blk-mq.c 100.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/blk-integrity.h>
14
#include <linux/kmemleak.h>
15 16 17 18 19
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
20
#include <linux/interrupt.h>
21 22 23 24 25
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
26
#include <linux/sched/topology.h>
27
#include <linux/sched/signal.h>
28
#include <linux/delay.h>
29
#include <linux/crash_dump.h>
30
#include <linux/prefetch.h>
31
#include <linux/blk-crypto.h>
32 33 34 35

#include <trace/events/block.h>

#include <linux/blk-mq.h>
36
#include <linux/t10-pi.h>
37 38
#include "blk.h"
#include "blk-mq.h"
39
#include "blk-mq-debugfs.h"
40
#include "blk-mq-tag.h"
41
#include "blk-pm.h"
42
#include "blk-stat.h"
43
#include "blk-mq-sched.h"
44
#include "blk-rq-qos.h"
45

46
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47

48 49 50
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

51 52
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
53
	int ddir, sectors, bucket;
54

J
Jens Axboe 已提交
55
	ddir = rq_data_dir(rq);
56
	sectors = blk_rq_stats_sectors(rq);
57

58
	bucket = ddir + 2 * ilog2(sectors);
59 60 61 62 63 64 65 66 67

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

68
/*
69 70
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
71
 */
72
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
73
{
74 75
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
76
			blk_mq_sched_has_work(hctx);
77 78
}

79 80 81 82 83 84
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
85 86 87 88
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
89 90 91 92 93
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
94 95 96
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
97 98
}

99
struct mq_inflight {
100
	struct block_device *part;
101
	unsigned int inflight[2];
102 103
};

104
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
105 106 107 108 109
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

110 111
	if ((!mi->part->bd_partno || rq->part == mi->part) &&
	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
112
		mi->inflight[rq_data_dir(rq)]++;
113 114

	return true;
115 116
}

117 118
unsigned int blk_mq_in_flight(struct request_queue *q,
		struct block_device *part)
119
{
120
	struct mq_inflight mi = { .part = part };
121 122

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
123

124
	return mi.inflight[0] + mi.inflight[1];
125 126
}

127 128
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
		unsigned int inflight[2])
129
{
130
	struct mq_inflight mi = { .part = part };
131

132
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
133 134
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
135 136
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139 140
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
141
		percpu_ref_kill(&q->q_usage_counter);
142
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
143
		if (queue_is_mq(q))
144
			blk_mq_run_hw_queues(q, false);
145 146
	} else {
		mutex_unlock(&q->mq_freeze_lock);
147
	}
148
}
149
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150

151
void blk_mq_freeze_queue_wait(struct request_queue *q)
152
{
153
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154
}
155
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156

157 158 159 160 161 162 163 164
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
165

166 167 168 169
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
170
void blk_freeze_queue(struct request_queue *q)
171
{
172 173 174 175 176 177 178
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
179
	blk_freeze_queue_start(q);
180 181
	blk_mq_freeze_queue_wait(q);
}
182 183 184 185 186 187 188 189 190

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
191
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
192

193
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
194
{
195
	mutex_lock(&q->mq_freeze_lock);
196 197
	if (force_atomic)
		q->q_usage_counter.data->force_atomic = true;
198 199 200
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
201
		percpu_ref_resurrect(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
	mutex_unlock(&q->mq_freeze_lock);
205
}
206 207 208 209 210

void blk_mq_unfreeze_queue(struct request_queue *q)
{
	__blk_mq_unfreeze_queue(q, false);
}
211
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
212

213 214 215 216 217 218
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
219
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
220 221 222
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

223
/**
224
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
225 226 227
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
228 229 230
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
231 232 233 234 235 236 237
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

238
	blk_mq_quiesce_queue_nowait(q);
239

240 241
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
242
			synchronize_srcu(hctx->srcu);
243 244 245 246 247 248 249 250
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

251 252 253 254 255 256 257 258 259
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
260
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
261

262 263
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
264 265 266
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

267 268 269 270 271 272 273 274 275 276
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

277
/*
278 279
 * Only need start/end time stamping if we have iostat or
 * blk stats enabled, or using an IO scheduler.
280 281 282
 */
static inline bool blk_mq_need_time_stamp(struct request *rq)
{
283
	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
284 285
}

286
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
287
		unsigned int tag, u64 alloc_time_ns)
288
{
289 290
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
291

292
	if (data->q->elevator) {
293
		rq->tag = BLK_MQ_NO_TAG;
294 295 296
		rq->internal_tag = tag;
	} else {
		rq->tag = tag;
297
		rq->internal_tag = BLK_MQ_NO_TAG;
298 299
	}

