blk-mq.c 80.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-pm.h"
37
#include "blk-stat.h"
38
#include "blk-mq-sched.h"
39
#include "blk-rq-qos.h"
40

41
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47 48
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
49
	ddir = rq_data_dir(rq);
50 51 52 53 54 55 56 57 58 59 60 61
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

62 63 64
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
65
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66
{
67 68
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
69
			blk_mq_sched_has_work(hctx);
70 71
}

72 73 74 75 76 77
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
78 79 80 81
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
82 83 84 85 86
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
87 88 89
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
90 91
}

92 93 94 95 96 97 98 99 100 101 102
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

103 104 105 106 107 108 109 110 111
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
112 113 114 115 116 117 118
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

119
	inflight[0] = inflight[1] = 0;
120 121 122
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

142
void blk_freeze_queue_start(struct request_queue *q)
143
{
144
	int freeze_depth;
145

146 147
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
148
		percpu_ref_kill(&q->q_usage_counter);
149 150
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
151
	}
152
}
153
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
154

155
void blk_mq_freeze_queue_wait(struct request_queue *q)
156
{
157
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
158
}
159
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
160

161 162 163 164 165 166 167 168
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
169

170 171 172 173
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
174
void blk_freeze_queue(struct request_queue *q)
175
{
176 177 178 179 180 181 182
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
183
	blk_freeze_queue_start(q);
184 185
	blk_mq_freeze_queue_wait(q);
}
186 187 188 189 190 191 192 193 194

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
195
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
196

197
void blk_mq_unfreeze_queue(struct request_queue *q)
198
{
199
	int freeze_depth;
200

201 202 203
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
204
		percpu_ref_resurrect(&q->q_usage_counter);
205
		wake_up_all(&q->mq_freeze_wq);
206
	}
207
}
208
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
209

210 211 212 213 214 215
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
216
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
217 218 219
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

220
/**
221
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
222 223 224
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
225 226 227
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
228 229 230 231 232 233 234
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

235
	blk_mq_quiesce_queue_nowait(q);
236

237 238
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
239
			synchronize_srcu(hctx->srcu);
240 241 242 243 244 245 246 247
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

248 249 250 251 252 253 254 255 256
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
257
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
258

259 260
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
261 262 263
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

264 265 266 267 268 269 270 271 272 273
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

274 275 276 277 278 279
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

280 281
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
282
{
283 284
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
285
	req_flags_t rq_flags = 0;
286

287 288 289 290
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
291
		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
292
			rq_flags = RQF_MQ_INFLIGHT;
293 294 295 296 297 298 299
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

300
	/* csd/requeue_work/fifo_time is initialized before use */
301 302
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
303
	rq->rq_flags = rq_flags;
304
	rq->cmd_flags = op;
305 306
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
307
	if (blk_queue_io_stat(data->q))
308
		rq->rq_flags |= RQF_IO_STAT;
309
	INIT_LIST_HEAD(&rq->queuelist);
310 311 312 313
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
314
	rq->start_time_ns = ktime_get_ns();
315
	rq->io_start_time_ns = 0;
316 317 318 319 320 321 322
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
323
	rq->__deadline = 0;
324 325

	INIT_LIST_HEAD(&rq->timeout_list);
326 327
	rq->timeout = 0;

328 329 330 331
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

332
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
333
	refcount_set(&rq->ref, 1);
334
	return rq;
335 336
}

337
static struct request *blk_mq_get_request(struct request_queue *q,
338 339
					  struct bio *bio,
					  struct blk_mq_alloc_data *data)
340 341 342
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
343
	unsigned int tag;
344
	bool put_ctx_on_error = false;
345 346 347

	blk_queue_enter_live(q);
	data->q = q;
348 349 350 351
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
352
	if (likely(!data->hctx))
353 354 355
		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
						data->ctx->cpu);
	if (data->cmd_flags & REQ_NOWAIT)
356
		data->flags |= BLK_MQ_REQ_NOWAIT;
357 358 359 360 361 362

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
363 364
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
365
		 */
366 367
		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.limit_depth &&
368
		    !(data->flags & BLK_MQ_REQ_RESERVED))
369
			e->type->ops.limit_depth(data->cmd_flags, data);
370 371
	} else {
		blk_mq_tag_busy(data->hctx);
372 373
	}

374 375
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
376 377
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
378 379
			data->ctx = NULL;
		}
380 381
		blk_queue_exit(q);
		return NULL;
382 383
	}

384 385
	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
	if (!op_is_flush(data->cmd_flags)) {
386
		rq->elv.icq = NULL;
387
		if (e && e->type->ops.prepare_request) {
388 389 390
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

391
			e->type->ops.prepare_request(rq, bio);
392
			rq->rq_flags |= RQF_ELVPRIV;
393
		}
394 395 396
	}
	data->hctx->queued++;
	return rq;
397 398
}

399
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400
		blk_mq_req_flags_t flags)
401
{
402
	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
403
	struct request *rq;
404
	int ret;
405

406
	ret = blk_queue_enter(q, flags);
407 408
	if (ret)
		return ERR_PTR(ret);
409

410
	rq = blk_mq_get_request(q, NULL, &alloc_data);
411
	blk_queue_exit(q);
412

413
	if (!rq)
414
		return ERR_PTR(-EWOULDBLOCK);
415

416 417
	blk_mq_put_ctx(alloc_data.ctx);

418 419 420
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
421 422
	return rq;
}
423
EXPORT_SYMBOL(blk_mq_alloc_request);
424

425
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
427
{
428
	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
M
Ming Lin 已提交
429
	struct request *rq;
430
	unsigned int cpu;
M
Ming Lin 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

445
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
446 447 448
	if (ret)
		return ERR_PTR(ret);

449 450 451 452
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
453 454 455 456
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
457
	}
458
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
460

461
	rq = blk_mq_get_request(q, NULL, &alloc_data);
462
	blk_queue_exit(q);
463

464 465 466 467
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
468 469 470
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
471 472 473 474
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
475
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->cmd_flags, ctx->cpu);
K
Keith Busch 已提交
476 477
	const int sched_tag = rq->internal_tag;

