blk-mq.c 118.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/blk-integrity.h>
14
#include <linux/kmemleak.h>
15 16 17 18 19
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
20
#include <linux/interrupt.h>
21 22 23 24
#include <linux/llist.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
25
#include <linux/sched/topology.h>
26
#include <linux/sched/signal.h>
27
#include <linux/delay.h>
28
#include <linux/crash_dump.h>
29
#include <linux/prefetch.h>
30
#include <linux/blk-crypto.h>
C
Christoph Hellwig 已提交
31
#include <linux/sched/sysctl.h>
32 33 34 35

#include <trace/events/block.h>

#include <linux/blk-mq.h>
36
#include <linux/t10-pi.h>
37 38
#include "blk.h"
#include "blk-mq.h"
39
#include "blk-mq-debugfs.h"
40
#include "blk-mq-tag.h"
41
#include "blk-pm.h"
42
#include "blk-stat.h"
43
#include "blk-mq-sched.h"
44
#include "blk-rq-qos.h"
45

46
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47

48 49 50
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

51 52
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
53
	int ddir, sectors, bucket;
54

J
Jens Axboe 已提交
55
	ddir = rq_data_dir(rq);
56
	sectors = blk_rq_stats_sectors(rq);
57

58
	bucket = ddir + 2 * ilog2(sectors);
59 60 61 62 63 64 65 66 67

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

68 69 70
#define BLK_QC_T_SHIFT		16
#define BLK_QC_T_INTERNAL	(1U << 31)

71 72 73 74 75 76
static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
		blk_qc_t qc)
{
	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
}

77 78 79
static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
		blk_qc_t qc)
{
80 81 82 83 84
	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);

	if (qc & BLK_QC_T_INTERNAL)
		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
	return blk_mq_tag_to_rq(hctx->tags, tag);
85 86
}

87 88 89 90 91 92 93
static inline blk_qc_t blk_rq_to_qc(struct request *rq)
{
	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
		(rq->tag != -1 ?
		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
}

94
/*
95 96
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
97
 */
98
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99
{
100 101
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
102
			blk_mq_sched_has_work(hctx);
103 104
}

105 106 107 108 109 110
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
111 112 113 114
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
115 116 117 118 119
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
120 121 122
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
123 124
}

125
struct mq_inflight {
126
	struct block_device *part;
127
	unsigned int inflight[2];
128 129
};

130
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
131 132 133 134 135
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

136 137
	if ((!mi->part->bd_partno || rq->part == mi->part) &&
	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138
		mi->inflight[rq_data_dir(rq)]++;
139 140

	return true;
141 142
}

143 144
unsigned int blk_mq_in_flight(struct request_queue *q,
		struct block_device *part)
145
{
146
	struct mq_inflight mi = { .part = part };
147 148

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149

150
	return mi.inflight[0] + mi.inflight[1];
151 152
}

153 154
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
		unsigned int inflight[2])
155
{
156
	struct mq_inflight mi = { .part = part };
157

158
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159 160
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
161 162
}

163
void blk_freeze_queue_start(struct request_queue *q)
164
{
165 166
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
167
		percpu_ref_kill(&q->q_usage_counter);
168
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
169
		if (queue_is_mq(q))
170
			blk_mq_run_hw_queues(q, false);
171 172
	} else {
		mutex_unlock(&q->mq_freeze_lock);
173
	}
174
}
175
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176

177
void blk_mq_freeze_queue_wait(struct request_queue *q)
178
{
179
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180
}
181
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182

183 184 185 186 187 188 189 190
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191

192 193 194 195
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
196
void blk_freeze_queue(struct request_queue *q)
197
{
198 199 200 201 202 203 204
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
205
	blk_freeze_queue_start(q);
206 207
	blk_mq_freeze_queue_wait(q);
}
208 209 210 211 212 213 214 215 216

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
217
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218

219
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220
{
221
	mutex_lock(&q->mq_freeze_lock);
222 223
	if (force_atomic)
		q->q_usage_counter.data->force_atomic = true;
224 225 226
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
227
		percpu_ref_resurrect(&q->q_usage_counter);
228
		wake_up_all(&q->mq_freeze_wq);
229
	}
230
	mutex_unlock(&q->mq_freeze_lock);
231
}
232 233 234 235 236

void blk_mq_unfreeze_queue(struct request_queue *q)
{
	__blk_mq_unfreeze_queue(q, false);
}
237
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238

239 240 241 242 243 244
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
245 246 247 248 249 250
	unsigned long flags;

	spin_lock_irqsave(&q->queue_lock, flags);
	if (!q->quiesce_depth++)
		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(&q->queue_lock, flags);
251 252 253
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

254
/**
255
 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256 257
 * @q: request queue.
 *
258 259
 * Note: it is driver's responsibility for making sure that quiesce has
 * been started.
260
 */
261
void blk_mq_wait_quiesce_done(struct request_queue *q)
262 263 264 265 266 267 268
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
269
			synchronize_srcu(hctx->srcu);
270 271 272 273 274 275
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);

/**
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	blk_mq_quiesce_queue_nowait(q);
	blk_mq_wait_quiesce_done(q);
}
292 293
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

294 295 296 297 298 299 300 301 302
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
303 304 305 306 307 308 309 310 311 312 313
	unsigned long flags;
	bool run_queue = false;

	spin_lock_irqsave(&q->queue_lock, flags);
	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
		;
	} else if (!--q->quiesce_depth) {
		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
		run_queue = true;
	}
	spin_unlock_irqrestore(&q->queue_lock, flags);
314

315
	/* dispatch requests which are inserted during quiescing */
316 317
	if (run_queue)
		blk_mq_run_hw_queues(q, true);
318 319 320
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

321 322 323 324 325 326 327 328 329 330
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
void blk_rq_init(struct request_queue *q, struct request *rq)
{
	memset(rq, 0, sizeof(*rq));

	INIT_LIST_HEAD(&rq->queuelist);
	rq->q = q;
	rq->__sector = (sector_t) -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->tag = BLK_MQ_NO_TAG;
	rq->internal_tag = BLK_MQ_NO_TAG;
	rq->start_time_ns = ktime_get_ns();
	rq->part = NULL;
	blk_crypto_rq_set_defaults(rq);
}
EXPORT_SYMBOL(blk_rq_init);

348
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349
		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
350
{
351 352 353
	struct blk_mq_ctx *ctx = data->ctx;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	struct request_queue *q = data->q;
354
	struct request *rq = tags->static_rqs[tag];
355

J
Jens Axboe 已提交
356 357 358 359 360 361 362 363 364 365 366
	rq->q = q;
	rq->mq_ctx = ctx;
	rq->mq_hctx = hctx;
	rq->cmd_flags = data->cmd_flags;

	if (data->flags & BLK_MQ_REQ_PM)
		data->rq_flags |= RQF_PM;
	if (blk_queue_io_stat(q))
		data->rq_flags |= RQF_IO_STAT;
	rq->rq_flags = data->rq_flags;

367
	if (!(data->rq_flags & RQF_ELV)) {
368
		rq->tag = tag;
369
		rq->internal_tag = BLK_MQ_NO_TAG;
370 371 372
	} else {
		rq->tag = BLK_MQ_NO_TAG;
		rq->internal_tag = tag;
373
	}
J
Jens Axboe 已提交
374
	rq->timeout = 0;
375

376 377 378 379
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
380 381
	rq->rq_disk = NULL;
	rq->part = NULL;
382 383 384
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
385
	rq->io_start_time_ns = 0;
386
	rq->stats_sectors = 0;
387 388 389 390 391 392 393
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->end_io = NULL;
	rq->end_io_data = NULL;

394 395 396 397
	blk_crypto_rq_set_defaults(rq);
	INIT_LIST_HEAD(&rq->queuelist);
	/* tag was already set */
	WRITE_ONCE(rq->deadline, 0);
K
Keith Busch 已提交
398
	refcount_set(&rq->ref, 1);
399

400
	if (rq->rq_flags & RQF_ELV) {
401 402 403
		struct elevator_queue *e = data->q->elevator;

		rq->elv.icq = NULL;
404 405 406 407 408
		INIT_HLIST_NODE(&rq->hash);
		RB_CLEAR_NODE(&rq->rb_node);

		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.prepare_request) {
409 410 411 412 413 414 415 416
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);

			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

417
	return rq;
418 419
}

J
Jens Axboe 已提交
420 421 422 423 424
static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
		u64 alloc_time_ns)
{
	unsigned int tag, tag_offset;
425
	struct blk_mq_tags *tags;
J
Jens Axboe 已提交
426
	struct request *rq;
427
	unsigned long tag_mask;
J
Jens Axboe 已提交
428 429
	int i, nr = 0;

430 431
	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
	if (unlikely(!tag_mask))
J
Jens Axboe 已提交
432 433
		return NULL;

434 435 436
	tags = blk_mq_tags_from_data(data);
	for (i = 0; tag_mask; i++) {
		if (!(tag_mask & (1UL << i)))
J
Jens Axboe 已提交
437 438
			continue;
		tag = tag_offset + i;
439
		prefetch(tags->static_rqs[tag]);
440 441
		tag_mask &= ~(1UL << i);
		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
442
		rq_list_add(data->cached_rq, rq);
443
		nr++;
J
Jens Axboe 已提交
444
	}
445 446
	/* caller already holds a reference, add for remainder */
	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
J
Jens Axboe 已提交
447 448
	data->nr_tags -= nr;

449
	return rq_list_pop(data->cached_rq);
J
Jens Axboe 已提交
450 451
}

452
static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
453
{
454
	struct request_queue *q = data->q;
455
	u64 alloc_time_ns = 0;
456
	struct request *rq;
457
	unsigned int tag;
458

459 460 461 462
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

463
	if (data->cmd_flags & REQ_NOWAIT)
464
		data->flags |= BLK_MQ_REQ_NOWAIT;
465

466 467 468 469 470
	if (q->elevator) {
		struct elevator_queue *e = q->elevator;

		data->rq_flags |= RQF_ELV;

471
		/*
472
		 * Flush/passthrough requests are special and go directly to the
473 474
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
475
		 */
476
		if (!op_is_flush(data->cmd_flags) &&
477
		    !blk_op_is_passthrough(data->cmd_flags) &&
478
		    e->type->ops.limit_depth &&
479
		    !(data->flags & BLK_MQ_REQ_RESERVED))
480
			e->type->ops.limit_depth(data->cmd_flags, data);
481 482
	}

483
retry:
484 485
	data->ctx = blk_mq_get_ctx(q);
	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
486
	if (!(data->rq_flags & RQF_ELV))
487 488
		blk_mq_tag_busy(data->hctx);

J
Jens Axboe 已提交
489 490 491 492 493 494 495 496 497 498
	/*
	 * Try batched alloc if we want more than 1 tag.
	 */
	if (data->nr_tags > 1) {
		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
		if (rq)
			return rq;
		data->nr_tags = 1;
	}

499 500 501 502 503
	/*
	 * Waiting allocations only fail because of an inactive hctx.  In that
	 * case just retry the hctx assignment and tag allocation as CPU hotplug
	 * should have migrated us to an online CPU by now.
	 */
504
	tag = blk_mq_get_tag(data);
505 506 507 508
	if (tag == BLK_MQ_NO_TAG) {
		if (data->flags & BLK_MQ_REQ_NOWAIT)
			return NULL;
		/*
J
Jens Axboe 已提交
509 510 511 512
		 * Give up the CPU and sleep for a random short time to
		 * ensure that thread using a realtime scheduling class
		 * are migrated off the CPU, and thus off the hctx that
		 * is going away.
513 514 515 516
		 */
		msleep(3);
		goto retry;
	}
517

518 519
	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
					alloc_time_ns);
520 521
}

522
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
523
		blk_mq_req_flags_t flags)
524
{
525 526 527 528
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
529
		.nr_tags	= 1,
530
	};
531
	struct request *rq;
532
	int ret;
533