300
	/* csd/requeue_work/fifo_time is initialized before use */
301 302
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
303
	rq->mq_hctx = data->hctx;
304
	rq->rq_flags = 0;
305
	rq->cmd_flags = data->cmd_flags;
306 307
	if (data->flags & BLK_MQ_REQ_PM)
		rq->rq_flags |= RQF_PM;
308
	if (blk_queue_io_stat(data->q))
309
		rq->rq_flags |= RQF_IO_STAT;
310
	INIT_LIST_HEAD(&rq->queuelist);
311 312 313 314
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
315 316 317
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
318 319 320 321
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
322
	rq->io_start_time_ns = 0;
323
	rq->stats_sectors = 0;
324 325 326 327
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
328
	blk_crypto_rq_set_defaults(rq);
329
	/* tag was already set */
330
	WRITE_ONCE(rq->deadline, 0);
331

332 333
	rq->timeout = 0;

334 335 336
	rq->end_io = NULL;
	rq->end_io_data = NULL;

337
	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
K
Keith Busch 已提交
338
	refcount_set(&rq->ref, 1);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

	if (!op_is_flush(data->cmd_flags)) {
		struct elevator_queue *e = data->q->elevator;

		rq->elv.icq = NULL;
		if (e && e->type->ops.prepare_request) {
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);

			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

	data->hctx->queued++;
354
	return rq;
355 356
}

357
static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
358
{
359
	struct request_queue *q = data->q;
360
	struct elevator_queue *e = q->elevator;
361
	u64 alloc_time_ns = 0;
362
	unsigned int tag;
363

364 365 366 367
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

368
	if (data->cmd_flags & REQ_NOWAIT)
369
		data->flags |= BLK_MQ_REQ_NOWAIT;
370 371 372

	if (e) {
		/*
373
		 * Flush/passthrough requests are special and go directly to the
374 375
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
376
		 */
377
		if (!op_is_flush(data->cmd_flags) &&
378
		    !blk_op_is_passthrough(data->cmd_flags) &&
379
		    e->type->ops.limit_depth &&
380
		    !(data->flags & BLK_MQ_REQ_RESERVED))
381
			e->type->ops.limit_depth(data->cmd_flags, data);
382 383
	}

384
retry:
385 386
	data->ctx = blk_mq_get_ctx(q);
	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
387
	if (!e)
388 389
		blk_mq_tag_busy(data->hctx);

390 391 392 393 394
	/*
	 * Waiting allocations only fail because of an inactive hctx.  In that
	 * case just retry the hctx assignment and tag allocation as CPU hotplug
	 * should have migrated us to an online CPU by now.
	 */
395
	tag = blk_mq_get_tag(data);
396 397 398 399 400 401 402
	if (tag == BLK_MQ_NO_TAG) {
		if (data->flags & BLK_MQ_REQ_NOWAIT)
			return NULL;

		/*
		 * Give up the CPU and sleep for a random short time to ensure
		 * that thread using a realtime scheduling class are migrated
403
		 * off the CPU, and thus off the hctx that is going away.
404 405 406 407
		 */
		msleep(3);
		goto retry;
	}
408
	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
409 410
}

411
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412
		blk_mq_req_flags_t flags)
413
{
414 415 416 417 418
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
	};
419
	struct request *rq;
420
	int ret;
421

422
	ret = blk_queue_enter(q, flags);
423 424
	if (ret)
		return ERR_PTR(ret);
425

426
	rq = __blk_mq_alloc_request(&data);
427
	if (!rq)
428
		goto out_queue_exit;
429 430 431
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
432
	return rq;
433 434 435
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
436
}
437
EXPORT_SYMBOL(blk_mq_alloc_request);
438

439
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
440
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
441
{
442 443 444 445 446
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
	};
447
	u64 alloc_time_ns = 0;
448
	unsigned int cpu;
449
	unsigned int tag;
M
Ming Lin 已提交
450 451
	int ret;

452 453 454 455
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

M
Ming Lin 已提交
456 457 458 459 460 461
	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
462
	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
M
Ming Lin 已提交
463 464 465 466 467
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

468
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
469 470 471
	if (ret)
		return ERR_PTR(ret);

472 473 474 475
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
476
	ret = -EXDEV;
477 478
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
479
		goto out_queue_exit;
480 481
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
482

483
	if (!q->elevator)
484 485
		blk_mq_tag_busy(data.hctx);

486
	ret = -EWOULDBLOCK;
487 488
	tag = blk_mq_get_tag(&data);
	if (tag == BLK_MQ_NO_TAG)
489
		goto out_queue_exit;
490 491
	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);

492 493 494
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
495 496 497
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
498 499 500 501
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
502
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
503 504
	const int sched_tag = rq->internal_tag;

505
	blk_crypto_free_request(rq);
506
	blk_pm_mark_last_busy(rq);
507
	rq->mq_hctx = NULL;
508
	if (rq->tag != BLK_MQ_NO_TAG)
509
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
510
	if (sched_tag != BLK_MQ_NO_TAG)
511
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
512 513 514 515
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

516
void blk_mq_free_request(struct request *rq)
517 518
{
	struct request_queue *q = rq->q;
519 520
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
521
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
522

523
	if (rq->rq_flags & RQF_ELVPRIV) {
524 525
		if (e && e->type->ops.finish_request)
			e->type->ops.finish_request(rq);
526 527 528 529 530
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
531

