blk-mq.c 118.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/blk-integrity.h>
14
#include <linux/kmemleak.h>
15 16 17 18 19
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
20
#include <linux/interrupt.h>
21 22 23 24
#include <linux/llist.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
25
#include <linux/sched/topology.h>
26
#include <linux/sched/signal.h>
27
#include <linux/delay.h>
28
#include <linux/crash_dump.h>
29
#include <linux/prefetch.h>
30
#include <linux/blk-crypto.h>
31
#include <linux/part_stat.h>
32 33 34 35

#include <trace/events/block.h>

#include <linux/blk-mq.h>
36
#include <linux/t10-pi.h>
37 38
#include "blk.h"
#include "blk-mq.h"
39
#include "blk-mq-debugfs.h"
40
#include "blk-mq-tag.h"
41
#include "blk-pm.h"
42
#include "blk-stat.h"
43
#include "blk-mq-sched.h"
44
#include "blk-rq-qos.h"
45

46
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47

48 49 50
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

51 52
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
53
	int ddir, sectors, bucket;
54

J
Jens Axboe 已提交
55
	ddir = rq_data_dir(rq);
56
	sectors = blk_rq_stats_sectors(rq);
57

58
	bucket = ddir + 2 * ilog2(sectors);
59 60 61 62 63 64 65 66 67

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

68 69 70
#define BLK_QC_T_SHIFT		16
#define BLK_QC_T_INTERNAL	(1U << 31)

71 72 73 74 75 76
static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
		blk_qc_t qc)
{
	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
}

77 78 79
static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
		blk_qc_t qc)
{
80 81 82 83 84
	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);

	if (qc & BLK_QC_T_INTERNAL)
		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
	return blk_mq_tag_to_rq(hctx->tags, tag);
85 86
}

87 88 89 90 91 92 93
static inline blk_qc_t blk_rq_to_qc(struct request *rq)
{
	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
		(rq->tag != -1 ?
		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
}

94
/*
95 96
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
97
 */
98
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99
{
100 101
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
102
			blk_mq_sched_has_work(hctx);
103 104
}

105 106 107 108 109 110
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
111 112 113 114
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
115 116 117 118 119
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
120 121 122
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
123 124
}

125
struct mq_inflight {
126
	struct block_device *part;
127
	unsigned int inflight[2];
128 129
};

130
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
131 132 133 134 135
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

136 137
	if ((!mi->part->bd_partno || rq->part == mi->part) &&
	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138
		mi->inflight[rq_data_dir(rq)]++;
139 140

	return true;
141 142
}

143 144
unsigned int blk_mq_in_flight(struct request_queue *q,
		struct block_device *part)
145
{
146
	struct mq_inflight mi = { .part = part };
147 148

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149

150
	return mi.inflight[0] + mi.inflight[1];
151 152
}

153 154
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
		unsigned int inflight[2])
155
{
156
	struct mq_inflight mi = { .part = part };
157

158
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159 160
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
161 162
}

163
void blk_freeze_queue_start(struct request_queue *q)
164
{
165 166
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
167
		percpu_ref_kill(&q->q_usage_counter);
168
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
169
		if (queue_is_mq(q))
170
			blk_mq_run_hw_queues(q, false);
171 172
	} else {
		mutex_unlock(&q->mq_freeze_lock);
173
	}
174
}
175
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176

177
void blk_mq_freeze_queue_wait(struct request_queue *q)
178
{
179
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180
}
181
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182

183 184 185 186 187 188 189 190
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191

192 193 194 195
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
196
void blk_freeze_queue(struct request_queue *q)
197
{
198 199 200 201 202 203 204
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
205
	blk_freeze_queue_start(q);
206 207
	blk_mq_freeze_queue_wait(q);
}
208 209 210 211 212 213 214 215 216

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
217
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218

219
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220
{
221
	mutex_lock(&q->mq_freeze_lock);
222 223
	if (force_atomic)
		q->q_usage_counter.data->force_atomic = true;
224 225 226
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
227
		percpu_ref_resurrect(&q->q_usage_counter);
228
		wake_up_all(&q->mq_freeze_wq);
229
	}
230
	mutex_unlock(&q->mq_freeze_lock);
231
}
232 233 234 235 236

void blk_mq_unfreeze_queue(struct request_queue *q)
{
	__blk_mq_unfreeze_queue(q, false);
}
237
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238

239 240 241 242 243 244
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
245 246 247 248 249 250
	unsigned long flags;

	spin_lock_irqsave(&q->queue_lock, flags);
	if (!q->quiesce_depth++)
		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(&q->queue_lock, flags);
251 252 253
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

254
/**
255
 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256 257
 * @q: request queue.
 *
258 259
 * Note: it is driver's responsibility for making sure that quiesce has
 * been started.
260
 */
261
void blk_mq_wait_quiesce_done(struct request_queue *q)
262 263 264 265 266 267 268
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
269
			synchronize_srcu(hctx->srcu);
270 271 272 273 274 275
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);

/**
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	blk_mq_quiesce_queue_nowait(q);
	blk_mq_wait_quiesce_done(q);
}
292 293
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

294 295 296 297 298 299 300 301 302
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
303 304 305 306 307 308 309 310 311 312 313
	unsigned long flags;
	bool run_queue = false;

	spin_lock_irqsave(&q->queue_lock, flags);
	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
		;
	} else if (!--q->quiesce_depth) {
		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
		run_queue = true;
	}
	spin_unlock_irqrestore(&q->queue_lock, flags);
314

315
	/* dispatch requests which are inserted during quiescing */
316 317
	if (run_queue)
		blk_mq_run_hw_queues(q, true);
318 319 320
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

321 322 323 324 325 326 327 328 329 330
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
void blk_rq_init(struct request_queue *q, struct request *rq)
{
	memset(rq, 0, sizeof(*rq));

	INIT_LIST_HEAD(&rq->queuelist);
	rq->q = q;
	rq->__sector = (sector_t) -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->tag = BLK_MQ_NO_TAG;
	rq->internal_tag = BLK_MQ_NO_TAG;
	rq->start_time_ns = ktime_get_ns();
	rq->part = NULL;
	blk_crypto_rq_set_defaults(rq);
}
EXPORT_SYMBOL(blk_rq_init);

348
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349
		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
350
{
351 352 353
	struct blk_mq_ctx *ctx = data->ctx;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	struct request_queue *q = data->q;
354
	struct request *rq = tags->static_rqs[tag];
355

J
Jens Axboe 已提交
356 357 358 359 360 361 362 363 364 365 366
	rq->q = q;
	rq->mq_ctx = ctx;
	rq->mq_hctx = hctx;
	rq->cmd_flags = data->cmd_flags;

	if (data->flags & BLK_MQ_REQ_PM)
		data->rq_flags |= RQF_PM;
	if (blk_queue_io_stat(q))
		data->rq_flags |= RQF_IO_STAT;
	rq->rq_flags = data->rq_flags;

367
	if (!(data->rq_flags & RQF_ELV)) {
368
		rq->tag = tag;
369
		rq->internal_tag = BLK_MQ_NO_TAG;
370 371 372
	} else {
		rq->tag = BLK_MQ_NO_TAG;
		rq->internal_tag = tag;
373
	}
J
Jens Axboe 已提交
374
	rq->timeout = 0;
375

376 377 378 379
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
380
	rq->part = NULL;
381 382 383
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
384
	rq->io_start_time_ns = 0;
385
	rq->stats_sectors = 0;
386 387 388 389 390 391 392
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->end_io = NULL;
	rq->end_io_data = NULL;

393 394 395 396
	blk_crypto_rq_set_defaults(rq);
	INIT_LIST_HEAD(&rq->queuelist);
	/* tag was already set */
	WRITE_ONCE(rq->deadline, 0);
K
Keith Busch 已提交
397
	refcount_set(&rq->ref, 1);
398

399
	if (rq->rq_flags & RQF_ELV) {
400 401
		struct elevator_queue *e = data->q->elevator;

402 403 404 405 406
		INIT_HLIST_NODE(&rq->hash);
		RB_CLEAR_NODE(&rq->rb_node);

		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.prepare_request) {
407 408 409 410 411
			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

412
	return rq;
413 414
}

J
Jens Axboe 已提交
415 416 417 418 419
static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
		u64 alloc_time_ns)
{
	unsigned int tag, tag_offset;
420
	struct blk_mq_tags *tags;
J
Jens Axboe 已提交
421
	struct request *rq;
422
	unsigned long tag_mask;
J
Jens Axboe 已提交
423 424
	int i, nr = 0;

425 426
	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
	if (unlikely(!tag_mask))
J
Jens Axboe 已提交
427 428
		return NULL;

429 430 431
	tags = blk_mq_tags_from_data(data);
	for (i = 0; tag_mask; i++) {
		if (!(tag_mask & (1UL << i)))
J
Jens Axboe 已提交
432 433
			continue;
		tag = tag_offset + i;
434
		prefetch(tags->static_rqs[tag]);
435 436
		tag_mask &= ~(1UL << i);
		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
437
		rq_list_add(data->cached_rq, rq);
438
		nr++;
J
Jens Axboe 已提交
439
	}
440 441
	/* caller already holds a reference, add for remainder */
	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
J
Jens Axboe 已提交
442 443
	data->nr_tags -= nr;

444
	return rq_list_pop(data->cached_rq);
J
Jens Axboe 已提交
445 446
}

447
static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
448
{
449
	struct request_queue *q = data->q;
450
	u64 alloc_time_ns = 0;
451
	struct request *rq;
452
	unsigned int tag;
453

454 455 456 457
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

458
	if (data->cmd_flags & REQ_NOWAIT)
459
		data->flags |= BLK_MQ_REQ_NOWAIT;
460

461 462 463 464 465
	if (q->elevator) {
		struct elevator_queue *e = q->elevator;

		data->rq_flags |= RQF_ELV;

466
		/*
467
		 * Flush/passthrough requests are special and go directly to the
468 469
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
470
		 */
471
		if (!op_is_flush(data->cmd_flags) &&
472
		    !blk_op_is_passthrough(data->cmd_flags) &&
473
		    e->type->ops.limit_depth &&
474
		    !(data->flags & BLK_MQ_REQ_RESERVED))
475
			e->type->ops.limit_depth(data->cmd_flags, data);
476 477
	}

478
retry:
479 480
	data->ctx = blk_mq_get_ctx(q);
	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
481
	if (!(data->rq_flags & RQF_ELV))
482 483
		blk_mq_tag_busy(data->hctx);

J
Jens Axboe 已提交
484 485 486 487 488 489 490 491 492 493
	/*
	 * Try batched alloc if we want more than 1 tag.
	 */
	if (data->nr_tags > 1) {
		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
		if (rq)
			return rq;
		data->nr_tags = 1;
	}

494 495 496 497 498
	/*
	 * Waiting allocations only fail because of an inactive hctx.  In that
	 * case just retry the hctx assignment and tag allocation as CPU hotplug
	 * should have migrated us to an online CPU by now.
	 */
499
	tag = blk_mq_get_tag(data);
500 501 502 503
	if (tag == BLK_MQ_NO_TAG) {
		if (data->flags & BLK_MQ_REQ_NOWAIT)
			return NULL;
		/*
J
Jens Axboe 已提交
504 505 506 507
		 * Give up the CPU and sleep for a random short time to
		 * ensure that thread using a realtime scheduling class
		 * are migrated off the CPU, and thus off the hctx that
		 * is going away.
508 509 510 511
		 */
		msleep(3);
		goto retry;
	}
512

513 514
	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
					alloc_time_ns);
515 516
}

517
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
518
		blk_mq_req_flags_t flags)
519
{
520 521 522 523
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
524
		.nr_tags	= 1,
525
	};
526
	struct request *rq;
527
	int ret;
528

529
	ret = blk_queue_enter(q, flags);
530 531
	if (ret)
		return ERR_PTR(ret);
532