534
	ret = blk_queue_enter(q, flags);
535 536
	if (ret)
		return ERR_PTR(ret);
537

538
	rq = __blk_mq_alloc_requests(&data);
539
	if (!rq)
540
		goto out_queue_exit;
541 542 543
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
544
	return rq;
545 546 547
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
548
}
549
EXPORT_SYMBOL(blk_mq_alloc_request);
550

551
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
552
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
553
{
554 555 556 557
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
558
		.nr_tags	= 1,
559
	};
560
	u64 alloc_time_ns = 0;
561
	unsigned int cpu;
562
	unsigned int tag;
M
Ming Lin 已提交
563 564
	int ret;

565 566 567 568
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

M
Ming Lin 已提交
569 570 571 572 573 574
	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
575
	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
M
Ming Lin 已提交
576 577 578 579 580
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

581
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
582 583 584
	if (ret)
		return ERR_PTR(ret);

585 586 587 588
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
589
	ret = -EXDEV;
590 591
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
592
		goto out_queue_exit;
593 594
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
595

596
	if (!q->elevator)
597
		blk_mq_tag_busy(data.hctx);
598 599
	else
		data.rq_flags |= RQF_ELV;
600

601
	ret = -EWOULDBLOCK;
602 603
	tag = blk_mq_get_tag(&data);
	if (tag == BLK_MQ_NO_TAG)
604
		goto out_queue_exit;
605 606
	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
					alloc_time_ns);
607

608 609 610
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
611 612 613
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
614 615 616 617
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
618
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
619 620
	const int sched_tag = rq->internal_tag;

621
	blk_crypto_free_request(rq);
622
	blk_pm_mark_last_busy(rq);
623
	rq->mq_hctx = NULL;
624
	if (rq->tag != BLK_MQ_NO_TAG)
625
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
626
	if (sched_tag != BLK_MQ_NO_TAG)
627
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
628 629 630 631
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

632
void blk_mq_free_request(struct request *rq)
633 634
{
	struct request_queue *q = rq->q;
635
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
636

637
	if (rq->rq_flags & RQF_ELVPRIV) {
638 639 640
		struct elevator_queue *e = q->elevator;

		if (e->type->ops.finish_request)
641
			e->type->ops.finish_request(rq);
642 643 644 645 646
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
647

648
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
649
		__blk_mq_dec_active_requests(hctx);
J
Jens Axboe 已提交
650

651
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
652
		laptop_io_completion(q->disk->bdi);
653

654
	rq_qos_done(q, rq);
655

K
Keith Busch 已提交
656 657 658
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
659
}
J
Jens Axboe 已提交
660
EXPORT_SYMBOL_GPL(blk_mq_free_request);
661

662
void blk_mq_free_plug_rqs(struct blk_plug *plug)
663
{
664
	struct request *rq;
665

666
	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
667 668
		blk_mq_free_request(rq);
}
669

670 671 672 673 674 675 676 677 678 679 680 681 682 683
void blk_dump_rq_flags(struct request *rq, char *msg)
{
	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
		rq->rq_disk ? rq->rq_disk->disk_name : "?",
		(unsigned long long) rq->cmd_flags);

	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
	       (unsigned long long)blk_rq_pos(rq),
	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
	       rq->bio, rq->biotail, blk_rq_bytes(rq));
}
EXPORT_SYMBOL(blk_dump_rq_flags);

684 685 686
static void req_bio_endio(struct request *rq, struct bio *bio,
			  unsigned int nbytes, blk_status_t error)
{
P
Pavel Begunkov 已提交
687
	if (unlikely(error)) {
688
		bio->bi_status = error;
P
Pavel Begunkov 已提交
689
	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
690 691 692 693
		/*
		 * Partial zone append completions cannot be supported as the
		 * BIO fragments may end up not being written sequentially.
		 */
694
		if (bio->bi_iter.bi_size != nbytes)
695 696 697 698 699
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_iter.bi_sector = rq->__sector;
	}

P
Pavel Begunkov 已提交
700 701 702 703
	bio_advance(bio, nbytes);

	if (unlikely(rq->rq_flags & RQF_QUIET))
		bio_set_flag(bio, BIO_QUIET);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	/* don't actually finish bio if it's part of flush sequence */
	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
		bio_endio(bio);
}

static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
	if (req->part && blk_do_io_stat(req)) {
		const int sgrp = op_stat_group(req_op(req));

		part_stat_lock();
		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
		part_stat_unlock();
	}
}

720 721 722 723 724 725 726 727 728 729 730 731 732
static void blk_print_req_error(struct request *req, blk_status_t status)
{
	printk_ratelimited(KERN_ERR
		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
		"phys_seg %u prio class %u\n",
		blk_status_to_str(status),
		req->rq_disk ? req->rq_disk->disk_name : "?",
		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
		req->cmd_flags & ~REQ_OP_MASK,
		req->nr_phys_segments,
		IOPRIO_PRIO_CLASS(req->ioprio));
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/**
 * blk_update_request - Complete multiple bytes without completing the request
 * @req:      the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete for @req
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 *     the request structure even if @req doesn't have leftover.
 *     If @req has leftover, sets it up for the next range of segments.
 *
 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 *     %false return from this function.
 *
 * Note:
 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 *      except in the consistency check at the end of this function.
 *
 * Return:
 *     %false - this request doesn't have any more data
 *     %true  - this request has more data
 **/
bool blk_update_request(struct request *req, blk_status_t error,
		unsigned int nr_bytes)
{
	int total_bytes;

760
	trace_block_rq_complete(req, error, nr_bytes);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838

	if (!req->bio)
		return false;

#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
	    error == BLK_STS_OK)
		req->q->integrity.profile->complete_fn(req, nr_bytes);
#endif

	if (unlikely(error && !blk_rq_is_passthrough(req) &&
		     !(req->rq_flags & RQF_QUIET)))
		blk_print_req_error(req, error);

	blk_account_io_completion(req, nr_bytes);

	total_bytes = 0;
	while (req->bio) {
		struct bio *bio = req->bio;
		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);

		if (bio_bytes == bio->bi_iter.bi_size)
			req->bio = bio->bi_next;

		/* Completion has already been traced */
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
		req_bio_endio(req, bio, bio_bytes, error);

		total_bytes += bio_bytes;
		nr_bytes -= bio_bytes;

		if (!nr_bytes)
			break;
	}

	/*
	 * completely done
	 */
	if (!req->bio) {
		/*
		 * Reset counters so that the request stacking driver
		 * can find how many bytes remain in the request
		 * later.
		 */
		req->__data_len = 0;
		return false;
	}

	req->__data_len -= total_bytes;

	/* update sector only for requests with clear definition of sector */
	if (!blk_rq_is_passthrough(req))
		req->__sector += total_bytes >> 9;

	/* mixed attributes always follow the first bio */
	if (req->rq_flags & RQF_MIXED_MERGE) {
		req->cmd_flags &= ~REQ_FAILFAST_MASK;
		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
	}

	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
		/*
		 * If total number of sectors is less than the first segment
		 * size, something has gone terribly wrong.
		 */
		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
			blk_dump_rq_flags(req, "request botched");
			req->__data_len = blk_rq_cur_bytes(req);
		}

		/* recalculate the number of segments */
		req->nr_phys_segments = blk_recalc_rq_segments(req);
	}

	return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
static void __blk_account_io_done(struct request *req, u64 now)
{
	const int sgrp = op_stat_group(req_op(req));

	part_stat_lock();
	update_io_ticks(req->part, jiffies, true);
	part_stat_inc(req->part, ios[sgrp]);
	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
	part_stat_unlock();
}

static inline void blk_account_io_done(struct request *req, u64 now)
{
	/*
	 * Account IO completion.  flush_rq isn't accounted as a
	 * normal IO on queueing nor completion.  Accounting the
	 * containing request is enough.
	 */
	if (blk_do_io_stat(req) && req->part &&
	    !(req->rq_flags & RQF_FLUSH_SEQ))
		__blk_account_io_done(req, now);
}

static void __blk_account_io_start(struct request *rq)
{
	/* passthrough requests can hold bios that do not have ->bi_bdev set */
	if (rq->bio && rq->bio->bi_bdev)
		rq->part = rq->bio->bi_bdev;
	else
		rq->part = rq->rq_disk->part0;

	part_stat_lock();
	update_io_ticks(rq->part, jiffies, false);
	part_stat_unlock();
}

static inline void blk_account_io_start(struct request *req)
{
	if (blk_do_io_stat(req))
		__blk_account_io_start(req);
}

881
static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
882
{
883 884
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
885
		blk_stat_add(rq, now);
886 887
	}

888
	blk_mq_sched_completed_request(rq, now);
889
	blk_account_io_done(rq, now);
890
}
891

892 893 894 895
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
{
	if (blk_mq_need_time_stamp(rq))
		__blk_mq_end_request_acct(rq, ktime_get_ns());
M
Ming Lei 已提交
896

C
Christoph Hellwig 已提交
897
	if (rq->end_io) {
898
		rq_qos_done(rq->q, rq);
899
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
900
	} else {
901
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
902
	}
903
}
904
EXPORT_SYMBOL(__blk_mq_end_request);
905

906
void blk_mq_end_request(struct request *rq, blk_status_t error)
907 908 909
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
910
	__blk_mq_end_request(rq, error);
911
}
912
EXPORT_SYMBOL(blk_mq_end_request);
913

914 915 916 917 918 919 920
#define TAG_COMP_BATCH		32

static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
					  int *tag_array, int nr_tags)
{
	struct request_queue *q = hctx->queue;

921 922 923 924 925 926 927
	/*
	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
	 * update hctx->nr_active in batch
	 */
	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
		__blk_mq_sub_active_requests(hctx, nr_tags);

928 929 930 931 932 933 934
	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
}

void blk_mq_end_request_batch(struct io_comp_batch *iob)
{
	int tags[TAG_COMP_BATCH], nr_tags = 0;
935
	struct blk_mq_hw_ctx *cur_hctx = NULL;
936 937 938 939 940 941 942 943 944 945 946 947 948 949
	struct request *rq;
	u64 now = 0;

	if (iob->need_ts)
		now = ktime_get_ns();

	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
		prefetch(rq->bio);
		prefetch(rq->rq_next);

		blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
		if (iob->need_ts)
			__blk_mq_end_request_acct(rq, now);

950 951
		rq_qos_done(rq->q, rq);

952 953 954 955 956 957 958
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
		if (!refcount_dec_and_test(&rq->ref))
			continue;

		blk_crypto_free_request(rq);
		blk_pm_mark_last_busy(rq);

959 960 961
		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
			if (cur_hctx)
				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
962
			nr_tags = 0;
963
			cur_hctx = rq->mq_hctx;
964 965 966 967 968
		}
		tags[nr_tags++] = rq->tag;
	}

	if (nr_tags)
969
		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
970 971 972
}
EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);

973
static void blk_complete_reqs(struct llist_head *list)
974
{
975 976
	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
	struct request *rq, *next;
977

978
	llist_for_each_entry_safe(rq, next, entry, ipi_list)
979
		rq->q->mq_ops->complete(rq);
980 981
}

982
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
983
{
984
	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
985 986
}

987 988
static int blk_softirq_cpu_dead(unsigned int cpu)
{
989
	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
990 991 992
	return 0;
}

993
static void __blk_mq_complete_request_remote(void *data)
994
{
995
	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
996 997
}

998 999 1000 1001 1002 1003 1004
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
	int cpu = raw_smp_processor_id();

	if (!IS_ENABLED(CONFIG_SMP) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
		return false;
1005 1006 1007 1008 1009 1010
	/*
	 * With force threaded interrupts enabled, raising softirq from an SMP
	 * function call will always result in waking the ksoftirqd thread.
	 * This is probably worse than completing the request on a different
	 * cache domain.
	 */
1011
	if (force_irqthreads())
1012
		return false;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

