blk-mq.c 91.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/kmemleak.h>
14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
24
#include <linux/sched/topology.h>
25
#include <linux/sched/signal.h>
26
#include <linux/delay.h>
27
#include <linux/crash_dump.h>
28
#include <linux/prefetch.h>
29
#include <linux/blk-crypto.h>
30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
34
#include <linux/t10-pi.h>
35 36
#include "blk.h"
#include "blk-mq.h"
37
#include "blk-mq-debugfs.h"
38
#include "blk-mq-tag.h"
39
#include "blk-pm.h"
40
#include "blk-stat.h"
41
#include "blk-mq-sched.h"
42
#include "blk-rq-qos.h"
43

44 45 46
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

47 48
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
49
	int ddir, sectors, bucket;
50

J
Jens Axboe 已提交
51
	ddir = rq_data_dir(rq);
52
	sectors = blk_rq_stats_sectors(rq);
53

54
	bucket = ddir + 2 * ilog2(sectors);
55 56 57 58 59 60 61 62 63

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

64
/*
65 66
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
67
 */
68
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69
{
70 71
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
72
			blk_mq_sched_has_work(hctx);
73 74
}

75 76 77 78 79 80
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
81 82 83 84
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
85 86 87 88 89
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
90 91 92
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
93 94
}

95 96
struct mq_inflight {
	struct hd_struct *part;
97
	unsigned int inflight[2];
98 99
};

100
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
101 102 103 104 105
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

106
	if (rq->part == mi->part)
107
		mi->inflight[rq_data_dir(rq)]++;
108 109

	return true;
110 111
}

112
unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113
{
114
	struct mq_inflight mi = { .part = part };
115 116

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117

118
	return mi.inflight[0] + mi.inflight[1];
119 120 121 122 123
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
124
	struct mq_inflight mi = { .part = part };
125

126
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
127 128
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
129 130
}

131
void blk_freeze_queue_start(struct request_queue *q)
132
{
133 134
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
135
		percpu_ref_kill(&q->q_usage_counter);
136
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
137
		if (queue_is_mq(q))
138
			blk_mq_run_hw_queues(q, false);
139 140
	} else {
		mutex_unlock(&q->mq_freeze_lock);
141
	}
142
}
143
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
144

145
void blk_mq_freeze_queue_wait(struct request_queue *q)
146
{
147
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
148
}
149
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
150

151 152 153 154 155 156 157 158
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
159

160 161 162 163
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
164
void blk_freeze_queue(struct request_queue *q)
165
{
166 167 168 169 170 171 172
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
173
	blk_freeze_queue_start(q);
174 175
	blk_mq_freeze_queue_wait(q);
}
176 177 178 179 180 181 182 183 184

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
185
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
186

187
void blk_mq_unfreeze_queue(struct request_queue *q)
188
{
189 190 191 192
	mutex_lock(&q->mq_freeze_lock);
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
193
		percpu_ref_resurrect(&q->q_usage_counter);
194
		wake_up_all(&q->mq_freeze_wq);
195
	}
196
	mutex_unlock(&q->mq_freeze_lock);
197
}
198
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199

200 201 202 203 204 205
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
206
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
207 208 209
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

210
/**
211
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
212 213 214
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
215 216 217
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
218 219 220 221 222 223 224
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

225
	blk_mq_quiesce_queue_nowait(q);
226

227 228
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
229
			synchronize_srcu(hctx->srcu);
230 231 232 233 234 235 236 237
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

238 239 240 241 242 243 244 245 246
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
247
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
248

249 250
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
251 252 253
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

254 255 256 257 258 259 260 261 262 263
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

264
/*
265 266
 * Only need start/end time stamping if we have iostat or
 * blk stats enabled, or using an IO scheduler.
267 268 269
 */
static inline bool blk_mq_need_time_stamp(struct request *rq)
{
270
	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
271 272
}

273
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274
		unsigned int tag, unsigned int op, u64 alloc_time_ns)
275
{
276 277
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
278
	req_flags_t rq_flags = 0;
279

280 281 282 283
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
284
		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
285
			rq_flags = RQF_MQ_INFLIGHT;
286 287 288 289 290 291 292
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

293
	/* csd/requeue_work/fifo_time is initialized before use */
294 295
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
296
	rq->mq_hctx = data->hctx;
297
	rq->rq_flags = rq_flags;
298
	rq->cmd_flags = op;
299 300
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
301
	if (blk_queue_io_stat(data->q))
302
		rq->rq_flags |= RQF_IO_STAT;
303
	INIT_LIST_HEAD(&rq->queuelist);
304 305 306 307
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
308 309 310
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
311 312 313 314
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
315
	rq->io_start_time_ns = 0;
316
	rq->stats_sectors = 0;
317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
321
	blk_crypto_rq_set_defaults(rq);
322
	/* tag was already set */
323
	WRITE_ONCE(rq->deadline, 0);
324

325 326
	rq->timeout = 0;

327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;

330
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
331
	refcount_set(&rq->ref, 1);
332
	return rq;
333 334
}

335
static struct request *blk_mq_get_request(struct request_queue *q,
336 337
					  struct bio *bio,
					  struct blk_mq_alloc_data *data)
338 339 340
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
341
	unsigned int tag;
342
	bool clear_ctx_on_error = false;
343
	u64 alloc_time_ns = 0;
344

345 346 347 348
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

349
	data->q = q;
350 351
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
352
		clear_ctx_on_error = true;
353
	}
354
	if (likely(!data->hctx))
355
		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
356
						data->ctx);
357
	if (data->cmd_flags & REQ_NOWAIT)
358
		data->flags |= BLK_MQ_REQ_NOWAIT;
359 360 361 362 363 364

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
365 366
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
367
		 */
368 369
		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.limit_depth &&
370
		    !(data->flags & BLK_MQ_REQ_RESERVED))
371
			e->type->ops.limit_depth(data->cmd_flags, data);
372 373
	} else {
		blk_mq_tag_busy(data->hctx);
374 375
	}

376 377
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
378
		if (clear_ctx_on_error)
379
			data->ctx = NULL;
380
		return NULL;
381 382
	}

383
	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
384
	if (!op_is_flush(data->cmd_flags)) {
385
		rq->elv.icq = NULL;
386
		if (e && e->type->ops.prepare_request) {
D
Damien Le Moal 已提交
387 388
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);
389

390
			e->type->ops.prepare_request(rq);
391
			rq->rq_flags |= RQF_ELVPRIV;
392
		}
393 394 395
	}
	data->hctx->queued++;
	return rq;
396 397
}

398
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
399
		blk_mq_req_flags_t flags)
400
{
401
	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
402
	struct request *rq;
403
	int ret;
404

405
	ret = blk_queue_enter(q, flags);
406 407
	if (ret)
		return ERR_PTR(ret);
408

409
	rq = blk_mq_get_request(q, NULL, &alloc_data);
410
	if (!rq)
411
		goto out_queue_exit;
412 413 414
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
415
	return rq;
416 417 418
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
419
}
420
EXPORT_SYMBOL(blk_mq_alloc_request);
421

422
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
423
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
424
{
425
	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
M
Ming Lin 已提交
426
	struct request *rq;
427
	unsigned int cpu;
M
Ming Lin 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

