blk-mq.c 97.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/kmemleak.h>
14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
24
#include <linux/sched/topology.h>
25
#include <linux/sched/signal.h>
26
#include <linux/delay.h>
27
#include <linux/crash_dump.h>
28
#include <linux/prefetch.h>
29
#include <linux/blk-crypto.h>
30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
34
#include <linux/t10-pi.h>
35 36
#include "blk.h"
#include "blk-mq.h"
37
#include "blk-mq-debugfs.h"
38
#include "blk-mq-tag.h"
39
#include "blk-pm.h"
40
#include "blk-stat.h"
41
#include "blk-mq-sched.h"
42
#include "blk-rq-qos.h"
43

44 45
static DEFINE_PER_CPU(struct list_head, blk_cpu_done);

46 47 48
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

49 50
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
51
	int ddir, sectors, bucket;
52

J
Jens Axboe 已提交
53
	ddir = rq_data_dir(rq);
54
	sectors = blk_rq_stats_sectors(rq);
55

56
	bucket = ddir + 2 * ilog2(sectors);
57 58 59 60 61 62 63 64 65

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

66
/*
67 68
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
69
 */
70
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71
{
72 73
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
74
			blk_mq_sched_has_work(hctx);
75 76
}

77 78 79 80 81 82
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
83 84 85 86
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
87 88 89 90 91
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
92 93 94
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 96
}

97 98
struct mq_inflight {
	struct hd_struct *part;
99
	unsigned int inflight[2];
100 101
};

102
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 104 105 106 107
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

108
	if (rq->part == mi->part)
109
		mi->inflight[rq_data_dir(rq)]++;
110 111

	return true;
112 113
}

114
unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115
{
116
	struct mq_inflight mi = { .part = part };
117 118

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119

120
	return mi.inflight[0] + mi.inflight[1];
121 122 123 124 125
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
126
	struct mq_inflight mi = { .part = part };
127

128
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129 130
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
131 132
}

133
void blk_freeze_queue_start(struct request_queue *q)
134
{
135 136
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
137
		percpu_ref_kill(&q->q_usage_counter);
138
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
139
		if (queue_is_mq(q))
140
			blk_mq_run_hw_queues(q, false);
141 142
	} else {
		mutex_unlock(&q->mq_freeze_lock);
143
	}
144
}
145
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146

147
void blk_mq_freeze_queue_wait(struct request_queue *q)
148
{
149
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150
}
151
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152

153 154 155 156 157 158 159 160
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161

162 163 164 165
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
166
void blk_freeze_queue(struct request_queue *q)
167
{
168 169 170 171 172 173 174
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
175
	blk_freeze_queue_start(q);
176 177
	blk_mq_freeze_queue_wait(q);
}
178 179 180 181 182 183 184 185 186

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
187
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188

189
void blk_mq_unfreeze_queue(struct request_queue *q)
190
{
191 192 193 194
	mutex_lock(&q->mq_freeze_lock);
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
195
		percpu_ref_resurrect(&q->q_usage_counter);
196
		wake_up_all(&q->mq_freeze_wq);
197
	}
198
	mutex_unlock(&q->mq_freeze_lock);
199
}
200
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201

202 203 204 205 206 207
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
208
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 210 211
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

212
/**
213
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214 215 216
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
217 218 219
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
220 221 222 223 224 225 226
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

227
	blk_mq_quiesce_queue_nowait(q);
228

229 230
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
231
			synchronize_srcu(hctx->srcu);
232 233 234 235 236 237 238 239
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

240 241 242 243 244 245 246 247 248
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
249
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250

251 252
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
253 254 255
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

256 257 258 259 260 261 262 263 264 265
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

266
/*
267 268
 * Only need start/end time stamping if we have iostat or
 * blk stats enabled, or using an IO scheduler.
269 270 271
 */
static inline bool blk_mq_need_time_stamp(struct request *rq)
{
272
	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 274
}

275
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276
		unsigned int tag, u64 alloc_time_ns)
277
{
278 279
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
280

281
	if (data->q->elevator) {
282
		rq->tag = BLK_MQ_NO_TAG;
283 284 285
		rq->internal_tag = tag;
	} else {
		rq->tag = tag;
286
		rq->internal_tag = BLK_MQ_NO_TAG;
287 288
	}

289
	/* csd/requeue_work/fifo_time is initialized before use */
290 291
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
292
	rq->mq_hctx = data->hctx;
293
	rq->rq_flags = 0;
294
	rq->cmd_flags = data->cmd_flags;
295 296
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
297
	if (blk_queue_io_stat(data->q))
298
		rq->rq_flags |= RQF_IO_STAT;
299
	INIT_LIST_HEAD(&rq->queuelist);
300 301 302 303
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
304 305 306
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
307 308 309 310
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
311
	rq->io_start_time_ns = 0;
312
	rq->stats_sectors = 0;
313 314 315 316
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
317
	blk_crypto_rq_set_defaults(rq);
318
	/* tag was already set */
319
	WRITE_ONCE(rq->deadline, 0);
320

321 322
	rq->timeout = 0;

323 324 325
	rq->end_io = NULL;
	rq->end_io_data = NULL;

326
	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
K
Keith Busch 已提交
327
	refcount_set(&rq->ref, 1);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

	if (!op_is_flush(data->cmd_flags)) {
		struct elevator_queue *e = data->q->elevator;

		rq->elv.icq = NULL;
		if (e && e->type->ops.prepare_request) {
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);

			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

	data->hctx->queued++;
343
	return rq;
344 345
}

346
static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347
{
348
	struct request_queue *q = data->q;
349
	struct elevator_queue *e = q->elevator;
350
	u64 alloc_time_ns = 0;
351
	unsigned int tag;
352

353 354 355 356
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

357
	if (data->cmd_flags & REQ_NOWAIT)
358
		data->flags |= BLK_MQ_REQ_NOWAIT;
359 360 361 362

	if (e) {
		/*
		 * Flush requests are special and go directly to the
363 364
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
365
		 */
366 367
		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.limit_depth &&
368
		    !(data->flags & BLK_MQ_REQ_RESERVED))
369
			e->type->ops.limit_depth(data->cmd_flags, data);
370 371
	}

372
retry:
373 374
	data->ctx = blk_mq_get_ctx(q);
	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375
	if (!e)
376 377
		blk_mq_tag_busy(data->hctx);

378 379 380 381 382
	/*
	 * Waiting allocations only fail because of an inactive hctx.  In that
	 * case just retry the hctx assignment and tag allocation as CPU hotplug
	 * should have migrated us to an online CPU by now.
	 */
383
	tag = blk_mq_get_tag(data);
384 385 386 387 388 389 390
	if (tag == BLK_MQ_NO_TAG) {
		if (data->flags & BLK_MQ_REQ_NOWAIT)
			return NULL;

		/*
		 * Give up the CPU and sleep for a random short time to ensure
		 * that thread using a realtime scheduling class are migrated
391
		 * off the CPU, and thus off the hctx that is going away.
392 393 394 395
		 */
		msleep(3);
		goto retry;
	}
396
	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397 398
}

399
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400
		blk_mq_req_flags_t flags)
401
{
402 403 404 405 406
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
	};
407
	struct request *rq;
408
	int ret;
409

410
	ret = blk_queue_enter(q, flags);
411 412
	if (ret)
		return ERR_PTR(ret);
413

414
	rq = __blk_mq_alloc_request(&data);
415
	if (!rq)
416
		goto out_queue_exit;
417 418 419
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
420
	return rq;
421 422 423
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
424
}
425
EXPORT_SYMBOL(blk_mq_alloc_request);
426

427
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
429
{
430 431 432 433 434
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
	};
435
	u64 alloc_time_ns = 0;
436
	unsigned int cpu;
437
	unsigned int tag;
M
Ming Lin 已提交
438 439
	int ret;

440 441 442 443
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

M
Ming Lin 已提交
444 445 446 447 448 449
	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
450
	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
M
Ming Lin 已提交
451 452 453 454 455
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

456
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
457 458 459
	if (ret)
		return ERR_PTR(ret);

460 461 462 463
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
464
	ret = -EXDEV;
465 466
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
467
		goto out_queue_exit;
468 469
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
470