	/* same CPU or cache domain?  Complete locally */
	if (cpu == rq->mq_ctx->cpu ||
	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
		return false;

	/* don't try to IPI to an offline CPU */
	return cpu_online(rq->mq_ctx->cpu);
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static void blk_mq_complete_send_ipi(struct request *rq)
{
	struct llist_head *list;
	unsigned int cpu;

	cpu = rq->mq_ctx->cpu;
	list = &per_cpu(blk_cpu_done, cpu);
	if (llist_add(&rq->ipi_list, list)) {
		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
		smp_call_function_single_async(cpu, &rq->csd);
	}
}

static void blk_mq_raise_softirq(struct request *rq)
{
	struct llist_head *list;

	preempt_disable();
	list = this_cpu_ptr(&blk_cpu_done);
	if (llist_add(&rq->ipi_list, list))
		raise_softirq(BLOCK_SOFTIRQ);
	preempt_enable();
}

1048
bool blk_mq_complete_request_remote(struct request *rq)
1049
{
1050
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1051

1052 1053 1054 1055
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
1056
	if (rq->cmd_flags & REQ_POLLED)
1057
		return false;
C
Christoph Hellwig 已提交
1058

1059
	if (blk_mq_complete_need_ipi(rq)) {
1060 1061
		blk_mq_complete_send_ipi(rq);
		return true;
1062
	}
1063

1064 1065 1066 1067 1068
	if (rq->q->nr_hw_queues == 1) {
		blk_mq_raise_softirq(rq);
		return true;
	}
	return false;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Complete a request by scheduling the ->complete_rq operation.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (!blk_mq_complete_request_remote(rq))
		rq->q->mq_ops->complete(rq);
1083
}
1084
EXPORT_SYMBOL(blk_mq_complete_request);
1085

1086
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
1087
	__releases(hctx->srcu)
1088 1089 1090 1091
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
1092
		srcu_read_unlock(hctx->srcu, srcu_idx);
1093 1094 1095
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
1096
	__acquires(hctx->srcu)
1097
{
1098 1099 1100
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
1101
		rcu_read_lock();
1102
	} else
1103
		*srcu_idx = srcu_read_lock(hctx->srcu);
1104 1105
}

1106 1107 1108 1109 1110 1111 1112 1113
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
1114
void blk_mq_start_request(struct request *rq)
1115 1116 1117
{
	struct request_queue *q = rq->q;

1118
	trace_block_rq_issue(rq);
1119

1120
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1121 1122 1123 1124 1125 1126 1127 1128
		u64 start_time;
#ifdef CONFIG_BLK_CGROUP
		if (rq->bio)
			start_time = bio_issue_time(&rq->bio->bi_issue);
		else
#endif
			start_time = ktime_get_ns();
		rq->io_start_time_ns = start_time;
1129
		rq->stats_sectors = blk_rq_sectors(rq);
1130
		rq->rq_flags |= RQF_STATS;
1131
		rq_qos_issue(q, rq);
1132 1133
	}

1134
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1135

1136
	blk_add_timer(rq);
K
Keith Busch 已提交
1137
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1138

1139 1140 1141 1142
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
1143 1144
	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1145
}
1146
EXPORT_SYMBOL(blk_mq_start_request);
1147

C
Christoph Hellwig 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/**
 * blk_end_sync_rq - executes a completion event on a request
 * @rq: request to complete
 * @error: end I/O status of the request
 */
static void blk_end_sync_rq(struct request *rq, blk_status_t error)
{
	struct completion *waiting = rq->end_io_data;

	rq->end_io_data = (void *)(uintptr_t)error;

	/*
	 * complete last, if this is a stack request the process (and thus
	 * the rq pointer) could be invalid right after this complete()
	 */
	complete(waiting);
}

/**
 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
 * @bd_disk:	matching gendisk
 * @rq:		request to insert
 * @at_head:    insert request at head or tail of queue
 * @done:	I/O completion handler
 *
 * Description:
 *    Insert a fully prepared request at the back of the I/O scheduler queue
 *    for execution.  Don't wait for completion.
 *
 * Note:
 *    This function will invoke @done directly if the queue is dead.
 */
void blk_execute_rq_nowait(struct gendisk *bd_disk, struct request *rq,
			   int at_head, rq_end_io_fn *done)
{
	WARN_ON(irqs_disabled());
	WARN_ON(!blk_rq_is_passthrough(rq));

	rq->rq_disk = bd_disk;
	rq->end_io = done;

	blk_account_io_start(rq);

	/*
	 * don't check dying flag for MQ because the request won't
	 * be reused after dying flag is set
	 */
	blk_mq_sched_insert_request(rq, at_head, true, false);
}
EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);

static bool blk_rq_is_poll(struct request *rq)
{
	if (!rq->mq_hctx)
		return false;
	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
		return false;
	if (WARN_ON_ONCE(!rq->bio))
		return false;
	return true;
}

static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
{
	do {
		bio_poll(rq->bio, NULL, 0);
		cond_resched();
	} while (!completion_done(wait));
}

/**
 * blk_execute_rq - insert a request into queue for execution
 * @bd_disk:	matching gendisk
 * @rq:		request to insert
 * @at_head:    insert request at head or tail of queue
 *
 * Description:
 *    Insert a fully prepared request at the back of the I/O scheduler queue
 *    for execution and wait for completion.
 * Return: The blk_status_t result provided to blk_mq_end_request().
 */
blk_status_t blk_execute_rq(struct gendisk *bd_disk, struct request *rq,
		int at_head)
{
	DECLARE_COMPLETION_ONSTACK(wait);
	unsigned long hang_check;

	rq->end_io_data = &wait;
	blk_execute_rq_nowait(bd_disk, rq, at_head, blk_end_sync_rq);

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;

	if (blk_rq_is_poll(rq))
		blk_rq_poll_completion(rq, &wait);
	else if (hang_check)
		while (!wait_for_completion_io_timeout(&wait,
				hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&wait);

	return (blk_status_t)(uintptr_t)rq->end_io_data;
}
EXPORT_SYMBOL(blk_execute_rq);

1254
static void __blk_mq_requeue_request(struct request *rq)
1255 1256 1257
{
	struct request_queue *q = rq->q;

1258 1259
	blk_mq_put_driver_tag(rq);

1260
	trace_block_rq_requeue(rq);
1261
	rq_qos_requeue(q, rq);
1262

K
Keith Busch 已提交
1263 1264
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1265
		rq->rq_flags &= ~RQF_TIMED_OUT;
1266
	}
1267 1268
}

1269
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1270 1271 1272
{
	__blk_mq_requeue_request(rq);

1273 1274 1275
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

1276
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1277 1278 1279
}
EXPORT_SYMBOL(blk_mq_requeue_request);

1280 1281 1282
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
1283
		container_of(work, struct request_queue, requeue_work.work);
1284 1285 1286
	LIST_HEAD(rq_list);
	struct request *rq, *next;

1287
	spin_lock_irq(&q->requeue_lock);
1288
	list_splice_init(&q->requeue_list, &rq_list);
1289
	spin_unlock_irq(&q->requeue_lock);
1290 1291

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1292
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1293 1294
			continue;

1295
		rq->rq_flags &= ~RQF_SOFTBARRIER;
1296
		list_del_init(&rq->queuelist);
1297 1298 1299 1300 1301 1302
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
1303
			blk_mq_request_bypass_insert(rq, false, false);
1304 1305
		else
			blk_mq_sched_insert_request(rq, true, false, false);
1306 1307 1308 1309 1310
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
1311
		blk_mq_sched_insert_request(rq, false, false, false);
1312 1313
	}

1314
	blk_mq_run_hw_queues(q, false);
1315 1316
}

1317 1318
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
1319 1320 1321 1322 1323 1324
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
1325
	 * request head insertion from the workqueue.
1326
	 */
1327
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1328 1329 1330

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
1331
		rq->rq_flags |= RQF_SOFTBARRIER;
1332 1333 1334 1335 1336
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
1337 1338 1339

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
1340 1341 1342 1343
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
1344
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1345 1346 1347
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

1348 1349 1350
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
1351 1352
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
1353 1354 1355
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

1356 1357
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
1358 1359
{
	/*
1360
	 * If we find a request that isn't idle and the queue matches,
1361
	 * we know the queue is busy. Return false to stop the iteration.
1362
	 */
1363
	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1364 1365 1366 1367 1368 1369 1370 1371 1372
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

1373
bool blk_mq_queue_inflight(struct request_queue *q)
1374 1375 1376
{
	bool busy = false;

1377
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1378 1379
	return busy;
}
1380
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1381

1382
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1383
{
1384
	req->rq_flags |= RQF_TIMED_OUT;
1385 1386 1387 1388 1389 1390 1391
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1392
	}
1393 1394

	blk_add_timer(req);
1395
}
1396

K
Keith Busch 已提交
1397
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1398
{
K
Keith Busch 已提交
1399
	unsigned long deadline;
1400

K
Keith Busch 已提交
1401 1402
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
1403 1404
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
1405

1406
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
1407 1408
	if (time_after_eq(jiffies, deadline))
		return true;
1409

K
Keith Busch 已提交
1410 1411 1412 1413 1414
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
1415 1416
}

1417 1418
void blk_mq_put_rq_ref(struct request *rq)
{
M
Ming Lei 已提交
1419
	if (is_flush_rq(rq))
1420 1421 1422 1423 1424
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
}

1425
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1426 1427
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
1428 1429 1430
	unsigned long *next = priv;

	/*
1431 1432 1433 1434 1435
	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
	 * be reallocated underneath the timeout handler's processing, then
	 * the expire check is reliable. If the request is not expired, then
	 * it was completed and reallocated as a new request after returning
	 * from blk_mq_check_expired().
1436
	 */
K
Keith Busch 已提交
1437
	if (blk_mq_req_expired(rq, next))
1438
		blk_mq_rq_timed_out(rq, reserved);
1439
	return true;
1440 1441
}

1442
static void blk_mq_timeout_work(struct work_struct *work)
1443
{
1444 1445
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
1446
	unsigned long next = 0;
1447
	struct blk_mq_hw_ctx *hctx;
1448
	int i;
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
1459
	 * blk_freeze_queue_start, and the moment the last request is
1460 1461 1462 1463
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
1464 1465
		return;

K
Keith Busch 已提交
1466
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1467

K
Keith Busch 已提交
1468 1469
	if (next != 0) {
		mod_timer(&q->timeout, next);
1470
	} else {
1471 1472 1473 1474 1475 1476
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
1477 1478 1479 1480 1481
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
1482
	}
1483
	blk_queue_exit(q);
1484 1485
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1496
	enum hctx_type type = hctx->type;
1497 1498

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1499
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1500
	sbitmap_clear_bit(sb, bitnr);
1501 1502 1503 1504
	spin_unlock(&ctx->lock);
	return true;
}

1505 1506 1507 1508
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1509
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1510
{
1511 1512 1513 1514
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1515

1516
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1517
}
1518
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1531
	enum hctx_type type = hctx->type;
1532 1533

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1534 1535
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1536
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1537
		if (list_empty(&ctx->rq_lists[type]))
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1548
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1560
static bool __blk_mq_alloc_driver_tag(struct request *rq)
1561
{
1562
	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1563 1564 1565
	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
	int tag;

1566 1567
	blk_mq_tag_busy(rq->mq_hctx);

1568
	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1569
		bt = &rq->mq_hctx->tags->breserved_tags;
1570
		tag_offset = 0;
1571 1572 1573
	} else {
		if (!hctx_may_queue(rq->mq_hctx, bt))
			return false;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	}

	tag = __sbitmap_queue_get(bt);
	if (tag == BLK_MQ_NO_TAG)
		return false;

	rq->tag = tag + tag_offset;
	return true;
}

1584
bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1585
{
1586
	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1587 1588
		return false;

1589
	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1590 1591
			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
		rq->rq_flags |= RQF_MQ_INFLIGHT;
1592
		__blk_mq_inc_active_requests(hctx);
1593 1594 1595
	}
	hctx->tags->rqs[rq->tag] = rq;
	return true;
1596 1597
}

