set->tag_list_lock);
2725
	INIT_LIST_HEAD(&q->tag_set_list);
2726 2727 2728 2729 2730 2731
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
2732

2733 2734 2735 2736 2737
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2738 2739 2740 2741 2742 2743
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2744
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2745

2746 2747 2748
	mutex_unlock(&set->tag_list_lock);
}

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

2777 2778 2779 2780 2781 2782 2783 2784
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
2785 2786
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
2787

2788 2789 2790 2791 2792 2793
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
2794
		kobject_put(&hctx->kobj);
2795
	}
2796 2797 2798

	kfree(q->queue_hw_ctx);

2799 2800 2801 2802 2803
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
2804 2805
}

2806 2807
struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
		void *queuedata)
2808 2809 2810
{
	struct request_queue *uninit_q, *q;

2811
	uninit_q = __blk_alloc_queue(set->numa_node);
2812 2813
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);
2814
	uninit_q->queuedata = queuedata;
2815

2816 2817 2818 2819 2820
	/*
	 * Initialize the queue without an elevator. device_add_disk() will do
	 * the initialization.
	 */
	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2821 2822 2823 2824 2825
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
2826 2827 2828 2829 2830 2831
EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
2832 2833
EXPORT_SYMBOL(blk_mq_init_queue);

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
/*
 * Helper for setting up a queue with mq ops, given queue depth, and
 * the passed in mq ops flags.
 */
struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
					   const struct blk_mq_ops *ops,
					   unsigned int queue_depth,
					   unsigned int set_flags)
{
	struct request_queue *q;
	int ret;

	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
J
Jens Axboe 已提交
2849
	set->nr_maps = 1;
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		return ERR_PTR(ret);

	q = blk_mq_init_queue(set);
	if (IS_ERR(q)) {
		blk_mq_free_tag_set(set);
		return q;
	}

	return q;
}
EXPORT_SYMBOL(blk_mq_init_sq_queue);

2868 2869 2870 2871
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
2872
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2873

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
2888
	if (!hctx)
2889
		goto fail;
2890

2891 2892
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
2893 2894

	return hctx;
2895 2896 2897 2898 2899

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
2900 2901
}

K
Keith Busch 已提交
2902 2903
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2904
{
2905
	int i, j, end;
K
Keith Busch 已提交
2906
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2907

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

2924 2925
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2926
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2927
		int node;
2928
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
2929

2930
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2931 2932 2933 2934 2935 2936 2937
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
2938

2939 2940
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
2941
			if (hctxs[i])
2942 2943 2944 2945 2946 2947 2948 2949 2950
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
2951
		}
2952
	}
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
2965

2966
	for (; j < end; j++) {
K
Keith Busch 已提交
2967 2968 2969
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2970 2971
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2972 2973 2974 2975
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
2976
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2977 2978 2979
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2980 2981
						  struct request_queue *q,
						  bool elevator_init)
K
Keith Busch 已提交
2982
{
M
Ming Lei 已提交
2983 2984 2985
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2986
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2987 2988
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2989 2990 2991
	if (!q->poll_cb)
		goto err_exit;

2992
	if (blk_mq_alloc_ctxs(q))
2993
		goto err_poll;
K
Keith Busch 已提交
2994

2995 2996 2997
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2998 2999 3000
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
3001 3002 3003
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
3004

3005
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3006
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3007

J
Jens Axboe 已提交
3008
	q->tag_set = set;
3009

3010
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3011 3012
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
3013
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3014

3015 3016
	q->sg_reserved_size = INT_MAX;

3017
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3018 3019 3020
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

3021 3022
	q->nr_requests = set->queue_depth;

3023 3024 3025
	/*
	 * Default to classic polling
	 */
3026
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3027

3028
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3029
	blk_mq_add_queue_tag_set(set, q);
3030
	blk_mq_map_swqueue(q);
3031

3032 3033
	if (elevator_init)
		elevator_init_mq(q);
3034

3035
	return q;
3036

3037
err_hctxs:
K
Keith Busch 已提交
3038
	kfree(q->queue_hw_ctx);
3039
	q->nr_hw_queues = 0;
3040
	blk_mq_sysfs_deinit(q);
3041 3042 3043
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
3044 3045
err_exit:
	q->mq_ops = NULL;
3046 3047
	return ERR_PTR(-ENOMEM);
}
3048
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3049

3050 3051
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
3052
{
M
Ming Lei 已提交
3053
	struct blk_mq_tag_set	*set = q->tag_set;
3054