471
	if (!q->elevator)
472 473
		blk_mq_tag_busy(data.hctx);

474
	ret = -EWOULDBLOCK;
475 476
	tag = blk_mq_get_tag(&data);
	if (tag == BLK_MQ_NO_TAG)
477
		goto out_queue_exit;
478 479
	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);

480 481 482
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
483 484 485
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
486 487 488 489
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
490
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
491 492
	const int sched_tag = rq->internal_tag;

493
	blk_crypto_free_request(rq);
494
	blk_pm_mark_last_busy(rq);
495
	rq->mq_hctx = NULL;
496
	if (rq->tag != BLK_MQ_NO_TAG)
497
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498
	if (sched_tag != BLK_MQ_NO_TAG)
499
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
500 501 502 503
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

504
void blk_mq_free_request(struct request *rq)
505 506
{
	struct request_queue *q = rq->q;
507 508
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
509
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510

511
	if (rq->rq_flags & RQF_ELVPRIV) {
512 513
		if (e && e->type->ops.finish_request)
			e->type->ops.finish_request(rq);
514 515 516 517 518
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
519

520
	ctx->rq_completed[rq_is_sync(rq)]++;
521
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
522
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
523

524 525 526
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

527
	rq_qos_done(q, rq);
528

K
Keith Busch 已提交
529 530 531
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
532
}
J
Jens Axboe 已提交
533
EXPORT_SYMBOL_GPL(blk_mq_free_request);
534

535
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536
{
537 538 539 540
	u64 now = 0;

	if (blk_mq_need_time_stamp(rq))
		now = ktime_get_ns();
541

542 543
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
544
		blk_stat_add(rq, now);
545 546
	}

547
	blk_mq_sched_completed_request(rq, now);
548

549
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
550

C
Christoph Hellwig 已提交
551
	if (rq->end_io) {
552
		rq_qos_done(rq->q, rq);
553
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
554
	} else {
555
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
556
	}
557
}
558
EXPORT_SYMBOL(__blk_mq_end_request);
559

560
void blk_mq_end_request(struct request *rq, blk_status_t error)
561 562 563
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
564
	__blk_mq_end_request(rq, error);
565
}
566
EXPORT_SYMBOL(blk_mq_end_request);
567

568 569 570 571 572
/*
 * Softirq action handler - move entries to local list and loop over them
 * while passing them to the queue registered handler.
 */
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
573
{
574
	struct list_head *cpu_list, local_list;
575

576 577 578 579 580 581 582 583 584 585 586 587
	local_irq_disable();
	cpu_list = this_cpu_ptr(&blk_cpu_done);
	list_replace_init(cpu_list, &local_list);
	local_irq_enable();

	while (!list_empty(&local_list)) {
		struct request *rq;

		rq = list_entry(local_list.next, struct request, ipi_list);
		list_del_init(&rq->ipi_list);
		rq->q->mq_ops->complete(rq);
	}
588 589
}

590
static void blk_mq_trigger_softirq(struct request *rq)
591
{
592 593
	struct list_head *list;
	unsigned long flags;
594

595 596
	local_irq_save(flags);
	list = this_cpu_ptr(&blk_cpu_done);
597 598
	list_add_tail(&rq->ipi_list, list);

599 600 601 602 603
	/*
	 * If the list only contains our just added request, signal a raise of
	 * the softirq.  If there are already entries there, someone already
	 * raised the irq but it hasn't run yet.
	 */
604 605
	if (list->next == &rq->ipi_list)
		raise_softirq_irqoff(BLOCK_SOFTIRQ);
606
	local_irq_restore(flags);
607 608
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static int blk_softirq_cpu_dead(unsigned int cpu)
{
	/*
	 * If a CPU goes away, splice its entries to the current CPU
	 * and trigger a run of the softirq
	 */
	local_irq_disable();
	list_splice_init(&per_cpu(blk_cpu_done, cpu),
			 this_cpu_ptr(&blk_cpu_done));
	raise_softirq_irqoff(BLOCK_SOFTIRQ);
	local_irq_enable();

	return 0;
}

624 625

static void __blk_mq_complete_request_remote(void *data)
626
{
627
	struct request *rq = data;
628

629
	/*
630 631 632 633
	 * For most of single queue controllers, there is only one irq vector
	 * for handling I/O completion, and the only irq's affinity is set
	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
	 * is handled on one specific CPU.
634
	 *
635 636
	 * So complete I/O requests in softirq context in case of single queue
	 * devices to avoid degrading I/O performance due to irqsoff latency.
637
	 */
638 639 640 641
	if (rq->q->nr_hw_queues == 1)
		blk_mq_trigger_softirq(rq);
	else
		rq->q->mq_ops->complete(rq);
642 643
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
	int cpu = raw_smp_processor_id();

	if (!IS_ENABLED(CONFIG_SMP) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
		return false;

	/* same CPU or cache domain?  Complete locally */
	if (cpu == rq->mq_ctx->cpu ||
	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
		return false;

	/* don't try to IPI to an offline CPU */
	return cpu_online(rq->mq_ctx->cpu);
}

662
bool blk_mq_complete_request_remote(struct request *rq)
663
{
664
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
665

666 667 668 669
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
670 671
	if (rq->cmd_flags & REQ_HIPRI)
		return false;
C
Christoph Hellwig 已提交
672

673
	if (blk_mq_complete_need_ipi(rq)) {
674
		rq->csd.func = __blk_mq_complete_request_remote;
675 676
		rq->csd.info = rq;
		rq->csd.flags = 0;
677
		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
678
	} else {
679 680 681
		if (rq->q->nr_hw_queues > 1)
			return false;
		blk_mq_trigger_softirq(rq);
682
	}
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

	return true;
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Complete a request by scheduling the ->complete_rq operation.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (!blk_mq_complete_request_remote(rq))
		rq->q->mq_ops->complete(rq);
699
}
700
EXPORT_SYMBOL(blk_mq_complete_request);
701

702
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
703
	__releases(hctx->srcu)
704 705 706 707
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
708
		srcu_read_unlock(hctx->srcu, srcu_idx);
709 710 711
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
712
	__acquires(hctx->srcu)
713
{
714 715 716
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
717
		rcu_read_lock();
718
	} else
719
		*srcu_idx = srcu_read_lock(hctx->srcu);
720 721
}

722 723 724 725 726 727 728 729
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
730
void blk_mq_start_request(struct request *rq)
731 732 733 734 735
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

736
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
737
		rq->io_start_time_ns = ktime_get_ns();
738
		rq->stats_sectors = blk_rq_sectors(rq);
739
		rq->rq_flags |= RQF_STATS;
740
		rq_qos_issue(q, rq);
741 742
	}

743
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
744

745
	blk_add_timer(rq);
K
Keith Busch 已提交
746
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
747

748 749 750 751
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
752
}
753
EXPORT_SYMBOL(blk_mq_start_request);
754

755
static void __blk_mq_requeue_request(struct request *rq)
756 757 758
{
	struct request_queue *q = rq->q;

759 760
	blk_mq_put_driver_tag(rq);

761
	trace_block_rq_requeue(q, rq);
762
	rq_qos_requeue(q, rq);
763

K
Keith Busch 已提交
764 765
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
766
		rq->rq_flags &= ~RQF_TIMED_OUT;
767
	}
768 769
}

770
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
771 772 773
{
	__blk_mq_requeue_request(rq);

774 775 776
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
777
	BUG_ON(!list_empty(&rq->queuelist));
778
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
779 780 781
}
EXPORT_SYMBOL(blk_mq_requeue_request);

782 783 784
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
785
		container_of(work, struct request_queue, requeue_work.work);
786 787 788
	LIST_HEAD(rq_list);
	struct request *rq, *next;

789
	spin_lock_irq(&q->requeue_lock);
790
	list_splice_init(&q->requeue_list, &rq_list);
791
	spin_unlock_irq(&q->requeue_lock);
792 793

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
794
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
795 796
			continue;

797
		rq->rq_flags &= ~RQF_SOFTBARRIER;
798
		list_del_init(&rq->queuelist);
799 800 801 802 803 804
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
805
			blk_mq_request_bypass_insert(rq, false, false);
806 807
		else
			blk_mq_sched_insert_request(rq, true, false, false);
808 809 810 811 812
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
813
		blk_mq_sched_insert_request(rq, false, false, false);
814 815
	}