442
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
443 444 445
	if (ret)
		return ERR_PTR(ret);

446 447 448 449
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
450
	ret = -EXDEV;
451
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
452 453
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx))
		goto out_queue_exit;
454
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
455
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
456

457
	ret = -EWOULDBLOCK;
458
	rq = blk_mq_get_request(q, NULL, &alloc_data);
459
	if (!rq)
460
		goto out_queue_exit;
461
	return rq;
462 463 464
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
465 466 467
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
468 469 470 471
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
472
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
473 474
	const int sched_tag = rq->internal_tag;

475
	blk_crypto_free_request(rq);
476
	blk_pm_mark_last_busy(rq);
477
	rq->mq_hctx = NULL;
K
Keith Busch 已提交
478
	if (rq->tag != -1)
479
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
K
Keith Busch 已提交
480
	if (sched_tag != -1)
481
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
482 483 484 485
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

486
void blk_mq_free_request(struct request *rq)
487 488
{
	struct request_queue *q = rq->q;
489 490
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
491
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
492

493
	if (rq->rq_flags & RQF_ELVPRIV) {
494 495
		if (e && e->type->ops.finish_request)
			e->type->ops.finish_request(rq);
496 497 498 499 500
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
501

502
	ctx->rq_completed[rq_is_sync(rq)]++;
503
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
504
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
505

506 507 508
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

509
	rq_qos_done(q, rq);
510

K
Keith Busch 已提交
511 512 513
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
514
}
J
Jens Axboe 已提交
515
EXPORT_SYMBOL_GPL(blk_mq_free_request);
516

517
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
518
{
519 520 521 522
	u64 now = 0;

	if (blk_mq_need_time_stamp(rq))
		now = ktime_get_ns();
523

524 525
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
526
		blk_stat_add(rq, now);
527 528
	}

529 530 531
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq, now);

532
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
533

C
Christoph Hellwig 已提交
534
	if (rq->end_io) {
535
		rq_qos_done(rq->q, rq);
536
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
537
	} else {
538
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
539
	}
540
}
541
EXPORT_SYMBOL(__blk_mq_end_request);
542

543
void blk_mq_end_request(struct request *rq, blk_status_t error)
544 545 546
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
547
	__blk_mq_end_request(rq, error);
548
}
549
EXPORT_SYMBOL(blk_mq_end_request);
550

551
static void __blk_mq_complete_request_remote(void *data)
552
{
553
	struct request *rq = data;
554
	struct request_queue *q = rq->q;
555

556
	q->mq_ops->complete(rq);
557 558
}

559 560 561 562 563 564 565 566 567 568 569
/**
 * blk_mq_force_complete_rq() - Force complete the request, bypassing any error
 * 				injection that could drop the completion.
 * @rq: Request to be force completed
 *
 * Drivers should use blk_mq_complete_request() to complete requests in their
 * normal IO path. For timeout error recovery, drivers may call this forced
 * completion routine after they've reclaimed timed out requests to bypass
 * potentially subsequent fake timeouts.
 */
void blk_mq_force_complete_rq(struct request *rq)
570 571
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
572
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
573
	bool shared = false;
574 575
	int cpu;

576
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
577 578 579 580 581 582 583 584 585
	/*
	 * Most of single queue controllers, there is only one irq vector
	 * for handling IO completion, and the only irq's affinity is set
	 * as all possible CPUs. On most of ARCHs, this affinity means the
	 * irq is handled on one specific CPU.
	 *
	 * So complete IO reqeust in softirq context in case of single queue
	 * for not degrading IO performance by irqsoff latency.
	 */
586
	if (q->nr_hw_queues == 1) {
587 588 589 590
		__blk_complete_request(rq);
		return;
	}

591 592 593 594 595 596
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
	if ((rq->cmd_flags & REQ_HIPRI) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
597
		q->mq_ops->complete(rq);
598 599
		return;
	}
600 601

	cpu = get_cpu();
602
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
C
Christoph Hellwig 已提交
603 604 605
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
606
		rq->csd.func = __blk_mq_complete_request_remote;
607 608
		rq->csd.info = rq;
		rq->csd.flags = 0;
609
		smp_call_function_single_async(ctx->cpu, &rq->csd);
610
	} else {
611
		q->mq_ops->complete(rq);
612
	}
613 614
	put_cpu();
}
615
EXPORT_SYMBOL_GPL(blk_mq_force_complete_rq);
616

617
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
618
	__releases(hctx->srcu)
619 620 621 622
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
623
		srcu_read_unlock(hctx->srcu, srcu_idx);
624 625 626
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
627
	__acquires(hctx->srcu)
628
{
629 630 631
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
632
		rcu_read_lock();
633
	} else
634
		*srcu_idx = srcu_read_lock(hctx->srcu);
635 636
}

637 638 639 640 641 642 643 644
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
645
bool blk_mq_complete_request(struct request *rq)
646
{
K
Keith Busch 已提交
647
	if (unlikely(blk_should_fake_timeout(rq->q)))
648
		return false;
649
	blk_mq_force_complete_rq(rq);
650
	return true;
651 652
}
EXPORT_SYMBOL(blk_mq_complete_request);
653

654 655 656 657 658 659 660 661
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
662
void blk_mq_start_request(struct request *rq)
663 664 665 666 667
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

668
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
669
		rq->io_start_time_ns = ktime_get_ns();
670
		rq->stats_sectors = blk_rq_sectors(rq);
671
		rq->rq_flags |= RQF_STATS;
672
		rq_qos_issue(q, rq);
673 674
	}

675
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
676

677
	blk_add_timer(rq);
K
Keith Busch 已提交
678
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
679

680 681 682 683
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
684
}
685
EXPORT_SYMBOL(blk_mq_start_request);
686

687
static void __blk_mq_requeue_request(struct request *rq)
688 689 690
{
	struct request_queue *q = rq->q;

691 692
	blk_mq_put_driver_tag(rq);

693
	trace_block_rq_requeue(q, rq);
694
	rq_qos_requeue(q, rq);
695

K
Keith Busch 已提交
696 697
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
698
		rq->rq_flags &= ~RQF_TIMED_OUT;
699
	}
700 701
}

702
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
703 704 705
{
	__blk_mq_requeue_request(rq);

706 707 708
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
709
	BUG_ON(!list_empty(&rq->queuelist));
710
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
711 712 713
}
EXPORT_SYMBOL(blk_mq_requeue_request);

714 715 716
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
717
		container_of(work, struct request_queue, requeue_work.work);
718 719 720
	LIST_HEAD(rq_list);
	struct request *rq, *next;

721
	spin_lock_irq(&q->requeue_lock);
722
	list_splice_init(&q->requeue_list, &rq_list);
723
	spin_unlock_irq(&q->requeue_lock);
724 725

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
726
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
727 728
			continue;

729
		rq->rq_flags &= ~RQF_SOFTBARRIER;
730
		list_del_init(&rq->queuelist);
731 732 733 734 735 736
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
737
			blk_mq_request_bypass_insert(rq, false, false);
738 739
		else
			blk_mq_sched_insert_request(rq, true, false, false);
740 741 742 743 744
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
745
		blk_mq_sched_insert_request(rq, false, false, false);
746 747
	}