478
	blk_pm_mark_last_busy(rq);
K
Keith Busch 已提交
479 480 481 482 483 484 485 486
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

487
void blk_mq_free_request(struct request *rq)
488 489
{
	struct request_queue *q = rq->q;
490 491
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
492
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->cmd_flags, ctx->cpu);
493

494
	if (rq->rq_flags & RQF_ELVPRIV) {
495 496
		if (e && e->type->ops.finish_request)
			e->type->ops.finish_request(rq);
497 498 499 500 501
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
502

503
	ctx->rq_completed[rq_is_sync(rq)]++;
504
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
505
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
506

507 508 509
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

510
	rq_qos_done(q, rq);
511

K
Keith Busch 已提交
512 513 514
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
515
}
J
Jens Axboe 已提交
516
EXPORT_SYMBOL_GPL(blk_mq_free_request);
517

518
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519
{
520 521
	u64 now = ktime_get_ns();

522 523
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
524
		blk_stat_add(rq, now);
525 526
	}

527 528 529
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq, now);

530
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
531

C
Christoph Hellwig 已提交
532
	if (rq->end_io) {
533
		rq_qos_done(rq->q, rq);
534
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
535 536 537
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
538
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
539
	}
540
}
541
EXPORT_SYMBOL(__blk_mq_end_request);
542

543
void blk_mq_end_request(struct request *rq, blk_status_t error)
544 545 546
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
547
	__blk_mq_end_request(rq, error);
548
}
549
EXPORT_SYMBOL(blk_mq_end_request);
550

551
static void __blk_mq_complete_request_remote(void *data)
552
{
553
	struct request *rq = data;
554
	struct request_queue *q = rq->q;
555

556
	q->mq_ops->complete(rq);
557 558
}

559
static void __blk_mq_complete_request(struct request *rq)
560 561
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
562
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
563
	bool shared = false;
564 565
	int cpu;

566
	if (!blk_mq_mark_complete(rq))
K
Keith Busch 已提交
567
		return;
568

569 570 571 572 573 574 575 576 577
	/*
	 * Most of single queue controllers, there is only one irq vector
	 * for handling IO completion, and the only irq's affinity is set
	 * as all possible CPUs. On most of ARCHs, this affinity means the
	 * irq is handled on one specific CPU.
	 *
	 * So complete IO reqeust in softirq context in case of single queue
	 * for not degrading IO performance by irqsoff latency.
	 */
578
	if (q->nr_hw_queues == 1) {
579 580 581 582
		__blk_complete_request(rq);
		return;
	}

583 584
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
		q->mq_ops->complete(rq);
585 586
		return;
	}
587 588

	cpu = get_cpu();
589
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
C
Christoph Hellwig 已提交
590 591 592
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
593
		rq->csd.func = __blk_mq_complete_request_remote;
594 595
		rq->csd.info = rq;
		rq->csd.flags = 0;
596
		smp_call_function_single_async(ctx->cpu, &rq->csd);
597
	} else {
598
		q->mq_ops->complete(rq);
599
	}
600 601
	put_cpu();
}
602

603
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
604
	__releases(hctx->srcu)
605 606 607 608
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
609
		srcu_read_unlock(hctx->srcu, srcu_idx);
610 611 612
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
613
	__acquires(hctx->srcu)
614
{
615 616 617
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
618
		rcu_read_lock();
619
	} else
620
		*srcu_idx = srcu_read_lock(hctx->srcu);
621 622
}

623 624 625 626 627 628 629 630
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
631
void blk_mq_complete_request(struct request *rq)
632
{
K
Keith Busch 已提交
633
	if (unlikely(blk_should_fake_timeout(rq->q)))
634
		return;
K
Keith Busch 已提交
635
	__blk_mq_complete_request(rq);
636 637
}
EXPORT_SYMBOL(blk_mq_complete_request);
638

639 640
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
641
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
642 643 644
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

645
void blk_mq_start_request(struct request *rq)
646 647 648
{
	struct request_queue *q = rq->q;

649 650
	blk_mq_sched_started_request(rq);

651 652
	trace_block_rq_issue(q, rq);

653
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
654 655 656 657
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
658
		rq->rq_flags |= RQF_STATS;
659
		rq_qos_issue(q, rq);
660 661
	}

662
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
663

664
	blk_add_timer(rq);
K
Keith Busch 已提交
665
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
666 667 668 669 670 671 672 673 674

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
675
}
676
EXPORT_SYMBOL(blk_mq_start_request);
677

678
static void __blk_mq_requeue_request(struct request *rq)
679 680 681
{
	struct request_queue *q = rq->q;

682 683
	blk_mq_put_driver_tag(rq);

684
	trace_block_rq_requeue(q, rq);
685
	rq_qos_requeue(q, rq);
686

K
Keith Busch 已提交
687 688
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
689
		rq->rq_flags &= ~RQF_TIMED_OUT;
690 691 692
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
693 694
}

695
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
696 697 698
{
	__blk_mq_requeue_request(rq);

699 700 701
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
702
	BUG_ON(!list_empty(&rq->queuelist));
703
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
704 705 706
}
EXPORT_SYMBOL(blk_mq_requeue_request);

707 708 709
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
710
		container_of(work, struct request_queue, requeue_work.work);
711 712 713
	LIST_HEAD(rq_list);
	struct request *rq, *next;

714
	spin_lock_irq(&q->requeue_lock);
715
	list_splice_init(&q->requeue_list, &rq_list);
716
	spin_unlock_irq(&q->requeue_lock);
717 718

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
719
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
720 721
			continue;

722
		rq->rq_flags &= ~RQF_SOFTBARRIER;
723
		list_del_init(&rq->queuelist);
724
		blk_mq_sched_insert_request(rq, true, false, false);
725 726 727 728 729
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
730
		blk_mq_sched_insert_request(rq, false, false, false);
731 732
	}