816
	blk_mq_run_hw_queues(q, false);
817 818
}

819 820
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
821 822 823 824 825 826
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
827
	 * request head insertion from the workqueue.
828
	 */
829
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
830 831 832

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
833
		rq->rq_flags |= RQF_SOFTBARRIER;
834 835 836 837 838
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
839 840 841

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
842 843 844 845
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
846
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
847 848 849
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

850 851 852
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
853 854
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
855 856 857
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

858 859
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
860 861
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
862
		return tags->rqs[tag];
863
	}
864 865

	return NULL;
866 867 868
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

869 870
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
871 872
{
	/*
873
	 * If we find a request that isn't idle and the queue matches,
874
	 * we know the queue is busy. Return false to stop the iteration.
875
	 */
876
	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
877 878 879 880 881 882 883 884 885
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

886
bool blk_mq_queue_inflight(struct request_queue *q)
887 888 889
{
	bool busy = false;

890
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
891 892
	return busy;
}
893
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
894

895
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
896
{
897
	req->rq_flags |= RQF_TIMED_OUT;
898 899 900 901 902 903 904
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
905
	}
906 907

	blk_add_timer(req);
908
}
909

K
Keith Busch 已提交
910
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
911
{
K
Keith Busch 已提交
912
	unsigned long deadline;
913

K
Keith Busch 已提交
914 915
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
916 917
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
918

919
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
920 921
	if (time_after_eq(jiffies, deadline))
		return true;
922

K
Keith Busch 已提交
923 924 925 926 927
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
928 929
}

930
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
931 932
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
933 934 935 936 937 938 939
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
940
		return true;
K
Keith Busch 已提交
941 942 943 944 945 946 947 948 949 950 951

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
952
		return true;
K
Keith Busch 已提交
953

954
	/*
K
Keith Busch 已提交
955 956 957 958
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
959
	 */
K
Keith Busch 已提交
960
	if (blk_mq_req_expired(rq, next))
961
		blk_mq_rq_timed_out(rq, reserved);
962 963 964 965

	if (is_flush_rq(rq, hctx))
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
K
Keith Busch 已提交
966
		__blk_mq_free_request(rq);
967 968

	return true;
969 970
}

971
static void blk_mq_timeout_work(struct work_struct *work)
972
{
973 974
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
975
	unsigned long next = 0;
976
	struct blk_mq_hw_ctx *hctx;
977
	int i;
978

979 980 981 982 983 984 985 986 987
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
988
	 * blk_freeze_queue_start, and the moment the last request is
989 990 991 992
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
993 994
		return;

K
Keith Busch 已提交
995
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
996

K
Keith Busch 已提交
997 998
	if (next != 0) {
		mod_timer(&q->timeout, next);
999
	} else {
1000 1001 1002 1003 1004 1005
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
1006 1007 1008 1009 1010
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
1011
	}
1012
	blk_queue_exit(q);
1013 1014
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1025
	enum hctx_type type = hctx->type;
1026 1027

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1028
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029
	sbitmap_clear_bit(sb, bitnr);
1030 1031 1032 1033
	spin_unlock(&ctx->lock);
	return true;
}

1034 1035 1036 1037
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1038
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039
{
1040 1041 1042 1043
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1044

1045
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046
}
1047
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1060
	enum hctx_type type = hctx->type;
1061 1062

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1063 1064
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1066
		if (list_empty(&ctx->rq_lists[type]))
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1077
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1089 1090 1091 1092
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1093

1094
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095 1096
}

1097 1098
static bool __blk_mq_get_driver_tag(struct request *rq)
{
1099
	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1100 1101 1102
	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
	int tag;

1103 1104
	blk_mq_tag_busy(rq->mq_hctx);

1105
	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106
		bt = rq->mq_hctx->tags->breserved_tags;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		tag_offset = 0;
	}

	if (!hctx_may_queue(rq->mq_hctx, bt))
		return false;
	tag = __sbitmap_queue_get(bt);
	if (tag == BLK_MQ_NO_TAG)
		return false;

	rq->tag = tag + tag_offset;
	return true;
}

static bool blk_mq_get_driver_tag(struct request *rq)
{
1122 1123 1124 1125 1126
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
		return false;

1127
	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1128 1129 1130 1131 1132 1133
			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
		rq->rq_flags |= RQF_MQ_INFLIGHT;
		atomic_inc(&hctx->nr_active);
	}
	hctx->tags->rqs[rq->tag] = rq;
	return true;
1134 1135
}

1136 1137
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1138 1139 1140 1141 1142
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1143
	spin_lock(&hctx->dispatch_wait_lock);
1144 1145 1146 1147
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
1148
		sbq = hctx->tags->bitmap_tags;
1149 1150
		atomic_dec(&sbq->ws_active);
	}
1151 1152
	spin_unlock(&hctx->dispatch_wait_lock);

1153 1154 1155 1156
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1157 1158
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1159 1160
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1161 1162
 * marking us as waiting.
 */
1163
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1164
				 struct request *rq)
1165
{
1166
	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1167
	struct wait_queue_head *wq;
1168 1169
	wait_queue_entry_t *wait;
	bool ret;
1170

1171
	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1172
		blk_mq_sched_mark_restart_hctx(hctx);
1173

1174 1175 1176 1177 1178 1179 1180 1181
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1182
		return blk_mq_get_driver_tag(rq);
1183 1184
	}

1185
	wait = &hctx->dispatch_wait;
1186 1187 1188
	if (!list_empty_careful(&wait->entry))
		return false;

1189
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1190 1191 1192

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1193
	if (!list_empty(&wait->entry)) {
1194 1195
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1196
		return false;
1197 1198
	}

1199
	atomic_inc(&sbq->ws_active);
1200 1201
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1202

1203
	/*
1204 1205 1206
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1207
	 */
1208
	ret = blk_mq_get_driver_tag(rq);
1209
	if (!ret) {
1210 1211
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1212
		return false;
1213
	}
1214 1215 1216 1217 1218 1219

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1220
	atomic_dec(&sbq->ws_active);
1221 1222
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1223 1224

	return true;
1225 1226
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1256 1257
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
enum prep_dispatch {
	PREP_DISPATCH_OK,
	PREP_DISPATCH_NO_TAG,
	PREP_DISPATCH_NO_BUDGET,
};

static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
						  bool need_budget)
{
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
		blk_mq_put_driver_tag(rq);
		return PREP_DISPATCH_NO_BUDGET;
	}

	if (!blk_mq_get_driver_tag(rq)) {
		/*
		 * The initial allocation attempt failed, so we need to
		 * rerun the hardware queue when a tag is freed. The
		 * waitqueue takes care of that. If the queue is run
		 * before we add this entry back on the dispatch list,
		 * we'll re-run it below.
		 */
		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1313 1314 1315 1316 1317 1318
			/*
			 * All budgets not got from this function will be put
			 * together during handling partial dispatch
			 */
			if (need_budget)
				blk_mq_put_dispatch_budget(rq->q);
1319 1320 1321 1322 1323 1324 1325
			return PREP_DISPATCH_NO_TAG;
		}
	}

	return PREP_DISPATCH_OK;
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
		unsigned int nr_budgets)
{
	int i;

	for (i = 0; i < nr_budgets; i++)
		blk_mq_put_dispatch_budget(q);
}

1336 1337 1338
/*
 * Returns true if we did some work AND can potentially do more.
 */
1339
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1340
			     unsigned int nr_budgets)
1341
{
1342
	enum prep_dispatch prep;
1343
	struct request_queue *q = hctx->queue;
1344
	struct request *rq, *nxt;
1345
	int errors, queued;
1346
	blk_status_t ret = BLK_STS_OK;
1347
	LIST_HEAD(zone_list);
1348

1349 1350 1351
	if (list_empty(list))
		return false;

1352 1353 1354
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1355
	errors = queued = 0;
1356
	do {
1357
		struct blk_mq_queue_data bd;
1358

1359
		rq = list_first_entry(list, struct request, queuelist);
1360

1361
		WARN_ON_ONCE(hctx != rq->mq_hctx);
1362
		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1363
		if (prep != PREP_DISPATCH_OK)
1364
			break;
1365