1598 1599
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1600 1601 1602 1603 1604
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1605
	spin_lock(&hctx->dispatch_wait_lock);
1606 1607 1608 1609
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
1610
		sbq = &hctx->tags->bitmap_tags;
1611 1612
		atomic_dec(&sbq->ws_active);
	}
1613 1614
	spin_unlock(&hctx->dispatch_wait_lock);

1615 1616 1617 1618
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1619 1620
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1621 1622
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1623 1624
 * marking us as waiting.
 */
1625
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1626
				 struct request *rq)
1627
{
1628
	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1629
	struct wait_queue_head *wq;
1630 1631
	wait_queue_entry_t *wait;
	bool ret;
1632

1633
	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1634
		blk_mq_sched_mark_restart_hctx(hctx);
1635

1636 1637 1638 1639 1640 1641 1642 1643
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1644
		return blk_mq_get_driver_tag(rq);
1645 1646
	}

1647
	wait = &hctx->dispatch_wait;
1648 1649 1650
	if (!list_empty_careful(&wait->entry))
		return false;

1651
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1652 1653 1654

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1655
	if (!list_empty(&wait->entry)) {
1656 1657
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1658
		return false;
1659 1660
	}

1661
	atomic_inc(&sbq->ws_active);
1662 1663
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1664

1665
	/*
1666 1667 1668
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1669
	 */
1670
	ret = blk_mq_get_driver_tag(rq);
1671
	if (!ret) {
1672 1673
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1674
		return false;
1675
	}
1676 1677 1678 1679 1680 1681

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1682
	atomic_dec(&sbq->ws_active);
1683 1684
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1685 1686

	return true;
1687 1688
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1715 1716
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
enum prep_dispatch {
	PREP_DISPATCH_OK,
	PREP_DISPATCH_NO_TAG,
	PREP_DISPATCH_NO_BUDGET,
};

static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
						  bool need_budget)
{
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1757
	int budget_token = -1;
1758

1759 1760 1761 1762 1763 1764 1765
	if (need_budget) {
		budget_token = blk_mq_get_dispatch_budget(rq->q);
		if (budget_token < 0) {
			blk_mq_put_driver_tag(rq);
			return PREP_DISPATCH_NO_BUDGET;
		}
		blk_mq_set_rq_budget_token(rq, budget_token);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	}

	if (!blk_mq_get_driver_tag(rq)) {
		/*
		 * The initial allocation attempt failed, so we need to
		 * rerun the hardware queue when a tag is freed. The
		 * waitqueue takes care of that. If the queue is run
		 * before we add this entry back on the dispatch list,
		 * we'll re-run it below.
		 */
		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1777 1778 1779 1780 1781
			/*
			 * All budgets not got from this function will be put
			 * together during handling partial dispatch
			 */
			if (need_budget)
1782
				blk_mq_put_dispatch_budget(rq->q, budget_token);
1783 1784 1785 1786 1787 1788 1789
			return PREP_DISPATCH_NO_TAG;
		}
	}

	return PREP_DISPATCH_OK;
}

1790 1791
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
1792
		struct list_head *list)
1793
{
1794
	struct request *rq;
1795

1796 1797
	list_for_each_entry(rq, list, queuelist) {
		int budget_token = blk_mq_get_rq_budget_token(rq);
1798

1799 1800 1801
		if (budget_token >= 0)
			blk_mq_put_dispatch_budget(q, budget_token);
	}
1802 1803
}

1804 1805 1806
/*
 * Returns true if we did some work AND can potentially do more.
 */
1807
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1808
			     unsigned int nr_budgets)
1809
{
1810
	enum prep_dispatch prep;
1811
	struct request_queue *q = hctx->queue;
1812
	struct request *rq, *nxt;
1813
	int errors, queued;
1814
	blk_status_t ret = BLK_STS_OK;
1815
	LIST_HEAD(zone_list);
1816
	bool needs_resource = false;
1817

1818 1819 1820
	if (list_empty(list))
		return false;

1821 1822 1823
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1824
	errors = queued = 0;
1825
	do {
1826
		struct blk_mq_queue_data bd;
1827

1828
		rq = list_first_entry(list, struct request, queuelist);
1829

1830
		WARN_ON_ONCE(hctx != rq->mq_hctx);
1831
		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1832
		if (prep != PREP_DISPATCH_OK)
1833
			break;
1834

1835 1836
		list_del_init(&rq->queuelist);

1837
		bd.rq = rq;
1838 1839 1840 1841 1842 1843 1844 1845 1846

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1847
			bd.last = !blk_mq_get_driver_tag(nxt);
1848
		}
1849

1850 1851 1852 1853 1854 1855
		/*
		 * once the request is queued to lld, no need to cover the
		 * budget any more
		 */
		if (nr_budgets)
			nr_budgets--;
1856
		ret = q->mq_ops->queue_rq(hctx, &bd);
1857 1858 1859
		switch (ret) {
		case BLK_STS_OK:
			queued++;
1860
			break;
1861
		case BLK_STS_RESOURCE:
1862 1863
			needs_resource = true;
			fallthrough;
1864 1865 1866 1867
		case BLK_STS_DEV_RESOURCE:
			blk_mq_handle_dev_resource(rq, list);
			goto out;
		case BLK_STS_ZONE_RESOURCE:
1868 1869 1870 1871 1872 1873
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
1874
			needs_resource = true;
1875 1876
			break;
		default:
1877
			errors++;
1878
			blk_mq_end_request(rq, ret);
1879
		}
1880
	} while (!list_empty(list));
1881
out:
1882 1883 1884
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1885 1886 1887 1888 1889
	/* If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
		q->mq_ops->commit_rqs(hctx);
1890 1891 1892 1893
	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1894
	if (!list_empty(list)) {
1895
		bool needs_restart;
1896 1897
		/* For non-shared tags, the RESTART check will suffice */
		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1898
			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1899

1900 1901
		if (nr_budgets)
			blk_mq_release_budgets(q, list);
1902

1903
		spin_lock(&hctx->lock);
1904
		list_splice_tail_init(list, &hctx->dispatch);
1905
		spin_unlock(&hctx->lock);
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915
		/*
		 * Order adding requests to hctx->dispatch and checking
		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
		 * in blk_mq_sched_restart(). Avoid restart code path to
		 * miss the new added requests to hctx->dispatch, meantime
		 * SCHED_RESTART is observed here.
		 */
		smp_mb();

1916
		/*
1917 1918 1919
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1920
		 *
1921 1922 1923 1924
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1925
		 *
1926 1927 1928 1929 1930 1931 1932
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1933
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1934
		 *   and dm-rq.
1935 1936 1937
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1938
		 * that could otherwise occur if the queue is idle.  We'll do
1939 1940
		 * similar if we couldn't get budget or couldn't lock a zone
		 * and SCHED_RESTART is set.
1941
		 */
1942
		needs_restart = blk_mq_sched_needs_restart(hctx);
1943 1944
		if (prep == PREP_DISPATCH_NO_BUDGET)
			needs_resource = true;
1945
		if (!needs_restart ||
1946
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1947
			blk_mq_run_hw_queue(hctx, true);
1948
		else if (needs_restart && needs_resource)
1949
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1950

1951
		blk_mq_update_dispatch_busy(hctx, true);
1952
		return false;
1953 1954
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1955

1956
	return (queued + errors) != 0;
1957 1958
}

1959 1960 1961 1962 1963 1964
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1965 1966 1967 1968
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1969 1970 1971 1972 1973 1974
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1975
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1976

1977 1978 1979
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1980 1981
}

1982 1983 1984 1985 1986 1987 1988 1989 1990
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1991 1992 1993 1994 1995 1996 1997 1998
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1999
	bool tried = false;
2000
	int next_cpu = hctx->next_cpu;
2001

2002 2003
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
2004 2005

	if (--hctx->next_cpu_batch <= 0) {
2006
select_cpu:
2007
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2008
				cpu_online_mask);
2009
		if (next_cpu >= nr_cpu_ids)
2010
			next_cpu = blk_mq_first_mapped_cpu(hctx);
2011 2012 2013
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

2014 2015 2016 2017
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
2018
	if (!cpu_online(next_cpu)) {
2019 2020 2021 2022 2023 2024 2025 2026 2027
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
2028
		hctx->next_cpu = next_cpu;
2029 2030 2031
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
2032 2033 2034

	hctx->next_cpu = next_cpu;
	return next_cpu;
2035 2036
}

2037 2038 2039 2040
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
2041
 * @msecs: Milliseconds of delay to wait before running the queue.
2042 2043 2044 2045
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
2046 2047
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
2048
{
2049
	if (unlikely(blk_mq_hctx_stopped(hctx)))
2050 2051
		return;

2052
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2053 2054
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2055
			__blk_mq_run_hw_queue(hctx);
2056
			put_cpu();
2057 2058
			return;
		}
2059

2060
		put_cpu();
2061
	}
2062

2063 2064
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
2065 2066
}

2067 2068 2069
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
2070
 * @msecs: Milliseconds of delay to wait before running the queue.
2071 2072 2073
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
2074 2075 2076 2077 2078 2079
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

2080 2081 2082 2083 2084 2085 2086 2087 2088
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
2089
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2090
{
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
2102 2103 2104 2105
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
2106

2107
	if (need_run)
2108
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2109
}
O
Omar Sandoval 已提交
2110
EXPORT_SYMBOL(blk_mq_run_hw_queue);
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/*
 * Is the request queue handled by an IO scheduler that does not respect
 * hardware queues when dispatching?
 */
static bool blk_mq_has_sqsched(struct request_queue *q)
{
	struct elevator_queue *e = q->elevator;

	if (e && e->type->ops.dispatch_request &&
	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
		return true;
	return false;
}

/*
 * Return prefered queue to dispatch from (if any) for non-mq aware IO
 * scheduler.
 */
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;

	/*
	 * If the IO scheduler does not respect hardware queues when
	 * dispatching, we just don't bother with multiple HW queues and
	 * dispatch from hctx for the current CPU since running multiple queues
	 * just causes lock contention inside the scheduler and pointless cache
	 * bouncing.
	 */
	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
				     raw_smp_processor_id());
	if (!blk_mq_hctx_stopped(hctx))
		return hctx;
	return NULL;
}

2148
/**
2149
 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2150 2151 2152
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
2153
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2154
{
2155
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2156 2157
	int i;

2158 2159 2160
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
2161
	queue_for_each_hw_ctx(q, hctx, i) {
2162
		if (blk_mq_hctx_stopped(hctx))
2163
			continue;
2164 2165 2166 2167 2168 2169 2170 2171
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_run_hw_queue(hctx, async);
2172 2173
	}
}
2174
EXPORT_SYMBOL(blk_mq_run_hw_queues);
2175

2176 2177 2178
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
2179
 * @msecs: Milliseconds of delay to wait before running the queues.
2180 2181 2182
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
2183
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2184 2185
	int i;

2186 2187 2188
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
2189 2190 2191
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;
2192 2193 2194 2195 2196 2197 2198 2199
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_delay_run_hw_queue(hctx, msecs);
2200 2201 2202 2203
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

2224 2225 2226
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
2227
 * BLK_STS_RESOURCE is usually returned.
2228 2229 2230 2231 2232
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
2233 2234
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
2235
	cancel_delayed_work(&hctx->run_work);
2236

2237
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2238
}
2239
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2240

2241 2242 2243
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
2244
 * BLK_STS_RESOURCE is usually returned.
2245 2246 2247 2248 2249
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
2250 2251
void blk_mq_stop_hw_queues(struct request_queue *q)
{
2252 2253 2254 2255 2256
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
2257 2258 2259
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

2260 2261 2262
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2263

2264
	blk_mq_run_hw_queue(hctx, false);
2265 2266 2267
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

2288
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2289 2290 2291 2292
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2293 2294
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
2295 2296 2297
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

