blk-mq.c 97.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/kmemleak.h>
14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
24
#include <linux/sched/topology.h>
25
#include <linux/sched/signal.h>
26
#include <linux/delay.h>
27
#include <linux/crash_dump.h>
28
#include <linux/prefetch.h>
29
#include <linux/blk-crypto.h>
30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
34
#include <linux/t10-pi.h>
35 36
#include "blk.h"
#include "blk-mq.h"
37
#include "blk-mq-debugfs.h"
38
#include "blk-mq-tag.h"
39
#include "blk-pm.h"
40
#include "blk-stat.h"
41
#include "blk-mq-sched.h"
42
#include "blk-rq-qos.h"
43

44 45
static DEFINE_PER_CPU(struct list_head, blk_cpu_done);

46 47 48
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

49 50
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
51
	int ddir, sectors, bucket;
52

J
Jens Axboe 已提交
53
	ddir = rq_data_dir(rq);
54
	sectors = blk_rq_stats_sectors(rq);
55

56
	bucket = ddir + 2 * ilog2(sectors);
57 58 59 60 61 62 63 64 65

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

66
/*
67 68
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
69
 */
70
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71
{
72 73
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
74
			blk_mq_sched_has_work(hctx);
75 76
}

77 78 79 80 81 82
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
83 84 85 86
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
87 88 89 90 91
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
92 93 94
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 96
}

97
struct mq_inflight {
98
	struct block_device *part;
99
	unsigned int inflight[2];
100 101
};

102
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 104 105 106 107
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

108 109
	if ((!mi->part->bd_partno || rq->part == mi->part) &&
	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110
		mi->inflight[rq_data_dir(rq)]++;
111 112

	return true;
113 114
}

115 116
unsigned int blk_mq_in_flight(struct request_queue *q,
		struct block_device *part)
117
{
118
	struct mq_inflight mi = { .part = part };
119 120

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121

122
	return mi.inflight[0] + mi.inflight[1];
123 124
}

125 126
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
		unsigned int inflight[2])
127
{
128
	struct mq_inflight mi = { .part = part };
129

130
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 132
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
133 134
}

135
void blk_freeze_queue_start(struct request_queue *q)
136
{
137 138
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
139
		percpu_ref_kill(&q->q_usage_counter);
140
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
141
		if (queue_is_mq(q))
142
			blk_mq_run_hw_queues(q, false);
143 144
	} else {
		mutex_unlock(&q->mq_freeze_lock);
145
	}
146
}
147
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148

149
void blk_mq_freeze_queue_wait(struct request_queue *q)
150
{
151
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152
}
153
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154

155 156 157 158 159 160 161 162
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163

164 165 166 167
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
168
void blk_freeze_queue(struct request_queue *q)
169
{
170 171 172 173 174 175 176
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
177
	blk_freeze_queue_start(q);
178 179
	blk_mq_freeze_queue_wait(q);
}
180 181 182 183 184 185 186 187 188

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
189
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190

191
void blk_mq_unfreeze_queue(struct request_queue *q)
192
{
193 194 195 196
	mutex_lock(&q->mq_freeze_lock);
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
197
		percpu_ref_resurrect(&q->q_usage_counter);
198
		wake_up_all(&q->mq_freeze_wq);
199
	}
200
	mutex_unlock(&q->mq_freeze_lock);
201
}
202
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203

204 205 206 207 208 209
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
210
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 212 213
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

214
/**
215
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216 217 218
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
219 220 221
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
222 223 224 225 226 227 228
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

229
	blk_mq_quiesce_queue_nowait(q);
230

231 232
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
233
			synchronize_srcu(hctx->srcu);
234 235 236 237 238 239 240 241
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

242 243 244 245 246 247 248 249 250
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
251
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252

253 254
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
255 256 257
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

258 259 260 261 262 263 264 265 266 267
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

268
/*
269 270
 * Only need start/end time stamping if we have iostat or
 * blk stats enabled, or using an IO scheduler.
271 272 273
 */
static inline bool blk_mq_need_time_stamp(struct request *rq)
{
274
	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 276
}

277
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278
		unsigned int tag, u64 alloc_time_ns)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282

283
	if (data->q->elevator) {
284
		rq->tag = BLK_MQ_NO_TAG;
285 286 287
		rq->internal_tag = tag;
	} else {
		rq->tag = tag;
288
		rq->internal_tag = BLK_MQ_NO_TAG;
289 290
	}

291
	/* csd/requeue_work/fifo_time is initialized before use */
292 293
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
294
	rq->mq_hctx = data->hctx;
295
	rq->rq_flags = 0;
296
	rq->cmd_flags = data->cmd_flags;
297 298
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
299
	if (blk_queue_io_stat(data->q))
300
		rq->rq_flags |= RQF_IO_STAT;
301
	INIT_LIST_HEAD(&rq->queuelist);
302 303 304 305
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
306 307 308
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
309 310 311 312
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
313
	rq->io_start_time_ns = 0;
314
	rq->stats_sectors = 0;
315 316 317 318
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
319
	blk_crypto_rq_set_defaults(rq);
320
	/* tag was already set */
321
	WRITE_ONCE(rq->deadline, 0);
322

323 324
	rq->timeout = 0;

325 326 327
	rq->end_io = NULL;
	rq->end_io_data = NULL;

328
	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
K
Keith Busch 已提交
329
	refcount_set(&rq->ref, 1);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	if (!op_is_flush(data->cmd_flags)) {
		struct elevator_queue *e = data->q->elevator;

		rq->elv.icq = NULL;
		if (e && e->type->ops.prepare_request) {
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);

			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

	data->hctx->queued++;
345
	return rq;
346 347
}

348
static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349
{
350
	struct request_queue *q = data->q;
351
	struct elevator_queue *e = q->elevator;
352
	u64 alloc_time_ns = 0;
353
	unsigned int tag;
354

355 356 357 358
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

359
	if (data->cmd_flags & REQ_NOWAIT)
360
		data->flags |= BLK_MQ_REQ_NOWAIT;
361 362 363 364

	if (e) {
		/*
		 * Flush requests are special and go directly to the
365 366
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
367
		 */
368 369
		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.limit_depth &&
370
		    !(data->flags & BLK_MQ_REQ_RESERVED))
371
			e->type->ops.limit_depth(data->cmd_flags, data);
372 373
	}

374
retry:
375 376
	data->ctx = blk_mq_get_ctx(q);
	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377
	if (!e)
378 379
		blk_mq_tag_busy(data->hctx);

380 381 382 383 384
	/*
	 * Waiting allocations only fail because of an inactive hctx.  In that
	 * case just retry the hctx assignment and tag allocation as CPU hotplug
	 * should have migrated us to an online CPU by now.
	 */
385
	tag = blk_mq_get_tag(data);
386 387 388 389 390 391 392
	if (tag == BLK_MQ_NO_TAG) {
		if (data->flags & BLK_MQ_REQ_NOWAIT)
			return NULL;

		/*
		 * Give up the CPU and sleep for a random short time to ensure
		 * that thread using a realtime scheduling class are migrated
393
		 * off the CPU, and thus off the hctx that is going away.
394 395 396 397
		 */
		msleep(3);
		goto retry;
	}
398
	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
399 400
}

401
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402
		blk_mq_req_flags_t flags)
403
{
404 405 406 407 408
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
	};
409
	struct request *rq;
410
	int ret;
411

412
	ret = blk_queue_enter(q, flags);
413 414
	if (ret)
		return ERR_PTR(ret);
415

416
	rq = __blk_mq_alloc_request(&data);
417
	if (!rq)
418
		goto out_queue_exit;
419 420 421
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
422
	return rq;
423 424 425
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
426
}
427
EXPORT_SYMBOL(blk_mq_alloc_request);
428

429
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
431
{
432 433 434 435 436
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
	};
437
	u64 alloc_time_ns = 0;
438
	unsigned int cpu;
439
	unsigned int tag;
M
Ming Lin 已提交
440 441
	int ret;

442 443 444 445
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

M
Ming Lin 已提交
446 447 448 449 450 451
	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
452
	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
M
Ming Lin 已提交
453 454 455 456 457
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

458
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
459 460 461
	if (ret)
		return ERR_PTR(ret);

462 463 464 465
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
466
	ret = -EXDEV;
467 468
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
469
		goto out_queue_exit;
470 471
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
472