532
	ctx->rq_completed[rq_is_sync(rq)]++;
533
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
534
		__blk_mq_dec_active_requests(hctx);
J
Jens Axboe 已提交
535

536
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
537
		laptop_io_completion(q->disk->bdi);
538

539
	rq_qos_done(q, rq);
540

K
Keith Busch 已提交
541 542 543
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
544
}
J
Jens Axboe 已提交
545
EXPORT_SYMBOL_GPL(blk_mq_free_request);
546

547
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
548
{
549 550 551 552
	u64 now = 0;

	if (blk_mq_need_time_stamp(rq))
		now = ktime_get_ns();
553

554 555
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
556
		blk_stat_add(rq, now);
557 558
	}

559
	blk_mq_sched_completed_request(rq, now);
560

561
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
562

C
Christoph Hellwig 已提交
563
	if (rq->end_io) {
564
		rq_qos_done(rq->q, rq);
565
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
566
	} else {
567
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
568
	}
569
}
570
EXPORT_SYMBOL(__blk_mq_end_request);
571

572
void blk_mq_end_request(struct request *rq, blk_status_t error)
573 574 575
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
576
	__blk_mq_end_request(rq, error);
577
}
578
EXPORT_SYMBOL(blk_mq_end_request);
579

580
static void blk_complete_reqs(struct llist_head *list)
581
{
582 583
	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
	struct request *rq, *next;
584

585
	llist_for_each_entry_safe(rq, next, entry, ipi_list)
586
		rq->q->mq_ops->complete(rq);
587 588
}

589
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
590
{
591
	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
592 593
}

594 595
static int blk_softirq_cpu_dead(unsigned int cpu)
{
596
	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
597 598 599
	return 0;
}

600
static void __blk_mq_complete_request_remote(void *data)
601
{
602
	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
603 604
}

605 606 607 608 609 610 611
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
	int cpu = raw_smp_processor_id();

	if (!IS_ENABLED(CONFIG_SMP) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
		return false;
612 613 614 615 616 617
	/*
	 * With force threaded interrupts enabled, raising softirq from an SMP
	 * function call will always result in waking the ksoftirqd thread.
	 * This is probably worse than completing the request on a different
	 * cache domain.
	 */
618
	if (force_irqthreads())
619
		return false;
620 621 622 623 624 625 626 627 628 629 630

	/* same CPU or cache domain?  Complete locally */
	if (cpu == rq->mq_ctx->cpu ||
	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
		return false;

	/* don't try to IPI to an offline CPU */
	return cpu_online(rq->mq_ctx->cpu);
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
static void blk_mq_complete_send_ipi(struct request *rq)
{
	struct llist_head *list;
	unsigned int cpu;

	cpu = rq->mq_ctx->cpu;
	list = &per_cpu(blk_cpu_done, cpu);
	if (llist_add(&rq->ipi_list, list)) {
		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
		smp_call_function_single_async(cpu, &rq->csd);
	}
}

static void blk_mq_raise_softirq(struct request *rq)
{
	struct llist_head *list;

	preempt_disable();
	list = this_cpu_ptr(&blk_cpu_done);
	if (llist_add(&rq->ipi_list, list))
		raise_softirq(BLOCK_SOFTIRQ);
	preempt_enable();
}

655
bool blk_mq_complete_request_remote(struct request *rq)
656
{
657
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
658

659 660 661 662
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
663 664
	if (rq->cmd_flags & REQ_HIPRI)
		return false;
C
Christoph Hellwig 已提交
665

666
	if (blk_mq_complete_need_ipi(rq)) {
667 668
		blk_mq_complete_send_ipi(rq);
		return true;
669
	}
670

671 672 673 674 675
	if (rq->q->nr_hw_queues == 1) {
		blk_mq_raise_softirq(rq);
		return true;
	}
	return false;
676 677 678 679 680 681 682 683 684 685 686 687 688 689
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Complete a request by scheduling the ->complete_rq operation.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (!blk_mq_complete_request_remote(rq))
		rq->q->mq_ops->complete(rq);
690
}
691
EXPORT_SYMBOL(blk_mq_complete_request);
692

693
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
694
	__releases(hctx->srcu)
695 696 697 698
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
699
		srcu_read_unlock(hctx->srcu, srcu_idx);
700 701 702
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
703
	__acquires(hctx->srcu)
704
{
705 706 707
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
708
		rcu_read_lock();
709
	} else
710
		*srcu_idx = srcu_read_lock(hctx->srcu);
711 712
}

713 714 715 716 717 718 719 720
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
721
void blk_mq_start_request(struct request *rq)
722 723 724
{
	struct request_queue *q = rq->q;

725
	trace_block_rq_issue(rq);
726

727
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
728
		rq->io_start_time_ns = ktime_get_ns();
729
		rq->stats_sectors = blk_rq_sectors(rq);
730
		rq->rq_flags |= RQF_STATS;
731
		rq_qos_issue(q, rq);
732 733
	}

734
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
735

736
	blk_add_timer(rq);
K
Keith Busch 已提交
737
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
738