1366 1367
		list_del_init(&rq->queuelist);

1368
		bd.rq = rq;
1369 1370 1371 1372 1373 1374 1375 1376 1377

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1378
			bd.last = !blk_mq_get_driver_tag(nxt);
1379
		}
1380

1381 1382 1383 1384 1385 1386
		/*
		 * once the request is queued to lld, no need to cover the
		 * budget any more
		 */
		if (nr_budgets)
			nr_budgets--;
1387
		ret = q->mq_ops->queue_rq(hctx, &bd);
1388 1389 1390
		switch (ret) {
		case BLK_STS_OK:
			queued++;
1391
			break;
1392 1393 1394 1395 1396
		case BLK_STS_RESOURCE:
		case BLK_STS_DEV_RESOURCE:
			blk_mq_handle_dev_resource(rq, list);
			goto out;
		case BLK_STS_ZONE_RESOURCE:
1397 1398 1399 1400 1401 1402
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
1403 1404
			break;
		default:
1405
			errors++;
1406
			blk_mq_end_request(rq, BLK_STS_IOERR);
1407
		}
1408
	} while (!list_empty(list));
1409
out:
1410 1411 1412
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1413
	hctx->dispatched[queued_to_index(queued)]++;
1414 1415 1416 1417 1418

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1419
	if (!list_empty(list)) {
1420
		bool needs_restart;
1421 1422
		/* For non-shared tags, the RESTART check will suffice */
		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1423
			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1424
		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1425

1426
		blk_mq_release_budgets(q, nr_budgets);
1427

J
Jens Axboe 已提交
1428 1429 1430 1431 1432
		/*
		 * If we didn't flush the entire list, we could have told
		 * the driver there was more coming, but that turned out to
		 * be a lie.
		 */
1433
		if (q->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
1434 1435
			q->mq_ops->commit_rqs(hctx);

1436
		spin_lock(&hctx->lock);
1437
		list_splice_tail_init(list, &hctx->dispatch);
1438
		spin_unlock(&hctx->lock);
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448
		/*
		 * Order adding requests to hctx->dispatch and checking
		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
		 * in blk_mq_sched_restart(). Avoid restart code path to
		 * miss the new added requests to hctx->dispatch, meantime
		 * SCHED_RESTART is observed here.
		 */
		smp_mb();

1449
		/*
1450 1451 1452
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1453
		 *
1454 1455 1456 1457
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1458
		 *
1459 1460 1461 1462 1463 1464 1465
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1466
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1467
		 *   and dm-rq.
1468 1469 1470
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1471 1472
		 * that could otherwise occur if the queue is idle.  We'll do
		 * similar if we couldn't get budget and SCHED_RESTART is set.
1473
		 */
1474 1475
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1476
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1477
			blk_mq_run_hw_queue(hctx, true);
1478 1479
		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
					   no_budget_avail))
1480
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1481

1482
		blk_mq_update_dispatch_busy(hctx, true);
1483
		return false;
1484 1485
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1486

1487
	return (queued + errors) != 0;
1488 1489
}

1490 1491 1492 1493 1494 1495
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1496 1497 1498 1499
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1500 1501 1502
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1516
	 */
1517 1518 1519 1520 1521 1522 1523
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1524

1525 1526 1527 1528 1529 1530
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1531
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1532

1533 1534 1535
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1547 1548 1549 1550 1551 1552 1553 1554
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1555
	bool tried = false;
1556
	int next_cpu = hctx->next_cpu;
1557

1558 1559
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1560 1561

	if (--hctx->next_cpu_batch <= 0) {
1562
select_cpu:
1563
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1564
				cpu_online_mask);
1565
		if (next_cpu >= nr_cpu_ids)
1566
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1567 1568 1569
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1570 1571 1572 1573
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1574
	if (!cpu_online(next_cpu)) {
1575 1576 1577 1578 1579 1580 1581 1582 1583
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1584
		hctx->next_cpu = next_cpu;
1585 1586 1587
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1588 1589 1590

	hctx->next_cpu = next_cpu;
	return next_cpu;
1591 1592
}

1593 1594 1595 1596 1597 1598 1599 1600 1601
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 * @msecs: Microseconds of delay to wait before running the queue.
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1602 1603
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1604
{
1605
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1606 1607
		return;

1608
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1609 1610
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1611
			__blk_mq_run_hw_queue(hctx);
1612
			put_cpu();
1613 1614
			return;
		}
1615

1616
		put_cpu();
1617
	}
1618

1619 1620
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1621 1622
}

1623 1624 1625 1626 1627 1628 1629
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
 * @msecs: Microseconds of delay to wait before running the queue.
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
1630 1631 1632 1633 1634 1635
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1636 1637 1638 1639 1640 1641 1642 1643 1644
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
1645
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1646
{
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1658 1659 1660 1661
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1662

1663
	if (need_run)
1664
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1665
}
O
Omar Sandoval 已提交
1666
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1667

1668 1669 1670 1671 1672
/**
 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
1673
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1674 1675 1676 1677 1678
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1679
		if (blk_mq_hctx_stopped(hctx))
1680 1681
			continue;

1682
		blk_mq_run_hw_queue(hctx, async);
1683 1684
	}
}
1685
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
 * @msecs: Microseconds of delay to wait before running the queues.
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;

		blk_mq_delay_run_hw_queue(hctx, msecs);
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1726 1727 1728
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1729
 * BLK_STS_RESOURCE is usually returned.
1730 1731 1732 1733 1734
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1735 1736
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1737
	cancel_delayed_work(&hctx->run_work);
1738

1739
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740
}
1741
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742

1743 1744 1745
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1746
 * BLK_STS_RESOURCE is usually returned.
1747 1748 1749 1750 1751
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1752 1753
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1754 1755 1756 1757 1758
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1759 1760 1761
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1762 1763 1764
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765

1766
	blk_mq_run_hw_queue(hctx, false);
1767 1768 1769
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1790
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791 1792 1793 1794
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1795 1796
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1797 1798 1799
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1800
static void blk_mq_run_work_fn(struct work_struct *work)
1801 1802 1803
{
	struct blk_mq_hw_ctx *hctx;

1804
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805

1806
	/*
M
Ming Lei 已提交
1807
	 * If we are stopped, don't run the queue.
1808
	 */
M
Ming Lei 已提交
1809
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1810
		return;
1811 1812 1813 1814

	__blk_mq_run_hw_queue(hctx);
}

1815 1816 1817
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1818
{
J
Jens Axboe 已提交
1819
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
1820
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
1821

1822 1823
	lockdep_assert_held(&ctx->lock);

1824 1825
	trace_block_rq_insert(hctx->queue, rq);

1826
	if (at_head)
M
Ming Lei 已提交
1827
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828
	else
M
Ming Lei 已提交
1829
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830
}
1831

1832 1833
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1834 1835 1836
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1837 1838
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1839
	__blk_mq_insert_req_list(hctx, rq, at_head);
1840 1841 1842
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1843 1844 1845
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
1846
 * @at_head: true if the request should be inserted at the head of the list.
1847 1848
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
1849 1850 1851
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1852 1853
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
1854
{
1855
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856 1857

	spin_lock(&hctx->lock);
1858 1859 1860 1861
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
1862 1863
	spin_unlock(&hctx->lock);

1864 1865
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1866 1867
}

1868 1869
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1870 1871

{
1872
	struct request *rq;
M
Ming Lei 已提交
1873
	enum hctx_type type = hctx->type;
1874

1875 1876 1877 1878
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1879
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1880
		BUG_ON(rq->mq_ctx != ctx);
1881
		trace_block_rq_insert(hctx->queue, rq);
1882
	}
1883 1884

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1885
	list_splice_tail_init(list, &ctx->rq_lists[type]);
1886
	blk_mq_hctx_mark_pending(hctx, ctx);
1887 1888 1889
	spin_unlock(&ctx->lock);
}

J
Jens Axboe 已提交
1890
static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1891 1892 1893 1894
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

P
Pavel Begunkov 已提交
1895 1896 1897 1898
	if (rqa->mq_ctx != rqb->mq_ctx)
		return rqa->mq_ctx > rqb->mq_ctx;
	if (rqa->mq_hctx != rqb->mq_hctx)
		return rqa->mq_hctx > rqb->mq_hctx;
J
Jens Axboe 已提交
1899 1900