473
	if (!q->elevator)
474 475
		blk_mq_tag_busy(data.hctx);

476
	ret = -EWOULDBLOCK;
477 478
	tag = blk_mq_get_tag(&data);
	if (tag == BLK_MQ_NO_TAG)
479
		goto out_queue_exit;
480 481
	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);

482 483 484
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
485 486 487
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
488 489 490 491
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
492
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
493 494
	const int sched_tag = rq->internal_tag;

495
	blk_crypto_free_request(rq);
496
	blk_pm_mark_last_busy(rq);
497
	rq->mq_hctx = NULL;
498
	if (rq->tag != BLK_MQ_NO_TAG)
499
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500
	if (sched_tag != BLK_MQ_NO_TAG)
501
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
502 503 504 505
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

506
void blk_mq_free_request(struct request *rq)
507 508
{
	struct request_queue *q = rq->q;
509 510
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
511
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
512

513
	if (rq->rq_flags & RQF_ELVPRIV) {
514 515
		if (e && e->type->ops.finish_request)
			e->type->ops.finish_request(rq);
516 517 518 519 520
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
521

522
	ctx->rq_completed[rq_is_sync(rq)]++;
523
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
524
		__blk_mq_dec_active_requests(hctx);
J
Jens Axboe 已提交
525

526 527 528
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

529
	rq_qos_done(q, rq);
530

K
Keith Busch 已提交
531 532 533
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
534
}
J
Jens Axboe 已提交
535
EXPORT_SYMBOL_GPL(blk_mq_free_request);
536

537
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
538
{
539 540 541 542
	u64 now = 0;

	if (blk_mq_need_time_stamp(rq))
		now = ktime_get_ns();
543

544 545
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
546
		blk_stat_add(rq, now);
547 548
	}

549
	blk_mq_sched_completed_request(rq, now);
550

551
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
552

C
Christoph Hellwig 已提交
553
	if (rq->end_io) {
554
		rq_qos_done(rq->q, rq);
555
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
556
	} else {
557
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
558
	}
559
}
560
EXPORT_SYMBOL(__blk_mq_end_request);
561

562
void blk_mq_end_request(struct request *rq, blk_status_t error)
563 564 565
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
566
	__blk_mq_end_request(rq, error);
567
}
568
EXPORT_SYMBOL(blk_mq_end_request);
569

570 571 572 573 574
/*
 * Softirq action handler - move entries to local list and loop over them
 * while passing them to the queue registered handler.
 */
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
575
{
576
	struct list_head *cpu_list, local_list;
577

578 579 580 581 582 583 584 585 586 587 588 589
	local_irq_disable();
	cpu_list = this_cpu_ptr(&blk_cpu_done);
	list_replace_init(cpu_list, &local_list);
	local_irq_enable();

	while (!list_empty(&local_list)) {
		struct request *rq;

		rq = list_entry(local_list.next, struct request, ipi_list);
		list_del_init(&rq->ipi_list);
		rq->q->mq_ops->complete(rq);
	}
590 591
}

592
static void blk_mq_trigger_softirq(struct request *rq)
593
{
594 595
	struct list_head *list;
	unsigned long flags;
596

597 598
	local_irq_save(flags);
	list = this_cpu_ptr(&blk_cpu_done);
599 600
	list_add_tail(&rq->ipi_list, list);

601 602 603 604 605
	/*
	 * If the list only contains our just added request, signal a raise of
	 * the softirq.  If there are already entries there, someone already
	 * raised the irq but it hasn't run yet.
	 */
606 607
	if (list->next == &rq->ipi_list)
		raise_softirq_irqoff(BLOCK_SOFTIRQ);
608
	local_irq_restore(flags);
609 610
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static int blk_softirq_cpu_dead(unsigned int cpu)
{
	/*
	 * If a CPU goes away, splice its entries to the current CPU
	 * and trigger a run of the softirq
	 */
	local_irq_disable();
	list_splice_init(&per_cpu(blk_cpu_done, cpu),
			 this_cpu_ptr(&blk_cpu_done));
	raise_softirq_irqoff(BLOCK_SOFTIRQ);
	local_irq_enable();

	return 0;
}

626 627

static void __blk_mq_complete_request_remote(void *data)
628
{
629
	struct request *rq = data;
630

631
	/*
632 633 634 635
	 * For most of single queue controllers, there is only one irq vector
	 * for handling I/O completion, and the only irq's affinity is set
	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
	 * is handled on one specific CPU.
636
	 *
637 638
	 * So complete I/O requests in softirq context in case of single queue
	 * devices to avoid degrading I/O performance due to irqsoff latency.
639
	 */
640 641 642 643
	if (rq->q->nr_hw_queues == 1)
		blk_mq_trigger_softirq(rq);
	else
		rq->q->mq_ops->complete(rq);
644 645
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
	int cpu = raw_smp_processor_id();

	if (!IS_ENABLED(CONFIG_SMP) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
		return false;

	/* same CPU or cache domain?  Complete locally */
	if (cpu == rq->mq_ctx->cpu ||
	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
		return false;

	/* don't try to IPI to an offline CPU */
	return cpu_online(rq->mq_ctx->cpu);
}

664
bool blk_mq_complete_request_remote(struct request *rq)
665
{
666
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
667

668 669 670 671
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
672 673
	if (rq->cmd_flags & REQ_HIPRI)
		return false;
C
Christoph Hellwig 已提交
674

675
	if (blk_mq_complete_need_ipi(rq)) {
676
		rq->csd.func = __blk_mq_complete_request_remote;
677 678
		rq->csd.info = rq;
		rq->csd.flags = 0;
679
		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
680
	} else {
681 682 683
		if (rq->q->nr_hw_queues > 1)
			return false;
		blk_mq_trigger_softirq(rq);
684
	}
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

	return true;
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Complete a request by scheduling the ->complete_rq operation.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (!blk_mq_complete_request_remote(rq))
		rq->q->mq_ops->complete(rq);
701
}
702
EXPORT_SYMBOL(blk_mq_complete_request);
703

704
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
705
	__releases(hctx->srcu)
706 707 708 709
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
710
		srcu_read_unlock(hctx->srcu, srcu_idx);
711 712 713
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
714
	__acquires(hctx->srcu)
715
{
716 717 718
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
719
		rcu_read_lock();
720
	} else
721
		*srcu_idx = srcu_read_lock(hctx->srcu);
722 723
}

724 725 726 727 728 729 730 731
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
732
void blk_mq_start_request(struct request *rq)
733 734 735
{
	struct request_queue *q = rq->q;

736
	trace_block_rq_issue(rq);
737

738
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
739
		rq->io_start_time_ns = ktime_get_ns();
740
		rq->stats_sectors = blk_rq_sectors(rq);
741
		rq->rq_flags |= RQF_STATS;
742
		rq_qos_issue(q, rq);
743 744
	}

745
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
746

747
	blk_add_timer(rq);
K
Keith Busch 已提交
748
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
749

750 751 752 753
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
754
}
755
EXPORT_SYMBOL(blk_mq_start_request);
756

757
static void __blk_mq_requeue_request(struct request *rq)
758 759 760
{
	struct request_queue *q = rq->q;

761 762
	blk_mq_put_driver_tag(rq);

763
	trace_block_rq_requeue(rq);
764
	rq_qos_requeue(q, rq);
765

K
Keith Busch 已提交
766 767
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
768
		rq->rq_flags &= ~RQF_TIMED_OUT;
769
	}
770 771
}

772
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
773 774 775
{
	__blk_mq_requeue_request(rq);

776 777 778
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
779
	BUG_ON(!list_empty(&rq->queuelist));
780
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
781 782 783
}
EXPORT_SYMBOL(blk_mq_requeue_request);

784 785 786
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
787
		container_of(work, struct request_queue, requeue_work.work);
788 789 790
	LIST_HEAD(rq_list);
	struct request *rq, *next;

791
	spin_lock_irq(&q->requeue_lock);
792
	list_splice_init(&q->requeue_list, &rq_list);
793
	spin_unlock_irq(&q->requeue_lock);
794 795

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
796
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
797 798
			continue;

799
		rq->rq_flags &= ~RQF_SOFTBARRIER;
800
		list_del_init(&rq->queuelist);
801 802 803 804 805 806
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
807
			blk_mq_request_bypass_insert(rq, false, false);
808 809
		else
			blk_mq_sched_insert_request(rq, true, false, false);
810 811 812 813 814
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
815
		blk_mq_sched_insert_request(rq, false, false, false);
816 817
	}