733
	blk_mq_run_hw_queues(q, false);
734 735
}

736 737
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
738 739 740 741 742 743
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
744
	 * request head insertion from the workqueue.
745
	 */
746
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
747 748 749

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
750
		rq->rq_flags |= RQF_SOFTBARRIER;
751 752 753 754 755
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
756 757 758

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
759 760 761 762 763
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
764
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
765 766 767
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

768 769 770
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
771 772
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
773 774 775
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

776 777
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
778 779
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
780
		return tags->rqs[tag];
781
	}
782 783

	return NULL;
784 785 786
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

787
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
788
{
789
	req->rq_flags |= RQF_TIMED_OUT;
790 791 792 793 794 795 796
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
797
	}
798 799

	blk_add_timer(req);
800
}
801

K
Keith Busch 已提交
802
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
803
{
K
Keith Busch 已提交
804
	unsigned long deadline;
805

K
Keith Busch 已提交
806 807
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
808 809
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
810

K
Keith Busch 已提交
811 812 813
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
814

K
Keith Busch 已提交
815 816 817 818 819
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
820 821
}

K
Keith Busch 已提交
822
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
823 824
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

846
	/*
K
Keith Busch 已提交
847 848 849 850
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
851
	 */
K
Keith Busch 已提交
852
	if (blk_mq_req_expired(rq, next))
853
		blk_mq_rq_timed_out(rq, reserved);
K
Keith Busch 已提交
854 855
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
856 857
}

858
static void blk_mq_timeout_work(struct work_struct *work)
859
{
860 861
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
862
	unsigned long next = 0;
863
	struct blk_mq_hw_ctx *hctx;
864
	int i;
865

866 867 868 869 870 871 872 873 874
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
875
	 * blk_freeze_queue_start, and the moment the last request is
876 877 878 879
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
880 881
		return;

K
Keith Busch 已提交
882
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
883

K
Keith Busch 已提交
884 885
	if (next != 0) {
		mod_timer(&q->timeout, next);
886
	} else {
887 888 889 890 891 892
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
893 894 895 896 897
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
898
	}
899
	blk_queue_exit(q);
900 901
}

902 903 904 905 906 907 908 909 910 911 912 913 914
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
915
	sbitmap_clear_bit(sb, bitnr);
916 917 918 919
	spin_unlock(&ctx->lock);
	return true;
}

920 921 922 923
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
924
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
925
{
926 927 928 929
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
930

931
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
932
}
933
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
934

935 936 937 938 939 940 941 942 943 944 945 946 947
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
948
	if (!list_empty(&ctx->rq_list)) {
949 950 951 952 953 954 955 956 957 958 959 960 961
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
962
	unsigned off = start ? start->index_hw[hctx->type] : 0;
963 964 965 966 967 968 969 970 971 972 973
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

974 975 976 977
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
978

979
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
980 981
}

982
bool blk_mq_get_driver_tag(struct request *rq)
983 984 985
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
986
		.hctx = blk_mq_map_queue(rq->q, rq->cmd_flags, rq->mq_ctx->cpu),
987
		.flags = BLK_MQ_REQ_NOWAIT,
988
		.cmd_flags = rq->cmd_flags,
989
	};
990
	bool shared;
991

992 993
	if (rq->tag != -1)
		goto done;
994

995 996 997
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

998
	shared = blk_mq_tag_busy(data.hctx);
999 1000
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1001
		if (shared) {
1002 1003 1004
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1005 1006 1007
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1008 1009
done:
	return rq->tag != -1;
1010 1011
}

1012 1013
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1014 1015 1016 1017 1018
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1019
	spin_lock(&hctx->dispatch_wait_lock);
1020
	list_del_init(&wait->entry);
1021 1022
	spin_unlock(&hctx->dispatch_wait_lock);

1023 1024 1025 1026
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1027 1028
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1029 1030
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1031 1032
 * marking us as waiting.
 */
1033
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1034
				 struct request *rq)
1035
{
1036
	struct wait_queue_head *wq;
1037 1038
	wait_queue_entry_t *wait;
	bool ret;
1039

1040 1041 1042
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1043

1044 1045 1046 1047 1048 1049 1050 1051
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1052
		return blk_mq_get_driver_tag(rq);
1053 1054
	}

1055
	wait = &hctx->dispatch_wait;
1056 1057 1058
	if (!list_empty_careful(&wait->entry))
		return false;

1059 1060 1061 1062
	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1063
	if (!list_empty(&wait->entry)) {
1064 1065
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1066
		return false;
1067 1068
	}

1069 1070
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1071

1072
	/*
1073 1074 1075
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1076
	 */
1077
	ret = blk_mq_get_driver_tag(rq);
1078
	if (!ret) {
1079 1080
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1081
		return false;
1082
	}
1083 1084 1085 1086 1087 1088

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1089 1090
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1091 1092

	return true;
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1124 1125
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1126 1127 1128
/*
 * Returns true if we did some work AND can potentially do more.
 */
1129
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1130
			     bool got_budget)
1131
{
1132
	struct blk_mq_hw_ctx *hctx;
1133
	struct request *rq, *nxt;
1134
	bool no_tag = false;
1135
	int errors, queued;
1136
	blk_status_t ret = BLK_STS_OK;
1137

1138 1139 1140
	if (list_empty(list))
		return false;

1141 1142
	WARN_ON(!list_is_singular(list) && got_budget);

1143 1144 1145
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1146
	errors = queued = 0;
1147
	do {
1148
		struct blk_mq_queue_data bd;
1149

1150
		rq = list_first_entry(list, struct request, queuelist);
1151

1152
		hctx = blk_mq_map_queue(rq->q, rq->cmd_flags, rq->mq_ctx->cpu);
1153 1154 1155
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

1156
		if (!blk_mq_get_driver_tag(rq)) {
1157
			/*
1158
			 * The initial allocation attempt failed, so we need to
1159 1160 1161 1162
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1163
			 */
1164
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1165
				blk_mq_put_dispatch_budget(hctx);
1166 1167 1168 1169 1170 1171
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1172 1173 1174 1175
				break;
			}
		}