	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1901 1902 1903 1904 1905 1906
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(list);

1907 1908
	if (list_empty(&plug->mq_list))
		return;
1909 1910
	list_splice_init(&plug->mq_list, &list);

1911 1912
	if (plug->rq_count > 2 && plug->multiple_queues)
		list_sort(NULL, &list, plug_rq_cmp);
1913

1914 1915
	plug->rq_count = 0;

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	do {
		struct list_head rq_list;
		struct request *rq, *head_rq = list_entry_rq(list.next);
		struct list_head *pos = &head_rq->queuelist; /* skip first */
		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
		unsigned int depth = 1;

		list_for_each_continue(pos, &list) {
			rq = list_entry_rq(pos);
			BUG_ON(!rq->q);
			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
				break;
			depth++;
1930 1931
		}

1932 1933
		list_cut_before(&rq_list, &list, pos);
		trace_block_unplug(head_rq->q, depth, !from_schedule);
1934
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1935
						from_schedule);
1936
	} while(!list_empty(&list));
1937 1938
}

1939 1940
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
1941
{
1942 1943 1944 1945 1946
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
1947
	blk_rq_bio_prep(rq, bio, nr_segs);
1948
	blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1949

1950
	blk_account_io_start(rq);
1951 1952
}

1953 1954
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
1955
					    blk_qc_t *cookie, bool last)
1956 1957 1958 1959
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1960
		.last = last,
1961
	};
1962
	blk_qc_t new_cookie;
1963
	blk_status_t ret;
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1975
		blk_mq_update_dispatch_busy(hctx, false);
1976 1977 1978
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1979
	case BLK_STS_DEV_RESOURCE:
1980
		blk_mq_update_dispatch_busy(hctx, true);
1981 1982 1983
		__blk_mq_requeue_request(rq);
		break;
	default:
1984
		blk_mq_update_dispatch_busy(hctx, false);
1985 1986 1987 1988 1989 1990 1991
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

1992
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1993
						struct request *rq,
1994
						blk_qc_t *cookie,
1995
						bool bypass_insert, bool last)
1996 1997
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1998 1999
	bool run_queue = true;

2000
	/*
2001
	 * RCU or SRCU read lock is needed before checking quiesced flag.
2002
	 *
2003 2004 2005
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
2006
	 */
2007
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
2008
		run_queue = false;
2009 2010
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
2011
	}
2012

2013 2014
	if (q->elevator && !bypass_insert)
		goto insert;
2015

2016
	if (!blk_mq_get_dispatch_budget(q))
2017
		goto insert;
2018

2019
	if (!blk_mq_get_driver_tag(rq)) {
2020
		blk_mq_put_dispatch_budget(q);
2021
		goto insert;
2022
	}
2023

2024 2025 2026 2027 2028
	return __blk_mq_issue_directly(hctx, rq, cookie, last);
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

2029 2030
	blk_mq_sched_insert_request(rq, false, run_queue, false);

2031 2032 2033
	return BLK_STS_OK;
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 * @cookie: Request queue cookie.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2057
		blk_mq_request_bypass_insert(rq, false, true);
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2073
	hctx_unlock(hctx, srcu_idx);
2074 2075

	return ret;
2076 2077
}

2078 2079 2080
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
2081 2082
	int queued = 0;

2083
	while (!list_empty(list)) {
2084
		blk_status_t ret;
2085 2086 2087 2088
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
2089 2090 2091 2092
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
2093
				blk_mq_request_bypass_insert(rq, false,
2094
							list_empty(list));
2095 2096 2097
				break;
			}
			blk_mq_end_request(rq, ret);
2098 2099
		} else
			queued++;
2100
	}
J
Jens Axboe 已提交
2101 2102 2103 2104 2105 2106

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2107
	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2108
		hctx->queue->mq_ops->commit_rqs(hctx);
2109 2110
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	plug->rq_count++;
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

2125
/**
2126
 * blk_mq_submit_bio - Create and send a request to block device.
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 *
 * Returns: Request queue cookie.
 */
2140
blk_qc_t blk_mq_submit_bio(struct bio *bio)
2141
{
2142
	struct request_queue *q = bio->bi_disk->queue;
2143
	const int is_sync = op_is_sync(bio->bi_opf);
2144
	const int is_flush_fua = op_is_flush(bio->bi_opf);
2145 2146 2147
	struct blk_mq_alloc_data data = {
		.q		= q,
	};
2148
	struct request *rq;
2149
	struct blk_plug *plug;
2150
	struct request *same_queue_rq = NULL;
2151
	unsigned int nr_segs;
2152
	blk_qc_t cookie;
2153
	blk_status_t ret;
2154 2155

	blk_queue_bounce(q, &bio);
2156
	__blk_queue_split(&bio, &nr_segs);
2157

2158
	if (!bio_integrity_prep(bio))
2159
		goto queue_exit;
2160

2161
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2162
	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2163
		goto queue_exit;
2164

2165
	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2166
		goto queue_exit;
2167

2168
	rq_qos_throttle(q, bio);
J
Jens Axboe 已提交
2169

2170
	data.cmd_flags = bio->bi_opf;
2171
	rq = __blk_mq_alloc_request(&data);
J
Jens Axboe 已提交
2172
	if (unlikely(!rq)) {
2173
		rq_qos_cleanup(q, bio);
J
Jens Axboe 已提交
2174
		if (bio->bi_opf & REQ_NOWAIT)
2175
			bio_wouldblock_error(bio);
2176
		goto queue_exit;
J
Jens Axboe 已提交
2177 2178
	}

2179 2180
	trace_block_getrq(q, bio, bio->bi_opf);

2181
	rq_qos_track(q, rq, bio);
2182

2183
	cookie = request_to_qc_t(data.hctx, rq);
2184

2185 2186
	blk_mq_bio_to_request(rq, bio, nr_segs);

2187 2188 2189 2190 2191 2192 2193 2194
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
		return BLK_QC_T_NONE;
	}

2195
	plug = blk_mq_plug(q, bio);
2196
	if (unlikely(is_flush_fua)) {
2197
		/* Bypass scheduler for flush requests */
2198 2199
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
M
Ming Lei 已提交
2200 2201
	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
				!blk_queue_nonrot(q))) {
2202 2203 2204
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
M
Ming Lei 已提交
2205 2206 2207
		 *
		 * Use normal plugging if this disk is slow HDD, as sequential
		 * IO may benefit a lot from plug merging.
2208
		 */
2209
		unsigned int request_count = plug->rq_count;
2210 2211
		struct request *last = NULL;

M
Ming Lei 已提交
2212
		if (!request_count)
2213
			trace_block_plug(q);
2214 2215
		else
			last = list_entry_rq(plug->mq_list.prev);
2216

2217 2218
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2219 2220
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
2221
		}
2222

2223
		blk_add_rq_to_plug(plug, rq);
2224
	} else if (q->elevator) {
2225
		/* Insert the request at the IO scheduler queue */
2226
		blk_mq_sched_insert_request(rq, false, true, true);
2227
	} else if (plug && !blk_queue_nomerges(q)) {
2228
		/*
2229
		 * We do limited plugging. If the bio can be merged, do that.
2230 2231
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
2232 2233
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
2234
		 */
2235 2236
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
2237
		if (same_queue_rq) {
2238
			list_del_init(&same_queue_rq->queuelist);
2239 2240
			plug->rq_count--;
		}
2241
		blk_add_rq_to_plug(plug, rq);
2242
		trace_block_plug(q);
2243

2244
		if (same_queue_rq) {
2245
			data.hctx = same_queue_rq->mq_hctx;
2246
			trace_block_unplug(q, 1, true);
2247
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2248
					&cookie);
2249
		}
2250 2251
	} else if ((q->nr_hw_queues > 1 && is_sync) ||
			!data.hctx->dispatch_busy) {
2252 2253 2254 2255
		/*
		 * There is no scheduler and we can try to send directly
		 * to the hardware.
		 */
2256
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2257
	} else {
2258
		/* Default case. */
2259
		blk_mq_sched_insert_request(rq, false, true, true);
2260
	}
2261