748
	blk_mq_run_hw_queues(q, false);
749 750
}

751 752
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
753 754 755 756 757 758
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
759
	 * request head insertion from the workqueue.
760
	 */
761
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
762 763 764

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
765
		rq->rq_flags |= RQF_SOFTBARRIER;
766 767 768 769 770
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
771 772 773

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
774 775 776 777
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
778
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
779 780 781
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

782 783 784
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
785 786
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
787 788 789
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

790 791
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
792 793
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
794
		return tags->rqs[tag];
795
	}
796 797

	return NULL;
798 799 800
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

801 802
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
803 804
{
	/*
805 806
	 * If we find a request that is inflight and the queue matches,
	 * we know the queue is busy. Return false to stop the iteration.
807
	 */
808
	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
809 810 811 812 813 814 815 816 817
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

818
bool blk_mq_queue_inflight(struct request_queue *q)
819 820 821
{
	bool busy = false;

822
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
823 824
	return busy;
}
825
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
826

827
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
828
{
829
	req->rq_flags |= RQF_TIMED_OUT;
830 831 832 833 834 835 836
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
837
	}
838 839

	blk_add_timer(req);
840
}
841

K
Keith Busch 已提交
842
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
843
{
K
Keith Busch 已提交
844
	unsigned long deadline;
845

K
Keith Busch 已提交
846 847
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
848 849
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
850

851
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
852 853
	if (time_after_eq(jiffies, deadline))
		return true;
854

K
Keith Busch 已提交
855 856 857 858 859
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
860 861
}

862
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
863 864
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
865 866 867 868 869 870 871
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
872
		return true;
K
Keith Busch 已提交
873 874 875 876 877 878 879 880 881 882 883

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
884
		return true;
K
Keith Busch 已提交
885

886
	/*
K
Keith Busch 已提交
887 888 889 890
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
891
	 */
K
Keith Busch 已提交
892
	if (blk_mq_req_expired(rq, next))
893
		blk_mq_rq_timed_out(rq, reserved);
894 895 896 897

	if (is_flush_rq(rq, hctx))
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
K
Keith Busch 已提交
898
		__blk_mq_free_request(rq);
899 900

	return true;
901 902
}

903
static void blk_mq_timeout_work(struct work_struct *work)
904
{
905 906
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
907
	unsigned long next = 0;
908
	struct blk_mq_hw_ctx *hctx;
909
	int i;
910

911 912 913 914 915 916 917 918 919
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
920
	 * blk_freeze_queue_start, and the moment the last request is
921 922 923 924
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
925 926
		return;

K
Keith Busch 已提交
927
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
928

K
Keith Busch 已提交
929 930
	if (next != 0) {
		mod_timer(&q->timeout, next);
931
	} else {
932 933 934 935 936 937
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
938 939 940 941 942
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
943
	}
944
	blk_queue_exit(q);
945 946
}

947 948 949 950 951 952 953 954 955 956
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
957
	enum hctx_type type = hctx->type;
958 959

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
960
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
961
	sbitmap_clear_bit(sb, bitnr);
962 963 964 965
	spin_unlock(&ctx->lock);
	return true;
}

966 967 968 969
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
970
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
971
{
972 973 974 975
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
976

977
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
978
}
979
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
980

981 982 983 984 985 986 987 988 989 990 991
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
992
	enum hctx_type type = hctx->type;
993 994

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
995 996
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
997
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
998
		if (list_empty(&ctx->rq_lists[type]))
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1009
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1021 1022 1023 1024
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1025

1026
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1027 1028
}

1029
bool blk_mq_get_driver_tag(struct request *rq)
1030 1031 1032
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
1033
		.hctx = rq->mq_hctx,
1034
		.flags = BLK_MQ_REQ_NOWAIT,
1035
		.cmd_flags = rq->cmd_flags,
1036
	};
1037
	bool shared;
1038

1039
	if (rq->tag != -1)
1040
		return true;
1041

1042 1043 1044
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1045
	shared = blk_mq_tag_busy(data.hctx);
1046 1047
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1048
		if (shared) {
1049 1050 1051
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1052 1053 1054
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1055
	return rq->tag != -1;
1056 1057
}

1058 1059
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1060 1061 1062 1063 1064
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1065
	spin_lock(&hctx->dispatch_wait_lock);
1066 1067 1068 1069 1070 1071 1072
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
		sbq = &hctx->tags->bitmap_tags;
		atomic_dec(&sbq->ws_active);
	}
1073 1074
	spin_unlock(&hctx->dispatch_wait_lock);

1075 1076 1077 1078
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1079 1080
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1081 1082
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1083 1084
 * marking us as waiting.
 */
1085
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1086
				 struct request *rq)
1087
{
1088
	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1089
	struct wait_queue_head *wq;
1090 1091
	wait_queue_entry_t *wait;
	bool ret;
1092

1093
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1094
		blk_mq_sched_mark_restart_hctx(hctx);
1095

1096 1097 1098 1099 1100 1101 1102 1103
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1104
		return blk_mq_get_driver_tag(rq);
1105 1106
	}

1107
	wait = &hctx->dispatch_wait;
1108 1109 1110
	if (!list_empty_careful(&wait->entry))
		return false;

1111
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1112 1113 1114

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1115
	if (!list_empty(&wait->entry)) {
1116 1117
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1118
		return false;
1119 1120
	}

1121
	atomic_inc(&sbq->ws_active);
1122 1123
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1124

1125
	/*
1126 1127 1128
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1129
	 */
1130
	ret = blk_mq_get_driver_tag(rq);
1131
	if (!ret) {
1132 1133
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1134
		return false;
1135
	}
1136 1137 1138 1139 1140 1141

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1142
	atomic_dec(&sbq->ws_active);
1143 1144
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1145 1146

	return true;
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1178 1179
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1210 1211 1212
/*
 * Returns true if we did some work AND can potentially do more.
 */
1213
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1214
			     bool got_budget)
1215
{
1216
	struct blk_mq_hw_ctx *hctx;
1217
	struct request *rq, *nxt;
1218
	bool no_tag = false;
1219
	int errors, queued;
1220
	blk_status_t ret = BLK_STS_OK;
1221
	bool no_budget_avail = false;
1222
	LIST_HEAD(zone_list);
1223

1224 1225 1226
	if (list_empty(list))
		return false;

1227 1228
	WARN_ON(!list_is_singular(list) && got_budget);

1229 1230 1231
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1232
	errors = queued = 0;
1233
	do {
1234
		struct blk_mq_queue_data bd;
1235

1236
		rq = list_first_entry(list, struct request, queuelist);
1237

1238
		hctx = rq->mq_hctx;
1239 1240
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1241
			no_budget_avail = true;
1242
			break;
1243
		}
1244

1245
		if (!blk_mq_get_driver_tag(rq)) {
1246
			/*
1247
			 * The initial allocation attempt failed, so we need to
1248 1249 1250 1251
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1252
			 */
1253
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1254
				blk_mq_put_dispatch_budget(hctx);
1255 1256 1257 1258 1259 1260
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1261 1262 1263 1264
				break;
			}
		}

1265 1266
		list_del_init(&rq->queuelist);