3055
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
3056
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3057 3058
}

3059 3060 3061 3062
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

3063
	for (i = 0; i < set->nr_hw_queues; i++)
3064
		if (!__blk_mq_alloc_map_and_request(set, i))
3065 3066 3067 3068 3069 3070
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
3071
		blk_mq_free_map_and_requests(set, i);
3072 3073 3074 3075 3076 3077 3078 3079 3080

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
3081
static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

3111 3112
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
3113 3114 3115 3116 3117 3118 3119 3120
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

3121
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
3122 3123
		int i;

3124 3125 3126 3127 3128 3129 3130
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
3131
		 * 		set->map[x].mq_map[cpu] = queue;
3132 3133 3134 3135 3136 3137
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
3138 3139
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
3140

3141
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
3142 3143
	} else {
		BUG_ON(set->nr_maps > 1);
3144
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
3145
	}
3146 3147
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

3171 3172 3173
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
3174
 * requested depth down, if it's too large. In that case, the set
3175 3176
 * value will be stored in set->queue_depth.
 */
3177 3178
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3179
	int i, ret;
3180

B
Bart Van Assche 已提交
3181 3182
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

3183 3184
	if (!set->nr_hw_queues)
		return -EINVAL;
3185
	if (!set->queue_depth)
3186 3187 3188 3189
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
3190
	if (!set->ops->queue_rq)
3191 3192
		return -EINVAL;

3193 3194 3195
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

3196 3197 3198 3199 3200
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
3201

J
Jens Axboe 已提交
3202 3203 3204 3205 3206
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

3207 3208 3209 3210 3211 3212 3213
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
3214
		set->nr_maps = 1;
3215 3216
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
3217
	/*
3218 3219
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
3220
	 */
3221
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3222
		set->nr_hw_queues = nr_cpu_ids;
3223

3224
	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3225
		return -ENOMEM;
3226

3227
	ret = -ENOMEM;
J
Jens Axboe 已提交
3228 3229
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3230
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
3231 3232 3233
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
3234
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
3235
	}
3236

3237
	ret = blk_mq_update_queue_map(set);
3238 3239 3240
	if (ret)
		goto out_free_mq_map;

3241
	ret = blk_mq_alloc_map_and_requests(set);
3242
	if (ret)
3243
		goto out_free_mq_map;
3244

3245 3246 3247
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

3248
	return 0;
3249 3250

out_free_mq_map:
J
Jens Axboe 已提交
3251 3252 3253 3254
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
3255 3256
	kfree(set->tags);
	set->tags = NULL;
3257
	return ret;
3258 3259 3260 3261 3262
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3263
	int i, j;
3264

3265
	for (i = 0; i < set->nr_hw_queues; i++)
3266
		blk_mq_free_map_and_requests(set, i);
3267

J
Jens Axboe 已提交
3268 3269 3270 3271
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
3272

M
Ming Lei 已提交
3273
	kfree(set->tags);
3274
	set->tags = NULL;
3275 3276 3277
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3278 3279 3280 3281 3282 3283
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3284
	if (!set)
3285 3286
		return -EINVAL;

3287 3288 3289
	if (q->nr_requests == nr)
		return 0;

3290
	blk_mq_freeze_queue(q);
3291
	blk_mq_quiesce_queue(q);
3292

3293 3294
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3295 3296
		if (!hctx->tags)
			continue;
3297 3298 3299 3300
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3301
		if (!hctx->sched_tags) {
3302
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3303 3304 3305 3306 3307
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
3308 3309
		if (ret)
			break;
3310 3311
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
3312 3313 3314 3315 3316
	}

	if (!ret)
		q->nr_requests = nr;

3317
	blk_mq_unquiesce_queue(q);
3318 3319
	blk_mq_unfreeze_queue(q);

3320 3321 3322
	return ret;
}

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3393 3394
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3395 3396
{
	struct request_queue *q;
3397
	LIST_HEAD(head);
3398
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3399

3400 3401
	lockdep_assert_held(&set->tag_list_lock);

3402
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3403 3404 3405 3406 3407 3408
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3409 3410 3411 3412 3413 3414 3415 3416
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3417

3418 3419 3420 3421 3422
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3423
	prev_nr_hw_queues = set->nr_hw_queues;
3424 3425 3426 3427
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
3428
	set->nr_hw_queues = nr_hw_queues;
3429
fallback:
3430
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
3431 3432
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3433 3434 3435 3436
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
3437
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3438 3439
			goto fallback;
		}
3440 3441 3442
		blk_mq_map_swqueue(q);
	}