1176 1177
		list_del_init(&rq->queuelist);

1178
		bd.rq = rq;
1179 1180 1181 1182 1183 1184 1185 1186 1187

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1188
			bd.last = !blk_mq_get_driver_tag(nxt);
1189
		}
1190 1191

		ret = q->mq_ops->queue_rq(hctx, &bd);
1192
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1193 1194
			/*
			 * If an I/O scheduler has been configured and we got a
1195 1196
			 * driver tag for the next request already, free it
			 * again.
1197 1198 1199 1200 1201
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1202
			list_add(&rq->queuelist, list);
1203
			__blk_mq_requeue_request(rq);
1204
			break;
1205 1206 1207
		}

		if (unlikely(ret != BLK_STS_OK)) {
1208
			errors++;
1209
			blk_mq_end_request(rq, BLK_STS_IOERR);
1210
			continue;
1211 1212
		}

1213
		queued++;
1214
	} while (!list_empty(list));
1215

1216
	hctx->dispatched[queued_to_index(queued)]++;
1217 1218 1219 1220 1221

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1222
	if (!list_empty(list)) {
1223 1224
		bool needs_restart;

1225
		spin_lock(&hctx->lock);
1226
		list_splice_init(list, &hctx->dispatch);
1227
		spin_unlock(&hctx->lock);
1228

1229
		/*
1230 1231 1232
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1233
		 *
1234 1235 1236 1237
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1238
		 *
1239 1240 1241 1242 1243 1244 1245
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1246
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1247
		 *   and dm-rq.
1248 1249 1250 1251
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1252
		 */
1253 1254
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1255
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1256
			blk_mq_run_hw_queue(hctx, true);
1257 1258
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1259

1260
		blk_mq_update_dispatch_busy(hctx, true);
1261
		return false;
1262 1263
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1264

1265 1266 1267 1268 1269 1270 1271
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1272
	return (queued + errors) != 0;
1273 1274
}

1275 1276 1277 1278
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1279 1280 1281
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1295
	 */
1296 1297 1298 1299 1300 1301 1302
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1303

1304 1305 1306 1307 1308 1309
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1310
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1311

1312 1313 1314
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1315 1316
}

1317 1318 1319 1320 1321 1322 1323 1324 1325
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1326 1327 1328 1329 1330 1331 1332 1333
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1334
	bool tried = false;
1335
	int next_cpu = hctx->next_cpu;
1336

1337 1338
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1339 1340

	if (--hctx->next_cpu_batch <= 0) {
1341
select_cpu:
1342
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1343
				cpu_online_mask);
1344
		if (next_cpu >= nr_cpu_ids)
1345
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1346 1347 1348
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1349 1350 1351 1352
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1353
	if (!cpu_online(next_cpu)) {
1354 1355 1356 1357 1358 1359 1360 1361 1362
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1363
		hctx->next_cpu = next_cpu;
1364 1365 1366
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1367 1368 1369

	hctx->next_cpu = next_cpu;
	return next_cpu;
1370 1371
}

1372 1373
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1374
{
1375
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1376 1377
		return;

1378
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1379 1380
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1381
			__blk_mq_run_hw_queue(hctx);
1382
			put_cpu();
1383 1384
			return;
		}
1385

1386
		put_cpu();
1387
	}
1388

1389 1390
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1391 1392 1393 1394 1395 1396 1397 1398
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1399
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1400
{
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1412 1413 1414 1415
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1416 1417

	if (need_run) {
1418 1419 1420 1421 1422
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1423
}
O
Omar Sandoval 已提交
1424
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1425

1426
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1427 1428 1429 1430 1431
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1432
		if (blk_mq_hctx_stopped(hctx))
1433 1434
			continue;

1435
		blk_mq_run_hw_queue(hctx, async);
1436 1437
	}
}
1438
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1460 1461 1462
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1463
 * BLK_STS_RESOURCE is usually returned.
1464 1465 1466 1467 1468
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1469 1470
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1471
	cancel_delayed_work(&hctx->run_work);
1472

1473
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1474
}
1475
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1476

1477 1478 1479
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1480
 * BLK_STS_RESOURCE is usually returned.
1481 1482 1483 1484 1485
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1486 1487
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1488 1489 1490 1491 1492
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1493 1494 1495
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1496 1497 1498
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1499

1500
	blk_mq_run_hw_queue(hctx, false);
1501 1502 1503
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1524
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1525 1526 1527 1528
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1529 1530
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1531 1532 1533
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1534
static void blk_mq_run_work_fn(struct work_struct *work)
1535 1536 1537
{
	struct blk_mq_hw_ctx *hctx;

1538
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1539

1540
	/*
M
Ming Lei 已提交
1541
	 * If we are stopped, don't run the queue.
1542
	 */
M
Ming Lei 已提交
1543
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1544
		return;
1545 1546 1547 1548

	__blk_mq_run_hw_queue(hctx);
}

1549 1550 1551
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1552
{
J
Jens Axboe 已提交
1553 1554
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1555 1556
	lockdep_assert_held(&ctx->lock);

1557 1558
	trace_block_rq_insert(hctx->queue, rq);

1559 1560 1561 1562
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1563
}
1564

1565 1566
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1567 1568 1569
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1570 1571
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1572
	__blk_mq_insert_req_list(hctx, rq, at_head);
1573 1574 1575
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1576 1577 1578 1579
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1580
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1581 1582
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1583 1584
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, rq->cmd_flags,
							ctx->cpu);
1585 1586 1587 1588 1589

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1590 1591
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1592 1593
}

1594 1595
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1596 1597

{
1598 1599
	struct request *rq;