533
	rq = __blk_mq_alloc_requests(&data);
534
	if (!rq)
535
		goto out_queue_exit;
536 537 538
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
539
	return rq;
540 541 542
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
543
}
544
EXPORT_SYMBOL(blk_mq_alloc_request);
545

546
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
547
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
548
{
549 550 551 552
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
553
		.nr_tags	= 1,
554
	};
555
	u64 alloc_time_ns = 0;
556
	unsigned int cpu;
557
	unsigned int tag;
M
Ming Lin 已提交
558 559
	int ret;

560 561 562 563
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

M
Ming Lin 已提交
564 565 566 567 568 569
	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
570
	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
M
Ming Lin 已提交
571 572 573 574 575
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

576
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
577 578 579
	if (ret)
		return ERR_PTR(ret);

580 581 582 583
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
584
	ret = -EXDEV;
585 586
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
587
		goto out_queue_exit;
588 589
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
590

591
	if (!q->elevator)
592
		blk_mq_tag_busy(data.hctx);
593 594
	else
		data.rq_flags |= RQF_ELV;
595

596
	ret = -EWOULDBLOCK;
597 598
	tag = blk_mq_get_tag(&data);
	if (tag == BLK_MQ_NO_TAG)
599
		goto out_queue_exit;
600 601
	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
					alloc_time_ns);
602

603 604 605
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
606 607 608
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
609 610 611 612
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
613
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
614 615
	const int sched_tag = rq->internal_tag;

616
	blk_crypto_free_request(rq);
617
	blk_pm_mark_last_busy(rq);
618
	rq->mq_hctx = NULL;
619
	if (rq->tag != BLK_MQ_NO_TAG)
620
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
621
	if (sched_tag != BLK_MQ_NO_TAG)
622
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
623 624 625 626
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

627
void blk_mq_free_request(struct request *rq)
628 629
{
	struct request_queue *q = rq->q;
630
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
631

632 633 634
	if ((rq->rq_flags & RQF_ELVPRIV) &&
	    q->elevator->type->ops.finish_request)
		q->elevator->type->ops.finish_request(rq);
635

636
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
637
		__blk_mq_dec_active_requests(hctx);
J
Jens Axboe 已提交
638

639
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
640
		laptop_io_completion(q->disk->bdi);
641

642
	rq_qos_done(q, rq);
643

K
Keith Busch 已提交
644 645 646
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
647
}
J
Jens Axboe 已提交
648
EXPORT_SYMBOL_GPL(blk_mq_free_request);
649

650
void blk_mq_free_plug_rqs(struct blk_plug *plug)
651
{
652
	struct request *rq;
653

654
	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
655 656
		blk_mq_free_request(rq);
}
657

658 659 660
void blk_dump_rq_flags(struct request *rq, char *msg)
{
	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
661
		rq->q->disk ? rq->q->disk->disk_name : "?",
662 663 664 665 666 667 668 669 670 671
		(unsigned long long) rq->cmd_flags);

	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
	       (unsigned long long)blk_rq_pos(rq),
	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
	       rq->bio, rq->biotail, blk_rq_bytes(rq));
}
EXPORT_SYMBOL(blk_dump_rq_flags);

672 673 674
static void req_bio_endio(struct request *rq, struct bio *bio,
			  unsigned int nbytes, blk_status_t error)
{
P
Pavel Begunkov 已提交
675
	if (unlikely(error)) {
676
		bio->bi_status = error;
P
Pavel Begunkov 已提交
677
	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
678 679 680 681
		/*
		 * Partial zone append completions cannot be supported as the
		 * BIO fragments may end up not being written sequentially.
		 */
682
		if (bio->bi_iter.bi_size != nbytes)
683 684 685 686 687
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_iter.bi_sector = rq->__sector;
	}

P
Pavel Begunkov 已提交
688 689 690 691
	bio_advance(bio, nbytes);

	if (unlikely(rq->rq_flags & RQF_QUIET))
		bio_set_flag(bio, BIO_QUIET);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	/* don't actually finish bio if it's part of flush sequence */
	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
		bio_endio(bio);
}

static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
	if (req->part && blk_do_io_stat(req)) {
		const int sgrp = op_stat_group(req_op(req));

		part_stat_lock();
		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
		part_stat_unlock();
	}
}

708 709 710 711 712 713
static void blk_print_req_error(struct request *req, blk_status_t status)
{
	printk_ratelimited(KERN_ERR
		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
		"phys_seg %u prio class %u\n",
		blk_status_to_str(status),
714
		req->q->disk ? req->q->disk->disk_name : "?",
715 716 717 718 719 720
		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
		req->cmd_flags & ~REQ_OP_MASK,
		req->nr_phys_segments,
		IOPRIO_PRIO_CLASS(req->ioprio));
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
/**
 * blk_update_request - Complete multiple bytes without completing the request
 * @req:      the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete for @req
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 *     the request structure even if @req doesn't have leftover.
 *     If @req has leftover, sets it up for the next range of segments.
 *
 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 *     %false return from this function.
 *
 * Note:
 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 *      except in the consistency check at the end of this function.
 *
 * Return:
 *     %false - this request doesn't have any more data
 *     %true  - this request has more data
 **/
bool blk_update_request(struct request *req, blk_status_t error,
		unsigned int nr_bytes)
{
	int total_bytes;

748
	trace_block_rq_complete(req, error, nr_bytes);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	if (!req->bio)
		return false;

#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
	    error == BLK_STS_OK)
		req->q->integrity.profile->complete_fn(req, nr_bytes);
#endif

	if (unlikely(error && !blk_rq_is_passthrough(req) &&
		     !(req->rq_flags & RQF_QUIET)))
		blk_print_req_error(req, error);

	blk_account_io_completion(req, nr_bytes);

	total_bytes = 0;
	while (req->bio) {
		struct bio *bio = req->bio;
		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);

		if (bio_bytes == bio->bi_iter.bi_size)
			req->bio = bio->bi_next;

		/* Completion has already been traced */
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
		req_bio_endio(req, bio, bio_bytes, error);

		total_bytes += bio_bytes;
		nr_bytes -= bio_bytes;

		if (!nr_bytes)
			break;
	}

	/*
	 * completely done
	 */
	if (!req->bio) {
		/*
		 * Reset counters so that the request stacking driver
		 * can find how many bytes remain in the request
		 * later.
		 */
		req->__data_len = 0;
		return false;
	}

	req->__data_len -= total_bytes;

	/* update sector only for requests with clear definition of sector */
	if (!blk_rq_is_passthrough(req))
		req->__sector += total_bytes >> 9;

	/* mixed attributes always follow the first bio */
	if (req->rq_flags & RQF_MIXED_MERGE) {
		req->cmd_flags &= ~REQ_FAILFAST_MASK;
		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
	}

	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
		/*
		 * If total number of sectors is less than the first segment
		 * size, something has gone terribly wrong.
		 */
		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
			blk_dump_rq_flags(req, "request botched");
			req->__data_len = blk_rq_cur_bytes(req);
		}

		/* recalculate the number of segments */
		req->nr_phys_segments = blk_recalc_rq_segments(req);
	}

	return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static void __blk_account_io_done(struct request *req, u64 now)
{
	const int sgrp = op_stat_group(req_op(req));

	part_stat_lock();
	update_io_ticks(req->part, jiffies, true);
	part_stat_inc(req->part, ios[sgrp]);
	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
	part_stat_unlock();
}

static inline void blk_account_io_done(struct request *req, u64 now)
{
	/*
	 * Account IO completion.  flush_rq isn't accounted as a
	 * normal IO on queueing nor completion.  Accounting the
	 * containing request is enough.
	 */
	if (blk_do_io_stat(req) && req->part &&
	    !(req->rq_flags & RQF_FLUSH_SEQ))
		__blk_account_io_done(req, now);
}

static void __blk_account_io_start(struct request *rq)
{
	/* passthrough requests can hold bios that do not have ->bi_bdev set */
	if (rq->bio && rq->bio->bi_bdev)
		rq->part = rq->bio->bi_bdev;
855 856
	else if (rq->q->disk)
		rq->part = rq->q->disk->part0;
857 858 859 860 861 862 863 864 865 866 867 868

	part_stat_lock();
	update_io_ticks(rq->part, jiffies, false);
	part_stat_unlock();
}

static inline void blk_account_io_start(struct request *req)
{
	if (blk_do_io_stat(req))
		__blk_account_io_start(req);
}

869
static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
870
{
871 872
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
873
		blk_stat_add(rq, now);
874 875
	}

876
	blk_mq_sched_completed_request(rq, now);
877
	blk_account_io_done(rq, now);
878
}
879

880 881 882 883
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
{
	if (blk_mq_need_time_stamp(rq))
		__blk_mq_end_request_acct(rq, ktime_get_ns());
M
Ming Lei 已提交
884

C
Christoph Hellwig 已提交
885
	if (rq->end_io) {
886
		rq_qos_done(rq->q, rq);
887
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
888
	} else {
889
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
890
	}
891
}
892
EXPORT_SYMBOL(__blk_mq_end_request);
893

894
void blk_mq_end_request(struct request *rq, blk_status_t error)
895 896 897
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
898
	__blk_mq_end_request(rq, error);
899
}
900
EXPORT_SYMBOL(blk_mq_end_request);
901

902 903 904 905 906 907 908
#define TAG_COMP_BATCH		32

static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
					  int *tag_array, int nr_tags)
{
	struct request_queue *q = hctx->queue;

909 910 911 912 913 914 915
	/*
	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
	 * update hctx->nr_active in batch
	 */
	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
		__blk_mq_sub_active_requests(hctx, nr_tags);

916 917 918 919 920 921 922
	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
}

void blk_mq_end_request_batch(struct io_comp_batch *iob)
{
	int tags[TAG_COMP_BATCH], nr_tags = 0;
923
	struct blk_mq_hw_ctx *cur_hctx = NULL;
924 925 926 927 928 929 930 931 932 933 934 935 936 937
	struct request *rq;
	u64 now = 0;

	if (iob->need_ts)
		now = ktime_get_ns();

	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
		prefetch(rq->bio);
		prefetch(rq->rq_next);

		blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
		if (iob->need_ts)
			__blk_mq_end_request_acct(rq, now);

938 939
		rq_qos_done(rq->q, rq);

940 941 942 943 944 945 946
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
		if (!refcount_dec_and_test(&rq->ref))
			continue;

		blk_crypto_free_request(rq);
		blk_pm_mark_last_busy(rq);

947 948 949
		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
			if (cur_hctx)
				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
950
			nr_tags = 0;
951
			cur_hctx = rq->mq_hctx;
952 953 954 955 956
		}
		tags[nr_tags++] = rq->tag;
	}

	if (nr_tags)
957
		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
958 959 960
}
EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);

961
static void blk_complete_reqs(struct llist_head *list)
962
{
963 964
	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
	struct request *rq, *next;
965

966
	llist_for_each_entry_safe(rq, next, entry, ipi_list)
967
		rq->q->mq_ops->complete(rq);
968 969
}

970
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
971
{
972
	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
973 974
}

975 976
static int blk_softirq_cpu_dead(unsigned int cpu)
{
977
	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
978 979 980
	return 0;
}

981
static void __blk_mq_complete_request_remote(void *data)
982
{
983
	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
984 985
}

986 987 988 989 990 991 992
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
	int cpu = raw_smp_processor_id();

	if (!IS_ENABLED(CONFIG_SMP) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
		return false;
993 994 995 996 997 998
	/*
	 * With force threaded interrupts enabled, raising softirq from an SMP
	 * function call will always result in waking the ksoftirqd thread.
	 * This is probably worse than completing the request on a different
	 * cache domain.
	 */
999
	if (force_irqthreads())
1000
		return false;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

	/* same CPU or cache domain?  Complete locally */
	if (cpu == rq->mq_ctx->cpu ||
	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
		return false;