1267
		bd.rq = rq;
1268 1269 1270 1271 1272 1273 1274 1275 1276

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1277
			bd.last = !blk_mq_get_driver_tag(nxt);
1278
		}
1279 1280

		ret = q->mq_ops->queue_rq(hctx, &bd);
1281
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1282
			blk_mq_handle_dev_resource(rq, list);
1283
			break;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		} else if (ret == BLK_STS_ZONE_RESOURCE) {
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
			if (list_empty(list))
				break;
			continue;
1294 1295 1296
		}

		if (unlikely(ret != BLK_STS_OK)) {
1297
			errors++;
1298
			blk_mq_end_request(rq, BLK_STS_IOERR);
1299
			continue;
1300 1301
		}

1302
		queued++;
1303
	} while (!list_empty(list));
1304

1305 1306 1307
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1308
	hctx->dispatched[queued_to_index(queued)]++;
1309 1310 1311 1312 1313

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1314
	if (!list_empty(list)) {
1315 1316
		bool needs_restart;

J
Jens Axboe 已提交
1317 1318 1319 1320 1321
		/*
		 * If we didn't flush the entire list, we could have told
		 * the driver there was more coming, but that turned out to
		 * be a lie.
		 */
1322
		if (q->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
1323 1324
			q->mq_ops->commit_rqs(hctx);

1325
		spin_lock(&hctx->lock);
1326
		list_splice_tail_init(list, &hctx->dispatch);
1327
		spin_unlock(&hctx->lock);
1328

1329
		/*
1330 1331 1332
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1333
		 *
1334 1335 1336 1337
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1338
		 *
1339 1340 1341 1342 1343 1344 1345
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1346
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1347
		 *   and dm-rq.
1348 1349 1350
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1351 1352
		 * that could otherwise occur if the queue is idle.  We'll do
		 * similar if we couldn't get budget and SCHED_RESTART is set.
1353
		 */
1354 1355
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1356
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1357
			blk_mq_run_hw_queue(hctx, true);
1358 1359
		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
					   no_budget_avail))
1360
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1361

1362
		blk_mq_update_dispatch_busy(hctx, true);
1363
		return false;
1364 1365
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1366

1367 1368 1369 1370 1371 1372 1373
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1374
	return (queued + errors) != 0;
1375 1376
}

1377 1378 1379 1380 1381 1382
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1383 1384 1385 1386
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1387 1388 1389
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1403
	 */
1404 1405 1406 1407 1408 1409 1410
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1411

1412 1413 1414 1415 1416 1417
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1418
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1419

1420 1421 1422
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1423 1424
}

1425 1426 1427 1428 1429 1430 1431 1432 1433
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1434 1435 1436 1437 1438 1439 1440 1441
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1442
	bool tried = false;
1443
	int next_cpu = hctx->next_cpu;
1444

1445 1446
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1447 1448

	if (--hctx->next_cpu_batch <= 0) {
1449
select_cpu:
1450
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1451
				cpu_online_mask);
1452
		if (next_cpu >= nr_cpu_ids)
1453
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1454 1455 1456
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1457 1458 1459 1460
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1461
	if (!cpu_online(next_cpu)) {
1462 1463 1464 1465 1466 1467 1468 1469 1470
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1471
		hctx->next_cpu = next_cpu;
1472 1473 1474
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1475 1476 1477

	hctx->next_cpu = next_cpu;
	return next_cpu;
1478 1479
}

1480 1481 1482 1483 1484 1485 1486 1487 1488
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 * @msecs: Microseconds of delay to wait before running the queue.
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1489 1490
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1491
{
1492
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1493 1494
		return;

1495
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1496 1497
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1498
			__blk_mq_run_hw_queue(hctx);
1499
			put_cpu();
1500 1501
			return;
		}
1502

1503
		put_cpu();
1504
	}
1505

1506 1507
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1508 1509
}

1510 1511 1512 1513 1514 1515 1516
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
 * @msecs: Microseconds of delay to wait before running the queue.
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
1517 1518 1519 1520 1521 1522
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1523 1524 1525 1526 1527 1528 1529 1530 1531
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
1532
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1533
{
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1545 1546 1547 1548
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1549

1550
	if (need_run)
1551
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1552
}
O
Omar Sandoval 已提交
1553
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1554

1555 1556 1557 1558 1559
/**
 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
1560
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1561 1562 1563 1564 1565
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1566
		if (blk_mq_hctx_stopped(hctx))
1567 1568
			continue;

1569
		blk_mq_run_hw_queue(hctx, async);
1570 1571
	}
}
1572
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
 * @msecs: Microseconds of delay to wait before running the queues.
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;

		blk_mq_delay_run_hw_queue(hctx, msecs);
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1613 1614 1615
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1616
 * BLK_STS_RESOURCE is usually returned.
1617 1618 1619 1620 1621
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1622 1623
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1624
	cancel_delayed_work(&hctx->run_work);
1625

1626
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1627
}
1628
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1629

1630 1631 1632
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1633
 * BLK_STS_RESOURCE is usually returned.
1634 1635 1636 1637 1638
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1639 1640
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1641 1642 1643 1644 1645
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1646 1647 1648
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1649 1650 1651
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1652

1653
	blk_mq_run_hw_queue(hctx, false);
1654 1655 1656
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1677
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1678 1679 1680 1681
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1682 1683
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1684 1685 1686
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1687
static void blk_mq_run_work_fn(struct work_struct *work)
1688 1689 1690
{
	struct blk_mq_hw_ctx *hctx;

1691
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1692

1693
	/*
M
Ming Lei 已提交
1694
	 * If we are stopped, don't run the queue.
1695
	 */
M
Ming Lei 已提交
1696
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1697
		return;
1698 1699 1700 1701

	__blk_mq_run_hw_queue(hctx);
}

1702 1703 1704
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1705
{
J
Jens Axboe 已提交
1706
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
1707
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
1708

1709 1710
	lockdep_assert_held(&ctx->lock);

1711 1712
	trace_block_rq_insert(hctx->queue, rq);

1713
	if (at_head)
M
Ming Lei 已提交
1714
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1715
	else
M
Ming Lei 已提交
1716
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1717
}
1718

1719 1720
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1721 1722 1723
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1724 1725
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1726
	__blk_mq_insert_req_list(hctx, rq, at_head);
1727 1728 1729
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1730 1731 1732 1733 1734
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
1735 1736 1737
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1738 1739
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
1740
{
1741
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1742 1743

	spin_lock(&hctx->lock);
1744 1745 1746 1747
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
1748 1749
	spin_unlock(&hctx->lock);

1750 1751
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1752 1753
}

1754 1755
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1756 1757

{
1758
	struct request *rq;
M
Ming Lei 已提交
1759
	enum hctx_type type = hctx->type;
1760

1761 1762 1763 1764
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1765
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1766
		BUG_ON(rq->mq_ctx != ctx);
1767
		trace_block_rq_insert(hctx->queue, rq);
1768
	}
1769 1770

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1771
	list_splice_tail_init(list, &ctx->rq_lists[type]);
1772
	blk_mq_hctx_mark_pending(hctx, ctx);
1773 1774 1775
	spin_unlock(&ctx->lock);
}

J
Jens Axboe 已提交
1776
static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1777 1778 1779 1780
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

P
Pavel Begunkov 已提交
1781 1782 1783 1784
	if (rqa->mq_ctx != rqb->mq_ctx)
		return rqa->mq_ctx > rqb->mq_ctx;
	if (rqa->mq_hctx != rqb->mq_hctx)
		return rqa->mq_hctx > rqb->mq_hctx;
J
Jens Axboe 已提交
1785 1786