2262
	return cookie;
2263 2264 2265
queue_exit:
	blk_queue_exit(q);
	return BLK_QC_T_NONE;
2266
}
2267
EXPORT_SYMBOL_GPL(blk_mq_submit_bio); /* only for request based dm */
2268

2269 2270
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2271
{
2272
	struct page *page;
2273

2274
	if (tags->rqs && set->ops->exit_request) {
2275
		int i;
2276

2277
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2278 2279 2280
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2281
				continue;
2282
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2283
			tags->static_rqs[i] = NULL;
2284
		}
2285 2286
	}

2287 2288
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2289
		list_del_init(&page->lru);
2290 2291
		/*
		 * Remove kmemleak object previously allocated in
2292
		 * blk_mq_alloc_rqs().
2293 2294
		 */
		kmemleak_free(page_address(page));
2295 2296
		__free_pages(page, page->private);
	}
2297
}
2298

2299
void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2300
{
2301
	kfree(tags->rqs);
2302
	tags->rqs = NULL;
J
Jens Axboe 已提交
2303 2304
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2305

2306
	blk_mq_free_tags(tags, flags);
2307 2308
}

2309 2310 2311
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
2312 2313
					unsigned int reserved_tags,
					unsigned int flags)
2314
{
2315
	struct blk_mq_tags *tags;
2316
	int node;
2317

2318
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2319 2320 2321
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

2322
	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2323 2324
	if (!tags)
		return NULL;
2325

2326
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2327
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2328
				 node);
2329
	if (!tags->rqs) {
2330
		blk_mq_free_tags(tags, flags);
2331 2332
		return NULL;
	}
2333

2334 2335 2336
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2337 2338
	if (!tags->static_rqs) {
		kfree(tags->rqs);
2339
		blk_mq_free_tags(tags, flags);
J
Jens Axboe 已提交
2340 2341 2342
		return NULL;
	}

2343 2344 2345 2346 2347 2348 2349 2350
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2362
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2363 2364 2365
	return 0;
}

2366 2367 2368 2369 2370
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2371 2372
	int node;

2373
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2374 2375
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2376 2377 2378

	INIT_LIST_HEAD(&tags->page_list);

2379 2380 2381 2382
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2383
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2384
				cache_line_size());
2385
	left = rq_size * depth;
2386

2387
	for (i = 0; i < depth; ) {
2388 2389 2390 2391 2392
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2393
		while (this_order && left < order_to_size(this_order - 1))
2394 2395 2396
			this_order--;

		do {
2397
			page = alloc_pages_node(node,
2398
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2399
				this_order);
2400 2401 2402 2403 2404 2405 2406 2407 2408
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2409
			goto fail;
2410 2411

		page->private = this_order;
2412
		list_add_tail(&page->lru, &tags->page_list);
2413 2414

		p = page_address(page);
2415 2416 2417 2418
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2419
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2420
		entries_per_page = order_to_size(this_order) / rq_size;
2421
		to_do = min(entries_per_page, depth - i);
2422 2423
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2424 2425 2426
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2427 2428 2429
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2430 2431
			}

2432 2433 2434 2435
			p += rq_size;
			i++;
		}
	}
2436
	return 0;
2437

2438
fail:
2439 2440
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2441 2442
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
struct rq_iter_data {
	struct blk_mq_hw_ctx *hctx;
	bool has_rq;
};

static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
{
	struct rq_iter_data *iter_data = data;

	if (rq->mq_hctx != iter_data->hctx)
		return true;
	iter_data->has_rq = true;
	return false;
}

static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->sched_tags ?
			hctx->sched_tags : hctx->tags;
	struct rq_iter_data data = {
		.hctx	= hctx,
	};

	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
	return data.has_rq;
}

static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
		struct blk_mq_hw_ctx *hctx)
{
	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
		return false;
	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
		return false;
	return true;
}

static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
		return 0;

	/*
	 * Prevent new request from being allocated on the current hctx.
	 *
	 * The smp_mb__after_atomic() Pairs with the implied barrier in
	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
	 * seen once we return from the tag allocator.
	 */
	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	smp_mb__after_atomic();

	/*
	 * Try to grab a reference to the queue and wait for any outstanding
	 * requests.  If we could not grab a reference the queue has been
	 * frozen and there are no requests.
	 */
	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
		while (blk_mq_hctx_has_requests(hctx))
			msleep(5);
		percpu_ref_put(&hctx->queue->q_usage_counter);
	}

	return 0;
}

static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (cpumask_test_cpu(cpu, hctx->cpumask))
		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	return 0;
}

J
Jens Axboe 已提交
2523 2524 2525 2526 2527
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2528
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2529
{
2530
	struct blk_mq_hw_ctx *hctx;
2531 2532
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
2533
	enum hctx_type type;
2534

2535
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2536 2537 2538
	if (!cpumask_test_cpu(cpu, hctx->cpumask))
		return 0;

J
Jens Axboe 已提交
2539
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
2540
	type = hctx->type;
2541 2542

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2543 2544
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
2545 2546 2547 2548 2549
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2550
		return 0;
2551

J
Jens Axboe 已提交
2552 2553 2554
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2555 2556

	blk_mq_run_hw_queue(hctx, true);
2557
	return 0;
2558 2559
}

2560
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2561
{
2562 2563 2564
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
						    &hctx->cpuhp_online);
2565 2566
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2567 2568
}

2569
/* hctx->ctxs will be freed in queue's release handler */
2570 2571 2572 2573
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2574 2575
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2576

2577
	if (set->ops->exit_request)
2578
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2579

2580 2581 2582
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2583
	blk_mq_remove_cpuhp(hctx);
2584 2585 2586 2587

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
2588 2589
}

M
Ming Lei 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2599
		blk_mq_debugfs_unregister_hctx(hctx);
2600
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2601 2602 2603
	}
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2618 2619 2620
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2621
{
2622 2623
	hctx->queue_num = hctx_idx;

2624 2625 2626
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
				&hctx->cpuhp_online);
2627 2628 2629 2630 2631 2632 2633
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
2634

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
2663
	if (node == NUMA_NO_NODE)
2664 2665
		node = set->numa_node;
	hctx->numa_node = node;
2666

2667
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2668 2669 2670
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2671
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2672

2673 2674
	INIT_LIST_HEAD(&hctx->hctx_list);

2675
	/*
2676 2677
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2678
	 */
2679
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2680
			gfp, node);
2681
	if (!hctx->ctxs)
2682
		goto free_cpumask;
2683

2684
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2685
				gfp, node))
2686 2687
		goto free_ctxs;
	hctx->nr_ctx = 0;
2688

2689
	spin_lock_init(&hctx->dispatch_wait_lock);
2690 2691 2692
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2693
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2694
	if (!hctx->fq)
2695
		goto free_bitmap;
2696

2697
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2698
		init_srcu_struct(hctx->srcu);
2699
	blk_mq_hctx_kobj_init(hctx);
2700

2701
	return hctx;
2702

2703
 free_bitmap:
2704
	sbitmap_free(&hctx->ctx_map);
2705 2706
 free_ctxs:
	kfree(hctx->ctxs);
2707 2708 2709 2710 2711 2712
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
2713
}
2714 2715 2716 2717

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
2718 2719
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
2720 2721 2722 2723

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
2724
		int k;
2725 2726 2727

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
2728 2729 2730
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

2731 2732 2733 2734 2735 2736
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
2737 2738 2739 2740 2741
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
				hctx->numa_node = local_memory_node(cpu_to_node(i));
		}
2742 2743 2744
	}
}

2745 2746
static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
					int hctx_idx)
2747
{
2748
	unsigned int flags = set->flags;
2749 2750 2751
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2752
					set->queue_depth, set->reserved_tags, flags);
2753 2754 2755 2756 2757 2758 2759 2760
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

2761
	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2762 2763 2764 2765 2766 2767 2768
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2769 2770
	unsigned int flags = set->flags;

2771
	if (set->tags && set->tags[hctx_idx]) {
2772
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2773
		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2774 2775
		set->tags[hctx_idx] = NULL;
	}
2776 2777
}