	/* don't try to IPI to an offline CPU */
	return cpu_online(rq->mq_ctx->cpu);
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static void blk_mq_complete_send_ipi(struct request *rq)
{
	struct llist_head *list;
	unsigned int cpu;

	cpu = rq->mq_ctx->cpu;
	list = &per_cpu(blk_cpu_done, cpu);
	if (llist_add(&rq->ipi_list, list)) {
		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
		smp_call_function_single_async(cpu, &rq->csd);
	}
}

static void blk_mq_raise_softirq(struct request *rq)
{
	struct llist_head *list;

	preempt_disable();
	list = this_cpu_ptr(&blk_cpu_done);
	if (llist_add(&rq->ipi_list, list))
		raise_softirq(BLOCK_SOFTIRQ);
	preempt_enable();
}

1036
bool blk_mq_complete_request_remote(struct request *rq)
1037
{
1038
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1039

1040 1041 1042 1043
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
1044
	if (rq->cmd_flags & REQ_POLLED)
1045
		return false;
C
Christoph Hellwig 已提交
1046

1047
	if (blk_mq_complete_need_ipi(rq)) {
1048 1049
		blk_mq_complete_send_ipi(rq);
		return true;
1050
	}
1051

1052 1053 1054 1055 1056
	if (rq->q->nr_hw_queues == 1) {
		blk_mq_raise_softirq(rq);
		return true;
	}
	return false;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Complete a request by scheduling the ->complete_rq operation.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (!blk_mq_complete_request_remote(rq))
		rq->q->mq_ops->complete(rq);
1071
}
1072
EXPORT_SYMBOL(blk_mq_complete_request);
1073

1074
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
1075
	__releases(hctx->srcu)
1076 1077 1078 1079
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
1080
		srcu_read_unlock(hctx->srcu, srcu_idx);
1081 1082 1083
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
1084
	__acquires(hctx->srcu)
1085
{
1086 1087 1088
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
1089
		rcu_read_lock();
1090
	} else
1091
		*srcu_idx = srcu_read_lock(hctx->srcu);
1092 1093
}

1094 1095 1096 1097 1098 1099 1100 1101
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
1102
void blk_mq_start_request(struct request *rq)
1103 1104 1105
{
	struct request_queue *q = rq->q;

1106
	trace_block_rq_issue(rq);
1107

1108
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1109 1110 1111 1112 1113 1114 1115 1116
		u64 start_time;
#ifdef CONFIG_BLK_CGROUP
		if (rq->bio)
			start_time = bio_issue_time(&rq->bio->bi_issue);
		else
#endif
			start_time = ktime_get_ns();
		rq->io_start_time_ns = start_time;
1117
		rq->stats_sectors = blk_rq_sectors(rq);
1118
		rq->rq_flags |= RQF_STATS;
1119
		rq_qos_issue(q, rq);
1120 1121
	}

1122
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1123

1124
	blk_add_timer(rq);
K
Keith Busch 已提交
1125
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1126

1127 1128 1129 1130
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
1131 1132
	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1133
}
1134
EXPORT_SYMBOL(blk_mq_start_request);
1135

C
Christoph Hellwig 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/**
 * blk_end_sync_rq - executes a completion event on a request
 * @rq: request to complete
 * @error: end I/O status of the request
 */
static void blk_end_sync_rq(struct request *rq, blk_status_t error)
{
	struct completion *waiting = rq->end_io_data;

	rq->end_io_data = (void *)(uintptr_t)error;

	/*
	 * complete last, if this is a stack request the process (and thus
	 * the rq pointer) could be invalid right after this complete()
	 */
	complete(waiting);
}

/**
 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
 * @rq:		request to insert
 * @at_head:    insert request at head or tail of queue
 * @done:	I/O completion handler
 *
 * Description:
 *    Insert a fully prepared request at the back of the I/O scheduler queue
 *    for execution.  Don't wait for completion.
 *
 * Note:
 *    This function will invoke @done directly if the queue is dead.
 */
1167
void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
C
Christoph Hellwig 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
{
	WARN_ON(irqs_disabled());
	WARN_ON(!blk_rq_is_passthrough(rq));

	rq->end_io = done;

	blk_account_io_start(rq);

	/*
	 * don't check dying flag for MQ because the request won't
	 * be reused after dying flag is set
	 */
	blk_mq_sched_insert_request(rq, at_head, true, false);
}
EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);

static bool blk_rq_is_poll(struct request *rq)
{
	if (!rq->mq_hctx)
		return false;
	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
		return false;
	if (WARN_ON_ONCE(!rq->bio))
		return false;
	return true;
}

static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
{
	do {
		bio_poll(rq->bio, NULL, 0);
		cond_resched();
	} while (!completion_done(wait));
}

/**
 * blk_execute_rq - insert a request into queue for execution
 * @rq:		request to insert
 * @at_head:    insert request at head or tail of queue
 *
 * Description:
 *    Insert a fully prepared request at the back of the I/O scheduler queue
 *    for execution and wait for completion.
 * Return: The blk_status_t result provided to blk_mq_end_request().
 */
1213
blk_status_t blk_execute_rq(struct request *rq, bool at_head)
C
Christoph Hellwig 已提交
1214 1215 1216 1217 1218
{
	DECLARE_COMPLETION_ONSTACK(wait);
	unsigned long hang_check;

	rq->end_io_data = &wait;
1219
	blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
C
Christoph Hellwig 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;

	if (blk_rq_is_poll(rq))
		blk_rq_poll_completion(rq, &wait);
	else if (hang_check)
		while (!wait_for_completion_io_timeout(&wait,
				hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&wait);

	return (blk_status_t)(uintptr_t)rq->end_io_data;
}
EXPORT_SYMBOL(blk_execute_rq);

1237
static void __blk_mq_requeue_request(struct request *rq)
1238 1239 1240
{
	struct request_queue *q = rq->q;

1241 1242
	blk_mq_put_driver_tag(rq);

1243
	trace_block_rq_requeue(rq);
1244
	rq_qos_requeue(q, rq);
1245

K
Keith Busch 已提交
1246 1247
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1248
		rq->rq_flags &= ~RQF_TIMED_OUT;
1249
	}
1250 1251
}

1252
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1253 1254 1255
{
	__blk_mq_requeue_request(rq);

1256 1257 1258
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

1259
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1260 1261 1262
}
EXPORT_SYMBOL(blk_mq_requeue_request);

1263 1264 1265
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
1266
		container_of(work, struct request_queue, requeue_work.work);
1267 1268 1269
	LIST_HEAD(rq_list);
	struct request *rq, *next;

1270
	spin_lock_irq(&q->requeue_lock);
1271
	list_splice_init(&q->requeue_list, &rq_list);
1272
	spin_unlock_irq(&q->requeue_lock);
1273 1274

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1275
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1276 1277
			continue;

1278
		rq->rq_flags &= ~RQF_SOFTBARRIER;
1279
		list_del_init(&rq->queuelist);
1280 1281 1282 1283 1284 1285
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
1286
			blk_mq_request_bypass_insert(rq, false, false);
1287 1288
		else
			blk_mq_sched_insert_request(rq, true, false, false);
1289 1290 1291 1292 1293
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
1294
		blk_mq_sched_insert_request(rq, false, false, false);
1295 1296
	}

1297
	blk_mq_run_hw_queues(q, false);
1298 1299
}

1300 1301
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
1302 1303 1304 1305 1306 1307
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
1308
	 * request head insertion from the workqueue.
1309
	 */
1310
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1311 1312 1313

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
1314
		rq->rq_flags |= RQF_SOFTBARRIER;
1315 1316 1317 1318 1319
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
1320 1321 1322

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
1323 1324 1325 1326
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
1327
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1328 1329 1330
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

1331 1332 1333
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
1334 1335
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
1336 1337 1338
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

1339 1340
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
1341 1342
{
	/*
1343
	 * If we find a request that isn't idle and the queue matches,
1344
	 * we know the queue is busy. Return false to stop the iteration.
1345
	 */
1346
	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1347 1348 1349 1350 1351 1352 1353 1354 1355
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

1356
bool blk_mq_queue_inflight(struct request_queue *q)
1357 1358 1359
{
	bool busy = false;

1360
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1361 1362
	return busy;
}
1363
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1364

1365
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1366
{
1367
	req->rq_flags |= RQF_TIMED_OUT;
1368 1369 1370 1371 1372 1373 1374
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1375
	}
1376 1377

	blk_add_timer(req);
1378
}
1379

K
Keith Busch 已提交
1380
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1381
{
K
Keith Busch 已提交
1382
	unsigned long deadline;
1383

K
Keith Busch 已提交
1384 1385
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
1386 1387
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
1388

1389
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
1390 1391
	if (time_after_eq(jiffies, deadline))
		return true;
1392

K
Keith Busch 已提交
1393 1394 1395 1396 1397
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
1398 1399
}

1400 1401
void blk_mq_put_rq_ref(struct request *rq)
{
M
Ming Lei 已提交
1402
	if (is_flush_rq(rq))
1403 1404 1405 1406 1407
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
}

1408
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1409 1410
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
1411 1412 1413
	unsigned long *next = priv;

	/*
1414 1415 1416 1417 1418
	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
	 * be reallocated underneath the timeout handler's processing, then
	 * the expire check is reliable. If the request is not expired, then
	 * it was completed and reallocated as a new request after returning
	 * from blk_mq_check_expired().
1419
	 */
K
Keith Busch 已提交
1420
	if (blk_mq_req_expired(rq, next))
1421
		blk_mq_rq_timed_out(rq, reserved);
1422
	return true;
1423 1424
}

1425
static void blk_mq_timeout_work(struct work_struct *work)
1426
{
1427 1428
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
1429
	unsigned long next = 0;
1430
	struct blk_mq_hw_ctx *hctx;
1431
	int i;
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
1442
	 * blk_freeze_queue_start, and the moment the last request is
1443 1444 1445 1446
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
1447 1448
		return;

K
Keith Busch 已提交
1449
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1450

K
Keith Busch 已提交
1451 1452
	if (next != 0) {
		mod_timer(&q->timeout, next);
1453
	} else {
1454 1455 1456 1457 1458 1459
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
1460 1461 1462 1463 1464
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
1465
	}
1466
	blk_queue_exit(q);
1467 1468
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1479
	enum hctx_type type = hctx->type;
1480 1481

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1482
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1483
	sbitmap_clear_bit(sb, bitnr);
1484 1485 1486 1487
	spin_unlock(&ctx->lock);
	return true;
}

1488 1489 1490 1491
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1492
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1493
{
1494 1495 1496 1497
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1498

1499
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1500
}
1501
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1514
	enum hctx_type type = hctx->type;
1515 1516

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1517 1518
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1519
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1520
		if (list_empty(&ctx->rq_lists[type]))
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1531
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1543
static bool __blk_mq_alloc_driver_tag(struct request *rq)
1544
{
1545
	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1546 1547 1548
	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
	int tag;

1549 1550
	blk_mq_tag_busy(rq->mq_hctx);

1551
	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1552
		bt = &rq->mq_hctx->tags->breserved_tags;
1553
		tag_offset = 0;
1554 1555 1556
	} else {
		if (!hctx_may_queue(rq->mq_hctx, bt))
			return false;
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	}

	tag = __sbitmap_queue_get(bt);
	if (tag == BLK_MQ_NO_TAG)
		return false;

	rq->tag = tag + tag_offset;
	return true;
}

1567
bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1568
{
1569
	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1570 1571
		return false;

1572
	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1573 1574
			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
		rq->rq_flags |= RQF_MQ_INFLIGHT;
1575
		__blk_mq_inc_active_requests(hctx);
1576 1577 1578
	}
	hctx->tags->rqs[rq->tag] = rq;
	return true;
1579 1580
}