3443
reregister:
3444 3445 3446
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3447 3448
	}

3449 3450 3451 3452
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3453 3454 3455
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3456 3457 3458 3459 3460 3461 3462

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3463 3464
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3465 3466 3467 3468
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3469
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3491
	int bucket;
3492

3493 3494 3495 3496
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3497 3498
}

3499 3500 3501 3502
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
3503
	int bucket;
3504 3505 3506 3507 3508

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3509
	if (!blk_poll_stats_enable(q))
3510 3511 3512 3513 3514 3515 3516 3517
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3518 3519
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3520
	 */
3521 3522 3523 3524 3525 3526
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3527 3528 3529 3530

	return ret;
}

3531 3532 3533 3534 3535
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3536
	unsigned int nsecs;
3537 3538
	ktime_t kt;

J
Jens Axboe 已提交
3539
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3540 3541 3542
		return false;

	/*
3543
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3544 3545 3546 3547
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
3548
	if (q->poll_nsec > 0)
3549 3550
		nsecs = q->poll_nsec;
	else
3551
		nsecs = blk_mq_poll_nsecs(q, rq);
3552 3553

	if (!nsecs)
3554 3555
		return false;

J
Jens Axboe 已提交
3556
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3557 3558 3559 3560 3561

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3562
	kt = nsecs;
3563 3564

	mode = HRTIMER_MODE_REL;
3565
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3566 3567 3568
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
3569
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3570 3571
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
3572
		hrtimer_sleeper_start_expires(&hs, mode);
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

3584 3585
static bool blk_mq_poll_hybrid(struct request_queue *q,
			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
J
Jens Axboe 已提交
3586
{
3587 3588
	struct request *rq;

3589
	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
		return false;

	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else {
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}

3606
	return blk_mq_poll_hybrid_sleep(q, rq);
3607 3608
}

C
Christoph Hellwig 已提交
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
/**
 * blk_poll - poll for IO completions
 * @q:  the queue
 * @cookie: cookie passed back at IO submission time
 * @spin: whether to spin for completions
 *
 * Description:
 *    Poll for completions on the passed in queue. Returns number of
 *    completed entries found. If @spin is true, then blk_poll will continue
 *    looping until at least one completion is found, unless the task is
 *    otherwise marked running (or we need to reschedule).
 */
int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3622 3623
{
	struct blk_mq_hw_ctx *hctx;
J
Jens Axboe 已提交
3624 3625
	long state;

C
Christoph Hellwig 已提交
3626 3627
	if (!blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3628 3629
		return 0;

C
Christoph Hellwig 已提交
3630 3631 3632
	if (current->plug)
		blk_flush_plug_list(current->plug, false);

3633 3634
	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];

3635 3636 3637 3638 3639 3640 3641
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3642
	if (blk_mq_poll_hybrid(q, hctx, cookie))
3643
		return 1;
3644

J
Jens Axboe 已提交
3645 3646 3647
	hctx->poll_considered++;

	state = current->state;
3648
	do {
J
Jens Axboe 已提交
3649 3650 3651 3652
		int ret;

		hctx->poll_invoked++;

3653
		ret = q->mq_ops->poll(hctx);
J
Jens Axboe 已提交
3654 3655
		if (ret > 0) {
			hctx->poll_success++;
3656
			__set_current_state(TASK_RUNNING);
3657
			return ret;
J
Jens Axboe 已提交
3658 3659 3660
		}

		if (signal_pending_state(state, current))
3661
			__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3662 3663

		if (current->state == TASK_RUNNING)
3664
			return 1;
3665
		if (ret < 0 || !spin)
J
Jens Axboe 已提交
3666 3667
			break;
		cpu_relax();
3668
	} while (!need_resched());
J
Jens Axboe 已提交
3669

3670
	__set_current_state(TASK_RUNNING);
3671
	return 0;
J
Jens Axboe 已提交
3672
}
C
Christoph Hellwig 已提交
3673
EXPORT_SYMBOL_GPL(blk_poll);
J
Jens Axboe 已提交
3674

J
Jens Axboe 已提交
3675 3676 3677 3678 3679 3680
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

3681 3682
static int __init blk_mq_init(void)
{
3683 3684
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3685 3686 3687
	return 0;
}
subsys_initcall(blk_mq_init);