818
	blk_mq_run_hw_queues(q, false);
819 820
}

821 822
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
823 824 825 826 827 828
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
829
	 * request head insertion from the workqueue.
830
	 */
831
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
832 833 834

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
835
		rq->rq_flags |= RQF_SOFTBARRIER;
836 837 838 839 840
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
841 842 843

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
844 845 846 847
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
848
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
849 850 851
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

852 853 854
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
855 856
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
857 858 859
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

860 861
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
862 863
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
864
		return tags->rqs[tag];
865
	}
866 867

	return NULL;
868 869 870
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

871 872
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
873 874
{
	/*
875
	 * If we find a request that isn't idle and the queue matches,
876
	 * we know the queue is busy. Return false to stop the iteration.
877
	 */
878
	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
879 880 881 882 883 884 885 886 887
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

888
bool blk_mq_queue_inflight(struct request_queue *q)
889 890 891
{
	bool busy = false;

892
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
893 894
	return busy;
}
895
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
896

897
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
898
{
899
	req->rq_flags |= RQF_TIMED_OUT;
900 901 902 903 904 905 906
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
907
	}
908 909

	blk_add_timer(req);
910
}
911

K
Keith Busch 已提交
912
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
913
{
K
Keith Busch 已提交
914
	unsigned long deadline;
915

K
Keith Busch 已提交
916 917
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
918 919
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
920

921
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
922 923
	if (time_after_eq(jiffies, deadline))
		return true;
924

K
Keith Busch 已提交
925 926 927 928 929
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
930 931
}

932
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
933 934
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
935 936 937 938 939 940 941
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
942
		return true;
K
Keith Busch 已提交
943 944 945 946 947 948 949 950 951 952 953

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
954
		return true;
K
Keith Busch 已提交
955

956
	/*
K
Keith Busch 已提交
957 958 959 960
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
961
	 */
K
Keith Busch 已提交
962
	if (blk_mq_req_expired(rq, next))
963
		blk_mq_rq_timed_out(rq, reserved);
964 965 966 967

	if (is_flush_rq(rq, hctx))
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
K
Keith Busch 已提交
968
		__blk_mq_free_request(rq);
969 970

	return true;
971 972
}

973
static void blk_mq_timeout_work(struct work_struct *work)
974
{
975 976
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
977
	unsigned long next = 0;
978
	struct blk_mq_hw_ctx *hctx;
979
	int i;
980

981 982 983 984 985 986 987 988 989
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
990
	 * blk_freeze_queue_start, and the moment the last request is
991 992 993 994
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
995 996
		return;

K
Keith Busch 已提交
997
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
998

K
Keith Busch 已提交
999 1000
	if (next != 0) {
		mod_timer(&q->timeout, next);
1001
	} else {
1002 1003 1004 1005 1006 1007
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
1008 1009 1010 1011 1012
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
1013
	}
1014
	blk_queue_exit(q);
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1027
	enum hctx_type type = hctx->type;
1028 1029

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1030
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1031
	sbitmap_clear_bit(sb, bitnr);
1032 1033 1034 1035
	spin_unlock(&ctx->lock);
	return true;
}

1036 1037 1038 1039
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1040
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1041
{
1042 1043 1044 1045
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1046

1047
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1048
}
1049
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1062
	enum hctx_type type = hctx->type;
1063 1064

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1065 1066
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1067
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1068
		if (list_empty(&ctx->rq_lists[type]))
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1079
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1091 1092 1093 1094
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1095

1096
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1097 1098
}

1099 1100
static bool __blk_mq_get_driver_tag(struct request *rq)
{
1101
	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1102 1103 1104
	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
	int tag;

1105 1106
	blk_mq_tag_busy(rq->mq_hctx);

1107
	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1108
		bt = rq->mq_hctx->tags->breserved_tags;
1109
		tag_offset = 0;
1110 1111 1112
	} else {
		if (!hctx_may_queue(rq->mq_hctx, bt))
			return false;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	}

	tag = __sbitmap_queue_get(bt);
	if (tag == BLK_MQ_NO_TAG)
		return false;

	rq->tag = tag + tag_offset;
	return true;
}

static bool blk_mq_get_driver_tag(struct request *rq)
{
1125 1126 1127 1128 1129
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
		return false;

1130
	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1131 1132
			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
		rq->rq_flags |= RQF_MQ_INFLIGHT;
1133
		__blk_mq_inc_active_requests(hctx);
1134 1135 1136
	}
	hctx->tags->rqs[rq->tag] = rq;
	return true;
1137 1138
}

1139 1140
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1141 1142 1143 1144 1145
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1146
	spin_lock(&hctx->dispatch_wait_lock);
1147 1148 1149 1150
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
1151
		sbq = hctx->tags->bitmap_tags;
1152 1153
		atomic_dec(&sbq->ws_active);
	}
1154 1155
	spin_unlock(&hctx->dispatch_wait_lock);

1156 1157 1158 1159
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1160 1161
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1162 1163
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1164 1165
 * marking us as waiting.
 */
1166
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1167
				 struct request *rq)
1168
{
1169
	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1170
	struct wait_queue_head *wq;
1171 1172
	wait_queue_entry_t *wait;
	bool ret;
1173

1174
	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1175
		blk_mq_sched_mark_restart_hctx(hctx);
1176

1177 1178 1179 1180 1181 1182 1183 1184
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1185
		return blk_mq_get_driver_tag(rq);
1186 1187
	}

1188
	wait = &hctx->dispatch_wait;
1189 1190 1191
	if (!list_empty_careful(&wait->entry))
		return false;

1192
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1193 1194 1195

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1196
	if (!list_empty(&wait->entry)) {
1197 1198
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1199
		return false;
1200 1201
	}

1202
	atomic_inc(&sbq->ws_active);
1203 1204
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1205

1206
	/*
1207 1208 1209
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1210
	 */
1211
	ret = blk_mq_get_driver_tag(rq);
1212
	if (!ret) {
1213 1214
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1215
		return false;
1216
	}
1217 1218 1219 1220 1221 1222

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1223
	atomic_dec(&sbq->ws_active);
1224 1225
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1226 1227

	return true;
1228 1229
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1259 1260
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
enum prep_dispatch {
	PREP_DISPATCH_OK,
	PREP_DISPATCH_NO_TAG,
	PREP_DISPATCH_NO_BUDGET,
};

static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
						  bool need_budget)
{
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
		blk_mq_put_driver_tag(rq);
		return PREP_DISPATCH_NO_BUDGET;
	}

	if (!blk_mq_get_driver_tag(rq)) {
		/*
		 * The initial allocation attempt failed, so we need to
		 * rerun the hardware queue when a tag is freed. The
		 * waitqueue takes care of that. If the queue is run
		 * before we add this entry back on the dispatch list,
		 * we'll re-run it below.
		 */
		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1316 1317 1318 1319 1320 1321
			/*
			 * All budgets not got from this function will be put
			 * together during handling partial dispatch
			 */
			if (need_budget)
				blk_mq_put_dispatch_budget(rq->q);
1322 1323 1324 1325 1326 1327 1328
			return PREP_DISPATCH_NO_TAG;
		}
	}

	return PREP_DISPATCH_OK;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
		unsigned int nr_budgets)
{
	int i;

	for (i = 0; i < nr_budgets; i++)
		blk_mq_put_dispatch_budget(q);
}

1339 1340 1341
/*
 * Returns true if we did some work AND can potentially do more.
 */
1342
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1343
			     unsigned int nr_budgets)
1344
{
1345
	enum prep_dispatch prep;
1346
	struct request_queue *q = hctx->queue;
1347
	struct request *rq, *nxt;
1348
	int errors, queued;
1349
	blk_status_t ret = BLK_STS_OK;
1350
	LIST_HEAD(zone_list);
1351

1352 1353 1354
	if (list_empty(list))
		return false;

1355 1356 1357
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1358
	errors = queued = 0;
1359
	do {
1360
		struct blk_mq_queue_data bd;
1361

1362
		rq = list_first_entry(list, struct request, queuelist);
1363

1364
		WARN_ON_ONCE(hctx != rq->mq_hctx);
1365
		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1366
		if (prep != PREP_DISPATCH_OK)
1367
			break;
1368