739 740 741 742
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
743
}
744
EXPORT_SYMBOL(blk_mq_start_request);
745

746
static void __blk_mq_requeue_request(struct request *rq)
747 748 749
{
	struct request_queue *q = rq->q;

750 751
	blk_mq_put_driver_tag(rq);

752
	trace_block_rq_requeue(rq);
753
	rq_qos_requeue(q, rq);
754

K
Keith Busch 已提交
755 756
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
757
		rq->rq_flags &= ~RQF_TIMED_OUT;
758
	}
759 760
}

761
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
762 763 764
{
	__blk_mq_requeue_request(rq);

765 766 767
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
768
	BUG_ON(!list_empty(&rq->queuelist));
769
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
770 771 772
}
EXPORT_SYMBOL(blk_mq_requeue_request);

773 774 775
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
776
		container_of(work, struct request_queue, requeue_work.work);
777 778 779
	LIST_HEAD(rq_list);
	struct request *rq, *next;

780
	spin_lock_irq(&q->requeue_lock);
781
	list_splice_init(&q->requeue_list, &rq_list);
782
	spin_unlock_irq(&q->requeue_lock);
783 784

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
785
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
786 787
			continue;

788
		rq->rq_flags &= ~RQF_SOFTBARRIER;
789
		list_del_init(&rq->queuelist);
790 791 792 793 794 795
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
796
			blk_mq_request_bypass_insert(rq, false, false);
797 798
		else
			blk_mq_sched_insert_request(rq, true, false, false);
799 800 801 802 803
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
804
		blk_mq_sched_insert_request(rq, false, false, false);
805 806
	}

807
	blk_mq_run_hw_queues(q, false);
808 809
}

810 811
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
812 813 814 815 816 817
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
818
	 * request head insertion from the workqueue.
819
	 */
820
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
821 822 823

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
824
		rq->rq_flags |= RQF_SOFTBARRIER;
825 826 827 828 829
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
830 831 832

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
833 834 835 836
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
837
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
838 839 840
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

841 842 843
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
844 845
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
846 847 848
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

849 850
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
851 852
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
853
		return tags->rqs[tag];
854
	}
855 856

	return NULL;
857 858 859
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

860 861
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
862 863
{
	/*
864
	 * If we find a request that isn't idle and the queue matches,
865
	 * we know the queue is busy. Return false to stop the iteration.
866
	 */
867
	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
868 869 870 871 872 873 874 875 876
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

877
bool blk_mq_queue_inflight(struct request_queue *q)
878 879 880
{
	bool busy = false;

881
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
882 883
	return busy;
}
884
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
885

886
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
887
{
888
	req->rq_flags |= RQF_TIMED_OUT;
889 890 891 892 893 894 895
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
896
	}
897 898

	blk_add_timer(req);
899
}
900

K
Keith Busch 已提交
901
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
902
{
K
Keith Busch 已提交
903
	unsigned long deadline;
904

K
Keith Busch 已提交
905 906
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
907 908
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
909

910
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
911 912
	if (time_after_eq(jiffies, deadline))
		return true;
913

K
Keith Busch 已提交
914 915 916 917 918
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
919 920
}

921 922
void blk_mq_put_rq_ref(struct request *rq)
{
M
Ming Lei 已提交
923
	if (is_flush_rq(rq))
924 925 926 927 928
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
}

929
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
930 931
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
932 933 934
	unsigned long *next = priv;

	/*
935 936 937 938 939
	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
	 * be reallocated underneath the timeout handler's processing, then
	 * the expire check is reliable. If the request is not expired, then
	 * it was completed and reallocated as a new request after returning
	 * from blk_mq_check_expired().
940
	 */
K
Keith Busch 已提交
941
	if (blk_mq_req_expired(rq, next))
942
		blk_mq_rq_timed_out(rq, reserved);
943
	return true;
944 945
}

946
static void blk_mq_timeout_work(struct work_struct *work)
947
{
948 949
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
950
	unsigned long next = 0;
951
	struct blk_mq_hw_ctx *hctx;
952
	int i;
953

954 955 956 957 958 959 960 961 962
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
963
	 * blk_freeze_queue_start, and the moment the last request is
964 965 966 967
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
968 969
		return;

K
Keith Busch 已提交
970
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
971

K
Keith Busch 已提交
972 973
	if (next != 0) {
		mod_timer(&q->timeout, next);
974
	} else {
975 976 977 978 979 980
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
981 982 983 984 985
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
986
	}
987
	blk_queue_exit(q);
988 989
}

990 991 992 993 994 995 996 997 998 999
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1000
	enum hctx_type type = hctx->type;
1001 1002

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1003
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1004
	sbitmap_clear_bit(sb, bitnr);
1005 1006 1007 1008
	spin_unlock(&ctx->lock);
	return true;
}

1009 1010 1011 1012
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1013
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1014
{
1015 1016 1017 1018
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1019

1020
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1021
}
1022
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1035
	enum hctx_type type = hctx->type;
1036 1037