2298
static void blk_mq_run_work_fn(struct work_struct *work)
2299 2300 2301
{
	struct blk_mq_hw_ctx *hctx;

2302
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2303

2304
	/*
M
Ming Lei 已提交
2305
	 * If we are stopped, don't run the queue.
2306
	 */
2307
	if (blk_mq_hctx_stopped(hctx))
2308
		return;
2309 2310 2311 2312

	__blk_mq_run_hw_queue(hctx);
}

2313 2314 2315
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
2316
{
J
Jens Axboe 已提交
2317
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
2318
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
2319

2320 2321
	lockdep_assert_held(&ctx->lock);

2322
	trace_block_rq_insert(rq);
2323

2324
	if (at_head)
M
Ming Lei 已提交
2325
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2326
	else
M
Ming Lei 已提交
2327
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2328
}
2329

2330 2331
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
2332 2333 2334
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

2335 2336
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
2337
	__blk_mq_insert_req_list(hctx, rq, at_head);
2338 2339 2340
	blk_mq_hctx_mark_pending(hctx, ctx);
}

2341 2342 2343
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
2344
 * @at_head: true if the request should be inserted at the head of the list.
2345 2346
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
2347 2348 2349
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
2350 2351
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
2352
{
2353
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2354 2355

	spin_lock(&hctx->lock);
2356 2357 2358 2359
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
2360 2361
	spin_unlock(&hctx->lock);

2362 2363
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
2364 2365
}

2366 2367
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
2368 2369

{
2370
	struct request *rq;
M
Ming Lei 已提交
2371
	enum hctx_type type = hctx->type;
2372

2373 2374 2375 2376
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
2377
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
2378
		BUG_ON(rq->mq_ctx != ctx);
2379
		trace_block_rq_insert(rq);
2380
	}
2381 2382

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2383
	list_splice_tail_init(list, &ctx->rq_lists[type]);
2384
	blk_mq_hctx_mark_pending(hctx, ctx);
2385 2386 2387
	spin_unlock(&ctx->lock);
}

2388 2389
static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
			      bool from_schedule)
2390
{
2391 2392 2393 2394 2395 2396
	if (hctx->queue->mq_ops->commit_rqs) {
		trace_block_unplug(hctx->queue, *queued, !from_schedule);
		hctx->queue->mq_ops->commit_rqs(hctx);
	}
	*queued = 0;
}
2397

2398 2399
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
2400
{
2401 2402
	int err;

2403 2404 2405 2406 2407
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
2408
	blk_rq_bio_prep(rq, bio, nr_segs);
2409 2410 2411 2412

	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
	WARN_ON_ONCE(err);
2413

2414
	blk_account_io_start(rq);
2415 2416
}

2417
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2418
					    struct request *rq, bool last)
2419 2420 2421 2422
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
2423
		.last = last,
2424
	};
2425
	blk_status_t ret;
2426 2427 2428 2429 2430 2431 2432 2433 2434

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
2435
		blk_mq_update_dispatch_busy(hctx, false);
2436 2437
		break;
	case BLK_STS_RESOURCE:
2438
	case BLK_STS_DEV_RESOURCE:
2439
		blk_mq_update_dispatch_busy(hctx, true);
2440 2441 2442
		__blk_mq_requeue_request(rq);
		break;
	default:
2443
		blk_mq_update_dispatch_busy(hctx, false);
2444 2445 2446 2447 2448 2449
		break;
	}

	return ret;
}

2450
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2451
						struct request *rq,
2452
						bool bypass_insert, bool last)
2453 2454
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
2455
	bool run_queue = true;
2456
	int budget_token;
M
Ming Lei 已提交
2457

2458
	/*
2459
	 * RCU or SRCU read lock is needed before checking quiesced flag.
2460
	 *
2461 2462 2463
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
2464
	 */
2465
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
2466
		run_queue = false;
2467 2468
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
2469
	}
2470

2471
	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2472
		goto insert;
2473

2474 2475
	budget_token = blk_mq_get_dispatch_budget(q);
	if (budget_token < 0)
2476
		goto insert;
2477

2478 2479
	blk_mq_set_rq_budget_token(rq, budget_token);

2480
	if (!blk_mq_get_driver_tag(rq)) {
2481
		blk_mq_put_dispatch_budget(q, budget_token);
2482
		goto insert;
2483
	}
2484

2485
	return __blk_mq_issue_directly(hctx, rq, last);
2486 2487 2488 2489
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

2490 2491
	blk_mq_sched_insert_request(rq, false, run_queue, false);

2492 2493 2494
	return BLK_STS_OK;
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
2505
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2506
		struct request *rq)
2507 2508 2509 2510 2511 2512 2513 2514
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

2515
	ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2516
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2517
		blk_mq_request_bypass_insert(rq, false, true);
2518 2519 2520 2521 2522 2523
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

2524
static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2525 2526 2527 2528 2529 2530
{
	blk_status_t ret;
	int srcu_idx;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
2531
	ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2532
	hctx_unlock(hctx, srcu_idx);
2533 2534

	return ret;
2535 2536
}

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_hw_ctx *hctx = NULL;
	struct request *rq;
	int queued = 0;
	int errors = 0;

	while ((rq = rq_list_pop(&plug->mq_list))) {
		bool last = rq_list_empty(plug->mq_list);
		blk_status_t ret;

		if (hctx != rq->mq_hctx) {
			if (hctx)
				blk_mq_commit_rqs(hctx, &queued, from_schedule);
			hctx = rq->mq_hctx;
		}

		ret = blk_mq_request_issue_directly(rq, last);
		switch (ret) {
		case BLK_STS_OK:
			queued++;
			break;
		case BLK_STS_RESOURCE:
		case BLK_STS_DEV_RESOURCE:
			blk_mq_request_bypass_insert(rq, false, last);
			blk_mq_commit_rqs(hctx, &queued, from_schedule);
			return;
		default:
			blk_mq_end_request(rq, ret);
			errors++;
			break;
		}
	}

	/*
	 * If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if (errors)
		blk_mq_commit_rqs(hctx, &queued, from_schedule);
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_hw_ctx *this_hctx;
	struct blk_mq_ctx *this_ctx;
	unsigned int depth;
	LIST_HEAD(list);

	if (rq_list_empty(plug->mq_list))
		return;
	plug->rq_count = 0;

	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
		blk_mq_plug_issue_direct(plug, false);
		if (rq_list_empty(plug->mq_list))
			return;
	}

	this_hctx = NULL;
	this_ctx = NULL;
	depth = 0;
	do {
		struct request *rq;

		rq = rq_list_pop(&plug->mq_list);

		if (!this_hctx) {
			this_hctx = rq->mq_hctx;
			this_ctx = rq->mq_ctx;
		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
			trace_block_unplug(this_hctx->queue, depth,
						!from_schedule);
			blk_mq_sched_insert_requests(this_hctx, this_ctx,
						&list, from_schedule);
			depth = 0;
			this_hctx = rq->mq_hctx;
			this_ctx = rq->mq_ctx;

		}

		list_add(&rq->queuelist, &list);
		depth++;
	} while (!rq_list_empty(plug->mq_list));

	if (!list_empty(&list)) {
		trace_block_unplug(this_hctx->queue, depth, !from_schedule);
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
						from_schedule);
	}
}

2629 2630 2631
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
2632
	int queued = 0;
2633
	int errors = 0;
2634

2635
	while (!list_empty(list)) {
2636
		blk_status_t ret;
2637 2638 2639 2640
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
2641 2642 2643 2644
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
2645
				blk_mq_request_bypass_insert(rq, false,
2646
							list_empty(list));
2647 2648 2649
				break;
			}
			blk_mq_end_request(rq, ret);
2650
			errors++;
2651 2652
		} else
			queued++;
2653
	}
J
Jens Axboe 已提交
2654 2655 2656 2657 2658 2659

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2660 2661
	if ((!list_empty(list) || errors) &&
	     hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2662
		hctx->queue->mq_ops->commit_rqs(hctx);
2663 2664
}

2665
/*
2666
 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2667 2668 2669 2670 2671 2672
 * queues. This is important for md arrays to benefit from merging
 * requests.
 */
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
{
	if (plug->multiple_queues)
2673
		return BLK_MAX_REQUEST_COUNT * 2;
2674 2675 2676
	return BLK_MAX_REQUEST_COUNT;
}

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	struct request *last = rq_list_peek(&plug->mq_list);

	if (!plug->rq_count) {
		trace_block_plug(rq->q);
	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
		   (!blk_queue_nomerges(rq->q) &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
		blk_mq_flush_plug_list(plug, false);
		trace_block_plug(rq->q);
	}

	if (!plug->multiple_queues && last && last->q != rq->q)
		plug->multiple_queues = true;
	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
		plug->has_elevator = true;
	rq->rq_next = NULL;
	rq_list_add(&plug->mq_list, rq);
	plug->rq_count++;
}

M
Ming Lei 已提交
2699
static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2700
				     struct bio *bio, unsigned int nr_segs)
2701 2702
{
	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2703
		if (blk_attempt_plug_merge(q, bio, nr_segs))
2704 2705 2706 2707 2708 2709 2710
			return true;
		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
			return true;
	}
	return false;
}

2711 2712
static struct request *blk_mq_get_new_requests(struct request_queue *q,
					       struct blk_plug *plug,
2713
					       struct bio *bio,
2714
					       unsigned int nsegs)
2715 2716 2717 2718 2719 2720 2721 2722
{
	struct blk_mq_alloc_data data = {
		.q		= q,
		.nr_tags	= 1,
		.cmd_flags	= bio->bi_opf,
	};
	struct request *rq;

2723
	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2724
		return NULL;
2725 2726 2727

	rq_qos_throttle(q, bio);

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	if (plug) {
		data.nr_tags = plug->nr_ios;
		plug->nr_ios = 1;
		data.cached_rq = &plug->cached_rq;
	}

	rq = __blk_mq_alloc_requests(&data);
	if (rq)
		return rq;

	rq_qos_cleanup(q, bio);
	if (bio->bi_opf & REQ_NOWAIT)
		bio_wouldblock_error(bio);
2741

2742 2743 2744
	return NULL;
}

2745
static inline bool blk_mq_can_use_cached_rq(struct request *rq, struct bio *bio)
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
{
	if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
		return false;

	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
		return false;

	return true;
}

2756 2757
static inline struct request *blk_mq_get_request(struct request_queue *q,
						 struct blk_plug *plug,
2758
						 struct bio *bio,
2759
						 unsigned int nsegs)
2760
{
2761 2762 2763
	struct request *rq;
	bool checked = false;

2764 2765
	if (plug) {
		rq = rq_list_peek(&plug->cached_rq);
2766
		if (rq && rq->q == q) {
2767 2768
			if (unlikely(!submit_bio_checks(bio)))
				return NULL;
2769
			if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2770
				return NULL;
2771 2772 2773 2774
			checked = true;
			if (!blk_mq_can_use_cached_rq(rq, bio))
				goto fallback;
			rq->cmd_flags = bio->bi_opf;
2775 2776
			plug->cached_rq = rq_list_next(rq);
			INIT_LIST_HEAD(&rq->queuelist);
2777
			rq_qos_throttle(q, bio);
2778 2779 2780 2781
			return rq;
		}
	}

2782 2783 2784
fallback:
	if (unlikely(bio_queue_enter(bio)))
		return NULL;
2785 2786
	if (unlikely(!checked && !submit_bio_checks(bio)))
		goto out_put;
2787
	rq = blk_mq_get_new_requests(q, plug, bio, nsegs);
2788 2789 2790 2791 2792
	if (rq)
		return rq;
out_put:
	blk_queue_exit(q);
	return NULL;
2793 2794
}

2795
/**
2796
 * blk_mq_submit_bio - Create and send a request to block device.
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 */
2808
void blk_mq_submit_bio(struct bio *bio)
2809
{
2810
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2811
	const int is_sync = op_is_sync(bio->bi_opf);
2812
	struct request *rq;
2813
	struct blk_plug *plug;
2814
	unsigned int nr_segs = 1;
2815
	blk_status_t ret;
2816