1369 1370
		list_del_init(&rq->queuelist);

1371
		bd.rq = rq;
1372 1373 1374 1375 1376 1377 1378 1379 1380

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1381
			bd.last = !blk_mq_get_driver_tag(nxt);
1382
		}
1383

1384 1385 1386 1387 1388 1389
		/*
		 * once the request is queued to lld, no need to cover the
		 * budget any more
		 */
		if (nr_budgets)
			nr_budgets--;
1390
		ret = q->mq_ops->queue_rq(hctx, &bd);
1391 1392 1393
		switch (ret) {
		case BLK_STS_OK:
			queued++;
1394
			break;
1395 1396 1397 1398 1399
		case BLK_STS_RESOURCE:
		case BLK_STS_DEV_RESOURCE:
			blk_mq_handle_dev_resource(rq, list);
			goto out;
		case BLK_STS_ZONE_RESOURCE:
1400 1401 1402 1403 1404 1405
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
1406 1407
			break;
		default:
1408
			errors++;
1409
			blk_mq_end_request(rq, BLK_STS_IOERR);
1410
		}
1411
	} while (!list_empty(list));
1412
out:
1413 1414 1415
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1416
	hctx->dispatched[queued_to_index(queued)]++;
1417

1418 1419 1420 1421 1422
	/* If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
		q->mq_ops->commit_rqs(hctx);
1423 1424 1425 1426
	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1427
	if (!list_empty(list)) {
1428
		bool needs_restart;
1429 1430
		/* For non-shared tags, the RESTART check will suffice */
		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1431
			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1432
		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1433

1434
		blk_mq_release_budgets(q, nr_budgets);
1435

1436
		spin_lock(&hctx->lock);
1437
		list_splice_tail_init(list, &hctx->dispatch);
1438
		spin_unlock(&hctx->lock);
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448
		/*
		 * Order adding requests to hctx->dispatch and checking
		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
		 * in blk_mq_sched_restart(). Avoid restart code path to
		 * miss the new added requests to hctx->dispatch, meantime
		 * SCHED_RESTART is observed here.
		 */
		smp_mb();

1449
		/*
1450 1451 1452
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1453
		 *
1454 1455 1456 1457
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1458
		 *
1459 1460 1461 1462 1463 1464 1465
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1466
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1467
		 *   and dm-rq.
1468 1469 1470
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1471 1472
		 * that could otherwise occur if the queue is idle.  We'll do
		 * similar if we couldn't get budget and SCHED_RESTART is set.
1473
		 */
1474 1475
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1476
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1477
			blk_mq_run_hw_queue(hctx, true);
1478 1479
		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
					   no_budget_avail))
1480
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1481

1482
		blk_mq_update_dispatch_busy(hctx, true);
1483
		return false;
1484 1485
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1486

1487
	return (queued + errors) != 0;
1488 1489
}

1490 1491 1492 1493 1494 1495
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1496 1497 1498 1499
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1500 1501 1502
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1516
	 */
1517 1518 1519 1520 1521 1522 1523
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1524

1525 1526 1527 1528 1529 1530
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1531
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1532

1533 1534 1535
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1547 1548 1549 1550 1551 1552 1553 1554
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1555
	bool tried = false;
1556
	int next_cpu = hctx->next_cpu;
1557

1558 1559
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1560 1561

	if (--hctx->next_cpu_batch <= 0) {
1562
select_cpu:
1563
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1564
				cpu_online_mask);
1565
		if (next_cpu >= nr_cpu_ids)
1566
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1567 1568 1569
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1570 1571 1572 1573
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1574
	if (!cpu_online(next_cpu)) {
1575 1576 1577 1578 1579 1580 1581 1582 1583
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1584
		hctx->next_cpu = next_cpu;
1585 1586 1587
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1588 1589 1590

	hctx->next_cpu = next_cpu;
	return next_cpu;
1591 1592
}

1593 1594 1595 1596 1597 1598 1599 1600 1601
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 * @msecs: Microseconds of delay to wait before running the queue.
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1602 1603
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1604
{
1605
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1606 1607
		return;

1608
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1609 1610
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1611
			__blk_mq_run_hw_queue(hctx);
1612
			put_cpu();
1613 1614
			return;
		}
1615

1616
		put_cpu();
1617
	}
1618

1619 1620
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1621 1622
}

1623 1624 1625 1626 1627 1628 1629
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
 * @msecs: Microseconds of delay to wait before running the queue.
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
1630 1631 1632 1633 1634 1635
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1636 1637 1638 1639 1640 1641 1642 1643 1644
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
1645
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1646
{
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1658 1659 1660 1661
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1662

1663
	if (need_run)
1664
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1665
}
O
Omar Sandoval 已提交
1666
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1667

1668
/**
1669
 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1670 1671 1672
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
1673
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1674 1675 1676 1677 1678
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1679
		if (blk_mq_hctx_stopped(hctx))
1680 1681
			continue;

1682
		blk_mq_run_hw_queue(hctx, async);
1683 1684
	}
}
1685
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
 * @msecs: Microseconds of delay to wait before running the queues.
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;

		blk_mq_delay_run_hw_queue(hctx, msecs);
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1726 1727 1728
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1729
 * BLK_STS_RESOURCE is usually returned.
1730 1731 1732 1733 1734
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1735 1736
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1737
	cancel_delayed_work(&hctx->run_work);
1738

1739
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740
}
1741
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742

1743 1744 1745
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1746
 * BLK_STS_RESOURCE is usually returned.
1747 1748 1749 1750 1751
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1752 1753
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1754 1755 1756 1757 1758
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1759 1760 1761
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1762 1763 1764
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765

1766
	blk_mq_run_hw_queue(hctx, false);
1767 1768 1769
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1790
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791 1792 1793 1794
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1795 1796
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1797 1798 1799
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1800
static void blk_mq_run_work_fn(struct work_struct *work)
1801 1802 1803
{
	struct blk_mq_hw_ctx *hctx;

1804
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805

1806
	/*
M
Ming Lei 已提交
1807
	 * If we are stopped, don't run the queue.
1808
	 */
1809
	if (blk_mq_hctx_stopped(hctx))
1810
		return;
1811 1812 1813 1814

	__blk_mq_run_hw_queue(hctx);
}

1815 1816 1817
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1818
{
J
Jens Axboe 已提交
1819
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
1820
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
1821

1822 1823
	lockdep_assert_held(&ctx->lock);

1824
	trace_block_rq_insert(rq);
1825

1826
	if (at_head)
M
Ming Lei 已提交
1827
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828
	else
M
Ming Lei 已提交
1829
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830
}
1831

1832 1833
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1834 1835 1836
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1837 1838
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1839
	__blk_mq_insert_req_list(hctx, rq, at_head);
1840 1841 1842
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1843 1844 1845
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
1846
 * @at_head: true if the request should be inserted at the head of the list.
1847 1848
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
1849 1850 1851
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1852 1853
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
1854
{
1855
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856 1857

	spin_lock(&hctx->lock);
1858 1859 1860 1861
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
1862 1863
	spin_unlock(&hctx->lock);

1864 1865
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1866 1867
}

1868 1869
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1870 1871

{
1872
	struct request *rq;
M
Ming Lei 已提交
1873
	enum hctx_type type = hctx->type;
1874

1875 1876 1877 1878
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1879
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1880
		BUG_ON(rq->mq_ctx != ctx);
1881
		trace_block_rq_insert(rq);
1882
	}
1883 1884

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1885
	list_splice_tail_init(list, &ctx->rq_lists[type]);
1886
	blk_mq_hctx_mark_pending(hctx, ctx);
1887 1888 1889
	spin_unlock(&ctx->lock);
}

J
Jens Axboe 已提交
1890
static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1891 1892 1893 1894
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

P
Pavel Begunkov 已提交
1895 1896 1897 1898
	if (rqa->mq_ctx != rqb->mq_ctx)
		return rqa->mq_ctx > rqb->mq_ctx;
	if (rqa->mq_hctx != rqb->mq_hctx)
		return rqa->mq_hctx > rqb->mq_hctx;
J
Jens Axboe 已提交
1899 1900

	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1901 1902 1903 1904 1905 1906
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(list);

1907 1908
	if (list_empty(&plug->mq_list))
		return;
1909 1910
	list_splice_init(&plug->mq_list, &list);