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1038 1039
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1040
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1041
		if (list_empty(&ctx->rq_lists[type]))
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1052
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1064 1065 1066 1067
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1068

1069
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1070 1071
}

1072 1073
static bool __blk_mq_get_driver_tag(struct request *rq)
{
1074
	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1075 1076 1077
	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
	int tag;

1078 1079
	blk_mq_tag_busy(rq->mq_hctx);

1080
	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1081
		bt = rq->mq_hctx->tags->breserved_tags;
1082
		tag_offset = 0;
1083 1084 1085
	} else {
		if (!hctx_may_queue(rq->mq_hctx, bt))
			return false;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	}

	tag = __sbitmap_queue_get(bt);
	if (tag == BLK_MQ_NO_TAG)
		return false;

	rq->tag = tag + tag_offset;
	return true;
}

1096
bool blk_mq_get_driver_tag(struct request *rq)
1097
{
1098 1099 1100 1101 1102
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
		return false;

1103
	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1104 1105
			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
		rq->rq_flags |= RQF_MQ_INFLIGHT;
1106
		__blk_mq_inc_active_requests(hctx);
1107 1108 1109
	}
	hctx->tags->rqs[rq->tag] = rq;
	return true;
1110 1111
}

1112 1113
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1114 1115 1116 1117 1118
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1119
	spin_lock(&hctx->dispatch_wait_lock);
1120 1121 1122 1123
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
1124
		sbq = hctx->tags->bitmap_tags;
1125 1126
		atomic_dec(&sbq->ws_active);
	}
1127 1128
	spin_unlock(&hctx->dispatch_wait_lock);

1129 1130 1131 1132
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1133 1134
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1135 1136
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1137 1138
 * marking us as waiting.
 */
1139
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1140
				 struct request *rq)
1141
{
1142
	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1143
	struct wait_queue_head *wq;
1144 1145
	wait_queue_entry_t *wait;
	bool ret;
1146

1147
	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1148
		blk_mq_sched_mark_restart_hctx(hctx);
1149

1150 1151 1152 1153 1154 1155 1156 1157
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1158
		return blk_mq_get_driver_tag(rq);
1159 1160
	}

1161
	wait = &hctx->dispatch_wait;
1162 1163 1164
	if (!list_empty_careful(&wait->entry))
		return false;

1165
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1166 1167 1168

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1169
	if (!list_empty(&wait->entry)) {
1170 1171
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1172
		return false;
1173 1174
	}

1175
	atomic_inc(&sbq->ws_active);
1176 1177
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1178

1179
	/*
1180 1181 1182
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1183
	 */
1184
	ret = blk_mq_get_driver_tag(rq);
1185
	if (!ret) {
1186 1187
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1188
		return false;
1189
	}
1190 1191 1192 1193 1194 1195

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1196
	atomic_dec(&sbq->ws_active);
1197 1198
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1199 1200

	return true;
1201 1202
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1229 1230
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
enum prep_dispatch {
	PREP_DISPATCH_OK,
	PREP_DISPATCH_NO_TAG,
	PREP_DISPATCH_NO_BUDGET,
};

static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
						  bool need_budget)
{
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1271
	int budget_token = -1;
1272

1273 1274 1275 1276 1277 1278 1279
	if (need_budget) {
		budget_token = blk_mq_get_dispatch_budget(rq->q);
		if (budget_token < 0) {
			blk_mq_put_driver_tag(rq);
			return PREP_DISPATCH_NO_BUDGET;
		}
		blk_mq_set_rq_budget_token(rq, budget_token);
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	}

	if (!blk_mq_get_driver_tag(rq)) {
		/*
		 * The initial allocation attempt failed, so we need to
		 * rerun the hardware queue when a tag is freed. The
		 * waitqueue takes care of that. If the queue is run
		 * before we add this entry back on the dispatch list,
		 * we'll re-run it below.
		 */
		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1291 1292 1293 1294 1295
			/*
			 * All budgets not got from this function will be put
			 * together during handling partial dispatch
			 */
			if (need_budget)
1296
				blk_mq_put_dispatch_budget(rq->q, budget_token);
1297 1298 1299 1300 1301 1302 1303
			return PREP_DISPATCH_NO_TAG;
		}
	}

	return PREP_DISPATCH_OK;
}

1304 1305
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
1306
		struct list_head *list)
1307
{
1308
	struct request *rq;
1309

1310 1311
	list_for_each_entry(rq, list, queuelist) {
		int budget_token = blk_mq_get_rq_budget_token(rq);
1312

1313 1314 1315
		if (budget_token >= 0)
			blk_mq_put_dispatch_budget(q, budget_token);
	}
1316 1317
}

1318 1319 1320
/*
 * Returns true if we did some work AND can potentially do more.
 */
1321
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1322
			     unsigned int nr_budgets)
1323
{
1324
	enum prep_dispatch prep;
1325
	struct request_queue *q = hctx->queue;
1326
	struct request *rq, *nxt;
1327
	int errors, queued;
1328
	blk_status_t ret = BLK_STS_OK;
1329
	LIST_HEAD(zone_list);
1330