2817 2818 2819
	if (unlikely(!blk_crypto_bio_prep(&bio)))
		return;

2820
	blk_queue_bounce(q, &bio);
2821 2822
	if (blk_may_split(q, bio))
		__blk_queue_split(q, &bio, &nr_segs);
2823

2824
	if (!bio_integrity_prep(bio))
2825
		return;
J
Jens Axboe 已提交
2826

2827
	plug = blk_mq_plug(q, bio);
2828
	rq = blk_mq_get_request(q, plug, bio, nr_segs);
2829
	if (unlikely(!rq))
2830
		return;
J
Jens Axboe 已提交
2831

2832
	trace_block_getrq(bio);
2833

2834
	rq_qos_track(q, rq, bio);
2835

2836 2837
	blk_mq_bio_to_request(rq, bio, nr_segs);

2838 2839 2840 2841 2842
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
2843
		return;
2844 2845
	}

2846 2847
	if (op_is_flush(bio->bi_opf)) {
		blk_insert_flush(rq);
2848
		return;
2849
	}
2850

2851
	if (plug)
2852
		blk_add_rq_to_plug(plug, rq);
2853 2854 2855
	else if ((rq->rq_flags & RQF_ELV) ||
		 (rq->mq_hctx->dispatch_busy &&
		  (q->nr_hw_queues == 1 || !is_sync)))
2856
		blk_mq_sched_insert_request(rq, false, true, true);
2857
	else
2858
		blk_mq_try_issue_directly(rq->mq_hctx, rq);
2859 2860
}

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
/**
 * blk_cloned_rq_check_limits - Helper function to check a cloned request
 *                              for the new queue limits
 * @q:  the queue
 * @rq: the request being checked
 *
 * Description:
 *    @rq may have been made based on weaker limitations of upper-level queues
 *    in request stacking drivers, and it may violate the limitation of @q.
 *    Since the block layer and the underlying device driver trust @rq
 *    after it is inserted to @q, it should be checked against @q before
 *    the insertion using this generic function.
 *
 *    Request stacking drivers like request-based dm may change the queue
 *    limits when retrying requests on other queues. Those requests need
 *    to be checked against the new queue limits again during dispatch.
 */
static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
				      struct request *rq)
{
	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));

	if (blk_rq_sectors(rq) > max_sectors) {
		/*
		 * SCSI device does not have a good way to return if
		 * Write Same/Zero is actually supported. If a device rejects
		 * a non-read/write command (discard, write same,etc.) the
		 * low-level device driver will set the relevant queue limit to
		 * 0 to prevent blk-lib from issuing more of the offending
		 * operations. Commands queued prior to the queue limit being
		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
		 * errors being propagated to upper layers.
		 */
		if (max_sectors == 0)
			return BLK_STS_NOTSUPP;

		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
			__func__, blk_rq_sectors(rq), max_sectors);
		return BLK_STS_IOERR;
	}

	/*
	 * The queue settings related to segment counting may differ from the
	 * original queue.
	 */
	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
	if (rq->nr_phys_segments > queue_max_segments(q)) {
		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
			__func__, rq->nr_phys_segments, queue_max_segments(q));
		return BLK_STS_IOERR;
	}

	return BLK_STS_OK;
}

/**
 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
 * @q:  the queue to submit the request
 * @rq: the request being queued
 */
blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
{
	blk_status_t ret;

	ret = blk_cloned_rq_check_limits(q, rq);
	if (ret != BLK_STS_OK)
		return ret;

	if (rq->rq_disk &&
	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
		return BLK_STS_IOERR;

	if (blk_crypto_insert_cloned_request(rq))
		return BLK_STS_IOERR;

	blk_account_io_start(rq);

	/*
	 * Since we have a scheduler attached on the top device,
	 * bypass a potential scheduler on the bottom device for
	 * insert.
	 */
	return blk_mq_request_issue_directly(rq, true);
}
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);

/**
 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
 * @rq: the clone request to be cleaned up
 *
 * Description:
 *     Free all bios in @rq for a cloned request.
 */
void blk_rq_unprep_clone(struct request *rq)
{
	struct bio *bio;

	while ((bio = rq->bio) != NULL) {
		rq->bio = bio->bi_next;

		bio_put(bio);
	}
}
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);

/**
 * blk_rq_prep_clone - Helper function to setup clone request
 * @rq: the request to be setup
 * @rq_src: original request to be cloned
 * @bs: bio_set that bios for clone are allocated from
 * @gfp_mask: memory allocation mask for bio
 * @bio_ctr: setup function to be called for each clone bio.
 *           Returns %0 for success, non %0 for failure.
 * @data: private data to be passed to @bio_ctr
 *
 * Description:
 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
 *     Also, pages which the original bios are pointing to are not copied
 *     and the cloned bios just point same pages.
 *     So cloned bios must be completed before original bios, which means
 *     the caller must complete @rq before @rq_src.
 */
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
		      struct bio_set *bs, gfp_t gfp_mask,
		      int (*bio_ctr)(struct bio *, struct bio *, void *),
		      void *data)
{
	struct bio *bio, *bio_src;

	if (!bs)
		bs = &fs_bio_set;

	__rq_for_each_bio(bio_src, rq_src) {
		bio = bio_clone_fast(bio_src, gfp_mask, bs);
		if (!bio)
			goto free_and_out;

		if (bio_ctr && bio_ctr(bio, bio_src, data))
			goto free_and_out;

		if (rq->bio) {
			rq->biotail->bi_next = bio;
			rq->biotail = bio;
		} else {
			rq->bio = rq->biotail = bio;
		}
		bio = NULL;
	}

	/* Copy attributes of the original request to the clone request. */
	rq->__sector = blk_rq_pos(rq_src);
	rq->__data_len = blk_rq_bytes(rq_src);
	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
		rq->special_vec = rq_src->special_vec;
	}
	rq->nr_phys_segments = rq_src->nr_phys_segments;
	rq->ioprio = rq_src->ioprio;

	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
		goto free_and_out;

	return 0;

free_and_out:
	if (bio)
		bio_put(bio);
	blk_rq_unprep_clone(rq);

	return -ENOMEM;
}
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
/*
 * Steal bios from a request and add them to a bio list.
 * The request must not have been partially completed before.
 */
void blk_steal_bios(struct bio_list *list, struct request *rq)
{
	if (rq->bio) {
		if (list->tail)
			list->tail->bi_next = rq->bio;
		else
			list->head = rq->bio;
		list->tail = rq->biotail;

		rq->bio = NULL;
		rq->biotail = NULL;
	}

	rq->__data_len = 0;
}
EXPORT_SYMBOL_GPL(blk_steal_bios);

3055 3056 3057 3058 3059 3060
static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

/* called before freeing request pool in @tags */
3061 3062
static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
				    struct blk_mq_tags *tags)
3063 3064 3065 3066
{
	struct page *page;
	unsigned long flags;

3067 3068 3069 3070
	/* There is no need to clear a driver tags own mapping */
	if (drv_tags == tags)
		return;

3071 3072 3073 3074 3075
	list_for_each_entry(page, &tags->page_list, lru) {
		unsigned long start = (unsigned long)page_address(page);
		unsigned long end = start + order_to_size(page->private);
		int i;

3076
		for (i = 0; i < drv_tags->nr_tags; i++) {
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
			struct request *rq = drv_tags->rqs[i];
			unsigned long rq_addr = (unsigned long)rq;

			if (rq_addr >= start && rq_addr < end) {
				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
				cmpxchg(&drv_tags->rqs[i], rq, NULL);
			}
		}
	}

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&drv_tags->lock, flags);
	spin_unlock_irqrestore(&drv_tags->lock, flags);
}

3097 3098
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
3099
{
3100
	struct blk_mq_tags *drv_tags;
3101
	struct page *page;
3102

3103 3104
	if (blk_mq_is_shared_tags(set->flags))
		drv_tags = set->shared_tags;
3105 3106
	else
		drv_tags = set->tags[hctx_idx];
3107

3108
	if (tags->static_rqs && set->ops->exit_request) {
3109
		int i;
3110

3111
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
3112 3113 3114
			struct request *rq = tags->static_rqs[i];

			if (!rq)
3115
				continue;
3116
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
3117
			tags->static_rqs[i] = NULL;
3118
		}
3119 3120
	}

3121
	blk_mq_clear_rq_mapping(drv_tags, tags);
3122

3123 3124
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
3125
		list_del_init(&page->lru);
3126 3127
		/*
		 * Remove kmemleak object previously allocated in
3128
		 * blk_mq_alloc_rqs().
3129 3130
		 */
		kmemleak_free(page_address(page));
3131 3132
		__free_pages(page, page->private);
	}
3133
}
3134

3135
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3136
{
3137
	kfree(tags->rqs);
3138
	tags->rqs = NULL;
J
Jens Axboe 已提交
3139 3140
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
3141

3142
	blk_mq_free_tags(tags);
3143 3144
}

3145 3146 3147
static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					       unsigned int hctx_idx,
					       unsigned int nr_tags,
3148
					       unsigned int reserved_tags)
3149
{
3150
	struct blk_mq_tags *tags;
3151
	int node;
3152

3153
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3154 3155 3156
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

3157 3158
	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3159 3160
	if (!tags)
		return NULL;
3161

3162
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3163
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3164
				 node);
3165
	if (!tags->rqs) {
3166
		blk_mq_free_tags(tags);
3167 3168
		return NULL;
	}
3169

3170 3171 3172
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
3173 3174
	if (!tags->static_rqs) {
		kfree(tags->rqs);
3175
		blk_mq_free_tags(tags);
J
Jens Axboe 已提交
3176 3177 3178
		return NULL;
	}

3179 3180 3181
	return tags;
}

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
3193
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3194 3195 3196
	return 0;
}

3197 3198 3199
static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
			    struct blk_mq_tags *tags,
			    unsigned int hctx_idx, unsigned int depth)
3200 3201 3202
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
3203 3204
	int node;

3205
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3206 3207
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
3208 3209 3210

	INIT_LIST_HEAD(&tags->page_list);

3211 3212 3213 3214
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
3215
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3216
				cache_line_size());
3217
	left = rq_size * depth;
3218

3219
	for (i = 0; i < depth; ) {
3220 3221 3222 3223 3224
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

3225
		while (this_order && left < order_to_size(this_order - 1))
3226 3227 3228
			this_order--;

		do {
3229
			page = alloc_pages_node(node,
3230
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3231
				this_order);
3232 3233 3234 3235 3236 3237 3238 3239 3240
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
3241
			goto fail;
3242 3243

		page->private = this_order;
3244
		list_add_tail(&page->lru, &tags->page_list);
3245 3246

		p = page_address(page);
3247 3248 3249 3250
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
3251
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3252
		entries_per_page = order_to_size(this_order) / rq_size;
3253
		to_do = min(entries_per_page, depth - i);
3254 3255
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
3256 3257 3258
			struct request *rq = p;

			tags->static_rqs[i] = rq;
3259 3260 3261
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
3262 3263
			}

3264 3265 3266 3267
			p += rq_size;
			i++;
		}
	}
3268
	return 0;
3269

3270
fail:
3271 3272
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
3273 3274
}

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
struct rq_iter_data {
	struct blk_mq_hw_ctx *hctx;
	bool has_rq;
};

static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
{
	struct rq_iter_data *iter_data = data;

	if (rq->mq_hctx != iter_data->hctx)
		return true;
	iter_data->has_rq = true;
	return false;
}

static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->sched_tags ?
			hctx->sched_tags : hctx->tags;
	struct rq_iter_data data = {
		.hctx	= hctx,
	};

	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
	return data.has_rq;
}

static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
		struct blk_mq_hw_ctx *hctx)
{
	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
		return false;
	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
		return false;
	return true;
}

static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
		return 0;