1600 1601 1602 1603
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1604
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1605
		BUG_ON(rq->mq_ctx != ctx);
1606
		trace_block_rq_insert(hctx->queue, rq);
1607
	}
1608 1609 1610

	spin_lock(&ctx->lock);
	list_splice_tail_init(list, &ctx->rq_list);
1611
	blk_mq_hctx_mark_pending(hctx, ctx);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1648
				trace_block_unplug(this_q, depth, !from_schedule);
1649 1650 1651
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1668
		trace_block_unplug(this_q, depth, !from_schedule);
1669 1670
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1671 1672 1673 1674 1675
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1676
	blk_init_request_from_bio(rq, bio);
1677

1678
	blk_account_io_start(rq, true);
1679 1680
}

1681 1682
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1683 1684 1685 1686
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1687 1688
}

1689 1690 1691
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1692 1693 1694 1695
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1696
		.last = true,
1697
	};
1698
	blk_qc_t new_cookie;
1699
	blk_status_t ret;
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1711
		blk_mq_update_dispatch_busy(hctx, false);
1712 1713 1714
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1715
	case BLK_STS_DEV_RESOURCE:
1716
		blk_mq_update_dispatch_busy(hctx, true);
1717 1718 1719
		__blk_mq_requeue_request(rq);
		break;
	default:
1720
		blk_mq_update_dispatch_busy(hctx, false);
1721 1722 1723 1724 1725 1726 1727 1728 1729
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1730 1731
						blk_qc_t *cookie,
						bool bypass_insert)
1732 1733
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1734 1735
	bool run_queue = true;

1736 1737 1738 1739
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1740
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1741 1742
	 * and avoid driver to try to dispatch again.
	 */
1743
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1744
		run_queue = false;
1745
		bypass_insert = false;
M
Ming Lei 已提交
1746 1747
		goto insert;
	}
1748

1749
	if (q->elevator && !bypass_insert)
1750 1751
		goto insert;

1752
	if (!blk_mq_get_dispatch_budget(hctx))
1753 1754
		goto insert;

1755
	if (!blk_mq_get_driver_tag(rq)) {
1756
		blk_mq_put_dispatch_budget(hctx);
1757
		goto insert;
1758
	}
1759

1760
	return __blk_mq_issue_directly(hctx, rq, cookie);
1761
insert:
1762 1763
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1764

1765
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1766
	return BLK_STS_OK;
1767 1768
}

1769 1770 1771
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1772
	blk_status_t ret;
1773
	int srcu_idx;
1774

1775
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1776

1777
	hctx_lock(hctx, &srcu_idx);
1778

1779
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1780
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1781
		blk_mq_sched_insert_request(rq, false, true, false);
1782 1783 1784
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1785
	hctx_unlock(hctx, srcu_idx);
1786 1787
}

1788
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1789 1790 1791 1792 1793
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1794 1795
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, rq->cmd_flags,
							ctx->cpu);
1796 1797 1798 1799 1800 1801

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1802 1803
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
	while (!list_empty(list)) {
		blk_status_t ret;
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
		ret = blk_mq_request_issue_directly(rq);
		if (ret != BLK_STS_OK) {
1815 1816 1817 1818 1819 1820
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
				list_add(&rq->queuelist, list);
				break;
			}
			blk_mq_end_request(rq, ret);
1821 1822 1823 1824
		}
	}
}

1825
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1826
{
1827
	const int is_sync = op_is_sync(bio->bi_opf);
1828
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1829
	struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
1830
	struct request *rq;
1831
	unsigned int request_count = 0;
1832
	struct blk_plug *plug;
1833
	struct request *same_queue_rq = NULL;
1834
	blk_qc_t cookie;
1835 1836 1837

	blk_queue_bounce(q, &bio);

1838
	blk_queue_split(q, &bio);
1839

1840
	if (!bio_integrity_prep(bio))
1841
		return BLK_QC_T_NONE;
1842

1843 1844 1845
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1846

1847 1848 1849
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

1850
	rq_qos_throttle(q, bio, NULL);
J
Jens Axboe 已提交
1851

1852
	rq = blk_mq_get_request(q, bio, &data);
J
Jens Axboe 已提交
1853
	if (unlikely(!rq)) {
1854
		rq_qos_cleanup(q, bio);
1855 1856
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1857
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1858 1859
	}

1860 1861
	trace_block_getrq(q, bio, bio->bi_opf);

1862
	rq_qos_track(q, rq, bio);
1863

1864
	cookie = request_to_qc_t(data.hctx, rq);
1865

1866
	plug = current->plug;
1867
	if (unlikely(is_flush_fua)) {
1868
		blk_mq_put_ctx(data.ctx);
1869
		blk_mq_bio_to_request(rq, bio);
1870 1871 1872 1873

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1874
	} else if (plug && q->nr_hw_queues == 1) {
1875 1876
		struct request *last = NULL;

1877
		blk_mq_put_ctx(data.ctx);
1878
		blk_mq_bio_to_request(rq, bio);
1879 1880 1881 1882 1883 1884 1885

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1886 1887 1888
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1889
		if (!request_count)
1890
			trace_block_plug(q);
1891 1892
		else
			last = list_entry_rq(plug->mq_list.prev);
1893

1894 1895
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1896 1897
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1898
		}
1899

1900
		list_add_tail(&rq->queuelist, &plug->mq_list);
1901
	} else if (plug && !blk_queue_nomerges(q)) {
1902
		blk_mq_bio_to_request(rq, bio);
1903 1904

		/*
1905
		 * We do limited plugging. If the bio can be merged, do that.
1906 1907
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1908 1909
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1910
		 */
1911 1912 1913 1914 1915 1916
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1917 1918
		blk_mq_put_ctx(data.ctx);

1919 1920
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
1921
					same_queue_rq->cmd_flags,
1922
					same_queue_rq->mq_ctx->cpu);
1923 1924
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1925
		}
1926 1927
	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
			!data.hctx->dispatch_busy)) {
1928
		blk_mq_put_ctx(data.ctx);
1929 1930
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1931
	} else {
1932
		blk_mq_put_ctx(data.ctx);
1933
		blk_mq_bio_to_request(rq, bio);
1934
		blk_mq_sched_insert_request(rq, false, true, true);
1935
	}
1936