	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1787 1788 1789 1790 1791 1792
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(list);

1793 1794
	if (list_empty(&plug->mq_list))
		return;
1795 1796
	list_splice_init(&plug->mq_list, &list);

1797 1798
	if (plug->rq_count > 2 && plug->multiple_queues)
		list_sort(NULL, &list, plug_rq_cmp);
1799

1800 1801
	plug->rq_count = 0;

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	do {
		struct list_head rq_list;
		struct request *rq, *head_rq = list_entry_rq(list.next);
		struct list_head *pos = &head_rq->queuelist; /* skip first */
		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
		unsigned int depth = 1;

		list_for_each_continue(pos, &list) {
			rq = list_entry_rq(pos);
			BUG_ON(!rq->q);
			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
				break;
			depth++;
1816 1817
		}

1818 1819
		list_cut_before(&rq_list, &list, pos);
		trace_block_unplug(head_rq->q, depth, !from_schedule);
1820
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1821
						from_schedule);
1822
	} while(!list_empty(&list));
1823 1824
}

1825 1826
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
1827
{
1828 1829 1830 1831 1832
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
1833
	blk_rq_bio_prep(rq, bio, nr_segs);
1834
	blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1835

1836
	blk_account_io_start(rq);
1837 1838
}

1839 1840
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
1841
					    blk_qc_t *cookie, bool last)
1842 1843 1844 1845
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1846
		.last = last,
1847
	};
1848
	blk_qc_t new_cookie;
1849
	blk_status_t ret;
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1861
		blk_mq_update_dispatch_busy(hctx, false);
1862 1863 1864
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1865
	case BLK_STS_DEV_RESOURCE:
1866
		blk_mq_update_dispatch_busy(hctx, true);
1867 1868 1869
		__blk_mq_requeue_request(rq);
		break;
	default:
1870
		blk_mq_update_dispatch_busy(hctx, false);
1871 1872 1873 1874 1875 1876 1877
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

1878
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1879
						struct request *rq,
1880
						blk_qc_t *cookie,
1881
						bool bypass_insert, bool last)
1882 1883
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1884 1885
	bool run_queue = true;

1886
	/*
1887
	 * RCU or SRCU read lock is needed before checking quiesced flag.
1888
	 *
1889 1890 1891
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
1892
	 */
1893
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1894
		run_queue = false;
1895 1896
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
1897
	}
1898

1899 1900
	if (q->elevator && !bypass_insert)
		goto insert;
1901

1902
	if (!blk_mq_get_dispatch_budget(hctx))
1903
		goto insert;
1904

1905
	if (!blk_mq_get_driver_tag(rq)) {
1906
		blk_mq_put_dispatch_budget(hctx);
1907
		goto insert;
1908
	}
1909

1910 1911 1912 1913 1914
	return __blk_mq_issue_directly(hctx, rq, cookie, last);
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

1915
	blk_mq_request_bypass_insert(rq, false, run_queue);
1916 1917 1918
	return BLK_STS_OK;
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 * @cookie: Request queue cookie.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1942
		blk_mq_request_bypass_insert(rq, false, true);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1958
	hctx_unlock(hctx, srcu_idx);
1959 1960

	return ret;
1961 1962
}

1963 1964 1965
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
1966 1967
	int queued = 0;

1968
	while (!list_empty(list)) {
1969
		blk_status_t ret;
1970 1971 1972 1973
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
1974 1975 1976 1977
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
1978
				blk_mq_request_bypass_insert(rq, false,
1979
							list_empty(list));
1980 1981 1982
				break;
			}
			blk_mq_end_request(rq, ret);
1983 1984
		} else
			queued++;
1985
	}
J
Jens Axboe 已提交
1986 1987 1988 1989 1990 1991

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
1992
	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
1993
		hctx->queue->mq_ops->commit_rqs(hctx);
1994 1995
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	plug->rq_count++;
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/**
 * blk_mq_make_request - Create and send a request to block device.
 * @q: Request queue pointer.
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 *
 * Returns: Request queue cookie.
 */
2026
blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
2027
{
2028
	const int is_sync = op_is_sync(bio->bi_opf);
2029
	const int is_flush_fua = op_is_flush(bio->bi_opf);
2030
	struct blk_mq_alloc_data data = { .flags = 0};
2031
	struct request *rq;
2032
	struct blk_plug *plug;
2033
	struct request *same_queue_rq = NULL;
2034
	unsigned int nr_segs;
2035
	blk_qc_t cookie;
2036
	blk_status_t ret;
2037 2038

	blk_queue_bounce(q, &bio);
2039
	__blk_queue_split(q, &bio, &nr_segs);
2040

2041
	if (!bio_integrity_prep(bio))
2042
		goto queue_exit;
2043

2044
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2045
	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2046
		goto queue_exit;
2047

2048
	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2049
		goto queue_exit;
2050

2051
	rq_qos_throttle(q, bio);
J
Jens Axboe 已提交
2052

2053
	data.cmd_flags = bio->bi_opf;
2054
	rq = blk_mq_get_request(q, bio, &data);
J
Jens Axboe 已提交
2055
	if (unlikely(!rq)) {
2056
		rq_qos_cleanup(q, bio);
J
Jens Axboe 已提交
2057
		if (bio->bi_opf & REQ_NOWAIT)
2058
			bio_wouldblock_error(bio);
2059
		goto queue_exit;
J
Jens Axboe 已提交
2060 2061
	}

2062 2063
	trace_block_getrq(q, bio, bio->bi_opf);

2064
	rq_qos_track(q, rq, bio);
2065

2066
	cookie = request_to_qc_t(data.hctx, rq);
2067

2068 2069
	blk_mq_bio_to_request(rq, bio, nr_segs);

2070 2071 2072 2073 2074 2075 2076 2077
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
		return BLK_QC_T_NONE;
	}

2078
	plug = blk_mq_plug(q, bio);
2079
	if (unlikely(is_flush_fua)) {
2080
		/* Bypass scheduler for flush requests */
2081 2082
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
M
Ming Lei 已提交
2083 2084
	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
				!blk_queue_nonrot(q))) {
2085 2086 2087
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
M
Ming Lei 已提交
2088 2089 2090
		 *
		 * Use normal plugging if this disk is slow HDD, as sequential
		 * IO may benefit a lot from plug merging.
2091
		 */
2092
		unsigned int request_count = plug->rq_count;
2093 2094
		struct request *last = NULL;

M
Ming Lei 已提交
2095
		if (!request_count)
2096
			trace_block_plug(q);
2097 2098
		else
			last = list_entry_rq(plug->mq_list.prev);
2099

2100 2101
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2102 2103
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
2104
		}
2105

2106
		blk_add_rq_to_plug(plug, rq);
2107
	} else if (q->elevator) {
2108
		/* Insert the request at the IO scheduler queue */
2109
		blk_mq_sched_insert_request(rq, false, true, true);
2110
	} else if (plug && !blk_queue_nomerges(q)) {
2111
		/*
2112
		 * We do limited plugging. If the bio can be merged, do that.
2113 2114
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
2115 2116
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
2117
		 */
2118 2119
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
2120
		if (same_queue_rq) {
2121
			list_del_init(&same_queue_rq->queuelist);
2122 2123
			plug->rq_count--;
		}
2124
		blk_add_rq_to_plug(plug, rq);
2125
		trace_block_plug(q);
2126