1581 1582
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1583 1584 1585 1586 1587
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1588
	spin_lock(&hctx->dispatch_wait_lock);
1589 1590 1591 1592
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
1593
		sbq = &hctx->tags->bitmap_tags;
1594 1595
		atomic_dec(&sbq->ws_active);
	}
1596 1597
	spin_unlock(&hctx->dispatch_wait_lock);

1598 1599 1600 1601
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1602 1603
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1604 1605
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1606 1607
 * marking us as waiting.
 */
1608
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1609
				 struct request *rq)
1610
{
1611
	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1612
	struct wait_queue_head *wq;
1613 1614
	wait_queue_entry_t *wait;
	bool ret;
1615

1616
	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1617
		blk_mq_sched_mark_restart_hctx(hctx);
1618

1619 1620 1621 1622 1623 1624 1625 1626
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1627
		return blk_mq_get_driver_tag(rq);
1628 1629
	}

1630
	wait = &hctx->dispatch_wait;
1631 1632 1633
	if (!list_empty_careful(&wait->entry))
		return false;

1634
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1635 1636 1637

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1638
	if (!list_empty(&wait->entry)) {
1639 1640
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1641
		return false;
1642 1643
	}

1644
	atomic_inc(&sbq->ws_active);
1645 1646
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1647

1648
	/*
1649 1650 1651
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1652
	 */
1653
	ret = blk_mq_get_driver_tag(rq);
1654
	if (!ret) {
1655 1656
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1657
		return false;
1658
	}
1659 1660 1661 1662 1663 1664

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1665
	atomic_dec(&sbq->ws_active);
1666 1667
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1668 1669

	return true;
1670 1671
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1698 1699
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
enum prep_dispatch {
	PREP_DISPATCH_OK,
	PREP_DISPATCH_NO_TAG,
	PREP_DISPATCH_NO_BUDGET,
};

static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
						  bool need_budget)
{
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1740
	int budget_token = -1;
1741

1742 1743 1744 1745 1746 1747 1748
	if (need_budget) {
		budget_token = blk_mq_get_dispatch_budget(rq->q);
		if (budget_token < 0) {
			blk_mq_put_driver_tag(rq);
			return PREP_DISPATCH_NO_BUDGET;
		}
		blk_mq_set_rq_budget_token(rq, budget_token);
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	}

	if (!blk_mq_get_driver_tag(rq)) {
		/*
		 * The initial allocation attempt failed, so we need to
		 * rerun the hardware queue when a tag is freed. The
		 * waitqueue takes care of that. If the queue is run
		 * before we add this entry back on the dispatch list,
		 * we'll re-run it below.
		 */
		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1760 1761 1762 1763 1764
			/*
			 * All budgets not got from this function will be put
			 * together during handling partial dispatch
			 */
			if (need_budget)
1765
				blk_mq_put_dispatch_budget(rq->q, budget_token);
1766 1767 1768 1769 1770 1771 1772
			return PREP_DISPATCH_NO_TAG;
		}
	}

	return PREP_DISPATCH_OK;
}

1773 1774
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
1775
		struct list_head *list)
1776
{
1777
	struct request *rq;
1778

1779 1780
	list_for_each_entry(rq, list, queuelist) {
		int budget_token = blk_mq_get_rq_budget_token(rq);
1781

1782 1783 1784
		if (budget_token >= 0)
			blk_mq_put_dispatch_budget(q, budget_token);
	}
1785 1786
}

1787 1788 1789
/*
 * Returns true if we did some work AND can potentially do more.
 */
1790
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1791
			     unsigned int nr_budgets)
1792
{
1793
	enum prep_dispatch prep;
1794
	struct request_queue *q = hctx->queue;
1795
	struct request *rq, *nxt;
1796
	int errors, queued;
1797
	blk_status_t ret = BLK_STS_OK;
1798
	LIST_HEAD(zone_list);
1799
	bool needs_resource = false;
1800

1801 1802 1803
	if (list_empty(list))
		return false;

1804 1805 1806
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1807
	errors = queued = 0;
1808
	do {
1809
		struct blk_mq_queue_data bd;
1810

1811
		rq = list_first_entry(list, struct request, queuelist);
1812

1813
		WARN_ON_ONCE(hctx != rq->mq_hctx);
1814
		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1815
		if (prep != PREP_DISPATCH_OK)
1816
			break;
1817

1818 1819
		list_del_init(&rq->queuelist);

1820
		bd.rq = rq;
1821 1822 1823 1824 1825 1826 1827 1828 1829

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1830
			bd.last = !blk_mq_get_driver_tag(nxt);
1831
		}
1832

1833 1834 1835 1836 1837 1838
		/*
		 * once the request is queued to lld, no need to cover the
		 * budget any more
		 */
		if (nr_budgets)
			nr_budgets--;
1839
		ret = q->mq_ops->queue_rq(hctx, &bd);
1840 1841 1842
		switch (ret) {
		case BLK_STS_OK:
			queued++;
1843
			break;
1844
		case BLK_STS_RESOURCE:
1845 1846
			needs_resource = true;
			fallthrough;
1847 1848 1849 1850
		case BLK_STS_DEV_RESOURCE:
			blk_mq_handle_dev_resource(rq, list);
			goto out;
		case BLK_STS_ZONE_RESOURCE:
1851 1852 1853 1854 1855 1856
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
1857
			needs_resource = true;
1858 1859
			break;
		default:
1860
			errors++;
1861
			blk_mq_end_request(rq, ret);
1862
		}
1863
	} while (!list_empty(list));
1864
out:
1865 1866 1867
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1868 1869 1870 1871 1872
	/* If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
		q->mq_ops->commit_rqs(hctx);
1873 1874 1875 1876
	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1877
	if (!list_empty(list)) {
1878
		bool needs_restart;
1879 1880
		/* For non-shared tags, the RESTART check will suffice */
		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1881
			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1882

1883 1884
		if (nr_budgets)
			blk_mq_release_budgets(q, list);
1885

1886
		spin_lock(&hctx->lock);
1887
		list_splice_tail_init(list, &hctx->dispatch);
1888
		spin_unlock(&hctx->lock);
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898
		/*
		 * Order adding requests to hctx->dispatch and checking
		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
		 * in blk_mq_sched_restart(). Avoid restart code path to
		 * miss the new added requests to hctx->dispatch, meantime
		 * SCHED_RESTART is observed here.
		 */
		smp_mb();

1899
		/*
1900 1901 1902
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1903
		 *
1904 1905 1906 1907
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1908
		 *
1909 1910 1911 1912 1913 1914 1915
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1916
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1917
		 *   and dm-rq.
1918 1919 1920
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1921
		 * that could otherwise occur if the queue is idle.  We'll do
1922 1923
		 * similar if we couldn't get budget or couldn't lock a zone
		 * and SCHED_RESTART is set.
1924
		 */
1925
		needs_restart = blk_mq_sched_needs_restart(hctx);
1926 1927
		if (prep == PREP_DISPATCH_NO_BUDGET)
			needs_resource = true;
1928
		if (!needs_restart ||
1929
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1930
			blk_mq_run_hw_queue(hctx, true);
1931
		else if (needs_restart && needs_resource)
1932
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1933

1934
		blk_mq_update_dispatch_busy(hctx, true);
1935
		return false;
1936 1937
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1938

1939
	return (queued + errors) != 0;
1940 1941
}

1942 1943 1944 1945 1946 1947
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1948 1949 1950 1951
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1952 1953 1954 1955 1956 1957
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1958
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1959

1960 1961 1962
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1963 1964
}

1965 1966 1967 1968 1969 1970 1971 1972 1973
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1974 1975 1976 1977 1978 1979 1980 1981
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1982
	bool tried = false;
1983
	int next_cpu = hctx->next_cpu;
1984

1985 1986
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1987 1988

	if (--hctx->next_cpu_batch <= 0) {
1989
select_cpu:
1990
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1991
				cpu_online_mask);
1992
		if (next_cpu >= nr_cpu_ids)
1993
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1994 1995 1996
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1997 1998 1999 2000
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
2001
	if (!cpu_online(next_cpu)) {
2002 2003 2004 2005 2006 2007 2008 2009 2010
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
2011
		hctx->next_cpu = next_cpu;
2012 2013 2014
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
2015 2016 2017

	hctx->next_cpu = next_cpu;
	return next_cpu;
2018 2019
}

2020 2021 2022 2023
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
2024
 * @msecs: Milliseconds of delay to wait before running the queue.
2025 2026 2027 2028
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
2029 2030
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
2031
{
2032
	if (unlikely(blk_mq_hctx_stopped(hctx)))
2033 2034
		return;

2035
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2036 2037
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2038
			__blk_mq_run_hw_queue(hctx);
2039
			put_cpu();
2040 2041
			return;
		}
2042

2043
		put_cpu();
2044
	}
2045

2046 2047
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
2048 2049
}

2050 2051 2052
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
2053
 * @msecs: Milliseconds of delay to wait before running the queue.
2054 2055 2056
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
2057 2058 2059 2060 2061 2062
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

2063 2064 2065 2066 2067 2068 2069 2070 2071
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
2072
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2073
{
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
2085 2086 2087 2088
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
2089

2090
	if (need_run)
2091
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2092
}
O
Omar Sandoval 已提交
2093
EXPORT_SYMBOL(blk_mq_run_hw_queue);
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/*
 * Is the request queue handled by an IO scheduler that does not respect
 * hardware queues when dispatching?
 */
static bool blk_mq_has_sqsched(struct request_queue *q)
{
	struct elevator_queue *e = q->elevator;

	if (e && e->type->ops.dispatch_request &&
	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
		return true;
	return false;
}

/*
 * Return prefered queue to dispatch from (if any) for non-mq aware IO
 * scheduler.
 */
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;

	/*
	 * If the IO scheduler does not respect hardware queues when
	 * dispatching, we just don't bother with multiple HW queues and
	 * dispatch from hctx for the current CPU since running multiple queues
	 * just causes lock contention inside the scheduler and pointless cache
	 * bouncing.
	 */
	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
				     raw_smp_processor_id());
	if (!blk_mq_hctx_stopped(hctx))
		return hctx;
	return NULL;
}

2131
/**
2132
 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2133 2134 2135
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
2136
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2137
{
2138
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2139 2140
	int i;

2141 2142 2143
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
2144
	queue_for_each_hw_ctx(q, hctx, i) {
2145
		if (blk_mq_hctx_stopped(hctx))
2146
			continue;
2147 2148 2149 2150 2151 2152 2153 2154
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_run_hw_queue(hctx, async);
2155 2156
	}
}
2157
EXPORT_SYMBOL(blk_mq_run_hw_queues);
2158

2159 2160 2161
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
2162
 * @msecs: Milliseconds of delay to wait before running the queues.
2163 2164 2165
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
2166
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2167 2168
	int i;

2169 2170 2171
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
2172 2173 2174
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;
2175 2176 2177 2178 2179 2180 2181 2182
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_delay_run_hw_queue(hctx, msecs);
2183 2184 2185 2186
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

2207 2208 2209
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
2210
 * BLK_STS_RESOURCE is usually returned.
2211 2212 2213 2214 2215
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
2216 2217
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
2218
	cancel_delayed_work(&hctx->run_work);
2219

2220
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2221
}
2222
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2223

2224 2225 2226
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
2227
 * BLK_STS_RESOURCE is usually returned.
2228 2229 2230 2231 2232
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
2233 2234
void blk_mq_stop_hw_queues(struct request_queue *q)
{
2235 2236 2237 2238 2239
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
2240 2241 2242
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

2243 2244 2245
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2246

2247
	blk_mq_run_hw_queue(hctx, false);
2248 2249 2250
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

2271
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2272 2273 2274 2275
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2276 2277
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
2278 2279 2280
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

2281
static void blk_mq_run_work_fn(struct work_struct *work)
2282 2283 2284
{
	struct blk_mq_hw_ctx *hctx;