1937
	return cookie;
1938 1939
}

1940 1941
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1942
{
1943
	struct page *page;
1944

1945
	if (tags->rqs && set->ops->exit_request) {
1946
		int i;
1947

1948
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1949 1950 1951
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1952
				continue;
1953
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1954
			tags->static_rqs[i] = NULL;
1955
		}
1956 1957
	}

1958 1959
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1960
		list_del_init(&page->lru);
1961 1962 1963 1964 1965
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1966 1967
		__free_pages(page, page->private);
	}
1968
}
1969

1970 1971
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1972
	kfree(tags->rqs);
1973
	tags->rqs = NULL;
J
Jens Axboe 已提交
1974 1975
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1976

1977
	blk_mq_free_tags(tags);
1978 1979
}

1980 1981 1982 1983
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1984
{
1985
	struct blk_mq_tags *tags;
1986
	int node;
1987

J
Jens Axboe 已提交
1988
	node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
1989 1990 1991 1992
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1993
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1994 1995
	if (!tags)
		return NULL;
1996

1997
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1998
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1999
				 node);
2000 2001 2002 2003
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2004

2005 2006 2007
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2008 2009 2010 2011 2012 2013
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2014 2015 2016 2017 2018 2019 2020 2021
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2033
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2034 2035 2036
	return 0;
}

2037 2038 2039 2040 2041
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2042 2043
	int node;

J
Jens Axboe 已提交
2044
	node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2045 2046
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2047 2048 2049

	INIT_LIST_HEAD(&tags->page_list);

2050 2051 2052 2053
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2054
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2055
				cache_line_size());
2056
	left = rq_size * depth;
2057

2058
	for (i = 0; i < depth; ) {
2059 2060 2061 2062 2063
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2064
		while (this_order && left < order_to_size(this_order - 1))
2065 2066 2067
			this_order--;

		do {
2068
			page = alloc_pages_node(node,
2069
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2070
				this_order);
2071 2072 2073 2074 2075 2076 2077 2078 2079
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2080
			goto fail;
2081 2082

		page->private = this_order;
2083
		list_add_tail(&page->lru, &tags->page_list);
2084 2085

		p = page_address(page);
2086 2087 2088 2089
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2090
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2091
		entries_per_page = order_to_size(this_order) / rq_size;
2092
		to_do = min(entries_per_page, depth - i);
2093 2094
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2095 2096 2097
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2098 2099 2100
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2101 2102
			}

2103 2104 2105 2106
			p += rq_size;
			i++;
		}
	}
2107
	return 0;
2108

2109
fail:
2110 2111
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2112 2113
}

J
Jens Axboe 已提交
2114 2115 2116 2117 2118
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2119
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2120
{
2121
	struct blk_mq_hw_ctx *hctx;
2122 2123 2124
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2125
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2126
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2127 2128 2129 2130 2131 2132 2133 2134 2135

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2136
		return 0;
2137

J
Jens Axboe 已提交
2138 2139 2140
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2141 2142

	blk_mq_run_hw_queue(hctx, true);
2143
	return 0;
2144 2145
}

2146
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2147
{
2148 2149
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2150 2151
}

2152
/* hctx->ctxs will be freed in queue's release handler */
2153 2154 2155 2156
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2157 2158
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2159

2160
	if (set->ops->exit_request)
2161
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2162

2163 2164 2165
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2166
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2167
		cleanup_srcu_struct(hctx->srcu);
2168

2169
	blk_mq_remove_cpuhp(hctx);
2170
	blk_free_flush_queue(hctx->fq);
2171
	sbitmap_free(&hctx->ctx_map);
2172 2173
}

M
Ming Lei 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2183
		blk_mq_debugfs_unregister_hctx(hctx);
2184
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2185 2186 2187
	}
}

2188 2189 2190
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2191
{
2192 2193 2194 2195 2196 2197
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2198
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2199 2200 2201
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2202
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2203

2204
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2205 2206

	hctx->tags = set->tags[hctx_idx];
2207 2208

	/*
2209 2210
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2211
	 */
2212
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2213
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2214 2215
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2216

2217 2218
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2219
		goto free_ctxs;
2220

2221
	hctx->nr_ctx = 0;
2222

2223
	spin_lock_init(&hctx->dispatch_wait_lock);
2224 2225 2226
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2227 2228 2229
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2230

2231 2232
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2233
	if (!hctx->fq)
2234
		goto exit_hctx;
2235

2236
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2237
		goto free_fq;
2238

2239
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2240
		init_srcu_struct(hctx->srcu);
2241

2242
	return 0;
2243

2244 2245 2246 2247 2248
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2249
 free_bitmap:
2250
	sbitmap_free(&hctx->ctx_map);
2251 2252 2253
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2254
	blk_mq_remove_cpuhp(hctx);
2255 2256
	return -1;
}
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2276
		hctx = blk_mq_map_queue_type(q, 0, i);
2277
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2278
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2279 2280 2281
	}
}

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2304 2305 2306 2307 2308
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2309 2310
}

2311
static void blk_mq_map_swqueue(struct request_queue *q)
2312
{
2313
	unsigned int i, hctx_idx;
2314 2315
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2316
	struct blk_mq_tag_set *set = q->tag_set;
2317

2318 2319 2320 2321 2322
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2323
	queue_for_each_hw_ctx(q, hctx, i) {
2324
		cpumask_clear(hctx->cpumask);
2325
		hctx->nr_ctx = 0;
2326
		hctx->dispatch_from = NULL;
2327 2328 2329
	}

	/*
2330
	 * Map software to hardware queues.
2331 2332
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2333
	 */
2334
	for_each_possible_cpu(i) {
J
Jens Axboe 已提交
2335
		hctx_idx = set->map[0].mq_map[i];
2336 2337 2338 2339 2340 2341 2342 2343 2344
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
J
Jens Axboe 已提交
2345
			set->map[0].mq_map[i] = 0;
2346 2347
		}