1911 1912
	if (plug->rq_count > 2 && plug->multiple_queues)
		list_sort(NULL, &list, plug_rq_cmp);
1913

1914 1915
	plug->rq_count = 0;

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	do {
		struct list_head rq_list;
		struct request *rq, *head_rq = list_entry_rq(list.next);
		struct list_head *pos = &head_rq->queuelist; /* skip first */
		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
		unsigned int depth = 1;

		list_for_each_continue(pos, &list) {
			rq = list_entry_rq(pos);
			BUG_ON(!rq->q);
			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
				break;
			depth++;
1930 1931
		}

1932 1933
		list_cut_before(&rq_list, &list, pos);
		trace_block_unplug(head_rq->q, depth, !from_schedule);
1934
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1935
						from_schedule);
1936
	} while(!list_empty(&list));
1937 1938
}

1939 1940
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
1941
{
1942 1943
	int err;

1944 1945 1946 1947 1948
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
1949
	blk_rq_bio_prep(rq, bio, nr_segs);
1950 1951 1952 1953

	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
	WARN_ON_ONCE(err);
1954

1955
	blk_account_io_start(rq);
1956 1957
}

1958 1959
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
1960
					    blk_qc_t *cookie, bool last)
1961 1962 1963 1964
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1965
		.last = last,
1966
	};
1967
	blk_qc_t new_cookie;
1968
	blk_status_t ret;
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1980
		blk_mq_update_dispatch_busy(hctx, false);
1981 1982 1983
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1984
	case BLK_STS_DEV_RESOURCE:
1985
		blk_mq_update_dispatch_busy(hctx, true);
1986 1987 1988
		__blk_mq_requeue_request(rq);
		break;
	default:
1989
		blk_mq_update_dispatch_busy(hctx, false);
1990 1991 1992 1993 1994 1995 1996
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

1997
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1998
						struct request *rq,
1999
						blk_qc_t *cookie,
2000
						bool bypass_insert, bool last)
2001 2002
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
2003 2004
	bool run_queue = true;

2005
	/*
2006
	 * RCU or SRCU read lock is needed before checking quiesced flag.
2007
	 *
2008 2009 2010
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
2011
	 */
2012
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
2013
		run_queue = false;
2014 2015
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
2016
	}
2017

2018 2019
	if (q->elevator && !bypass_insert)
		goto insert;
2020

2021
	if (!blk_mq_get_dispatch_budget(q))
2022
		goto insert;
2023

2024
	if (!blk_mq_get_driver_tag(rq)) {
2025
		blk_mq_put_dispatch_budget(q);
2026
		goto insert;
2027
	}
2028

2029 2030 2031 2032 2033
	return __blk_mq_issue_directly(hctx, rq, cookie, last);
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

2034 2035
	blk_mq_sched_insert_request(rq, false, run_queue, false);

2036 2037 2038
	return BLK_STS_OK;
}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 * @cookie: Request queue cookie.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2062
		blk_mq_request_bypass_insert(rq, false, true);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2078
	hctx_unlock(hctx, srcu_idx);
2079 2080

	return ret;
2081 2082
}

2083 2084 2085
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
2086
	int queued = 0;
2087
	int errors = 0;
2088

2089
	while (!list_empty(list)) {
2090
		blk_status_t ret;
2091 2092 2093 2094
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
2095 2096 2097 2098
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
2099
				blk_mq_request_bypass_insert(rq, false,
2100
							list_empty(list));
2101 2102 2103
				break;
			}
			blk_mq_end_request(rq, ret);
2104
			errors++;
2105 2106
		} else
			queued++;
2107
	}
J
Jens Axboe 已提交
2108 2109 2110 2111 2112 2113

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2114 2115
	if ((!list_empty(list) || errors) &&
	     hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2116
		hctx->queue->mq_ops->commit_rqs(hctx);
2117 2118
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	plug->rq_count++;
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

2133
/**
2134
 * blk_mq_submit_bio - Create and send a request to block device.
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 *
 * Returns: Request queue cookie.
 */
2148
blk_qc_t blk_mq_submit_bio(struct bio *bio)
2149
{
2150
	struct request_queue *q = bio->bi_disk->queue;
2151
	const int is_sync = op_is_sync(bio->bi_opf);
2152
	const int is_flush_fua = op_is_flush(bio->bi_opf);
2153 2154 2155
	struct blk_mq_alloc_data data = {
		.q		= q,
	};
2156
	struct request *rq;
2157
	struct blk_plug *plug;
2158
	struct request *same_queue_rq = NULL;
2159
	unsigned int nr_segs;
2160
	blk_qc_t cookie;
2161
	blk_status_t ret;
J
Jeffle Xu 已提交
2162
	bool hipri;
2163 2164

	blk_queue_bounce(q, &bio);
2165
	__blk_queue_split(&bio, &nr_segs);
2166

2167
	if (!bio_integrity_prep(bio))
2168
		goto queue_exit;
2169

2170
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2171
	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2172
		goto queue_exit;
2173

2174
	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2175
		goto queue_exit;
2176

2177
	rq_qos_throttle(q, bio);
J
Jens Axboe 已提交
2178

J
Jeffle Xu 已提交
2179 2180
	hipri = bio->bi_opf & REQ_HIPRI;

2181
	data.cmd_flags = bio->bi_opf;
2182
	rq = __blk_mq_alloc_request(&data);
J
Jens Axboe 已提交
2183
	if (unlikely(!rq)) {
2184
		rq_qos_cleanup(q, bio);
J
Jens Axboe 已提交
2185
		if (bio->bi_opf & REQ_NOWAIT)
2186
			bio_wouldblock_error(bio);
2187
		goto queue_exit;
J
Jens Axboe 已提交
2188 2189
	}

2190
	trace_block_getrq(bio);
2191

2192
	rq_qos_track(q, rq, bio);
2193

2194
	cookie = request_to_qc_t(data.hctx, rq);
2195

2196 2197
	blk_mq_bio_to_request(rq, bio, nr_segs);

2198 2199 2200 2201 2202 2203 2204 2205
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
		return BLK_QC_T_NONE;
	}

2206
	plug = blk_mq_plug(q, bio);
2207
	if (unlikely(is_flush_fua)) {
2208
		/* Bypass scheduler for flush requests */
2209 2210
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
M
Ming Lei 已提交
2211 2212
	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
				!blk_queue_nonrot(q))) {
2213 2214 2215
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
M
Ming Lei 已提交
2216 2217 2218
		 *
		 * Use normal plugging if this disk is slow HDD, as sequential
		 * IO may benefit a lot from plug merging.
2219
		 */
2220
		unsigned int request_count = plug->rq_count;
2221 2222
		struct request *last = NULL;

M
Ming Lei 已提交
2223
		if (!request_count)
2224
			trace_block_plug(q);
2225 2226
		else
			last = list_entry_rq(plug->mq_list.prev);
2227

2228 2229
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2230 2231
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
2232
		}
2233

2234
		blk_add_rq_to_plug(plug, rq);
2235
	} else if (q->elevator) {
2236
		/* Insert the request at the IO scheduler queue */
2237
		blk_mq_sched_insert_request(rq, false, true, true);
2238
	} else if (plug && !blk_queue_nomerges(q)) {
2239
		/*
2240
		 * We do limited plugging. If the bio can be merged, do that.
2241 2242
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
2243 2244
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
2245
		 */
2246 2247
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
2248
		if (same_queue_rq) {
2249
			list_del_init(&same_queue_rq->queuelist);
2250 2251
			plug->rq_count--;
		}
2252
		blk_add_rq_to_plug(plug, rq);
2253
		trace_block_plug(q);
2254

2255
		if (same_queue_rq) {
2256
			data.hctx = same_queue_rq->mq_hctx;
2257
			trace_block_unplug(q, 1, true);
2258
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2259
					&cookie);
2260
		}
2261 2262
	} else if ((q->nr_hw_queues > 1 && is_sync) ||
			!data.hctx->dispatch_busy) {
2263 2264 2265 2266
		/*
		 * There is no scheduler and we can try to send directly
		 * to the hardware.
		 */
2267
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2268
	} else {
2269
		/* Default case. */
2270
		blk_mq_sched_insert_request(rq, false, true, true);
2271
	}
2272