2127
		if (same_queue_rq) {
2128
			data.hctx = same_queue_rq->mq_hctx;
2129
			trace_block_unplug(q, 1, true);
2130
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2131
					&cookie);
2132
		}
2133 2134
	} else if ((q->nr_hw_queues > 1 && is_sync) ||
			!data.hctx->dispatch_busy) {
2135 2136 2137 2138
		/*
		 * There is no scheduler and we can try to send directly
		 * to the hardware.
		 */
2139
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2140
	} else {
2141
		/* Default case. */
2142
		blk_mq_sched_insert_request(rq, false, true, true);
2143
	}
2144

2145
	return cookie;
2146 2147 2148
queue_exit:
	blk_queue_exit(q);
	return BLK_QC_T_NONE;
2149
}
2150
EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
2151

2152 2153
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2154
{
2155
	struct page *page;
2156

2157
	if (tags->rqs && set->ops->exit_request) {
2158
		int i;
2159

2160
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2161 2162 2163
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2164
				continue;
2165
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2166
			tags->static_rqs[i] = NULL;
2167
		}
2168 2169
	}

2170 2171
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2172
		list_del_init(&page->lru);
2173 2174
		/*
		 * Remove kmemleak object previously allocated in
2175
		 * blk_mq_alloc_rqs().
2176 2177
		 */
		kmemleak_free(page_address(page));
2178 2179
		__free_pages(page, page->private);
	}
2180
}
2181

2182 2183
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2184
	kfree(tags->rqs);
2185
	tags->rqs = NULL;
J
Jens Axboe 已提交
2186 2187
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2188

2189
	blk_mq_free_tags(tags);
2190 2191
}

2192 2193 2194 2195
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2196
{
2197
	struct blk_mq_tags *tags;
2198
	int node;
2199

2200
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2201 2202 2203 2204
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2205
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2206 2207
	if (!tags)
		return NULL;
2208

2209
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2210
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2211
				 node);
2212 2213 2214 2215
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2216

2217 2218 2219
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2220 2221 2222 2223 2224 2225
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2226 2227 2228 2229 2230 2231 2232 2233
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2245
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2246 2247 2248
	return 0;
}

2249 2250 2251 2252 2253
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2254 2255
	int node;

2256
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2257 2258
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2259 2260 2261

	INIT_LIST_HEAD(&tags->page_list);

2262 2263 2264 2265
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2266
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2267
				cache_line_size());
2268
	left = rq_size * depth;
2269

2270
	for (i = 0; i < depth; ) {
2271 2272 2273 2274 2275
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2276
		while (this_order && left < order_to_size(this_order - 1))
2277 2278 2279
			this_order--;

		do {
2280
			page = alloc_pages_node(node,
2281
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2282
				this_order);
2283 2284 2285 2286 2287 2288 2289 2290 2291
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2292
			goto fail;
2293 2294

		page->private = this_order;
2295
		list_add_tail(&page->lru, &tags->page_list);
2296 2297

		p = page_address(page);
2298 2299 2300 2301
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2302
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2303
		entries_per_page = order_to_size(this_order) / rq_size;
2304
		to_do = min(entries_per_page, depth - i);
2305 2306
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2307 2308 2309
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2310 2311 2312
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2313 2314
			}

2315 2316 2317 2318
			p += rq_size;
			i++;
		}
	}
2319
	return 0;
2320

2321
fail:
2322 2323
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2324 2325
}

J
Jens Axboe 已提交
2326 2327 2328 2329 2330
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2331
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2332
{
2333
	struct blk_mq_hw_ctx *hctx;
2334 2335
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
2336
	enum hctx_type type;
2337

2338
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2339
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
2340
	type = hctx->type;
2341 2342

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2343 2344
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
2345 2346 2347 2348 2349
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2350
		return 0;
2351

J
Jens Axboe 已提交
2352 2353 2354
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2355 2356

	blk_mq_run_hw_queue(hctx, true);
2357
	return 0;
2358 2359
}

2360
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2361
{
2362 2363
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2364 2365
}

2366
/* hctx->ctxs will be freed in queue's release handler */
2367 2368 2369 2370
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2371 2372
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2373

2374
	if (set->ops->exit_request)
2375
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2376

2377 2378 2379
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2380
	blk_mq_remove_cpuhp(hctx);
2381 2382 2383 2384

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
2385 2386
}

M
Ming Lei 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2396
		blk_mq_debugfs_unregister_hctx(hctx);
2397
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2398 2399 2400
	}
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2415 2416 2417
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2418
{
2419 2420 2421 2422 2423 2424 2425 2426 2427
	hctx->queue_num = hctx_idx;

	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
2428

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
2457
	if (node == NUMA_NO_NODE)
2458 2459
		node = set->numa_node;
	hctx->numa_node = node;
2460

2461
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2462 2463 2464
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2465
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2466

2467 2468
	INIT_LIST_HEAD(&hctx->hctx_list);

2469
	/*
2470 2471
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2472
	 */
2473
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2474
			gfp, node);
2475
	if (!hctx->ctxs)
2476
		goto free_cpumask;
2477

2478
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2479
				gfp, node))
2480 2481
		goto free_ctxs;
	hctx->nr_ctx = 0;
2482

2483
	spin_lock_init(&hctx->dispatch_wait_lock);
2484 2485 2486
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2487
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2488
	if (!hctx->fq)
2489
		goto free_bitmap;
2490

2491
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2492
		init_srcu_struct(hctx->srcu);
2493
	blk_mq_hctx_kobj_init(hctx);
2494

2495
	return hctx;
2496

2497
 free_bitmap:
2498
	sbitmap_free(&hctx->ctx_map);
2499 2500
 free_ctxs:
	kfree(hctx->ctxs);
2501 2502 2503 2504 2505 2506
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
2507
}
2508 2509 2510 2511

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
2512 2513
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
2514 2515 2516 2517

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
2518
		int k;
2519 2520 2521

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
2522 2523 2524
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

2525 2526 2527 2528 2529 2530
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
2531 2532 2533 2534 2535
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
				hctx->numa_node = local_memory_node(cpu_to_node(i));
		}
2536 2537 2538
	}
}

2539 2540
static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
					int hctx_idx)
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2562
	if (set->tags && set->tags[hctx_idx]) {
2563 2564 2565 2566
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2567 2568
}

2569
static void blk_mq_map_swqueue(struct request_queue *q)
2570
{
J
Jens Axboe 已提交
2571
	unsigned int i, j, hctx_idx;
2572 2573
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2574
	struct blk_mq_tag_set *set = q->tag_set;
2575 2576

	queue_for_each_hw_ctx(q, hctx, i) {
2577
		cpumask_clear(hctx->cpumask);
2578
		hctx->nr_ctx = 0;
2579
		hctx->dispatch_from = NULL;
2580 2581 2582
	}

	/*
2583
	 * Map software to hardware queues.
2584 2585
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2586
	 */
2587
	for_each_possible_cpu(i) {
2588