2348
		ctx = per_cpu_ptr(q->queue_ctx, i);
2349
		hctx = blk_mq_map_queue_type(q, 0, i);
2350
		hctx->type = 0;
2351
		cpumask_set_cpu(i, hctx->cpumask);
2352
		ctx->index_hw[hctx->type] = hctx->nr_ctx;
2353
		hctx->ctxs[hctx->nr_ctx++] = ctx;
2354 2355 2356 2357 2358 2359

		/*
		 * If the nr_ctx type overflows, we have exceeded the
		 * amount of sw queues we can support.
		 */
		BUG_ON(!hctx->nr_ctx);
2360
	}
2361

2362 2363
	mutex_unlock(&q->sysfs_lock);

2364
	queue_for_each_hw_ctx(q, hctx, i) {
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2380

M
Ming Lei 已提交
2381 2382 2383
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2384 2385 2386 2387 2388
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2389
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2390

2391 2392 2393
		/*
		 * Initialize batch roundrobin counts
		 */
2394
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2395 2396
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2397 2398
}

2399 2400 2401 2402
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2403
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2404 2405 2406 2407
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2408
	queue_for_each_hw_ctx(q, hctx, i) {
2409
		if (shared)
2410
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2411
		else
2412 2413 2414 2415
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2416 2417
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2418 2419
{
	struct request_queue *q;
2420

2421 2422
	lockdep_assert_held(&set->tag_list_lock);

2423 2424
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2425
		queue_set_hctx_shared(q, shared);
2426 2427 2428 2429 2430 2431 2432 2433 2434
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2435
	list_del_rcu(&q->tag_set_list);
2436 2437 2438 2439 2440 2441
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2442
	mutex_unlock(&set->tag_list_lock);
2443
	INIT_LIST_HEAD(&q->tag_set_list);
2444 2445 2446 2447 2448 2449
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
2450

2451 2452 2453 2454 2455
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2456 2457 2458 2459 2460 2461
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2462
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2463

2464 2465 2466
	mutex_unlock(&set->tag_list_lock);
}

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2479 2480 2481
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2482
		kobject_put(&hctx->kobj);
2483
	}
2484 2485 2486

	kfree(q->queue_hw_ctx);

2487 2488 2489 2490 2491 2492
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2493 2494 2495
	free_percpu(q->queue_ctx);
}

2496
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2497 2498 2499
{
	struct request_queue *uninit_q, *q;

2500
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/*
 * Helper for setting up a queue with mq ops, given queue depth, and
 * the passed in mq ops flags.
 */
struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
					   const struct blk_mq_ops *ops,
					   unsigned int queue_depth,
					   unsigned int set_flags)
{
	struct request_queue *q;
	int ret;

	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		return ERR_PTR(ret);

	q = blk_mq_init_queue(set);
	if (IS_ERR(q)) {
		blk_mq_free_tag_set(set);
		return q;
	}

	return q;
}
EXPORT_SYMBOL(blk_mq_init_sq_queue);

2545 2546 2547 2548
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2549
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2550 2551 2552 2553 2554 2555 2556 2557 2558
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
			node);
	if (!hctx)
		return NULL;

	if (!zalloc_cpumask_var_node(&hctx->cpumask,
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				node)) {
		kfree(hctx);
		return NULL;
	}

	atomic_set(&hctx->nr_active, 0);
	hctx->numa_node = node;
	hctx->queue_num = hctx_idx;

	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
		free_cpumask_var(hctx->cpumask);
		kfree(hctx);
		return NULL;
	}
	blk_mq_hctx_kobj_init(hctx);

	return hctx;
}

K
Keith Busch 已提交
2592 2593
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2594
{
2595
	int i, j, end;
K
Keith Busch 已提交
2596
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2597

2598 2599
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2600
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2601
		int node;
2602
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
2603

J
Jens Axboe 已提交
2604
		node = blk_mq_hw_queue_to_node(&set->map[0], i);
2605 2606 2607 2608 2609 2610 2611
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
2612

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
			if (hctxs[i]) {
				blk_mq_exit_hctx(q, set, hctxs[i], i);
				kobject_put(&hctxs[i]->kobj);
			}
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
2627
		}
2628
	}
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
2641

2642
	for (; j < end; j++) {
K
Keith Busch 已提交
2643 2644 2645
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2646 2647
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2648 2649 2650 2651 2652 2653
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
2654
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2655 2656 2657 2658 2659
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2660 2661 2662
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2663
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2664 2665
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2666 2667 2668
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2669 2670
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2671
		goto err_exit;
K
Keith Busch 已提交
2672

2673 2674 2675
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2676
	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
K
Keith Busch 已提交
2677 2678 2679 2680 2681 2682 2683
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2684

2685
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2686
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2687 2688

	q->nr_queues = nr_cpu_ids;
J
Jens Axboe 已提交
2689
	q->tag_set = set;
2690

2691
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2692

2693
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2694
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2695

2696 2697
	q->sg_reserved_size = INT_MAX;

2698
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2699 2700 2701
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2702
	blk_queue_make_request(q, blk_mq_make_request);
2703 2704
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2705

2706 2707 2708 2709 2710
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2711 2712 2713 2714 2715
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2716
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2717
	blk_mq_add_queue_tag_set(set, q);
2718
	blk_mq_map_swqueue(q);
2719

2720 2721 2722
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2723
		ret = elevator_init_mq(q);
2724 2725 2726 2727
		if (ret)
			return ERR_PTR(ret);
	}

2728
	return q;
2729

2730
err_hctxs:
K
Keith Busch 已提交
2731
	kfree(q->queue_hw_ctx);
2732
err_percpu:
K
Keith Busch 已提交
2733
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2734 2735
err_exit:
	q->mq_ops = NULL;
2736 2737
	return ERR_PTR(-ENOMEM);
}
2738
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2739 2740 2741

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2742
	struct blk_mq_tag_set	*set = q->tag_set;
2743

2744
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2745
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2746 2747
}