J
Jeffle Xu 已提交
2273 2274
	if (!hipri)
		return BLK_QC_T_NONE;
2275
	return cookie;
2276 2277 2278
queue_exit:
	blk_queue_exit(q);
	return BLK_QC_T_NONE;
2279 2280
}

2281 2282
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2283
{
2284
	struct page *page;
2285

2286
	if (tags->rqs && set->ops->exit_request) {
2287
		int i;
2288

2289
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2290 2291 2292
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2293
				continue;
2294
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2295
			tags->static_rqs[i] = NULL;
2296
		}
2297 2298
	}

2299 2300
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2301
		list_del_init(&page->lru);
2302 2303
		/*
		 * Remove kmemleak object previously allocated in
2304
		 * blk_mq_alloc_rqs().
2305 2306
		 */
		kmemleak_free(page_address(page));
2307 2308
		__free_pages(page, page->private);
	}
2309
}
2310

2311
void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2312
{
2313
	kfree(tags->rqs);
2314
	tags->rqs = NULL;
J
Jens Axboe 已提交
2315 2316
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2317

2318
	blk_mq_free_tags(tags, flags);
2319 2320
}

2321 2322 2323
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
2324 2325
					unsigned int reserved_tags,
					unsigned int flags)
2326
{
2327
	struct blk_mq_tags *tags;
2328
	int node;
2329

2330
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2331 2332 2333
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

2334
	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2335 2336
	if (!tags)
		return NULL;
2337

2338
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2339
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2340
				 node);
2341
	if (!tags->rqs) {
2342
		blk_mq_free_tags(tags, flags);
2343 2344
		return NULL;
	}
2345

2346 2347 2348
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2349 2350
	if (!tags->static_rqs) {
		kfree(tags->rqs);
2351
		blk_mq_free_tags(tags, flags);
J
Jens Axboe 已提交
2352 2353 2354
		return NULL;
	}

2355 2356 2357 2358 2359 2360 2361 2362
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2374
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2375 2376 2377
	return 0;
}

2378 2379 2380 2381 2382
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2383 2384
	int node;

2385
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2386 2387
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2388 2389 2390

	INIT_LIST_HEAD(&tags->page_list);

2391 2392 2393 2394
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2395
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2396
				cache_line_size());
2397
	left = rq_size * depth;
2398

2399
	for (i = 0; i < depth; ) {
2400 2401 2402 2403 2404
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2405
		while (this_order && left < order_to_size(this_order - 1))
2406 2407 2408
			this_order--;

		do {
2409
			page = alloc_pages_node(node,
2410
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2411
				this_order);
2412 2413 2414 2415 2416 2417 2418 2419 2420
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2421
			goto fail;
2422 2423

		page->private = this_order;
2424
		list_add_tail(&page->lru, &tags->page_list);
2425 2426

		p = page_address(page);
2427 2428 2429 2430
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2431
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2432
		entries_per_page = order_to_size(this_order) / rq_size;
2433
		to_do = min(entries_per_page, depth - i);
2434 2435
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2436 2437 2438
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2439 2440 2441
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2442 2443
			}

2444 2445 2446 2447
			p += rq_size;
			i++;
		}
	}
2448
	return 0;
2449

2450
fail:
2451 2452
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2453 2454
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
struct rq_iter_data {
	struct blk_mq_hw_ctx *hctx;
	bool has_rq;
};

static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
{
	struct rq_iter_data *iter_data = data;

	if (rq->mq_hctx != iter_data->hctx)
		return true;
	iter_data->has_rq = true;
	return false;
}

static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->sched_tags ?
			hctx->sched_tags : hctx->tags;
	struct rq_iter_data data = {
		.hctx	= hctx,
	};

	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
	return data.has_rq;
}

static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
		struct blk_mq_hw_ctx *hctx)
{
	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
		return false;
	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
		return false;
	return true;
}

static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
		return 0;

	/*
	 * Prevent new request from being allocated on the current hctx.
	 *
	 * The smp_mb__after_atomic() Pairs with the implied barrier in
	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
	 * seen once we return from the tag allocator.
	 */
	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	smp_mb__after_atomic();

	/*
	 * Try to grab a reference to the queue and wait for any outstanding
	 * requests.  If we could not grab a reference the queue has been
	 * frozen and there are no requests.
	 */
	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
		while (blk_mq_hctx_has_requests(hctx))
			msleep(5);
		percpu_ref_put(&hctx->queue->q_usage_counter);
	}

	return 0;
}

static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (cpumask_test_cpu(cpu, hctx->cpumask))
		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	return 0;
}

J
Jens Axboe 已提交
2535 2536 2537 2538 2539
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2540
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2541
{
2542
	struct blk_mq_hw_ctx *hctx;
2543 2544
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
2545
	enum hctx_type type;
2546

2547
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2548 2549 2550
	if (!cpumask_test_cpu(cpu, hctx->cpumask))
		return 0;

J
Jens Axboe 已提交
2551
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
2552
	type = hctx->type;
2553 2554

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2555 2556
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
2557 2558 2559 2560 2561
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2562
		return 0;
2563

J
Jens Axboe 已提交
2564 2565 2566
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2567 2568

	blk_mq_run_hw_queue(hctx, true);
2569
	return 0;
2570 2571
}

2572
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2573
{
2574 2575 2576
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
						    &hctx->cpuhp_online);
2577 2578
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2579 2580
}

2581
/* hctx->ctxs will be freed in queue's release handler */
2582 2583 2584 2585
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2586 2587
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2588

2589
	if (set->ops->exit_request)
2590
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2591

2592 2593 2594
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2595
	blk_mq_remove_cpuhp(hctx);
2596 2597 2598 2599

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
2600 2601
}

M
Ming Lei 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2611
		blk_mq_debugfs_unregister_hctx(hctx);
2612
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2613 2614 2615
	}
}

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2630 2631 2632
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2633
{
2634 2635
	hctx->queue_num = hctx_idx;

2636 2637 2638
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
				&hctx->cpuhp_online);
2639 2640 2641 2642 2643 2644 2645
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
2646

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
2675
	atomic_set(&hctx->elevator_queued, 0);
2676
	if (node == NUMA_NO_NODE)
2677 2678
		node = set->numa_node;
	hctx->numa_node = node;
2679

2680
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2681 2682 2683
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2684
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2685

2686 2687
	INIT_LIST_HEAD(&hctx->hctx_list);

2688
	/*
2689 2690
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2691
	 */
2692
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2693
			gfp, node);
2694
	if (!hctx->ctxs)
2695
		goto free_cpumask;
2696

2697
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2698
				gfp, node))
2699 2700
		goto free_ctxs;
	hctx->nr_ctx = 0;
2701

2702
	spin_lock_init(&hctx->dispatch_wait_lock);
2703 2704 2705
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2706
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2707
	if (!hctx->fq)
2708
		goto free_bitmap;
2709

2710
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2711
		init_srcu_struct(hctx->srcu);
2712
	blk_mq_hctx_kobj_init(hctx);
2713

2714
	return hctx;
2715

2716
 free_bitmap:
2717
	sbitmap_free(&hctx->ctx_map);
2718 2719
 free_ctxs:
	kfree(hctx->ctxs);
2720 2721 2722 2723 2724 2725
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
2726
}
2727 2728 2729 2730

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
2731 2732
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
2733 2734 2735 2736

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
2737
		int k;
2738 2739 2740

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
2741 2742 2743
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

2744 2745 2746 2747 2748 2749
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
2750 2751 2752
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2753
				hctx->numa_node = cpu_to_node(i);
J
Jens Axboe 已提交
2754
		}
2755 2756 2757
	}
}

2758 2759
static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
					int hctx_idx)
2760
{
2761
	unsigned int flags = set->flags;
2762 2763 2764
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2765
					set->queue_depth, set->reserved_tags, flags);
2766 2767 2768 2769 2770 2771 2772 2773
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

2774
	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2775 2776 2777 2778 2779 2780 2781
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2782 2783
	unsigned int flags = set->flags;

2784
	if (set->tags && set->tags[hctx_idx]) {
2785
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2786
		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2787 2788
		set->tags[hctx_idx] = NULL;
	}
2789 2790
}

2791
static void blk_mq_map_swqueue(struct request_queue *q)
2792
{
J
Jens Axboe 已提交
2793
	unsigned int i, j, hctx_idx;
2794 2795
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2796
	struct blk_mq_tag_set *set = q->tag_set;
2797 2798

	queue_for_each_hw_ctx(q, hctx, i) {
2799
		cpumask_clear(hctx->cpumask);
2800
		hctx->nr_ctx = 0;
2801
		hctx->dispatch_from = NULL;
2802 2803 2804
	}