2285
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2286

2287
	/*
M
Ming Lei 已提交
2288
	 * If we are stopped, don't run the queue.
2289
	 */
2290
	if (blk_mq_hctx_stopped(hctx))
2291
		return;
2292 2293 2294 2295

	__blk_mq_run_hw_queue(hctx);
}

2296 2297 2298
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
2299
{
J
Jens Axboe 已提交
2300
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
2301
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
2302

2303 2304
	lockdep_assert_held(&ctx->lock);

2305
	trace_block_rq_insert(rq);
2306

2307
	if (at_head)
M
Ming Lei 已提交
2308
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2309
	else
M
Ming Lei 已提交
2310
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2311
}
2312

2313 2314
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
2315 2316 2317
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

2318 2319
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
2320
	__blk_mq_insert_req_list(hctx, rq, at_head);
2321 2322 2323
	blk_mq_hctx_mark_pending(hctx, ctx);
}

2324 2325 2326
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
2327
 * @at_head: true if the request should be inserted at the head of the list.
2328 2329
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
2330 2331 2332
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
2333 2334
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
2335
{
2336
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2337 2338

	spin_lock(&hctx->lock);
2339 2340 2341 2342
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
2343 2344
	spin_unlock(&hctx->lock);

2345 2346
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
2347 2348
}

2349 2350
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
2351 2352

{
2353
	struct request *rq;
M
Ming Lei 已提交
2354
	enum hctx_type type = hctx->type;
2355

2356 2357 2358 2359
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
2360
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
2361
		BUG_ON(rq->mq_ctx != ctx);
2362
		trace_block_rq_insert(rq);
2363
	}
2364 2365

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2366
	list_splice_tail_init(list, &ctx->rq_lists[type]);
2367
	blk_mq_hctx_mark_pending(hctx, ctx);
2368 2369 2370
	spin_unlock(&ctx->lock);
}

2371 2372
static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
			      bool from_schedule)
2373
{
2374 2375 2376 2377 2378 2379
	if (hctx->queue->mq_ops->commit_rqs) {
		trace_block_unplug(hctx->queue, *queued, !from_schedule);
		hctx->queue->mq_ops->commit_rqs(hctx);
	}
	*queued = 0;
}
2380

2381 2382
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
2383
{
2384 2385
	int err;

2386 2387 2388 2389 2390
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
2391
	blk_rq_bio_prep(rq, bio, nr_segs);
2392 2393 2394 2395

	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
	WARN_ON_ONCE(err);
2396

2397
	blk_account_io_start(rq);
2398 2399
}

2400
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2401
					    struct request *rq, bool last)
2402 2403 2404 2405
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
2406
		.last = last,
2407
	};
2408
	blk_status_t ret;
2409 2410 2411 2412 2413 2414 2415 2416 2417

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
2418
		blk_mq_update_dispatch_busy(hctx, false);
2419 2420
		break;
	case BLK_STS_RESOURCE:
2421
	case BLK_STS_DEV_RESOURCE:
2422
		blk_mq_update_dispatch_busy(hctx, true);
2423 2424 2425
		__blk_mq_requeue_request(rq);
		break;
	default:
2426
		blk_mq_update_dispatch_busy(hctx, false);
2427 2428 2429 2430 2431 2432
		break;
	}

	return ret;
}

2433
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2434
						struct request *rq,
2435
						bool bypass_insert, bool last)
2436 2437
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
2438
	bool run_queue = true;
2439
	int budget_token;
M
Ming Lei 已提交
2440

2441
	/*
2442
	 * RCU or SRCU read lock is needed before checking quiesced flag.
2443
	 *
2444 2445 2446
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
2447
	 */
2448
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
2449
		run_queue = false;
2450 2451
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
2452
	}
2453

2454
	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2455
		goto insert;
2456

2457 2458
	budget_token = blk_mq_get_dispatch_budget(q);
	if (budget_token < 0)
2459
		goto insert;
2460

2461 2462
	blk_mq_set_rq_budget_token(rq, budget_token);

2463
	if (!blk_mq_get_driver_tag(rq)) {
2464
		blk_mq_put_dispatch_budget(q, budget_token);
2465
		goto insert;
2466
	}
2467

2468
	return __blk_mq_issue_directly(hctx, rq, last);
2469 2470 2471 2472
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

2473 2474
	blk_mq_sched_insert_request(rq, false, run_queue, false);

2475 2476 2477
	return BLK_STS_OK;
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
2488
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2489
		struct request *rq)
2490 2491 2492 2493 2494 2495 2496 2497
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

2498
	ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2499
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2500
		blk_mq_request_bypass_insert(rq, false, true);
2501 2502 2503 2504 2505 2506
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

2507
static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2508 2509 2510 2511 2512 2513
{
	blk_status_t ret;
	int srcu_idx;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
2514
	ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2515
	hctx_unlock(hctx, srcu_idx);
2516 2517

	return ret;
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_hw_ctx *hctx = NULL;
	struct request *rq;
	int queued = 0;
	int errors = 0;

	while ((rq = rq_list_pop(&plug->mq_list))) {
		bool last = rq_list_empty(plug->mq_list);
		blk_status_t ret;

		if (hctx != rq->mq_hctx) {
			if (hctx)
				blk_mq_commit_rqs(hctx, &queued, from_schedule);
			hctx = rq->mq_hctx;
		}

		ret = blk_mq_request_issue_directly(rq, last);
		switch (ret) {
		case BLK_STS_OK:
			queued++;
			break;
		case BLK_STS_RESOURCE:
		case BLK_STS_DEV_RESOURCE:
			blk_mq_request_bypass_insert(rq, false, last);
			blk_mq_commit_rqs(hctx, &queued, from_schedule);
			return;
		default:
			blk_mq_end_request(rq, ret);
			errors++;
			break;
		}
	}

	/*
	 * If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if (errors)
		blk_mq_commit_rqs(hctx, &queued, from_schedule);
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_hw_ctx *this_hctx;
	struct blk_mq_ctx *this_ctx;
	unsigned int depth;
	LIST_HEAD(list);

	if (rq_list_empty(plug->mq_list))
		return;
	plug->rq_count = 0;

	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
		blk_mq_plug_issue_direct(plug, false);
		if (rq_list_empty(plug->mq_list))
			return;
	}

	this_hctx = NULL;
	this_ctx = NULL;
	depth = 0;
	do {
		struct request *rq;

		rq = rq_list_pop(&plug->mq_list);

		if (!this_hctx) {
			this_hctx = rq->mq_hctx;
			this_ctx = rq->mq_ctx;
		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
			trace_block_unplug(this_hctx->queue, depth,
						!from_schedule);
			blk_mq_sched_insert_requests(this_hctx, this_ctx,
						&list, from_schedule);
			depth = 0;
			this_hctx = rq->mq_hctx;
			this_ctx = rq->mq_ctx;

		}

		list_add(&rq->queuelist, &list);
		depth++;
	} while (!rq_list_empty(plug->mq_list));

	if (!list_empty(&list)) {
		trace_block_unplug(this_hctx->queue, depth, !from_schedule);
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
						from_schedule);
	}
}

2612 2613 2614
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
2615
	int queued = 0;
2616
	int errors = 0;
2617

2618
	while (!list_empty(list)) {
2619
		blk_status_t ret;
2620 2621 2622 2623
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
2624 2625 2626 2627
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
2628
				blk_mq_request_bypass_insert(rq, false,
2629
							list_empty(list));
2630 2631 2632
				break;
			}
			blk_mq_end_request(rq, ret);
2633
			errors++;
2634 2635
		} else
			queued++;
2636
	}
J
Jens Axboe 已提交
2637 2638 2639 2640 2641 2642

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2643 2644
	if ((!list_empty(list) || errors) &&
	     hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2645
		hctx->queue->mq_ops->commit_rqs(hctx);
2646 2647
}

2648
/*
2649
 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2650 2651 2652 2653 2654 2655
 * queues. This is important for md arrays to benefit from merging
 * requests.
 */
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
{
	if (plug->multiple_queues)
2656
		return BLK_MAX_REQUEST_COUNT * 2;
2657 2658 2659
	return BLK_MAX_REQUEST_COUNT;
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	struct request *last = rq_list_peek(&plug->mq_list);

	if (!plug->rq_count) {
		trace_block_plug(rq->q);
	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
		   (!blk_queue_nomerges(rq->q) &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
		blk_mq_flush_plug_list(plug, false);
		trace_block_plug(rq->q);
	}

	if (!plug->multiple_queues && last && last->q != rq->q)
		plug->multiple_queues = true;
	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
		plug->has_elevator = true;
	rq->rq_next = NULL;
	rq_list_add(&plug->mq_list, rq);
	plug->rq_count++;
}

M
Ming Lei 已提交
2682
static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2683
				     struct bio *bio, unsigned int nr_segs)
2684 2685
{
	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2686
		if (blk_attempt_plug_merge(q, bio, nr_segs))
2687 2688 2689 2690 2691 2692 2693
			return true;
		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
			return true;
	}
	return false;
}

2694 2695
static struct request *blk_mq_get_new_requests(struct request_queue *q,
					       struct blk_plug *plug,
2696
					       struct bio *bio,
2697
					       unsigned int nsegs)
2698 2699 2700 2701 2702 2703 2704
{
	struct blk_mq_alloc_data data = {
		.q		= q,
		.nr_tags	= 1,
	};
	struct request *rq;

2705
	if (unlikely(bio_queue_enter(bio)))
2706
		return NULL;
2707 2708 2709 2710
	if (unlikely(!submit_bio_checks(bio)))
		goto queue_exit;
	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
		goto queue_exit;
2711 2712 2713

	rq_qos_throttle(q, bio);

2714 2715
	/* ->bi_opf is finalized after submit_bio_checks() returns */
	data.cmd_flags	= bio->bi_opf;
2716 2717 2718 2719 2720 2721 2722
	if (plug) {
		data.nr_tags = plug->nr_ios;
		plug->nr_ios = 1;
		data.cached_rq = &plug->cached_rq;
	}

	rq = __blk_mq_alloc_requests(&data);
2723 2724 2725
	if (!rq)
		goto fail;
	return rq;
2726

2727
fail:
2728 2729 2730
	rq_qos_cleanup(q, bio);
	if (bio->bi_opf & REQ_NOWAIT)
		bio_wouldblock_error(bio);
2731 2732
queue_exit:
	blk_queue_exit(q);
2733 2734 2735
	return NULL;
}

2736 2737
static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
		struct blk_plug *plug, struct bio *bio, unsigned int nsegs)
2738
{
2739 2740
	struct request *rq;

2741 2742 2743 2744 2745
	if (!plug)
		return NULL;
	rq = rq_list_peek(&plug->cached_rq);
	if (!rq || rq->q != q)
		return NULL;
2746

2747
	if (unlikely(!submit_bio_checks(bio)))
2748
		return NULL;
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
		return NULL;
	if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
		return NULL;
	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
		return NULL;

	rq->cmd_flags = bio->bi_opf;
	plug->cached_rq = rq_list_next(rq);
	INIT_LIST_HEAD(&rq->queuelist);
	rq_qos_throttle(q, bio);
	return rq;
2761 2762
}

2763
/**
2764
 * blk_mq_submit_bio - Create and send a request to block device.
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 */
2776
void blk_mq_submit_bio(struct bio *bio)
2777
{
2778
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2779
	struct blk_plug *plug = blk_mq_plug(q, bio);
2780
	const int is_sync = op_is_sync(bio->bi_opf);
2781
	struct request *rq;
2782
	unsigned int nr_segs = 1;
2783
	blk_status_t ret;
2784

2785 2786 2787
	if (unlikely(!blk_crypto_bio_prep(&bio)))
		return;

2788
	blk_queue_bounce(q, &bio);
2789 2790
	if (blk_may_split(q, bio))
		__blk_queue_split(q, &bio, &nr_segs);
2791