1331 1332 1333
	if (list_empty(list))
		return false;

1334 1335 1336
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1337
	errors = queued = 0;
1338
	do {
1339
		struct blk_mq_queue_data bd;
1340

1341
		rq = list_first_entry(list, struct request, queuelist);
1342

1343
		WARN_ON_ONCE(hctx != rq->mq_hctx);
1344
		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1345
		if (prep != PREP_DISPATCH_OK)
1346
			break;
1347

1348 1349
		list_del_init(&rq->queuelist);

1350
		bd.rq = rq;
1351 1352 1353 1354 1355 1356 1357 1358 1359

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1360
			bd.last = !blk_mq_get_driver_tag(nxt);
1361
		}
1362

1363 1364 1365 1366 1367 1368
		/*
		 * once the request is queued to lld, no need to cover the
		 * budget any more
		 */
		if (nr_budgets)
			nr_budgets--;
1369
		ret = q->mq_ops->queue_rq(hctx, &bd);
1370 1371 1372
		switch (ret) {
		case BLK_STS_OK:
			queued++;
1373
			break;
1374 1375 1376 1377 1378
		case BLK_STS_RESOURCE:
		case BLK_STS_DEV_RESOURCE:
			blk_mq_handle_dev_resource(rq, list);
			goto out;
		case BLK_STS_ZONE_RESOURCE:
1379 1380 1381 1382 1383 1384
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
1385 1386
			break;
		default:
1387
			errors++;
1388
			blk_mq_end_request(rq, ret);
1389
		}
1390
	} while (!list_empty(list));
1391
out:
1392 1393 1394
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1395
	hctx->dispatched[queued_to_index(queued)]++;
1396

1397 1398 1399 1400 1401
	/* If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
		q->mq_ops->commit_rqs(hctx);
1402 1403 1404 1405
	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1406
	if (!list_empty(list)) {
1407
		bool needs_restart;
1408 1409
		/* For non-shared tags, the RESTART check will suffice */
		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1410
			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1411
		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1412

1413 1414
		if (nr_budgets)
			blk_mq_release_budgets(q, list);
1415

1416
		spin_lock(&hctx->lock);
1417
		list_splice_tail_init(list, &hctx->dispatch);
1418
		spin_unlock(&hctx->lock);
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428
		/*
		 * Order adding requests to hctx->dispatch and checking
		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
		 * in blk_mq_sched_restart(). Avoid restart code path to
		 * miss the new added requests to hctx->dispatch, meantime
		 * SCHED_RESTART is observed here.
		 */
		smp_mb();

1429
		/*
1430 1431 1432
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1433
		 *
1434 1435 1436 1437
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1438
		 *
1439 1440 1441 1442 1443 1444 1445
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1446
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1447
		 *   and dm-rq.
1448 1449 1450
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1451 1452
		 * that could otherwise occur if the queue is idle.  We'll do
		 * similar if we couldn't get budget and SCHED_RESTART is set.
1453
		 */
1454 1455
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1456
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1457
			blk_mq_run_hw_queue(hctx, true);
1458 1459
		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
					   no_budget_avail))
1460
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1461

1462
		blk_mq_update_dispatch_busy(hctx, true);
1463
		return false;
1464 1465
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1466

1467
	return (queued + errors) != 0;
1468 1469
}

1470 1471 1472 1473 1474 1475
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1476 1477 1478 1479
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1480 1481 1482 1483 1484 1485
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1486
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1487

1488 1489 1490
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1491 1492
}

1493 1494 1495 1496 1497 1498 1499 1500 1501
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1502 1503 1504 1505 1506 1507 1508 1509
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1510
	bool tried = false;
1511
	int next_cpu = hctx->next_cpu;
1512

1513 1514
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1515 1516

	if (--hctx->next_cpu_batch <= 0) {
1517
select_cpu:
1518
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1519
				cpu_online_mask);
1520
		if (next_cpu >= nr_cpu_ids)
1521
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1522 1523 1524
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1525 1526 1527 1528
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1529
	if (!cpu_online(next_cpu)) {
1530 1531 1532 1533 1534 1535 1536 1537 1538
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1539
		hctx->next_cpu = next_cpu;
1540 1541 1542
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1543 1544 1545

	hctx->next_cpu = next_cpu;
	return next_cpu;
1546 1547
}

1548 1549 1550 1551
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
1552
 * @msecs: Milliseconds of delay to wait before running the queue.
1553 1554 1555 1556
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1557 1558
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1559
{
1560
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1561 1562
		return;

1563
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1564 1565
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1566
			__blk_mq_run_hw_queue(hctx);
1567
			put_cpu();
1568 1569
			return;
		}
1570

1571
		put_cpu();
1572
	}
1573

1574 1575
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1576 1577
}

1578 1579 1580
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
1581
 * @msecs: Milliseconds of delay to wait before running the queue.
1582 1583 1584
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
1585 1586 1587 1588 1589 1590
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1591 1592 1593 1594 1595 1596 1597 1598 1599
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
1600
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1601
{
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1613 1614 1615 1616
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1617