	/*
2805
	 * Map software to hardware queues.
2806 2807
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2808
	 */
2809
	for_each_possible_cpu(i) {
2810

2811
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
2812
		for (j = 0; j < set->nr_maps; j++) {
2813 2814 2815
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
2816
				continue;
2817
			}
2818 2819 2820
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
2821
			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2822 2823 2824 2825 2826 2827 2828 2829
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
2830

J
Jens Axboe 已提交
2831
			hctx = blk_mq_map_queue_type(q, j, i);
2832
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
2852 2853 2854 2855

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
2856
	}
2857 2858

	queue_for_each_hw_ctx(q, hctx, i) {
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2874

M
Ming Lei 已提交
2875 2876 2877
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2878 2879 2880 2881 2882
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2883
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2884

2885 2886 2887
		/*
		 * Initialize batch roundrobin counts
		 */
2888
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2889 2890
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2891 2892
}

2893 2894 2895 2896
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2897
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2898 2899 2900 2901
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2902
	queue_for_each_hw_ctx(q, hctx, i) {
2903
		if (shared)
2904
			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2905
		else
2906
			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2907 2908 2909
	}
}

2910 2911
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
					 bool shared)
2912 2913
{
	struct request_queue *q;
2914

2915 2916
	lockdep_assert_held(&set->tag_list_lock);

2917 2918
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2919
		queue_set_hctx_shared(q, shared);
2920 2921 2922 2923 2924 2925 2926 2927 2928
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2929
	list_del(&q->tag_set_list);
2930 2931
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
2932
		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2933
		/* update existing queue */
2934
		blk_mq_update_tag_set_shared(set, false);
2935
	}
2936
	mutex_unlock(&set->tag_list_lock);
2937
	INIT_LIST_HEAD(&q->tag_set_list);
2938 2939 2940 2941 2942 2943
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
2944

2945 2946 2947 2948
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
2949 2950
	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2951
		/* update existing queue */
2952
		blk_mq_update_tag_set_shared(set, true);
2953
	}
2954
	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2955
		queue_set_hctx_shared(q, true);
2956
	list_add_tail(&q->tag_set_list, &set->tag_list);
2957

2958 2959 2960
	mutex_unlock(&set->tag_list_lock);
}

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

2989 2990 2991 2992 2993 2994 2995 2996
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
2997 2998
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
2999

3000 3001 3002 3003 3004 3005
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
3006
		kobject_put(&hctx->kobj);
3007
	}
3008 3009 3010

	kfree(q->queue_hw_ctx);

3011 3012 3013 3014 3015
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
3016 3017
}

3018 3019
struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
		void *queuedata)
3020 3021 3022
{
	struct request_queue *uninit_q, *q;

3023
	uninit_q = blk_alloc_queue(set->numa_node);
3024 3025
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);
3026
	uninit_q->queuedata = queuedata;
3027

3028 3029 3030 3031 3032
	/*
	 * Initialize the queue without an elevator. device_add_disk() will do
	 * the initialization.
	 */
	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3033 3034 3035 3036 3037
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
3038 3039 3040 3041 3042 3043
EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
3044 3045
EXPORT_SYMBOL(blk_mq_init_queue);

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
/*
 * Helper for setting up a queue with mq ops, given queue depth, and
 * the passed in mq ops flags.
 */
struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
					   const struct blk_mq_ops *ops,
					   unsigned int queue_depth,
					   unsigned int set_flags)
{
	struct request_queue *q;
	int ret;

	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
J
Jens Axboe 已提交
3061
	set->nr_maps = 1;
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		return ERR_PTR(ret);

	q = blk_mq_init_queue(set);
	if (IS_ERR(q)) {
		blk_mq_free_tag_set(set);
		return q;
	}

	return q;
}
EXPORT_SYMBOL(blk_mq_init_sq_queue);

3080 3081 3082 3083
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
3084
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3085

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
3100
	if (!hctx)
3101
		goto fail;
3102

3103 3104
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
3105 3106

	return hctx;
3107 3108 3109 3110 3111

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
3112 3113
}

K
Keith Busch 已提交
3114 3115
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
3116
{
3117
	int i, j, end;
K
Keith Busch 已提交
3118
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3119

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

3136 3137
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
3138
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
3139
		int node;
3140
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
3141

3142
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3143 3144 3145 3146 3147 3148 3149
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
3150

3151 3152
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
3153
			if (hctxs[i])
3154 3155 3156 3157 3158 3159 3160 3161 3162
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
3163
		}
3164
	}
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
3177

3178
	for (; j < end; j++) {
K
Keith Busch 已提交
3179 3180 3181
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
3182 3183
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
3184 3185 3186 3187
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
3188
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
3189 3190 3191
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3192 3193
						  struct request_queue *q,
						  bool elevator_init)
K
Keith Busch 已提交
3194
{
M
Ming Lei 已提交
3195 3196 3197
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

3198
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3199 3200
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
3201 3202 3203
	if (!q->poll_cb)
		goto err_exit;

3204
	if (blk_mq_alloc_ctxs(q))
3205
		goto err_poll;
K
Keith Busch 已提交
3206

3207 3208 3209
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

3210 3211 3212
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
3213 3214 3215
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
3216

3217
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3218
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3219

J
Jens Axboe 已提交
3220
	q->tag_set = set;
3221

3222
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3223 3224
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
3225
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3226

3227 3228
	q->sg_reserved_size = INT_MAX;

3229
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3230 3231 3232
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

3233 3234
	q->nr_requests = set->queue_depth;

3235 3236 3237
	/*
	 * Default to classic polling
	 */
3238
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3239

3240
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3241
	blk_mq_add_queue_tag_set(set, q);
3242
	blk_mq_map_swqueue(q);
3243

3244 3245
	if (elevator_init)
		elevator_init_mq(q);
3246

3247
	return q;
3248

3249
err_hctxs:
K
Keith Busch 已提交
3250
	kfree(q->queue_hw_ctx);
3251
	q->nr_hw_queues = 0;
3252
	blk_mq_sysfs_deinit(q);
3253 3254 3255
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
3256 3257
err_exit:
	q->mq_ops = NULL;
3258 3259
	return ERR_PTR(-ENOMEM);
}
3260
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3261

3262 3263
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
3264
{
M
Ming Lei 已提交
3265
	struct blk_mq_tag_set	*set = q->tag_set;
3266

3267
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
3268
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3269 3270
}

3271 3272 3273 3274
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

3275
	for (i = 0; i < set->nr_hw_queues; i++) {
3276
		if (!__blk_mq_alloc_map_and_request(set, i))
3277
			goto out_unwind;
3278 3279
		cond_resched();
	}
3280 3281 3282 3283 3284

	return 0;

out_unwind:
	while (--i >= 0)
3285
		blk_mq_free_map_and_requests(set, i);
3286 3287 3288 3289 3290 3291 3292 3293 3294

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
3295
static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

3325 3326
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
3327 3328 3329 3330 3331 3332 3333 3334
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

3335
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
3336 3337
		int i;

3338 3339 3340 3341 3342 3343 3344
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
3345
		 * 		set->map[x].mq_map[cpu] = queue;
3346 3347 3348 3349 3350 3351
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
3352 3353
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
3354

3355
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
3356 3357
	} else {
		BUG_ON(set->nr_maps > 1);
3358
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
3359
	}
3360 3361
}

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

3385 3386 3387
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
3388
 * requested depth down, if it's too large. In that case, the set
3389 3390
 * value will be stored in set->queue_depth.
 */
3391 3392
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3393
	int i, ret;
3394

B
Bart Van Assche 已提交
3395 3396
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

3397 3398
	if (!set->nr_hw_queues)
		return -EINVAL;
3399
	if (!set->queue_depth)
3400 3401 3402 3403
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
3404
	if (!set->ops->queue_rq)
3405 3406
		return -EINVAL;

3407 3408 3409
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

3410 3411 3412 3413 3414
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
3415

J
Jens Axboe 已提交
3416 3417 3418 3419 3420
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