2792
	if (!bio_integrity_prep(bio))
2793
		return;
J
Jens Axboe 已提交
2794

2795 2796 2797 2798 2799 2800
	rq = blk_mq_get_cached_request(q, plug, bio, nr_segs);
	if (!rq) {
		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
		if (unlikely(!rq))
			return;
	}
J
Jens Axboe 已提交
2801

2802
	trace_block_getrq(bio);
2803

2804
	rq_qos_track(q, rq, bio);
2805

2806 2807
	blk_mq_bio_to_request(rq, bio, nr_segs);

2808 2809 2810 2811 2812
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
2813
		return;
2814 2815
	}

2816 2817
	if (op_is_flush(bio->bi_opf)) {
		blk_insert_flush(rq);
2818
		return;
2819
	}
2820

2821
	if (plug)
2822
		blk_add_rq_to_plug(plug, rq);
2823 2824 2825
	else if ((rq->rq_flags & RQF_ELV) ||
		 (rq->mq_hctx->dispatch_busy &&
		  (q->nr_hw_queues == 1 || !is_sync)))
2826
		blk_mq_sched_insert_request(rq, false, true, true);
2827
	else
2828
		blk_mq_try_issue_directly(rq->mq_hctx, rq);
2829 2830
}

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
/**
 * blk_cloned_rq_check_limits - Helper function to check a cloned request
 *                              for the new queue limits
 * @q:  the queue
 * @rq: the request being checked
 *
 * Description:
 *    @rq may have been made based on weaker limitations of upper-level queues
 *    in request stacking drivers, and it may violate the limitation of @q.
 *    Since the block layer and the underlying device driver trust @rq
 *    after it is inserted to @q, it should be checked against @q before
 *    the insertion using this generic function.
 *
 *    Request stacking drivers like request-based dm may change the queue
 *    limits when retrying requests on other queues. Those requests need
 *    to be checked against the new queue limits again during dispatch.
 */
static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
				      struct request *rq)
{
	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));

	if (blk_rq_sectors(rq) > max_sectors) {
		/*
		 * SCSI device does not have a good way to return if
		 * Write Same/Zero is actually supported. If a device rejects
		 * a non-read/write command (discard, write same,etc.) the
		 * low-level device driver will set the relevant queue limit to
		 * 0 to prevent blk-lib from issuing more of the offending
		 * operations. Commands queued prior to the queue limit being
		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
		 * errors being propagated to upper layers.
		 */
		if (max_sectors == 0)
			return BLK_STS_NOTSUPP;

		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
			__func__, blk_rq_sectors(rq), max_sectors);
		return BLK_STS_IOERR;
	}

	/*
	 * The queue settings related to segment counting may differ from the
	 * original queue.
	 */
	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
	if (rq->nr_phys_segments > queue_max_segments(q)) {
		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
			__func__, rq->nr_phys_segments, queue_max_segments(q));
		return BLK_STS_IOERR;
	}

	return BLK_STS_OK;
}

/**
 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
 * @q:  the queue to submit the request
 * @rq: the request being queued
 */
blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
{
	blk_status_t ret;

	ret = blk_cloned_rq_check_limits(q, rq);
	if (ret != BLK_STS_OK)
		return ret;

2899 2900
	if (rq->q->disk &&
	    should_fail_request(rq->q->disk->part0, blk_rq_bytes(rq)))
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
		return BLK_STS_IOERR;

	if (blk_crypto_insert_cloned_request(rq))
		return BLK_STS_IOERR;

	blk_account_io_start(rq);

	/*
	 * Since we have a scheduler attached on the top device,
	 * bypass a potential scheduler on the bottom device for
	 * insert.
	 */
	return blk_mq_request_issue_directly(rq, true);
}
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);

/**
 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
 * @rq: the clone request to be cleaned up
 *
 * Description:
 *     Free all bios in @rq for a cloned request.
 */
void blk_rq_unprep_clone(struct request *rq)
{
	struct bio *bio;

	while ((bio = rq->bio) != NULL) {
		rq->bio = bio->bi_next;

		bio_put(bio);
	}
}
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);

/**
 * blk_rq_prep_clone - Helper function to setup clone request
 * @rq: the request to be setup
 * @rq_src: original request to be cloned
 * @bs: bio_set that bios for clone are allocated from
 * @gfp_mask: memory allocation mask for bio
 * @bio_ctr: setup function to be called for each clone bio.
 *           Returns %0 for success, non %0 for failure.
 * @data: private data to be passed to @bio_ctr
 *
 * Description:
 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
 *     Also, pages which the original bios are pointing to are not copied
 *     and the cloned bios just point same pages.
 *     So cloned bios must be completed before original bios, which means
 *     the caller must complete @rq before @rq_src.
 */
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
		      struct bio_set *bs, gfp_t gfp_mask,
		      int (*bio_ctr)(struct bio *, struct bio *, void *),
		      void *data)
{
	struct bio *bio, *bio_src;

	if (!bs)
		bs = &fs_bio_set;

	__rq_for_each_bio(bio_src, rq_src) {
		bio = bio_clone_fast(bio_src, gfp_mask, bs);
		if (!bio)
			goto free_and_out;

		if (bio_ctr && bio_ctr(bio, bio_src, data))
			goto free_and_out;

		if (rq->bio) {
			rq->biotail->bi_next = bio;
			rq->biotail = bio;
		} else {
			rq->bio = rq->biotail = bio;
		}
		bio = NULL;
	}

	/* Copy attributes of the original request to the clone request. */
	rq->__sector = blk_rq_pos(rq_src);
	rq->__data_len = blk_rq_bytes(rq_src);
	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
		rq->special_vec = rq_src->special_vec;
	}
	rq->nr_phys_segments = rq_src->nr_phys_segments;
	rq->ioprio = rq_src->ioprio;

	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
		goto free_and_out;

	return 0;

free_and_out:
	if (bio)
		bio_put(bio);
	blk_rq_unprep_clone(rq);

	return -ENOMEM;
}
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
/*
 * Steal bios from a request and add them to a bio list.
 * The request must not have been partially completed before.
 */
void blk_steal_bios(struct bio_list *list, struct request *rq)
{
	if (rq->bio) {
		if (list->tail)
			list->tail->bi_next = rq->bio;
		else
			list->head = rq->bio;
		list->tail = rq->biotail;

		rq->bio = NULL;
		rq->biotail = NULL;
	}

	rq->__data_len = 0;
}
EXPORT_SYMBOL_GPL(blk_steal_bios);

3025 3026 3027 3028 3029 3030
static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

/* called before freeing request pool in @tags */
3031 3032
static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
				    struct blk_mq_tags *tags)
3033 3034 3035 3036
{
	struct page *page;
	unsigned long flags;

3037 3038 3039 3040
	/* There is no need to clear a driver tags own mapping */
	if (drv_tags == tags)
		return;

3041 3042 3043 3044 3045
	list_for_each_entry(page, &tags->page_list, lru) {
		unsigned long start = (unsigned long)page_address(page);
		unsigned long end = start + order_to_size(page->private);
		int i;

3046
		for (i = 0; i < drv_tags->nr_tags; i++) {
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
			struct request *rq = drv_tags->rqs[i];
			unsigned long rq_addr = (unsigned long)rq;

			if (rq_addr >= start && rq_addr < end) {
				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
				cmpxchg(&drv_tags->rqs[i], rq, NULL);
			}
		}
	}

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&drv_tags->lock, flags);
	spin_unlock_irqrestore(&drv_tags->lock, flags);
}

3067 3068
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
3069
{
3070
	struct blk_mq_tags *drv_tags;
3071
	struct page *page;
3072

3073 3074
	if (blk_mq_is_shared_tags(set->flags))
		drv_tags = set->shared_tags;
3075 3076
	else
		drv_tags = set->tags[hctx_idx];
3077

3078
	if (tags->static_rqs && set->ops->exit_request) {
3079
		int i;
3080

3081
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
3082 3083 3084
			struct request *rq = tags->static_rqs[i];

			if (!rq)
3085
				continue;
3086
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
3087
			tags->static_rqs[i] = NULL;
3088
		}
3089 3090
	}

3091
	blk_mq_clear_rq_mapping(drv_tags, tags);
3092

3093 3094
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
3095
		list_del_init(&page->lru);
3096 3097
		/*
		 * Remove kmemleak object previously allocated in
3098
		 * blk_mq_alloc_rqs().
3099 3100
		 */
		kmemleak_free(page_address(page));
3101 3102
		__free_pages(page, page->private);
	}
3103
}
3104

3105
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3106
{
3107
	kfree(tags->rqs);
3108
	tags->rqs = NULL;
J
Jens Axboe 已提交
3109 3110
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
3111

3112
	blk_mq_free_tags(tags);
3113 3114
}

3115 3116 3117
static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					       unsigned int hctx_idx,
					       unsigned int nr_tags,
3118
					       unsigned int reserved_tags)
3119
{
3120
	struct blk_mq_tags *tags;
3121
	int node;
3122

3123
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3124 3125 3126
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

3127 3128
	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3129 3130
	if (!tags)
		return NULL;
3131

3132
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3133
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3134
				 node);
3135
	if (!tags->rqs) {
3136
		blk_mq_free_tags(tags);
3137 3138
		return NULL;
	}
3139

3140 3141 3142
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
3143 3144
	if (!tags->static_rqs) {
		kfree(tags->rqs);
3145
		blk_mq_free_tags(tags);
J
Jens Axboe 已提交
3146 3147 3148
		return NULL;
	}

3149 3150 3151
	return tags;
}

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
3163
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3164 3165 3166
	return 0;
}

3167 3168 3169
static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
			    struct blk_mq_tags *tags,
			    unsigned int hctx_idx, unsigned int depth)
3170 3171 3172
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
3173 3174
	int node;

3175
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3176 3177
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
3178 3179 3180

	INIT_LIST_HEAD(&tags->page_list);

3181 3182 3183 3184
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
3185
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3186
				cache_line_size());
3187
	left = rq_size * depth;
3188

3189
	for (i = 0; i < depth; ) {
3190 3191 3192 3193 3194
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

3195
		while (this_order && left < order_to_size(this_order - 1))
3196 3197 3198
			this_order--;

		do {
3199
			page = alloc_pages_node(node,
3200
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3201
				this_order);
3202 3203 3204 3205 3206 3207 3208 3209 3210
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
3211
			goto fail;
3212 3213

		page->private = this_order;
3214
		list_add_tail(&page->lru, &tags->page_list);
3215 3216

		p = page_address(page);
3217 3218 3219 3220
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
3221
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3222
		entries_per_page = order_to_size(this_order) / rq_size;
3223
		to_do = min(entries_per_page, depth - i);
3224 3225
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
3226 3227 3228
			struct request *rq = p;

			tags->static_rqs[i] = rq;
3229 3230 3231
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
3232 3233
			}

3234 3235 3236 3237
			p += rq_size;
			i++;
		}
	}
3238
	return 0;
3239

3240
fail:
3241 3242
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
3243 3244
}

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
struct rq_iter_data {
	struct blk_mq_hw_ctx *hctx;
	bool has_rq;
};

static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
{
	struct rq_iter_data *iter_data = data;

	if (rq->mq_hctx != iter_data->hctx)
		return true;
	iter_data->has_rq = true;
	return false;
}

static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->sched_tags ?
			hctx->sched_tags : hctx->tags;
	struct rq_iter_data data = {
		.hctx	= hctx,
	};

	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
	return data.has_rq;
}

static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
		struct blk_mq_hw_ctx *hctx)
{
	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
		return false;
	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
		return false;
	return true;
}

static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
		return 0;

	/*
	 * Prevent new request from being allocated on the current hctx.
	 *
	 * The smp_mb__after_atomic() Pairs with the implied barrier in
	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
	 * seen once we return from the tag allocator.
	 */
	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	smp_mb__after_atomic();