1618
	if (need_run)
1619
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1620
}
O
Omar Sandoval 已提交
1621
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1622

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * Is the request queue handled by an IO scheduler that does not respect
 * hardware queues when dispatching?
 */
static bool blk_mq_has_sqsched(struct request_queue *q)
{
	struct elevator_queue *e = q->elevator;

	if (e && e->type->ops.dispatch_request &&
	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
		return true;
	return false;
}

/*
 * Return prefered queue to dispatch from (if any) for non-mq aware IO
 * scheduler.
 */
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;

	/*
	 * If the IO scheduler does not respect hardware queues when
	 * dispatching, we just don't bother with multiple HW queues and
	 * dispatch from hctx for the current CPU since running multiple queues
	 * just causes lock contention inside the scheduler and pointless cache
	 * bouncing.
	 */
	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
				     raw_smp_processor_id());
	if (!blk_mq_hctx_stopped(hctx))
		return hctx;
	return NULL;
}

1659
/**
1660
 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1661 1662 1663
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
1664
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1665
{
1666
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1667 1668
	int i;

1669 1670 1671
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
1672
	queue_for_each_hw_ctx(q, hctx, i) {
1673
		if (blk_mq_hctx_stopped(hctx))
1674
			continue;
1675 1676 1677 1678 1679 1680 1681 1682
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_run_hw_queue(hctx, async);
1683 1684
	}
}
1685
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1686

1687 1688 1689
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
1690
 * @msecs: Milliseconds of delay to wait before running the queues.
1691 1692 1693
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
1694
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1695 1696
	int i;

1697 1698 1699
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
1700 1701 1702
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;
1703 1704 1705 1706 1707 1708 1709 1710
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_delay_run_hw_queue(hctx, msecs);
1711 1712 1713 1714
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1735 1736 1737
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1738
 * BLK_STS_RESOURCE is usually returned.
1739 1740 1741 1742 1743
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1744 1745
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1746
	cancel_delayed_work(&hctx->run_work);
1747

1748
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1749
}
1750
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1751

1752 1753 1754
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1755
 * BLK_STS_RESOURCE is usually returned.
1756 1757 1758 1759 1760
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1761 1762
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1763 1764 1765 1766 1767
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1768 1769 1770
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1771 1772 1773
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1774

1775
	blk_mq_run_hw_queue(hctx, false);
1776 1777 1778
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1799
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1800 1801 1802 1803
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1804 1805
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1806 1807 1808
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1809
static void blk_mq_run_work_fn(struct work_struct *work)
1810 1811 1812
{
	struct blk_mq_hw_ctx *hctx;

1813
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1814

1815
	/*
M
Ming Lei 已提交
1816
	 * If we are stopped, don't run the queue.
1817
	 */
1818
	if (blk_mq_hctx_stopped(hctx))
1819
		return;
1820 1821 1822 1823

	__blk_mq_run_hw_queue(hctx);
}

1824 1825 1826
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1827
{
J
Jens Axboe 已提交
1828
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
1829
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
1830

1831 1832
	lockdep_assert_held(&ctx->lock);

1833
	trace_block_rq_insert(rq);
1834

1835
	if (at_head)
M
Ming Lei 已提交
1836
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1837
	else
M
Ming Lei 已提交
1838
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1839
}
1840

1841 1842
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1843 1844 1845
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1846 1847
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1848
	__blk_mq_insert_req_list(hctx, rq, at_head);
1849 1850 1851
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1852 1853 1854
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
1855
 * @at_head: true if the request should be inserted at the head of the list.
1856 1857
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
1858 1859 1860
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1861 1862
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
1863
{
1864
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1865 1866

	spin_lock(&hctx->lock);
1867 1868 1869 1870
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
1871 1872
	spin_unlock(&hctx->lock);

1873 1874
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1875 1876
}

1877 1878
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1879 1880

{
1881
	struct request *rq;
M
Ming Lei 已提交
1882
	enum hctx_type type = hctx->type;
1883

1884 1885 1886 1887
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1888
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1889
		BUG_ON(rq->mq_ctx != ctx);
1890
		trace_block_rq_insert(rq);
1891
	}
1892 1893

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1894
	list_splice_tail_init(list, &ctx->rq_lists[type]);
1895
	blk_mq_hctx_mark_pending(hctx, ctx);
1896 1897 1898
	spin_unlock(&ctx->lock);
}

1899 1900
static int plug_rq_cmp(void *priv, const struct list_head *a,
		       const struct list_head *b)
1901 1902 1903 1904
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

P
Pavel Begunkov 已提交
1905 1906 1907 1908
	if (rqa->mq_ctx != rqb->mq_ctx)
		return rqa->mq_ctx > rqb->mq_ctx;
	if (rqa->mq_hctx != rqb->mq_hctx)
		return rqa->mq_hctx > rqb->mq_hctx;
J
Jens Axboe 已提交
1909 1910