	/*
	 * Prevent new request from being allocated on the current hctx.
	 *
	 * The smp_mb__after_atomic() Pairs with the implied barrier in
	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
	 * seen once we return from the tag allocator.
	 */
	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	smp_mb__after_atomic();

	/*
	 * Try to grab a reference to the queue and wait for any outstanding
	 * requests.  If we could not grab a reference the queue has been
	 * frozen and there are no requests.
	 */
	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
		while (blk_mq_hctx_has_requests(hctx))
			msleep(5);
		percpu_ref_put(&hctx->queue->q_usage_counter);
	}

	return 0;
}

static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (cpumask_test_cpu(cpu, hctx->cpumask))
		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	return 0;
}

J
Jens Axboe 已提交
3355 3356 3357 3358 3359
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
3360
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3361
{
3362
	struct blk_mq_hw_ctx *hctx;
3363 3364
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
3365
	enum hctx_type type;
3366

3367
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3368 3369 3370
	if (!cpumask_test_cpu(cpu, hctx->cpumask))
		return 0;

J
Jens Axboe 已提交
3371
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
3372
	type = hctx->type;
3373 3374

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
3375 3376
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
3377 3378 3379 3380 3381
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
3382
		return 0;
3383

J
Jens Axboe 已提交
3384 3385 3386
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
3387 3388

	blk_mq_run_hw_queue(hctx, true);
3389
	return 0;
3390 3391
}

3392
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3393
{
3394 3395 3396
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
						    &hctx->cpuhp_online);
3397 3398
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
3399 3400
}

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/*
 * Before freeing hw queue, clearing the flush request reference in
 * tags->rqs[] for avoiding potential UAF.
 */
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
		unsigned int queue_depth, struct request *flush_rq)
{
	int i;
	unsigned long flags;

	/* The hw queue may not be mapped yet */
	if (!tags)
		return;

	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);

	for (i = 0; i < queue_depth; i++)
		cmpxchg(&tags->rqs[i], flush_rq, NULL);

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&tags->lock, flags);
	spin_unlock_irqrestore(&tags->lock, flags);
}

3430
/* hctx->ctxs will be freed in queue's release handler */
3431 3432 3433 3434
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
3435 3436
	struct request *flush_rq = hctx->fq->flush_rq;

3437 3438
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
3439

3440 3441
	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
			set->queue_depth, flush_rq);
3442
	if (set->ops->exit_request)
3443
		set->ops->exit_request(set, flush_rq, hctx_idx);
3444

3445 3446 3447
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

3448
	blk_mq_remove_cpuhp(hctx);
3449 3450 3451 3452

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
3453 3454
}

M
Ming Lei 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
3464
		blk_mq_debugfs_unregister_hctx(hctx);
3465
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
3466 3467 3468
	}
}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

3483 3484 3485
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3486
{
3487 3488
	hctx->queue_num = hctx_idx;

3489 3490 3491
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
				&hctx->cpuhp_online);
3492 3493 3494 3495 3496 3497 3498
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
3499

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
3528
	if (node == NUMA_NO_NODE)
3529 3530
		node = set->numa_node;
	hctx->numa_node = node;
3531

3532
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3533 3534 3535
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
3536
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3537

3538 3539
	INIT_LIST_HEAD(&hctx->hctx_list);

3540
	/*
3541 3542
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
3543
	 */
3544
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3545
			gfp, node);
3546
	if (!hctx->ctxs)
3547
		goto free_cpumask;
3548

3549
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3550
				gfp, node, false, false))
3551 3552
		goto free_ctxs;
	hctx->nr_ctx = 0;
3553

3554
	spin_lock_init(&hctx->dispatch_wait_lock);
3555 3556 3557
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

3558
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3559
	if (!hctx->fq)
3560
		goto free_bitmap;
3561

3562
	if (hctx->flags & BLK_MQ_F_BLOCKING)
3563
		init_srcu_struct(hctx->srcu);
3564
	blk_mq_hctx_kobj_init(hctx);
3565

3566
	return hctx;
3567

3568
 free_bitmap:
3569
	sbitmap_free(&hctx->ctx_map);
3570 3571
 free_ctxs:
	kfree(hctx->ctxs);
3572 3573 3574 3575 3576 3577
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
3578
}
3579 3580 3581 3582

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
3583 3584
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
3585 3586 3587 3588

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
3589
		int k;
3590 3591 3592

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
3593 3594 3595
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

3596 3597 3598 3599 3600 3601
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
3602 3603 3604
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3605
				hctx->numa_node = cpu_to_node(i);
J
Jens Axboe 已提交
3606
		}
3607 3608 3609
	}
}

3610 3611 3612
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
					     unsigned int hctx_idx,
					     unsigned int depth)
3613
{
3614 3615
	struct blk_mq_tags *tags;
	int ret;
3616

3617
	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3618 3619
	if (!tags)
		return NULL;
3620

3621 3622
	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
	if (ret) {
3623
		blk_mq_free_rq_map(tags);
3624 3625
		return NULL;
	}
3626

3627
	return tags;
3628 3629
}

3630 3631
static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
				       int hctx_idx)
3632
{
3633 3634
	if (blk_mq_is_shared_tags(set->flags)) {
		set->tags[hctx_idx] = set->shared_tags;
3635

3636
		return true;
3637
	}
3638

3639 3640 3641 3642
	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
						       set->queue_depth);

	return set->tags[hctx_idx];
3643 3644
}

3645 3646 3647
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
			     struct blk_mq_tags *tags,
			     unsigned int hctx_idx)
3648
{
3649 3650
	if (tags) {
		blk_mq_free_rqs(set, tags, hctx_idx);
3651
		blk_mq_free_rq_map(tags);
3652
	}
3653 3654
}

3655 3656 3657
static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
				      unsigned int hctx_idx)
{
3658
	if (!blk_mq_is_shared_tags(set->flags))
3659 3660 3661
		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);

	set->tags[hctx_idx] = NULL;
3662 3663
}

3664
static void blk_mq_map_swqueue(struct request_queue *q)
3665
{
J
Jens Axboe 已提交
3666
	unsigned int i, j, hctx_idx;
3667 3668
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
3669
	struct blk_mq_tag_set *set = q->tag_set;
3670 3671

	queue_for_each_hw_ctx(q, hctx, i) {
3672
		cpumask_clear(hctx->cpumask);
3673
		hctx->nr_ctx = 0;
3674
		hctx->dispatch_from = NULL;
3675 3676 3677
	}

	/*
3678
	 * Map software to hardware queues.
3679 3680
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
3681
	 */
3682
	for_each_possible_cpu(i) {
3683

3684
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
3685
		for (j = 0; j < set->nr_maps; j++) {
3686 3687 3688
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
3689
				continue;
3690
			}
3691 3692 3693
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
3694
			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3695 3696 3697 3698 3699 3700 3701 3702
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
3703

J
Jens Axboe 已提交
3704
			hctx = blk_mq_map_queue_type(q, j, i);
3705
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
3725 3726 3727 3728

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
3729
	}
3730 3731

	queue_for_each_hw_ctx(q, hctx, i) {
3732 3733 3734 3735 3736 3737 3738 3739 3740
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
3741 3742
			if (i)
				__blk_mq_free_map_and_rqs(set, i);
3743 3744 3745 3746

			hctx->tags = NULL;
			continue;
		}
3747

M
Ming Lei 已提交
3748 3749 3750
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

3751 3752 3753 3754 3755
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
3756
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3757

3758 3759 3760
		/*
		 * Initialize batch roundrobin counts
		 */
3761
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3762 3763
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
3764 3765
}

3766 3767 3768 3769
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
3770
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3771 3772 3773 3774
{
	struct blk_mq_hw_ctx *hctx;
	int i;

3775
	queue_for_each_hw_ctx(q, hctx, i) {
3776
		if (shared) {
3777
			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3778 3779
		} else {
			blk_mq_tag_idle(hctx);
3780
			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3781
		}
3782 3783 3784
	}
}

3785 3786
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
					 bool shared)
3787 3788
{
	struct request_queue *q;
3789

3790 3791
	lockdep_assert_held(&set->tag_list_lock);

3792 3793
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
3794
		queue_set_hctx_shared(q, shared);
3795 3796 3797 3798 3799 3800 3801 3802 3803
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
3804
	list_del(&q->tag_set_list);
3805 3806
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
3807
		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3808
		/* update existing queue */
3809
		blk_mq_update_tag_set_shared(set, false);
3810
	}
3811
	mutex_unlock(&set->tag_list_lock);
3812
	INIT_LIST_HEAD(&q->tag_set_list);
3813 3814 3815 3816 3817 3818
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
3819

3820 3821 3822 3823
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
3824 3825
	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3826
		/* update existing queue */
3827
		blk_mq_update_tag_set_shared(set, true);
3828
	}
3829
	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3830
		queue_set_hctx_shared(q, true);
3831
	list_add_tail(&q->tag_set_list, &set->tag_list);
3832

3833 3834 3835
	mutex_unlock(&set->tag_list_lock);
}

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

3864 3865 3866 3867 3868 3869 3870 3871
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
3872 3873
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
3874

3875 3876 3877 3878 3879 3880
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
3881
		kobject_put(&hctx->kobj);
3882
	}
3883 3884 3885

	kfree(q->queue_hw_ctx);

3886 3887 3888 3889 3890
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
3891 3892
}

3893
static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3894
		void *queuedata)
3895
{
3896 3897
	struct request_queue *q;
	int ret;
3898

3899 3900
	q = blk_alloc_queue(set->numa_node);
	if (!q)
3901
		return ERR_PTR(-ENOMEM);
3902 3903 3904 3905 3906 3907
	q->queuedata = queuedata;
	ret = blk_mq_init_allocated_queue(set, q);
	if (ret) {
		blk_cleanup_queue(q);
		return ERR_PTR(ret);
	}
3908 3909
	return q;
}
3910 3911 3912 3913 3914

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
3915 3916
EXPORT_SYMBOL(blk_mq_init_queue);

3917 3918
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
		struct lock_class_key *lkclass)
3919 3920
{
	struct request_queue *q;
3921
	struct gendisk *disk;
3922

3923 3924 3925
	q = blk_mq_init_queue_data(set, queuedata);
	if (IS_ERR(q))
		return ERR_CAST(q);
3926

3927
	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3928 3929 3930
	if (!disk) {
		blk_cleanup_queue(q);
		return ERR_PTR(-ENOMEM);
3931
	}
3932
	return disk;
3933
}
3934
EXPORT_SYMBOL(__blk_mq_alloc_disk);
3935

3936 3937 3938 3939
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
3940
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3941

3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
3956
	if (!hctx)
3957
		goto fail;
3958

3959 3960
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
3961 3962

	return hctx;
3963 3964 3965 3966 3967

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
3968 3969
}

K
Keith Busch 已提交
3970 3971
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
3972
{
3973
	int i, j, end;
K
Keith Busch 已提交
3974
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3975

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

3992 3993
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
3994
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
3995
		int node;
3996
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
3997

3998
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3999 4000 4001 4002 4003 4004 4005
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
4006

4007 4008
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
4009
			if (hctxs[i])
4010 4011 4012 4013 4014 4015 4016 4017 4018
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
4019
		}
4020
	}
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
4033

4034
	for (; j < end; j++) {
K
Keith Busch 已提交
4035 4036 4037 4038 4039 4040 4041
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
4042
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
4043 4044
}

4045 4046
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
		struct request_queue *q)
K
Keith Busch 已提交
4047
{
M
Ming Lei 已提交
4048 4049 4050
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

4051
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4052 4053
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
4054 4055 4056
	if (!q->poll_cb)
		goto err_exit;

4057
	if (blk_mq_alloc_ctxs(q))
4058
		goto err_poll;
K
Keith Busch 已提交
4059

4060 4061 4062
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

4063 4064 4065
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
4066 4067 4068
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
4069

4070
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4071
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4072