2589
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
2590
		for (j = 0; j < set->nr_maps; j++) {
2591 2592 2593
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
2594
				continue;
2595
			}
2596 2597 2598
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
2599
			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2600 2601 2602 2603 2604 2605 2606 2607
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
2608

J
Jens Axboe 已提交
2609
			hctx = blk_mq_map_queue_type(q, j, i);
2610
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
2630 2631 2632 2633

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
2634
	}
2635 2636

	queue_for_each_hw_ctx(q, hctx, i) {
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2652

M
Ming Lei 已提交
2653 2654 2655
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2656 2657 2658 2659 2660
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2661
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2662

2663 2664 2665
		/*
		 * Initialize batch roundrobin counts
		 */
2666
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2667 2668
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2669 2670
}

2671 2672 2673 2674
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2675
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2676 2677 2678 2679
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2680
	queue_for_each_hw_ctx(q, hctx, i) {
2681
		if (shared)
2682
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2683
		else
2684 2685 2686 2687
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2688 2689
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2690 2691
{
	struct request_queue *q;
2692

2693 2694
	lockdep_assert_held(&set->tag_list_lock);

2695 2696
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2697
		queue_set_hctx_shared(q, shared);
2698 2699 2700 2701 2702 2703 2704 2705 2706
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2707
	list_del_rcu(&q->tag_set_list);
2708 2709 2710 2711 2712 2713
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2714
	mutex_unlock(&set->tag_list_lock);
2715
	INIT_LIST_HEAD(&q->tag_set_list);
2716 2717 2718 2719 2720 2721
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
2722

2723 2724 2725 2726 2727
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2728 2729 2730 2731 2732 2733
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2734
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2735

2736 2737 2738
	mutex_unlock(&set->tag_list_lock);
}

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

2767 2768 2769 2770 2771 2772 2773 2774
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
2775 2776
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
2777

2778 2779 2780 2781 2782 2783
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
2784
		kobject_put(&hctx->kobj);
2785
	}
2786 2787 2788

	kfree(q->queue_hw_ctx);

2789 2790 2791 2792 2793
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
2794 2795
}

2796 2797
struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
		void *queuedata)
2798 2799 2800
{
	struct request_queue *uninit_q, *q;

2801
	uninit_q = __blk_alloc_queue(set->numa_node);
2802 2803
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);
2804
	uninit_q->queuedata = queuedata;
2805

2806 2807 2808 2809 2810
	/*
	 * Initialize the queue without an elevator. device_add_disk() will do
	 * the initialization.
	 */
	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2811 2812 2813 2814 2815
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
2816 2817 2818 2819 2820 2821
EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
2822 2823
EXPORT_SYMBOL(blk_mq_init_queue);

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
/*
 * Helper for setting up a queue with mq ops, given queue depth, and
 * the passed in mq ops flags.
 */
struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
					   const struct blk_mq_ops *ops,
					   unsigned int queue_depth,
					   unsigned int set_flags)
{
	struct request_queue *q;
	int ret;

	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
J
Jens Axboe 已提交
2839
	set->nr_maps = 1;
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		return ERR_PTR(ret);

	q = blk_mq_init_queue(set);
	if (IS_ERR(q)) {
		blk_mq_free_tag_set(set);
		return q;
	}

	return q;
}
EXPORT_SYMBOL(blk_mq_init_sq_queue);

2858 2859 2860 2861
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
2862
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
2878
	if (!hctx)
2879
		goto fail;
2880

2881 2882
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
2883 2884

	return hctx;
2885 2886 2887 2888 2889

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
2890 2891
}

K
Keith Busch 已提交
2892 2893
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2894
{
2895
	int i, j, end;
K
Keith Busch 已提交
2896
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2897

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

2914 2915
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2916
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2917
		int node;
2918
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
2919

2920
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2921 2922 2923 2924 2925 2926 2927
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
2928

2929 2930
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
2931
			if (hctxs[i])
2932 2933 2934 2935 2936 2937 2938 2939 2940
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
2941
		}
2942
	}
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
2955

2956
	for (; j < end; j++) {
K
Keith Busch 已提交
2957 2958 2959
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2960 2961
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2962 2963 2964 2965
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
2966
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2967 2968 2969
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2970 2971
						  struct request_queue *q,
						  bool elevator_init)
K
Keith Busch 已提交
2972
{
M
Ming Lei 已提交
2973 2974 2975
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2976
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2977 2978
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2979 2980 2981
	if (!q->poll_cb)
		goto err_exit;

2982
	if (blk_mq_alloc_ctxs(q))
2983
		goto err_poll;
K
Keith Busch 已提交
2984

2985 2986 2987
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2988 2989 2990
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
2991 2992 2993
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2994

2995
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2996
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2997

J
Jens Axboe 已提交
2998
	q->tag_set = set;
2999

3000
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3001 3002
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
3003
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3004

3005 3006
	q->sg_reserved_size = INT_MAX;

3007
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3008 3009 3010
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

3011 3012
	q->nr_requests = set->queue_depth;

3013 3014 3015
	/*
	 * Default to classic polling
	 */
3016
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3017

3018
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3019
	blk_mq_add_queue_tag_set(set, q);
3020
	blk_mq_map_swqueue(q);
3021

3022 3023
	if (elevator_init)
		elevator_init_mq(q);
3024

3025
	return q;
3026

3027
err_hctxs:
K
Keith Busch 已提交
3028
	kfree(q->queue_hw_ctx);
3029
	q->nr_hw_queues = 0;
3030
	blk_mq_sysfs_deinit(q);
3031 3032 3033
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
3034 3035
err_exit:
	q->mq_ops = NULL;
3036 3037
	return ERR_PTR(-ENOMEM);
}
3038
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3039

3040 3041
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
3042
{
M
Ming Lei 已提交
3043
	struct blk_mq_tag_set	*set = q->tag_set;
3044

3045
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
3046
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3047 3048
}

3049 3050 3051 3052
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

3053
	for (i = 0; i < set->nr_hw_queues; i++)
3054
		if (!__blk_mq_alloc_map_and_request(set, i))
3055 3056 3057 3058 3059 3060
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
3061
		blk_mq_free_map_and_requests(set, i);
3062 3063 3064 3065 3066 3067 3068 3069 3070

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
3071
static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

3101 3102
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
3103 3104 3105 3106 3107 3108 3109 3110
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

3111
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
3112 3113
		int i;

3114 3115 3116 3117 3118 3119 3120
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
3121
		 * 		set->map[x].mq_map[cpu] = queue;
3122 3123 3124 3125 3126 3127
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
3128 3129
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
3130

3131
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
3132 3133
	} else {
		BUG_ON(set->nr_maps > 1);
3134
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
3135
	}
3136 3137
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

3161 3162 3163
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
3164
 * requested depth down, if it's too large. In that case, the set
3165 3166
 * value will be stored in set->queue_depth.
 */
3167 3168
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3169
	int i, ret;
3170

B
Bart Van Assche 已提交
3171 3172
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

3173 3174
	if (!set->nr_hw_queues)
		return -EINVAL;
3175
	if (!set->queue_depth)
3176 3177 3178 3179
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
3180
	if (!set->ops->queue_rq)
3181 3182
		return -EINVAL;

3183 3184 3185
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

3186 3187 3188 3189 3190
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
3191