	/*
	 * Try to grab a reference to the queue and wait for any outstanding
	 * requests.  If we could not grab a reference the queue has been
	 * frozen and there are no requests.
	 */
	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
		while (blk_mq_hctx_has_requests(hctx))
			msleep(5);
		percpu_ref_put(&hctx->queue->q_usage_counter);
	}

	return 0;
}

static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (cpumask_test_cpu(cpu, hctx->cpumask))
		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	return 0;
}

J
Jens Axboe 已提交
3325 3326 3327 3328 3329
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
3330
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3331
{
3332
	struct blk_mq_hw_ctx *hctx;
3333 3334
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
3335
	enum hctx_type type;
3336

3337
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3338 3339 3340
	if (!cpumask_test_cpu(cpu, hctx->cpumask))
		return 0;

J
Jens Axboe 已提交
3341
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
3342
	type = hctx->type;
3343 3344

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
3345 3346
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
3347 3348 3349 3350 3351
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
3352
		return 0;
3353

J
Jens Axboe 已提交
3354 3355 3356
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
3357 3358

	blk_mq_run_hw_queue(hctx, true);
3359
	return 0;
3360 3361
}

3362
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3363
{
3364 3365 3366
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
						    &hctx->cpuhp_online);
3367 3368
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
3369 3370
}

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
/*
 * Before freeing hw queue, clearing the flush request reference in
 * tags->rqs[] for avoiding potential UAF.
 */
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
		unsigned int queue_depth, struct request *flush_rq)
{
	int i;
	unsigned long flags;

	/* The hw queue may not be mapped yet */
	if (!tags)
		return;

	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);

	for (i = 0; i < queue_depth; i++)
		cmpxchg(&tags->rqs[i], flush_rq, NULL);

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&tags->lock, flags);
	spin_unlock_irqrestore(&tags->lock, flags);
}

3400
/* hctx->ctxs will be freed in queue's release handler */
3401 3402 3403 3404
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
3405 3406
	struct request *flush_rq = hctx->fq->flush_rq;

3407 3408
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
3409

3410 3411
	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
			set->queue_depth, flush_rq);
3412
	if (set->ops->exit_request)
3413
		set->ops->exit_request(set, flush_rq, hctx_idx);
3414

3415 3416 3417
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

3418
	blk_mq_remove_cpuhp(hctx);
3419 3420 3421 3422

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
3423 3424
}

M
Ming Lei 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
3434
		blk_mq_debugfs_unregister_hctx(hctx);
3435
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
3436 3437 3438
	}
}

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

3453 3454 3455
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3456
{
3457 3458
	hctx->queue_num = hctx_idx;

3459 3460 3461
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
				&hctx->cpuhp_online);
3462 3463 3464 3465 3466 3467 3468
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
3469

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
3498
	if (node == NUMA_NO_NODE)
3499 3500
		node = set->numa_node;
	hctx->numa_node = node;
3501

3502
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3503 3504 3505
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
3506
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3507

3508 3509
	INIT_LIST_HEAD(&hctx->hctx_list);

3510
	/*
3511 3512
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
3513
	 */
3514
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3515
			gfp, node);
3516
	if (!hctx->ctxs)
3517
		goto free_cpumask;
3518

3519
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3520
				gfp, node, false, false))
3521 3522
		goto free_ctxs;
	hctx->nr_ctx = 0;
3523

3524
	spin_lock_init(&hctx->dispatch_wait_lock);
3525 3526 3527
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

3528
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3529
	if (!hctx->fq)
3530
		goto free_bitmap;
3531

3532
	if (hctx->flags & BLK_MQ_F_BLOCKING)
3533
		init_srcu_struct(hctx->srcu);
3534
	blk_mq_hctx_kobj_init(hctx);
3535

3536
	return hctx;
3537

3538
 free_bitmap:
3539
	sbitmap_free(&hctx->ctx_map);
3540 3541
 free_ctxs:
	kfree(hctx->ctxs);
3542 3543 3544 3545 3546 3547
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
3548
}
3549 3550 3551 3552

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
3553 3554
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
3555 3556 3557 3558

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
3559
		int k;
3560 3561 3562

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
3563 3564 3565
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

3566 3567 3568 3569 3570 3571
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
3572 3573 3574
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3575
				hctx->numa_node = cpu_to_node(i);
J
Jens Axboe 已提交
3576
		}
3577 3578 3579
	}
}

3580 3581 3582
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
					     unsigned int hctx_idx,
					     unsigned int depth)
3583
{
3584 3585
	struct blk_mq_tags *tags;
	int ret;
3586

3587
	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3588 3589
	if (!tags)
		return NULL;
3590

3591 3592
	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
	if (ret) {
3593
		blk_mq_free_rq_map(tags);
3594 3595
		return NULL;
	}
3596

3597
	return tags;
3598 3599
}

3600 3601
static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
				       int hctx_idx)
3602
{
3603 3604
	if (blk_mq_is_shared_tags(set->flags)) {
		set->tags[hctx_idx] = set->shared_tags;
3605

3606
		return true;
3607
	}
3608

3609 3610 3611 3612
	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
						       set->queue_depth);

	return set->tags[hctx_idx];
3613 3614
}

3615 3616 3617
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
			     struct blk_mq_tags *tags,
			     unsigned int hctx_idx)
3618
{
3619 3620
	if (tags) {
		blk_mq_free_rqs(set, tags, hctx_idx);
3621
		blk_mq_free_rq_map(tags);
3622
	}
3623 3624
}

3625 3626 3627
static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
				      unsigned int hctx_idx)
{
3628
	if (!blk_mq_is_shared_tags(set->flags))
3629 3630 3631
		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);

	set->tags[hctx_idx] = NULL;
3632 3633
}

3634
static void blk_mq_map_swqueue(struct request_queue *q)
3635
{
J
Jens Axboe 已提交
3636
	unsigned int i, j, hctx_idx;
3637 3638
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
3639
	struct blk_mq_tag_set *set = q->tag_set;
3640 3641

	queue_for_each_hw_ctx(q, hctx, i) {
3642
		cpumask_clear(hctx->cpumask);
3643
		hctx->nr_ctx = 0;
3644
		hctx->dispatch_from = NULL;
3645 3646 3647
	}

	/*
3648
	 * Map software to hardware queues.
3649 3650
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
3651
	 */
3652
	for_each_possible_cpu(i) {
3653

3654
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
3655
		for (j = 0; j < set->nr_maps; j++) {
3656 3657 3658
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
3659
				continue;
3660
			}
3661 3662 3663
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
3664
			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3665 3666 3667 3668 3669 3670 3671 3672
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
3673

J
Jens Axboe 已提交
3674
			hctx = blk_mq_map_queue_type(q, j, i);
3675
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
3695 3696 3697 3698

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
3699
	}
3700 3701

	queue_for_each_hw_ctx(q, hctx, i) {
3702 3703 3704 3705 3706 3707 3708 3709 3710
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
3711 3712
			if (i)
				__blk_mq_free_map_and_rqs(set, i);
3713 3714 3715 3716

			hctx->tags = NULL;
			continue;
		}
3717

M
Ming Lei 已提交
3718 3719 3720
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

3721 3722 3723 3724 3725
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
3726
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3727

3728 3729 3730
		/*
		 * Initialize batch roundrobin counts
		 */
3731
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3732 3733
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
3734 3735
}

3736 3737 3738 3739
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
3740
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3741 3742 3743 3744
{
	struct blk_mq_hw_ctx *hctx;
	int i;

3745
	queue_for_each_hw_ctx(q, hctx, i) {
3746
		if (shared) {
3747
			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3748 3749
		} else {
			blk_mq_tag_idle(hctx);
3750
			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3751
		}
3752 3753 3754
	}
}

3755 3756
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
					 bool shared)
3757 3758
{
	struct request_queue *q;
3759

3760 3761
	lockdep_assert_held(&set->tag_list_lock);

3762 3763
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
3764
		queue_set_hctx_shared(q, shared);
3765 3766 3767 3768 3769 3770 3771 3772 3773
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
3774
	list_del(&q->tag_set_list);
3775 3776
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
3777
		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3778
		/* update existing queue */
3779
		blk_mq_update_tag_set_shared(set, false);
3780
	}
3781
	mutex_unlock(&set->tag_list_lock);
3782
	INIT_LIST_HEAD(&q->tag_set_list);
3783 3784 3785 3786 3787 3788
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
3789

3790 3791 3792 3793
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
3794 3795
	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3796
		/* update existing queue */
3797
		blk_mq_update_tag_set_shared(set, true);
3798
	}
3799
	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3800
		queue_set_hctx_shared(q, true);
3801
	list_add_tail(&q->tag_set_list, &set->tag_list);
3802

3803 3804 3805
	mutex_unlock(&set->tag_list_lock);
}

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

3834 3835 3836 3837 3838 3839 3840 3841
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
3842 3843
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
3844

3845 3846 3847 3848 3849 3850
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
3851
		kobject_put(&hctx->kobj);
3852
	}
3853 3854 3855

	kfree(q->queue_hw_ctx);

3856 3857 3858 3859 3860
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
3861 3862
}

3863
static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3864
		void *queuedata)
3865
{
3866 3867
	struct request_queue *q;
	int ret;
3868

3869 3870
	q = blk_alloc_queue(set->numa_node);
	if (!q)
3871
		return ERR_PTR(-ENOMEM);
3872 3873 3874 3875 3876 3877
	q->queuedata = queuedata;
	ret = blk_mq_init_allocated_queue(set, q);
	if (ret) {
		blk_cleanup_queue(q);
		return ERR_PTR(ret);
	}
3878 3879
	return q;
}
3880 3881 3882 3883 3884

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
3885 3886
EXPORT_SYMBOL(blk_mq_init_queue);

3887 3888
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
		struct lock_class_key *lkclass)
3889 3890
{
	struct request_queue *q;
3891
	struct gendisk *disk;
3892

3893 3894 3895
	q = blk_mq_init_queue_data(set, queuedata);
	if (IS_ERR(q))
		return ERR_CAST(q);
3896

3897
	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3898 3899 3900
	if (!disk) {
		blk_cleanup_queue(q);
		return ERR_PTR(-ENOMEM);
3901
	}
3902
	return disk;
3903
}
3904
EXPORT_SYMBOL(__blk_mq_alloc_disk);
3905

3906 3907 3908 3909
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
3910
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3911

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
3926
	if (!hctx)
3927
		goto fail;
3928

3929 3930
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
3931 3932

	return hctx;
3933 3934 3935 3936 3937

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
3938 3939
}

K
Keith Busch 已提交
3940 3941
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
3942
{
3943
	int i, j, end;
K
Keith Busch 已提交
3944
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3945

3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

3962 3963
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
3964
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
3965
		int node;
3966
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
3967

3968
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3969 3970 3971 3972 3973 3974 3975
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
3976

3977 3978
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
3979
			if (hctxs[i])
3980 3981 3982 3983 3984 3985 3986 3987 3988
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
3989
		}
3990
	}
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
4003

4004
	for (; j < end; j++) {
K
Keith Busch 已提交
4005 4006 4007 4008 4009 4010 4011
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
4012
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
4013 4014
}

4015 4016
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
		struct request_queue *q)
K
Keith Busch 已提交
4017
{
M
Ming Lei 已提交
4018 4019 4020
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

4021
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4022 4023
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
4024 4025 4026
	if (!q->poll_cb)
		goto err_exit;

4027
	if (blk_mq_alloc_ctxs(q))
4028
		goto err_poll;
K
Keith Busch 已提交
4029

4030 4031 4032
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

4033 4034 4035
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
4036 4037 4038
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
4039

4040
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4041
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4042

J
Jens Axboe 已提交
4043
	q->tag_set = set;
4044

4045
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4046 4047
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
4048
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4049

4050
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4051 4052 4053
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

4054 4055
	q->nr_requests = set->queue_depth;

4056 4057 4058
	/*
	 * Default to classic polling
	 */
4059
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4060