2778
static void blk_mq_map_swqueue(struct request_queue *q)
2779
{
J
Jens Axboe 已提交
2780
	unsigned int i, j, hctx_idx;
2781 2782
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2783
	struct blk_mq_tag_set *set = q->tag_set;
2784 2785

	queue_for_each_hw_ctx(q, hctx, i) {
2786
		cpumask_clear(hctx->cpumask);
2787
		hctx->nr_ctx = 0;
2788
		hctx->dispatch_from = NULL;
2789 2790 2791
	}

	/*
2792
	 * Map software to hardware queues.
2793 2794
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2795
	 */
2796
	for_each_possible_cpu(i) {
2797

2798
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
2799
		for (j = 0; j < set->nr_maps; j++) {
2800 2801 2802
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
2803
				continue;
2804
			}
2805 2806 2807
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
2808
			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2809 2810 2811 2812 2813 2814 2815 2816
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
2817

J
Jens Axboe 已提交
2818
			hctx = blk_mq_map_queue_type(q, j, i);
2819
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
2839 2840 2841 2842

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
2843
	}
2844 2845

	queue_for_each_hw_ctx(q, hctx, i) {
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2861

M
Ming Lei 已提交
2862 2863 2864
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2865 2866 2867 2868 2869
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2870
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2871

2872 2873 2874
		/*
		 * Initialize batch roundrobin counts
		 */
2875
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2876 2877
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2878 2879
}

2880 2881 2882 2883
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2884
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2885 2886 2887 2888
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2889
	queue_for_each_hw_ctx(q, hctx, i) {
2890
		if (shared)
2891
			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2892
		else
2893
			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2894 2895 2896
	}
}

2897 2898
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
					 bool shared)
2899 2900
{
	struct request_queue *q;
2901

2902 2903
	lockdep_assert_held(&set->tag_list_lock);

2904 2905
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2906
		queue_set_hctx_shared(q, shared);
2907 2908 2909 2910 2911 2912 2913 2914 2915
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2916
	list_del(&q->tag_set_list);
2917 2918
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
2919
		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2920
		/* update existing queue */
2921
		blk_mq_update_tag_set_shared(set, false);
2922
	}
2923
	mutex_unlock(&set->tag_list_lock);
2924
	INIT_LIST_HEAD(&q->tag_set_list);
2925 2926 2927 2928 2929 2930
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
2931

2932 2933 2934 2935
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
2936 2937
	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2938
		/* update existing queue */
2939
		blk_mq_update_tag_set_shared(set, true);
2940
	}
2941
	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2942
		queue_set_hctx_shared(q, true);
2943
	list_add_tail(&q->tag_set_list, &set->tag_list);
2944

2945 2946 2947
	mutex_unlock(&set->tag_list_lock);
}

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

2976 2977 2978 2979 2980 2981 2982 2983
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
2984 2985
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
2986

2987 2988 2989 2990 2991 2992
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
2993
		kobject_put(&hctx->kobj);
2994
	}
2995 2996 2997

	kfree(q->queue_hw_ctx);

2998 2999 3000 3001 3002
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
3003 3004
}

3005 3006
struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
		void *queuedata)
3007 3008 3009
{
	struct request_queue *uninit_q, *q;

3010
	uninit_q = blk_alloc_queue(set->numa_node);
3011 3012
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);
3013
	uninit_q->queuedata = queuedata;
3014

3015 3016 3017 3018 3019
	/*
	 * Initialize the queue without an elevator. device_add_disk() will do
	 * the initialization.
	 */
	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3020 3021 3022 3023 3024
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
3025 3026 3027 3028 3029 3030
EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
3031 3032
EXPORT_SYMBOL(blk_mq_init_queue);

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
/*
 * Helper for setting up a queue with mq ops, given queue depth, and
 * the passed in mq ops flags.
 */
struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
					   const struct blk_mq_ops *ops,
					   unsigned int queue_depth,
					   unsigned int set_flags)
{
	struct request_queue *q;
	int ret;

	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
J
Jens Axboe 已提交
3048
	set->nr_maps = 1;
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		return ERR_PTR(ret);

	q = blk_mq_init_queue(set);
	if (IS_ERR(q)) {
		blk_mq_free_tag_set(set);
		return q;
	}

	return q;
}
EXPORT_SYMBOL(blk_mq_init_sq_queue);

3067 3068 3069 3070
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
3071
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
3087
	if (!hctx)
3088
		goto fail;
3089

3090 3091
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
3092 3093

	return hctx;
3094 3095 3096 3097 3098

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
3099 3100
}

K
Keith Busch 已提交
3101 3102
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
3103
{
3104
	int i, j, end;
K
Keith Busch 已提交
3105
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3106

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

3123 3124
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
3125
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
3126
		int node;
3127
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
3128

3129
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3130 3131 3132 3133 3134 3135 3136
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
3137

3138 3139
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
3140
			if (hctxs[i])
3141 3142 3143 3144 3145 3146 3147 3148 3149
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
3150
		}
3151
	}
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
3164

3165
	for (; j < end; j++) {
K
Keith Busch 已提交
3166 3167 3168
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
3169 3170
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
3171 3172 3173 3174
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
3175
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
3176 3177 3178
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3179 3180
						  struct request_queue *q,
						  bool elevator_init)
K
Keith Busch 已提交
3181
{
M
Ming Lei 已提交
3182 3183 3184
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

3185
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3186 3187
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
3188 3189 3190
	if (!q->poll_cb)
		goto err_exit;

3191
	if (blk_mq_alloc_ctxs(q))
3192
		goto err_poll;
K
Keith Busch 已提交
3193

3194 3195 3196
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

3197 3198 3199
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
3200 3201 3202
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
3203

3204
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3205
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3206

J
Jens Axboe 已提交
3207
	q->tag_set = set;
3208

3209
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3210 3211
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
3212
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3213

3214 3215
	q->sg_reserved_size = INT_MAX;

3216
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3217 3218 3219
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

3220 3221
	q->nr_requests = set->queue_depth;

3222 3223 3224
	/*
	 * Default to classic polling
	 */
3225
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3226

3227
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3228
	blk_mq_add_queue_tag_set(set, q);
3229
	blk_mq_map_swqueue(q);
3230

3231 3232
	if (elevator_init)
		elevator_init_mq(q);
3233

3234
	return q;
3235

3236
err_hctxs:
K
Keith Busch 已提交
3237
	kfree(q->queue_hw_ctx);
3238
	q->nr_hw_queues = 0;
3239
	blk_mq_sysfs_deinit(q);
3240 3241 3242
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
3243 3244
err_exit:
	q->mq_ops = NULL;
3245 3246
	return ERR_PTR(-ENOMEM);
}
3247
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3248

3249 3250
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
3251
{
M
Ming Lei 已提交
3252
	struct blk_mq_tag_set	*set = q->tag_set;
3253

3254
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
3255
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3256 3257
}

3258 3259 3260 3261
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

3262
	for (i = 0; i < set->nr_hw_queues; i++)
3263
		if (!__blk_mq_alloc_map_and_request(set, i))
3264 3265 3266 3267 3268 3269
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
3270
		blk_mq_free_map_and_requests(set, i);
3271 3272 3273 3274 3275 3276 3277 3278 3279

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
3280
static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

3310 3311
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
3312 3313 3314 3315 3316 3317 3318 3319
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

3320
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
3321 3322
		int i;

3323 3324 3325 3326 3327 3328 3329
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
3330
		 * 		set->map[x].mq_map[cpu] = queue;
3331 3332 3333 3334 3335 3336
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
3337 3338
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
3339

3340
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
3341 3342
	} else {
		BUG_ON(set->nr_maps > 1);
3343
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
3344
	}
3345 3346
}

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

3370 3371 3372
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
3373
 * requested depth down, if it's too large. In that case, the set
3374 3375
 * value will be stored in set->queue_depth.
 */
3376 3377
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3378
	int i, ret;
3379

B
Bart Van Assche 已提交
3380 3381
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

3382 3383
	if (!set->nr_hw_queues)
		return -EINVAL;
3384
	if (!set->queue_depth)
3385 3386 3387 3388
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
3389
	if (!set->ops->queue_rq)
3390 3391
		return -EINVAL;

3392 3393 3394
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

3395 3396 3397 3398 3399
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
3400

J
Jens Axboe 已提交
3401 3402 3403 3404 3405
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