J
Jens Axboe 已提交
4073
	q->tag_set = set;
4074

4075
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4076 4077
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
4078
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4079

4080
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4081 4082 4083
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

4084 4085
	q->nr_requests = set->queue_depth;

4086 4087 4088
	/*
	 * Default to classic polling
	 */
4089
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4090

4091
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4092
	blk_mq_add_queue_tag_set(set, q);
4093
	blk_mq_map_swqueue(q);
4094
	return 0;
4095

4096
err_hctxs:
K
Keith Busch 已提交
4097
	kfree(q->queue_hw_ctx);
4098
	q->nr_hw_queues = 0;
4099
	blk_mq_sysfs_deinit(q);
4100 4101 4102
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
4103 4104
err_exit:
	q->mq_ops = NULL;
4105
	return -ENOMEM;
4106
}
4107
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4108

4109 4110
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
4111
{
4112
	struct blk_mq_tag_set *set = q->tag_set;
4113

4114
	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
M
Ming Lei 已提交
4115
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4116 4117
	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
	blk_mq_del_queue_tag_set(q);
4118 4119
}

4120 4121 4122 4123
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

4124 4125
	if (blk_mq_is_shared_tags(set->flags)) {
		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4126 4127
						BLK_MQ_NO_HCTX_IDX,
						set->queue_depth);
4128
		if (!set->shared_tags)
4129 4130 4131
			return -ENOMEM;
	}

4132
	for (i = 0; i < set->nr_hw_queues; i++) {
4133
		if (!__blk_mq_alloc_map_and_rqs(set, i))
4134
			goto out_unwind;
4135 4136
		cond_resched();
	}
4137 4138 4139 4140 4141

	return 0;

out_unwind:
	while (--i >= 0)
4142 4143
		__blk_mq_free_map_and_rqs(set, i);

4144 4145
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
4146
					BLK_MQ_NO_HCTX_IDX);
4147
	}
4148 4149 4150 4151 4152 4153 4154 4155 4156

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
4157
static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

4187 4188
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
4189 4190 4191 4192 4193 4194 4195 4196
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

4197
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
4198 4199
		int i;

4200 4201 4202 4203 4204 4205 4206
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
4207
		 * 		set->map[x].mq_map[cpu] = queue;
4208 4209 4210 4211 4212 4213
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
4214 4215
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
4216

4217
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
4218 4219
	} else {
		BUG_ON(set->nr_maps > 1);
4220
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
4221
	}
4222 4223
}

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

4247 4248 4249 4250 4251 4252
static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
				int new_nr_hw_queues)
{
	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
}

4253 4254 4255
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
4256
 * requested depth down, if it's too large. In that case, the set
4257 4258
 * value will be stored in set->queue_depth.
 */
4259 4260
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
4261
	int i, ret;
4262

B
Bart Van Assche 已提交
4263 4264
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

4265 4266
	if (!set->nr_hw_queues)
		return -EINVAL;
4267
	if (!set->queue_depth)
4268 4269 4270 4271
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
4272
	if (!set->ops->queue_rq)
4273 4274
		return -EINVAL;

4275 4276 4277
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

4278 4279 4280 4281 4282
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
4283

J
Jens Axboe 已提交
4284 4285 4286 4287 4288
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

4289 4290 4291 4292 4293 4294 4295
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
4296
		set->nr_maps = 1;
4297 4298
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
4299
	/*
4300 4301
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
4302
	 */
4303
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
4304
		set->nr_hw_queues = nr_cpu_ids;
4305

4306
	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4307
		return -ENOMEM;
4308

4309
	ret = -ENOMEM;
J
Jens Axboe 已提交
4310 4311
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4312
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
4313 4314 4315
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
4316
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
4317
	}
4318

4319
	ret = blk_mq_update_queue_map(set);
4320 4321 4322
	if (ret)
		goto out_free_mq_map;

4323
	ret = blk_mq_alloc_set_map_and_rqs(set);
4324
	if (ret)
4325
		goto out_free_mq_map;
4326

4327 4328 4329
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

4330
	return 0;
4331 4332

out_free_mq_map:
J
Jens Axboe 已提交
4333 4334 4335 4336
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
4337 4338
	kfree(set->tags);
	set->tags = NULL;
4339
	return ret;
4340 4341 4342
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
/* allocate and initialize a tagset for a simple single-queue device */
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
		const struct blk_mq_ops *ops, unsigned int queue_depth,
		unsigned int set_flags)
{
	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
	set->nr_maps = 1;
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;
	return blk_mq_alloc_tag_set(set);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);

4359 4360
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
4361
	int i, j;
4362

4363
	for (i = 0; i < set->nr_hw_queues; i++)
4364
		__blk_mq_free_map_and_rqs(set, i);
4365

4366 4367
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
4368 4369
					BLK_MQ_NO_HCTX_IDX);
	}
4370

J
Jens Axboe 已提交
4371 4372 4373 4374
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
4375

M
Ming Lei 已提交
4376
	kfree(set->tags);
4377
	set->tags = NULL;
4378 4379 4380
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

4381 4382 4383 4384 4385 4386
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

4387
	if (!set)
4388 4389
		return -EINVAL;

4390 4391 4392
	if (q->nr_requests == nr)
		return 0;

4393
	blk_mq_freeze_queue(q);
4394
	blk_mq_quiesce_queue(q);
4395

4396 4397
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
4398 4399
		if (!hctx->tags)
			continue;
4400 4401 4402 4403
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
4404
		if (hctx->sched_tags) {
4405
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4406 4407 4408 4409
						      nr, true);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
						      false);
4410
		}
4411 4412
		if (ret)
			break;
4413 4414
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
4415
	}
4416
	if (!ret) {
4417
		q->nr_requests = nr;
4418
		if (blk_mq_is_shared_tags(set->flags)) {
4419
			if (q->elevator)
4420
				blk_mq_tag_update_sched_shared_tags(q);
4421
			else
4422
				blk_mq_tag_resize_shared_tags(set, nr);
4423
		}
4424
	}
4425

4426
	blk_mq_unquiesce_queue(q);
4427 4428
	blk_mq_unfreeze_queue(q);

4429 4430 4431
	return ret;
}

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

4502 4503
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
4504 4505
{
	struct request_queue *q;
4506
	LIST_HEAD(head);
4507
	int prev_nr_hw_queues;
K
Keith Busch 已提交
4508

4509 4510
	lockdep_assert_held(&set->tag_list_lock);

4511
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
4512
		nr_hw_queues = nr_cpu_ids;
4513 4514 4515
	if (nr_hw_queues < 1)
		return;
	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
K
Keith Busch 已提交
4516 4517 4518 4519
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
4520 4521 4522 4523 4524 4525 4526 4527
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
4528

4529 4530 4531 4532 4533
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

4534
	prev_nr_hw_queues = set->nr_hw_queues;
4535 4536 4537 4538
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
4539
	set->nr_hw_queues = nr_hw_queues;
4540
fallback:
4541
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
4542 4543
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
4544
		if (q->nr_hw_queues != set->nr_hw_queues) {
4545 4546
			int i = prev_nr_hw_queues;

4547 4548
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
4549 4550 4551
			for (; i < set->nr_hw_queues; i++)
				__blk_mq_free_map_and_rqs(set, i);

4552
			set->nr_hw_queues = prev_nr_hw_queues;
4553
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4554 4555
			goto fallback;
		}
4556 4557 4558
		blk_mq_map_swqueue(q);
	}

4559
reregister:
4560 4561 4562
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
4563 4564
	}

4565 4566 4567 4568
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
4569 4570 4571
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
4572 4573 4574 4575 4576 4577 4578

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
4579 4580
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

4581 4582 4583 4584
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4585
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
4607
	int bucket;
4608

4609 4610 4611 4612
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
4613 4614
}

4615 4616 4617 4618
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
4619
	int bucket;
4620 4621 4622 4623 4624

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
4625
	if (!blk_poll_stats_enable(q))
4626 4627 4628 4629 4630 4631 4632 4633
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
4634 4635
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
4636
	 */
4637 4638 4639 4640 4641 4642
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
4643 4644 4645 4646

	return ret;
}

4647
static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4648
{
4649 4650
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
	struct request *rq = blk_qc_to_rq(hctx, qc);
4651 4652
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
4653
	unsigned int nsecs;
4654 4655
	ktime_t kt;

4656 4657 4658 4659 4660
	/*
	 * If a request has completed on queue that uses an I/O scheduler, we
	 * won't get back a request from blk_qc_to_rq.
	 */
	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4661 4662 4663
		return false;

	/*
4664
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4665 4666 4667 4668
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
4669
	if (q->poll_nsec > 0)
4670 4671
		nsecs = q->poll_nsec;
	else
4672
		nsecs = blk_mq_poll_nsecs(q, rq);
4673 4674

	if (!nsecs)
4675 4676
		return false;

J
Jens Axboe 已提交
4677
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4678 4679 4680 4681 4682

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
4683
	kt = nsecs;
4684 4685

	mode = HRTIMER_MODE_REL;
4686
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4687 4688 4689
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
4690
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4691 4692
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
4693
		hrtimer_sleeper_start_expires(&hs, mode);
4694 4695 4696 4697 4698 4699 4700 4701
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
4702

4703
	/*
4704 4705 4706 4707 4708
	 * If we sleep, have the caller restart the poll loop to reset the
	 * state.  Like for the other success return cases, the caller is
	 * responsible for checking if the IO completed.  If the IO isn't
	 * complete, we'll get called again and will go straight to the busy
	 * poll loop.
4709 4710 4711 4712
	 */
	return true;
}

4713
static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4714
			       struct io_comp_batch *iob, unsigned int flags)
J
Jens Axboe 已提交
4715
{
4716 4717 4718
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
	long state = get_current_state();
	int ret;
J
Jens Axboe 已提交
4719

4720
	do {
4721
		ret = q->mq_ops->poll(hctx, iob);
J
Jens Axboe 已提交
4722
		if (ret > 0) {
4723
			__set_current_state(TASK_RUNNING);
4724
			return ret;
J
Jens Axboe 已提交
4725 4726 4727
		}

		if (signal_pending_state(state, current))
4728
			__set_current_state(TASK_RUNNING);
4729
		if (task_is_running(current))
4730
			return 1;
4731

4732
		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
J
Jens Axboe 已提交
4733 4734
			break;
		cpu_relax();
4735
	} while (!need_resched());
J
Jens Axboe 已提交
4736

4737
	__set_current_state(TASK_RUNNING);
4738
	return 0;
J
Jens Axboe 已提交
4739
}
4740

4741 4742
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
		unsigned int flags)
4743
{
4744 4745
	if (!(flags & BLK_POLL_NOSLEEP) &&
	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4746
		if (blk_mq_poll_hybrid(q, cookie))
4747
			return 1;
4748
	}
4749
	return blk_mq_poll_classic(q, cookie, iob, flags);
J
Jens Axboe 已提交
4750 4751
}

J
Jens Axboe 已提交
4752 4753 4754 4755 4756 4757
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
void blk_mq_cancel_work_sync(struct request_queue *q)
{
	if (queue_is_mq(q)) {
		struct blk_mq_hw_ctx *hctx;
		int i;

		cancel_delayed_work_sync(&q->requeue_work);

		queue_for_each_hw_ctx(q, hctx, i)
			cancel_delayed_work_sync(&hctx->run_work);
	}
}

4771 4772
static int __init blk_mq_init(void)
{
4773 4774 4775
	int i;

	for_each_possible_cpu(i)
4776
		init_llist_head(&per_cpu(blk_cpu_done, i));
4777 4778 4779 4780 4781
	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);

	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
				  "block/softirq:dead", NULL,
				  blk_softirq_cpu_dead);
4782 4783
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
4784 4785 4786
	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
				blk_mq_hctx_notify_online,
				blk_mq_hctx_notify_offline);
4787 4788 4789
	return 0;
}
subsys_initcall(blk_mq_init);