3421 3422 3423 3424 3425 3426 3427
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
3428
		set->nr_maps = 1;
3429 3430
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
3431
	/*
3432 3433
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
3434
	 */
3435
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3436
		set->nr_hw_queues = nr_cpu_ids;
3437

3438
	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3439
		return -ENOMEM;
3440

3441
	ret = -ENOMEM;
J
Jens Axboe 已提交
3442 3443
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3444
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
3445 3446 3447
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
3448
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
3449
	}
3450

3451
	ret = blk_mq_update_queue_map(set);
3452 3453 3454
	if (ret)
		goto out_free_mq_map;

3455
	ret = blk_mq_alloc_map_and_requests(set);
3456
	if (ret)
3457
		goto out_free_mq_map;
3458

3459
	if (blk_mq_is_sbitmap_shared(set->flags)) {
3460 3461
		atomic_set(&set->active_queues_shared_sbitmap, 0);

3462 3463 3464 3465 3466 3467
		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
			ret = -ENOMEM;
			goto out_free_mq_rq_maps;
		}
	}

3468 3469 3470
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

3471
	return 0;
3472

3473 3474 3475
out_free_mq_rq_maps:
	for (i = 0; i < set->nr_hw_queues; i++)
		blk_mq_free_map_and_requests(set, i);
3476
out_free_mq_map:
J
Jens Axboe 已提交
3477 3478 3479 3480
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
3481 3482
	kfree(set->tags);
	set->tags = NULL;
3483
	return ret;
3484 3485 3486 3487 3488
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3489
	int i, j;
3490

3491
	for (i = 0; i < set->nr_hw_queues; i++)
3492
		blk_mq_free_map_and_requests(set, i);
3493

3494 3495 3496
	if (blk_mq_is_sbitmap_shared(set->flags))
		blk_mq_exit_shared_sbitmap(set);

J
Jens Axboe 已提交
3497 3498 3499 3500
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
3501

M
Ming Lei 已提交
3502
	kfree(set->tags);
3503
	set->tags = NULL;
3504 3505 3506
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3507 3508 3509 3510 3511 3512
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3513
	if (!set)
3514 3515
		return -EINVAL;

3516 3517 3518
	if (q->nr_requests == nr)
		return 0;

3519
	blk_mq_freeze_queue(q);
3520
	blk_mq_quiesce_queue(q);
3521

3522 3523
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3524 3525
		if (!hctx->tags)
			continue;
3526 3527 3528 3529
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3530
		if (!hctx->sched_tags) {
3531
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3532
							false);
3533 3534
			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
				blk_mq_tag_resize_shared_sbitmap(set, nr);
3535 3536 3537 3538
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
3539 3540
		if (ret)
			break;
3541 3542
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
3543 3544 3545 3546 3547
	}

	if (!ret)
		q->nr_requests = nr;

3548
	blk_mq_unquiesce_queue(q);
3549 3550
	blk_mq_unfreeze_queue(q);

3551 3552 3553
	return ret;
}

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3624 3625
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3626 3627
{
	struct request_queue *q;
3628
	LIST_HEAD(head);
3629
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3630

3631 3632
	lockdep_assert_held(&set->tag_list_lock);

3633
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3634
		nr_hw_queues = nr_cpu_ids;
3635 3636 3637
	if (nr_hw_queues < 1)
		return;
	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
K
Keith Busch 已提交
3638 3639 3640 3641
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3642 3643 3644 3645 3646 3647 3648 3649
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3650

3651 3652 3653 3654 3655
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3656
	prev_nr_hw_queues = set->nr_hw_queues;
3657 3658 3659 3660
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
3661
	set->nr_hw_queues = nr_hw_queues;
3662
fallback:
3663
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
3664 3665
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3666 3667 3668 3669
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
3670
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3671 3672
			goto fallback;
		}
3673 3674 3675
		blk_mq_map_swqueue(q);
	}

3676
reregister:
3677 3678 3679
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3680 3681
	}

3682 3683 3684 3685
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3686 3687 3688
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3689 3690 3691 3692 3693 3694 3695

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3696 3697
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3698 3699 3700 3701
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3702
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3724
	int bucket;
3725

3726 3727 3728 3729
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3730 3731
}

3732 3733 3734 3735
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
3736
	int bucket;
3737 3738 3739 3740 3741

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3742
	if (!blk_poll_stats_enable(q))
3743 3744 3745 3746 3747 3748 3749 3750
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3751 3752
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3753
	 */
3754 3755 3756 3757 3758 3759
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3760 3761 3762 3763

	return ret;
}

3764 3765 3766 3767 3768
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3769
	unsigned int nsecs;
3770 3771
	ktime_t kt;

J
Jens Axboe 已提交
3772
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3773 3774 3775
		return false;

	/*
3776
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3777 3778 3779 3780
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
3781
	if (q->poll_nsec > 0)
3782 3783
		nsecs = q->poll_nsec;
	else
3784
		nsecs = blk_mq_poll_nsecs(q, rq);
3785 3786

	if (!nsecs)
3787 3788
		return false;

J
Jens Axboe 已提交
3789
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3790 3791 3792 3793 3794

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3795
	kt = nsecs;
3796 3797

	mode = HRTIMER_MODE_REL;
3798
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3799 3800 3801
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
3802
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3803 3804
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
3805
		hrtimer_sleeper_start_expires(&hs, mode);
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

3817 3818
static bool blk_mq_poll_hybrid(struct request_queue *q,
			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
J
Jens Axboe 已提交
3819
{
3820 3821
	struct request *rq;

3822
	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
		return false;

	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else {
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}

3839
	return blk_mq_poll_hybrid_sleep(q, rq);
3840 3841
}

C
Christoph Hellwig 已提交
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
/**
 * blk_poll - poll for IO completions
 * @q:  the queue
 * @cookie: cookie passed back at IO submission time
 * @spin: whether to spin for completions
 *
 * Description:
 *    Poll for completions on the passed in queue. Returns number of
 *    completed entries found. If @spin is true, then blk_poll will continue
 *    looping until at least one completion is found, unless the task is
 *    otherwise marked running (or we need to reschedule).
 */
int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3855 3856
{
	struct blk_mq_hw_ctx *hctx;
J
Jens Axboe 已提交
3857 3858
	long state;

C
Christoph Hellwig 已提交
3859 3860
	if (!blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3861 3862
		return 0;

C
Christoph Hellwig 已提交
3863 3864 3865
	if (current->plug)
		blk_flush_plug_list(current->plug, false);

3866 3867
	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];

3868 3869 3870 3871 3872
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
3873 3874
	 * straight to the busy poll loop. If specified not to spin,
	 * we also should not sleep.
3875
	 */
3876
	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3877
		return 1;
3878

J
Jens Axboe 已提交
3879 3880 3881
	hctx->poll_considered++;

	state = current->state;
3882
	do {
J
Jens Axboe 已提交
3883 3884 3885 3886
		int ret;

		hctx->poll_invoked++;

3887
		ret = q->mq_ops->poll(hctx);
J
Jens Axboe 已提交
3888 3889
		if (ret > 0) {
			hctx->poll_success++;
3890
			__set_current_state(TASK_RUNNING);
3891
			return ret;
J
Jens Axboe 已提交
3892 3893 3894
		}

		if (signal_pending_state(state, current))
3895
			__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3896 3897

		if (current->state == TASK_RUNNING)
3898
			return 1;
3899
		if (ret < 0 || !spin)
J
Jens Axboe 已提交
3900 3901
			break;
		cpu_relax();
3902
	} while (!need_resched());
J
Jens Axboe 已提交
3903

3904
	__set_current_state(TASK_RUNNING);
3905
	return 0;
J
Jens Axboe 已提交
3906
}
C
Christoph Hellwig 已提交
3907
EXPORT_SYMBOL_GPL(blk_poll);
J
Jens Axboe 已提交
3908

J
Jens Axboe 已提交
3909 3910 3911 3912 3913 3914
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

3915 3916
static int __init blk_mq_init(void)
{
3917 3918 3919 3920 3921 3922 3923 3924 3925
	int i;

	for_each_possible_cpu(i)
		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);

	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
				  "block/softirq:dead", NULL,
				  blk_softirq_cpu_dead);
3926 3927
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3928 3929 3930
	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
				blk_mq_hctx_notify_online,
				blk_mq_hctx_notify_offline);
3931 3932 3933
	return 0;
}
subsys_initcall(blk_mq_init);