J
Jens Axboe 已提交
3192 3193 3194 3195 3196
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

3197 3198 3199 3200 3201 3202 3203
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
3204
		set->nr_maps = 1;
3205 3206
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
3207
	/*
3208 3209
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
3210
	 */
3211
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3212
		set->nr_hw_queues = nr_cpu_ids;
3213

3214
	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3215
		return -ENOMEM;
3216

3217
	ret = -ENOMEM;
J
Jens Axboe 已提交
3218 3219
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3220
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
3221 3222 3223
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
3224
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
3225
	}
3226

3227
	ret = blk_mq_update_queue_map(set);
3228 3229 3230
	if (ret)
		goto out_free_mq_map;

3231
	ret = blk_mq_alloc_map_and_requests(set);
3232
	if (ret)
3233
		goto out_free_mq_map;
3234

3235 3236 3237
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

3238
	return 0;
3239 3240

out_free_mq_map:
J
Jens Axboe 已提交
3241 3242 3243 3244
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
3245 3246
	kfree(set->tags);
	set->tags = NULL;
3247
	return ret;
3248 3249 3250 3251 3252
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3253
	int i, j;
3254

3255
	for (i = 0; i < set->nr_hw_queues; i++)
3256
		blk_mq_free_map_and_requests(set, i);
3257

J
Jens Axboe 已提交
3258 3259 3260 3261
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
3262

M
Ming Lei 已提交
3263
	kfree(set->tags);
3264
	set->tags = NULL;
3265 3266 3267
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3268 3269 3270 3271 3272 3273
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3274
	if (!set)
3275 3276
		return -EINVAL;

3277 3278 3279
	if (q->nr_requests == nr)
		return 0;

3280
	blk_mq_freeze_queue(q);
3281
	blk_mq_quiesce_queue(q);
3282

3283 3284
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3285 3286
		if (!hctx->tags)
			continue;
3287 3288 3289 3290
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3291
		if (!hctx->sched_tags) {
3292
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3293 3294 3295 3296 3297
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
3298 3299
		if (ret)
			break;
3300 3301
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
3302 3303 3304 3305 3306
	}

	if (!ret)
		q->nr_requests = nr;

3307
	blk_mq_unquiesce_queue(q);
3308 3309
	blk_mq_unfreeze_queue(q);

3310 3311 3312
	return ret;
}

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3383 3384
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3385 3386
{
	struct request_queue *q;
3387
	LIST_HEAD(head);
3388
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3389

3390 3391
	lockdep_assert_held(&set->tag_list_lock);

3392
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3393 3394 3395 3396 3397 3398
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3399 3400 3401 3402 3403 3404 3405 3406
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3407

3408 3409 3410 3411 3412
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3413
	prev_nr_hw_queues = set->nr_hw_queues;
3414 3415 3416 3417
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
3418
	set->nr_hw_queues = nr_hw_queues;
3419
fallback:
3420
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
3421 3422
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3423 3424 3425 3426
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
3427
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3428 3429
			goto fallback;
		}
3430 3431 3432
		blk_mq_map_swqueue(q);
	}

3433
reregister:
3434 3435 3436
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3437 3438
	}

3439 3440 3441 3442
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3443 3444 3445
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3446 3447 3448 3449 3450 3451 3452

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3453 3454
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3455 3456 3457 3458
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3459
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3481
	int bucket;
3482

3483 3484 3485 3486
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3487 3488
}

3489 3490 3491 3492
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
3493
	int bucket;
3494 3495 3496 3497 3498

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3499
	if (!blk_poll_stats_enable(q))
3500 3501 3502 3503 3504 3505 3506 3507
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3508 3509
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3510
	 */
3511 3512 3513 3514 3515 3516
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3517 3518 3519 3520

	return ret;
}

3521 3522 3523 3524 3525
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3526
	unsigned int nsecs;
3527 3528
	ktime_t kt;

J
Jens Axboe 已提交
3529
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3530 3531 3532
		return false;

	/*
3533
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3534 3535 3536 3537
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
3538
	if (q->poll_nsec > 0)
3539 3540
		nsecs = q->poll_nsec;
	else
3541
		nsecs = blk_mq_poll_nsecs(q, rq);
3542 3543

	if (!nsecs)
3544 3545
		return false;

J
Jens Axboe 已提交
3546
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3547 3548 3549 3550 3551

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3552
	kt = nsecs;
3553 3554

	mode = HRTIMER_MODE_REL;
3555
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3556 3557 3558
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
3559
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3560 3561
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
3562
		hrtimer_sleeper_start_expires(&hs, mode);
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

3574 3575
static bool blk_mq_poll_hybrid(struct request_queue *q,
			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
J
Jens Axboe 已提交
3576
{
3577 3578
	struct request *rq;

3579
	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
		return false;

	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else {
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}

3596
	return blk_mq_poll_hybrid_sleep(q, rq);
3597 3598
}

C
Christoph Hellwig 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
/**
 * blk_poll - poll for IO completions
 * @q:  the queue
 * @cookie: cookie passed back at IO submission time
 * @spin: whether to spin for completions
 *
 * Description:
 *    Poll for completions on the passed in queue. Returns number of
 *    completed entries found. If @spin is true, then blk_poll will continue
 *    looping until at least one completion is found, unless the task is
 *    otherwise marked running (or we need to reschedule).
 */
int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3612 3613
{
	struct blk_mq_hw_ctx *hctx;
J
Jens Axboe 已提交
3614 3615
	long state;

C
Christoph Hellwig 已提交
3616 3617
	if (!blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3618 3619
		return 0;

C
Christoph Hellwig 已提交
3620 3621 3622
	if (current->plug)
		blk_flush_plug_list(current->plug, false);

3623 3624
	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];

3625 3626 3627 3628 3629 3630 3631
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3632
	if (blk_mq_poll_hybrid(q, hctx, cookie))
3633
		return 1;
3634

J
Jens Axboe 已提交
3635 3636 3637
	hctx->poll_considered++;

	state = current->state;
3638
	do {
J
Jens Axboe 已提交
3639 3640 3641 3642
		int ret;

		hctx->poll_invoked++;

3643
		ret = q->mq_ops->poll(hctx);
J
Jens Axboe 已提交
3644 3645
		if (ret > 0) {
			hctx->poll_success++;
3646
			__set_current_state(TASK_RUNNING);
3647
			return ret;
J
Jens Axboe 已提交
3648 3649 3650
		}

		if (signal_pending_state(state, current))
3651
			__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3652 3653

		if (current->state == TASK_RUNNING)
3654
			return 1;
3655
		if (ret < 0 || !spin)
J
Jens Axboe 已提交
3656 3657
			break;
		cpu_relax();
3658
	} while (!need_resched());
J
Jens Axboe 已提交
3659

3660
	__set_current_state(TASK_RUNNING);
3661
	return 0;
J
Jens Axboe 已提交
3662
}
C
Christoph Hellwig 已提交
3663
EXPORT_SYMBOL_GPL(blk_poll);
J
Jens Axboe 已提交
3664

J
Jens Axboe 已提交
3665 3666 3667 3668 3669 3670
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

3671 3672
static int __init blk_mq_init(void)
{
3673 3674
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3675 3676 3677
	return 0;
}
subsys_initcall(blk_mq_init);