2748 2749 2750 2751
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2752 2753
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2754 2755 2756 2757 2758 2759
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2760
		blk_mq_free_rq_map(set->tags[i]);
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2800 2801
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2802 2803 2804 2805 2806 2807 2808 2809
	if (set->ops->map_queues) {
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
2810
		 * 		set->map.mq_map[cpu] = queue;
2811 2812 2813 2814 2815 2816
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
2817
		blk_mq_clear_mq_map(&set->map[0]);
2818

2819
		return set->ops->map_queues(set);
2820
	} else
J
Jens Axboe 已提交
2821
		return blk_mq_map_queues(&set->map[0]);
2822 2823
}

2824 2825 2826
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
2827
 * requested depth down, if it's too large. In that case, the set
2828 2829
 * value will be stored in set->queue_depth.
 */
2830 2831
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2832 2833
	int ret;

B
Bart Van Assche 已提交
2834 2835
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2836 2837
	if (!set->nr_hw_queues)
		return -EINVAL;
2838
	if (!set->queue_depth)
2839 2840 2841 2842
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2843
	if (!set->ops->queue_rq)
2844 2845
		return -EINVAL;

2846 2847 2848
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2849 2850 2851 2852 2853
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2854

2855 2856 2857 2858 2859 2860 2861 2862 2863
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2864 2865 2866 2867 2868
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2869

2870
	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2871 2872
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2873
		return -ENOMEM;
2874

2875
	ret = -ENOMEM;
J
Jens Axboe 已提交
2876 2877 2878 2879
	set->map[0].mq_map = kcalloc_node(nr_cpu_ids,
					  sizeof(*set->map[0].mq_map),
					  GFP_KERNEL, set->numa_node);
	if (!set->map[0].mq_map)
2880
		goto out_free_tags;
J
Jens Axboe 已提交
2881
	set->map[0].nr_queues = set->nr_hw_queues;
2882

2883
	ret = blk_mq_update_queue_map(set);
2884 2885 2886 2887 2888
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2889
		goto out_free_mq_map;
2890

2891 2892 2893
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2894
	return 0;
2895 2896

out_free_mq_map:
J
Jens Axboe 已提交
2897 2898
	kfree(set->map[0].mq_map);
	set->map[0].mq_map = NULL;
2899
out_free_tags:
2900 2901
	kfree(set->tags);
	set->tags = NULL;
2902
	return ret;
2903 2904 2905 2906 2907 2908 2909
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2910 2911
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2912

J
Jens Axboe 已提交
2913 2914
	kfree(set->map[0].mq_map);
	set->map[0].mq_map = NULL;
2915

M
Ming Lei 已提交
2916
	kfree(set->tags);
2917
	set->tags = NULL;
2918 2919 2920
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2921 2922 2923 2924 2925 2926
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2927
	if (!set)
2928 2929
		return -EINVAL;

2930
	blk_mq_freeze_queue(q);
2931
	blk_mq_quiesce_queue(q);
2932

2933 2934
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2935 2936
		if (!hctx->tags)
			continue;
2937 2938 2939 2940
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2941
		if (!hctx->sched_tags) {
2942
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2943 2944 2945 2946 2947
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2948 2949 2950 2951 2952 2953 2954
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2955
	blk_mq_unquiesce_queue(q);
2956 2957
	blk_mq_unfreeze_queue(q);

2958 2959 2960
	return ret;
}

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3031 3032
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3033 3034
{
	struct request_queue *q;
3035
	LIST_HEAD(head);
3036
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3037

3038 3039
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
3040 3041 3042 3043 3044 3045 3046
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3047 3048 3049 3050
	/*
	 * Sync with blk_mq_queue_tag_busy_iter.
	 */
	synchronize_rcu();
3051 3052 3053 3054 3055 3056 3057 3058
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3059

3060 3061 3062 3063 3064
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3065
	prev_nr_hw_queues = set->nr_hw_queues;
K
Keith Busch 已提交
3066
	set->nr_hw_queues = nr_hw_queues;
3067
	blk_mq_update_queue_map(set);
3068
fallback:
K
Keith Busch 已提交
3069 3070
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3071 3072 3073 3074
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
J
Jens Axboe 已提交
3075
			blk_mq_map_queues(&set->map[0]);
3076 3077
			goto fallback;
		}
3078 3079 3080 3081 3082 3083
		blk_mq_map_swqueue(q);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3084 3085
	}

3086 3087 3088 3089
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3090 3091 3092
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3093 3094 3095 3096 3097 3098 3099

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3100 3101
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3102 3103 3104 3105
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3106
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3128
	int bucket;
3129

3130 3131 3132 3133
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3134 3135
}

3136 3137 3138 3139 3140
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3141
	int bucket;
3142 3143 3144 3145 3146

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3147
	if (!blk_poll_stats_enable(q))
3148 3149 3150 3151 3152 3153 3154 3155
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3156 3157
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3158
	 */
3159 3160 3161 3162 3163 3164
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3165 3166 3167 3168

	return ret;
}

3169
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3170
				     struct blk_mq_hw_ctx *hctx,
3171 3172 3173 3174
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3175
	unsigned int nsecs;
3176 3177
	ktime_t kt;

J
Jens Axboe 已提交
3178
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3196 3197
		return false;

J
Jens Axboe 已提交
3198
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3199 3200 3201 3202 3203

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3204
	kt = nsecs;
3205 3206 3207 3208 3209 3210 3211

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3212
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3227 3228 3229 3230 3231
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3232 3233 3234 3235 3236 3237 3238
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3239
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3240 3241
		return true;

J
Jens Axboe 已提交
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3267
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3268 3269 3270
	return false;
}

3271
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3272 3273 3274 3275
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3276
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3277 3278 3279
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3280 3281
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3282
	else {
3283
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3284 3285 3286 3287 3288 3289 3290 3291 3292
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3293 3294 3295 3296

	return __blk_mq_poll(hctx, rq);
}

J
Jens Axboe 已提交
3297 3298 3299 3300 3301 3302
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

3303 3304
static int __init blk_mq_init(void)
{
3305 3306
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3307 3308 3309
	return 0;
}
subsys_initcall(blk_mq_init);