4061
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4062
	blk_mq_add_queue_tag_set(set, q);
4063
	blk_mq_map_swqueue(q);
4064
	return 0;
4065

4066
err_hctxs:
K
Keith Busch 已提交
4067
	kfree(q->queue_hw_ctx);
4068
	q->nr_hw_queues = 0;
4069
	blk_mq_sysfs_deinit(q);
4070 4071 4072
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
4073 4074
err_exit:
	q->mq_ops = NULL;
4075
	return -ENOMEM;
4076
}
4077
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4078

4079 4080
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
4081
{
4082
	struct blk_mq_tag_set *set = q->tag_set;
4083

4084
	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
M
Ming Lei 已提交
4085
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4086 4087
	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
	blk_mq_del_queue_tag_set(q);
4088 4089
}

4090 4091 4092 4093
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

4094 4095
	if (blk_mq_is_shared_tags(set->flags)) {
		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4096 4097
						BLK_MQ_NO_HCTX_IDX,
						set->queue_depth);
4098
		if (!set->shared_tags)
4099 4100 4101
			return -ENOMEM;
	}

4102
	for (i = 0; i < set->nr_hw_queues; i++) {
4103
		if (!__blk_mq_alloc_map_and_rqs(set, i))
4104
			goto out_unwind;
4105 4106
		cond_resched();
	}
4107 4108 4109 4110 4111

	return 0;

out_unwind:
	while (--i >= 0)
4112 4113
		__blk_mq_free_map_and_rqs(set, i);

4114 4115
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
4116
					BLK_MQ_NO_HCTX_IDX);
4117
	}
4118 4119 4120 4121 4122 4123 4124 4125 4126

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
4127
static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

4157 4158
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
4159 4160 4161 4162 4163 4164 4165 4166
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

4167
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
4168 4169
		int i;

4170 4171 4172 4173 4174 4175 4176
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
4177
		 * 		set->map[x].mq_map[cpu] = queue;
4178 4179 4180 4181 4182 4183
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
4184 4185
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
4186

4187
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
4188 4189
	} else {
		BUG_ON(set->nr_maps > 1);
4190
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
4191
	}
4192 4193
}

4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

4217 4218 4219 4220 4221 4222
static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
				int new_nr_hw_queues)
{
	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
}

4223 4224 4225
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
4226
 * requested depth down, if it's too large. In that case, the set
4227 4228
 * value will be stored in set->queue_depth.
 */
4229 4230
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
4231
	int i, ret;
4232

B
Bart Van Assche 已提交
4233 4234
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

4235 4236
	if (!set->nr_hw_queues)
		return -EINVAL;
4237
	if (!set->queue_depth)
4238 4239 4240 4241
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
4242
	if (!set->ops->queue_rq)
4243 4244
		return -EINVAL;

4245 4246 4247
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

4248 4249 4250 4251 4252
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
4253

J
Jens Axboe 已提交
4254 4255 4256 4257 4258
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

4259 4260 4261 4262 4263 4264 4265
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
4266
		set->nr_maps = 1;
4267 4268
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
4269
	/*
4270 4271
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
4272
	 */
4273
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
4274
		set->nr_hw_queues = nr_cpu_ids;
4275

4276
	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4277
		return -ENOMEM;
4278

4279
	ret = -ENOMEM;
J
Jens Axboe 已提交
4280 4281
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4282
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
4283 4284 4285
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
4286
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
4287
	}
4288

4289
	ret = blk_mq_update_queue_map(set);
4290 4291 4292
	if (ret)
		goto out_free_mq_map;

4293
	ret = blk_mq_alloc_set_map_and_rqs(set);
4294
	if (ret)
4295
		goto out_free_mq_map;
4296

4297 4298 4299
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

4300
	return 0;
4301 4302

out_free_mq_map:
J
Jens Axboe 已提交
4303 4304 4305 4306
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
4307 4308
	kfree(set->tags);
	set->tags = NULL;
4309
	return ret;
4310 4311 4312
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
/* allocate and initialize a tagset for a simple single-queue device */
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
		const struct blk_mq_ops *ops, unsigned int queue_depth,
		unsigned int set_flags)
{
	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
	set->nr_maps = 1;
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;
	return blk_mq_alloc_tag_set(set);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);

4329 4330
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
4331
	int i, j;
4332

4333
	for (i = 0; i < set->nr_hw_queues; i++)
4334
		__blk_mq_free_map_and_rqs(set, i);
4335

4336 4337
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
4338 4339
					BLK_MQ_NO_HCTX_IDX);
	}
4340

J
Jens Axboe 已提交
4341 4342 4343 4344
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
4345

M
Ming Lei 已提交
4346
	kfree(set->tags);
4347
	set->tags = NULL;
4348 4349 4350
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

4351 4352 4353 4354 4355 4356
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

4357
	if (!set)
4358 4359
		return -EINVAL;

4360 4361 4362
	if (q->nr_requests == nr)
		return 0;

4363
	blk_mq_freeze_queue(q);
4364
	blk_mq_quiesce_queue(q);
4365

4366 4367
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
4368 4369
		if (!hctx->tags)
			continue;
4370 4371 4372 4373
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
4374
		if (hctx->sched_tags) {
4375
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4376 4377 4378 4379
						      nr, true);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
						      false);
4380
		}
4381 4382
		if (ret)
			break;
4383 4384
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
4385
	}
4386
	if (!ret) {
4387
		q->nr_requests = nr;
4388
		if (blk_mq_is_shared_tags(set->flags)) {
4389
			if (q->elevator)
4390
				blk_mq_tag_update_sched_shared_tags(q);
4391
			else
4392
				blk_mq_tag_resize_shared_tags(set, nr);
4393
		}
4394
	}
4395

4396
	blk_mq_unquiesce_queue(q);
4397 4398
	blk_mq_unfreeze_queue(q);

4399 4400 4401
	return ret;
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

4472 4473
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
4474 4475
{
	struct request_queue *q;
4476
	LIST_HEAD(head);
4477
	int prev_nr_hw_queues;
K
Keith Busch 已提交
4478

4479 4480
	lockdep_assert_held(&set->tag_list_lock);

4481
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
4482
		nr_hw_queues = nr_cpu_ids;
4483 4484 4485
	if (nr_hw_queues < 1)
		return;
	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
K
Keith Busch 已提交
4486 4487 4488 4489
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
4490 4491 4492 4493 4494 4495 4496 4497
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
4498

4499 4500 4501 4502 4503
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

4504
	prev_nr_hw_queues = set->nr_hw_queues;
4505 4506 4507 4508
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
4509
	set->nr_hw_queues = nr_hw_queues;
4510
fallback:
4511
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
4512 4513
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
4514
		if (q->nr_hw_queues != set->nr_hw_queues) {
4515 4516
			int i = prev_nr_hw_queues;

4517 4518
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
4519 4520 4521
			for (; i < set->nr_hw_queues; i++)
				__blk_mq_free_map_and_rqs(set, i);

4522
			set->nr_hw_queues = prev_nr_hw_queues;
4523
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4524 4525
			goto fallback;
		}
4526 4527 4528
		blk_mq_map_swqueue(q);
	}

4529
reregister:
4530 4531 4532
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
4533 4534
	}

4535 4536 4537 4538
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
4539 4540 4541
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
4542 4543 4544 4545 4546 4547 4548

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
4549 4550
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

4551 4552 4553
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
4554
	if (q->poll_stat)
4555
		return true;
4556 4557

	return blk_stats_alloc_enable(q);
4558 4559 4560 4561 4562 4563 4564 4565
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
4566
	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4567 4568 4569 4570 4571 4572 4573 4574
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
4575
	int bucket;
4576

4577 4578 4579 4580
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
4581 4582
}

4583 4584 4585 4586
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
4587
	int bucket;
4588 4589 4590 4591 4592

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
4593
	if (!blk_poll_stats_enable(q))
4594 4595 4596 4597 4598 4599 4600 4601
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
4602 4603
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
4604
	 */
4605 4606 4607 4608 4609 4610
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
4611 4612 4613 4614

	return ret;
}

4615
static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4616
{
4617 4618
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
	struct request *rq = blk_qc_to_rq(hctx, qc);
4619 4620
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
4621
	unsigned int nsecs;
4622 4623
	ktime_t kt;

4624 4625 4626 4627 4628
	/*
	 * If a request has completed on queue that uses an I/O scheduler, we
	 * won't get back a request from blk_qc_to_rq.
	 */
	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4629 4630 4631
		return false;

	/*
4632
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4633 4634 4635 4636
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
4637
	if (q->poll_nsec > 0)
4638 4639
		nsecs = q->poll_nsec;
	else
4640
		nsecs = blk_mq_poll_nsecs(q, rq);
4641 4642

	if (!nsecs)
4643 4644
		return false;

J
Jens Axboe 已提交
4645
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4646 4647 4648 4649 4650

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
4651
	kt = nsecs;
4652 4653

	mode = HRTIMER_MODE_REL;
4654
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4655 4656 4657
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
4658
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4659 4660
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
4661
		hrtimer_sleeper_start_expires(&hs, mode);
4662 4663 4664 4665 4666 4667 4668 4669
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
4670

4671
	/*
4672 4673 4674 4675 4676
	 * If we sleep, have the caller restart the poll loop to reset the
	 * state.  Like for the other success return cases, the caller is
	 * responsible for checking if the IO completed.  If the IO isn't
	 * complete, we'll get called again and will go straight to the busy
	 * poll loop.
4677 4678 4679 4680
	 */
	return true;
}

4681
static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4682
			       struct io_comp_batch *iob, unsigned int flags)
J
Jens Axboe 已提交
4683
{
4684 4685 4686
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
	long state = get_current_state();
	int ret;
J
Jens Axboe 已提交
4687

4688
	do {
4689
		ret = q->mq_ops->poll(hctx, iob);
J
Jens Axboe 已提交
4690
		if (ret > 0) {
4691
			__set_current_state(TASK_RUNNING);
4692
			return ret;
J
Jens Axboe 已提交
4693 4694 4695
		}

		if (signal_pending_state(state, current))
4696
			__set_current_state(TASK_RUNNING);
4697
		if (task_is_running(current))
4698
			return 1;
4699

4700
		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
J
Jens Axboe 已提交
4701 4702
			break;
		cpu_relax();
4703
	} while (!need_resched());
J
Jens Axboe 已提交
4704

4705
	__set_current_state(TASK_RUNNING);
4706
	return 0;
J
Jens Axboe 已提交
4707
}
4708

4709 4710
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
		unsigned int flags)
4711
{
4712 4713
	if (!(flags & BLK_POLL_NOSLEEP) &&
	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4714
		if (blk_mq_poll_hybrid(q, cookie))
4715
			return 1;
4716
	}
4717
	return blk_mq_poll_classic(q, cookie, iob, flags);
J
Jens Axboe 已提交
4718 4719
}

J
Jens Axboe 已提交
4720 4721 4722 4723 4724 4725
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
void blk_mq_cancel_work_sync(struct request_queue *q)
{
	if (queue_is_mq(q)) {
		struct blk_mq_hw_ctx *hctx;
		int i;

		cancel_delayed_work_sync(&q->requeue_work);

		queue_for_each_hw_ctx(q, hctx, i)
			cancel_delayed_work_sync(&hctx->run_work);
	}
}

4739 4740
static int __init blk_mq_init(void)
{
4741 4742 4743
	int i;

	for_each_possible_cpu(i)
4744
		init_llist_head(&per_cpu(blk_cpu_done, i));
4745 4746 4747 4748 4749
	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);

	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
				  "block/softirq:dead", NULL,
				  blk_softirq_cpu_dead);
4750 4751
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
4752 4753 4754
	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
				blk_mq_hctx_notify_online,
				blk_mq_hctx_notify_offline);
4755 4756 4757
	return 0;
}
subsys_initcall(blk_mq_init);