3406 3407 3408 3409 3410 3411 3412
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
3413
		set->nr_maps = 1;
3414 3415
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
3416
	/*
3417 3418
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
3419
	 */
3420
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3421
		set->nr_hw_queues = nr_cpu_ids;
3422

3423
	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3424
		return -ENOMEM;
3425

3426
	ret = -ENOMEM;
J
Jens Axboe 已提交
3427 3428
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3429
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
3430 3431 3432
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
3433
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
3434
	}
3435

3436
	ret = blk_mq_update_queue_map(set);
3437 3438 3439
	if (ret)
		goto out_free_mq_map;

3440
	ret = blk_mq_alloc_map_and_requests(set);
3441
	if (ret)
3442
		goto out_free_mq_map;
3443

3444 3445 3446 3447 3448 3449 3450
	if (blk_mq_is_sbitmap_shared(set->flags)) {
		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
			ret = -ENOMEM;
			goto out_free_mq_rq_maps;
		}
	}

3451 3452 3453
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

3454
	return 0;
3455

3456 3457 3458
out_free_mq_rq_maps:
	for (i = 0; i < set->nr_hw_queues; i++)
		blk_mq_free_map_and_requests(set, i);
3459
out_free_mq_map:
J
Jens Axboe 已提交
3460 3461 3462 3463
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
3464 3465
	kfree(set->tags);
	set->tags = NULL;
3466
	return ret;
3467 3468 3469 3470 3471
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3472
	int i, j;
3473

3474
	for (i = 0; i < set->nr_hw_queues; i++)
3475
		blk_mq_free_map_and_requests(set, i);
3476

3477 3478 3479
	if (blk_mq_is_sbitmap_shared(set->flags))
		blk_mq_exit_shared_sbitmap(set);

J
Jens Axboe 已提交
3480 3481 3482 3483
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
3484

M
Ming Lei 已提交
3485
	kfree(set->tags);
3486
	set->tags = NULL;
3487 3488 3489
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3490 3491 3492 3493 3494 3495
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3496
	if (!set)
3497 3498
		return -EINVAL;

3499 3500 3501
	if (q->nr_requests == nr)
		return 0;

3502
	blk_mq_freeze_queue(q);
3503
	blk_mq_quiesce_queue(q);
3504

3505 3506
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3507 3508
		if (!hctx->tags)
			continue;
3509 3510 3511 3512
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3513
		if (!hctx->sched_tags) {
3514
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3515
							false);
3516 3517
			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
				blk_mq_tag_resize_shared_sbitmap(set, nr);
3518 3519 3520 3521
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
3522 3523
		if (ret)
			break;
3524 3525
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
3526 3527 3528 3529 3530
	}

	if (!ret)
		q->nr_requests = nr;

3531
	blk_mq_unquiesce_queue(q);
3532 3533
	blk_mq_unfreeze_queue(q);

3534 3535 3536
	return ret;
}

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3607 3608
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3609 3610
{
	struct request_queue *q;
3611
	LIST_HEAD(head);
3612
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3613

3614 3615
	lockdep_assert_held(&set->tag_list_lock);

3616
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3617
		nr_hw_queues = nr_cpu_ids;
3618 3619 3620
	if (nr_hw_queues < 1)
		return;
	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
K
Keith Busch 已提交
3621 3622 3623 3624
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3625 3626 3627 3628 3629 3630 3631 3632
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3633

3634 3635 3636 3637 3638
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3639
	prev_nr_hw_queues = set->nr_hw_queues;
3640 3641 3642 3643
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
3644
	set->nr_hw_queues = nr_hw_queues;
3645
fallback:
3646
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
3647 3648
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3649 3650 3651 3652
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
3653
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3654 3655
			goto fallback;
		}
3656 3657 3658
		blk_mq_map_swqueue(q);
	}

3659
reregister:
3660 3661 3662
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3663 3664
	}

3665 3666 3667 3668
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3669 3670 3671
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3672 3673 3674 3675 3676 3677 3678

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3679 3680
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3681 3682 3683 3684
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3685
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3707
	int bucket;
3708

3709 3710 3711 3712
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3713 3714
}

3715 3716 3717 3718
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
3719
	int bucket;
3720 3721 3722 3723 3724

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3725
	if (!blk_poll_stats_enable(q))
3726 3727 3728 3729 3730 3731 3732 3733
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3734 3735
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3736
	 */
3737 3738 3739 3740 3741 3742
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3743 3744 3745 3746

	return ret;
}

3747 3748 3749 3750 3751
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3752
	unsigned int nsecs;
3753 3754
	ktime_t kt;

J
Jens Axboe 已提交
3755
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3756 3757 3758
		return false;

	/*
3759
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3760 3761 3762 3763
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
3764
	if (q->poll_nsec > 0)
3765 3766
		nsecs = q->poll_nsec;
	else
3767
		nsecs = blk_mq_poll_nsecs(q, rq);
3768 3769

	if (!nsecs)
3770 3771
		return false;

J
Jens Axboe 已提交
3772
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3773 3774 3775 3776 3777

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3778
	kt = nsecs;
3779 3780

	mode = HRTIMER_MODE_REL;
3781
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3782 3783 3784
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
3785
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3786 3787
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
3788
		hrtimer_sleeper_start_expires(&hs, mode);
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

3800 3801
static bool blk_mq_poll_hybrid(struct request_queue *q,
			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
J
Jens Axboe 已提交
3802
{
3803 3804
	struct request *rq;

3805
	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
		return false;

	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else {
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}

3822
	return blk_mq_poll_hybrid_sleep(q, rq);
3823 3824
}

C
Christoph Hellwig 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
/**
 * blk_poll - poll for IO completions
 * @q:  the queue
 * @cookie: cookie passed back at IO submission time
 * @spin: whether to spin for completions
 *
 * Description:
 *    Poll for completions on the passed in queue. Returns number of
 *    completed entries found. If @spin is true, then blk_poll will continue
 *    looping until at least one completion is found, unless the task is
 *    otherwise marked running (or we need to reschedule).
 */
int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3838 3839
{
	struct blk_mq_hw_ctx *hctx;
J
Jens Axboe 已提交
3840 3841
	long state;

C
Christoph Hellwig 已提交
3842 3843
	if (!blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3844 3845
		return 0;

C
Christoph Hellwig 已提交
3846 3847 3848
	if (current->plug)
		blk_flush_plug_list(current->plug, false);

3849 3850
	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];

3851 3852 3853 3854 3855 3856 3857
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3858
	if (blk_mq_poll_hybrid(q, hctx, cookie))
3859
		return 1;
3860

J
Jens Axboe 已提交
3861 3862 3863
	hctx->poll_considered++;

	state = current->state;
3864
	do {
J
Jens Axboe 已提交
3865 3866 3867 3868
		int ret;

		hctx->poll_invoked++;

3869
		ret = q->mq_ops->poll(hctx);
J
Jens Axboe 已提交
3870 3871
		if (ret > 0) {
			hctx->poll_success++;
3872
			__set_current_state(TASK_RUNNING);
3873
			return ret;
J
Jens Axboe 已提交
3874 3875 3876
		}

		if (signal_pending_state(state, current))
3877
			__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3878 3879

		if (current->state == TASK_RUNNING)
3880
			return 1;
3881
		if (ret < 0 || !spin)
J
Jens Axboe 已提交
3882 3883
			break;
		cpu_relax();
3884
	} while (!need_resched());
J
Jens Axboe 已提交
3885

3886
	__set_current_state(TASK_RUNNING);
3887
	return 0;
J
Jens Axboe 已提交
3888
}
C
Christoph Hellwig 已提交
3889
EXPORT_SYMBOL_GPL(blk_poll);
J
Jens Axboe 已提交
3890

J
Jens Axboe 已提交
3891 3892 3893 3894 3895 3896
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

3897 3898
static int __init blk_mq_init(void)
{
3899 3900 3901 3902 3903 3904 3905 3906 3907
	int i;

	for_each_possible_cpu(i)
		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);

	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
				  "block/softirq:dead", NULL,
				  blk_softirq_cpu_dead);
3908 3909
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3910 3911 3912
	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
				blk_mq_hctx_notify_online,
				blk_mq_hctx_notify_offline);
3913 3914 3915
	return 0;
}
subsys_initcall(blk_mq_init);