	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1911 1912 1913 1914 1915 1916
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(list);

1917 1918
	if (list_empty(&plug->mq_list))
		return;
1919 1920
	list_splice_init(&plug->mq_list, &list);

1921 1922
	if (plug->rq_count > 2 && plug->multiple_queues)
		list_sort(NULL, &list, plug_rq_cmp);
1923

1924 1925
	plug->rq_count = 0;

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	do {
		struct list_head rq_list;
		struct request *rq, *head_rq = list_entry_rq(list.next);
		struct list_head *pos = &head_rq->queuelist; /* skip first */
		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
		unsigned int depth = 1;

		list_for_each_continue(pos, &list) {
			rq = list_entry_rq(pos);
			BUG_ON(!rq->q);
			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
				break;
			depth++;
1940 1941
		}

1942 1943
		list_cut_before(&rq_list, &list, pos);
		trace_block_unplug(head_rq->q, depth, !from_schedule);
1944
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1945
						from_schedule);
1946
	} while(!list_empty(&list));
1947 1948
}

1949 1950
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
1951
{
1952 1953
	int err;

1954 1955 1956 1957 1958
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
1959
	blk_rq_bio_prep(rq, bio, nr_segs);
1960 1961 1962 1963

	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
	WARN_ON_ONCE(err);
1964

1965
	blk_account_io_start(rq);
1966 1967
}

1968 1969
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
1970
					    blk_qc_t *cookie, bool last)
1971 1972 1973 1974
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1975
		.last = last,
1976
	};
1977
	blk_qc_t new_cookie;
1978
	blk_status_t ret;
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1990
		blk_mq_update_dispatch_busy(hctx, false);
1991 1992 1993
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1994
	case BLK_STS_DEV_RESOURCE:
1995
		blk_mq_update_dispatch_busy(hctx, true);
1996 1997 1998
		__blk_mq_requeue_request(rq);
		break;
	default:
1999
		blk_mq_update_dispatch_busy(hctx, false);
2000 2001 2002 2003 2004 2005 2006
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

2007
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2008
						struct request *rq,
2009
						blk_qc_t *cookie,
2010
						bool bypass_insert, bool last)
2011 2012
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
2013
	bool run_queue = true;
2014
	int budget_token;
M
Ming Lei 已提交
2015

2016
	/*
2017
	 * RCU or SRCU read lock is needed before checking quiesced flag.
2018
	 *
2019 2020 2021
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
2022
	 */
2023
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
2024
		run_queue = false;
2025 2026
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
2027
	}
2028

2029 2030
	if (q->elevator && !bypass_insert)
		goto insert;
2031

2032 2033
	budget_token = blk_mq_get_dispatch_budget(q);
	if (budget_token < 0)
2034
		goto insert;
2035

2036 2037
	blk_mq_set_rq_budget_token(rq, budget_token);

2038
	if (!blk_mq_get_driver_tag(rq)) {
2039
		blk_mq_put_dispatch_budget(q, budget_token);
2040
		goto insert;
2041
	}
2042

2043 2044 2045 2046 2047
	return __blk_mq_issue_directly(hctx, rq, cookie, last);
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

2048 2049
	blk_mq_sched_insert_request(rq, false, run_queue, false);

2050 2051 2052
	return BLK_STS_OK;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 * @cookie: Request queue cookie.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2076
		blk_mq_request_bypass_insert(rq, false, true);
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2092
	hctx_unlock(hctx, srcu_idx);
2093 2094

	return ret;
2095 2096
}

2097 2098 2099
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
2100
	int queued = 0;
2101
	int errors = 0;
2102

2103
	while (!list_empty(list)) {
2104
		blk_status_t ret;
2105 2106 2107 2108
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
2109 2110 2111 2112
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
2113
				blk_mq_request_bypass_insert(rq, false,
2114
							list_empty(list));
2115 2116 2117
				break;
			}
			blk_mq_end_request(rq, ret);
2118
			errors++;
2119 2120
		} else
			queued++;
2121
	}
J
Jens Axboe 已提交
2122 2123 2124 2125 2126 2127

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2128 2129
	if ((!list_empty(list) || errors) &&
	     hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2130
		hctx->queue->mq_ops->commit_rqs(hctx);
2131 2132
}

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	plug->rq_count++;
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
/*
 * Allow 4x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
 * queues. This is important for md arrays to benefit from merging
 * requests.
 */
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
{
	if (plug->multiple_queues)
		return BLK_MAX_REQUEST_COUNT * 4;
	return BLK_MAX_REQUEST_COUNT;
}

2159
/**
2160
 * blk_mq_submit_bio - Create and send a request to block device.
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 *
 * Returns: Request queue cookie.
 */
2174
blk_qc_t blk_mq_submit_bio(struct bio *bio)
2175
{
2176
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2177
	const int is_sync = op_is_sync(bio->bi_opf);
2178
	const int is_flush_fua = op_is_flush(bio->bi_opf);
2179 2180 2181
	struct blk_mq_alloc_data data = {
		.q		= q,
	};
2182
	struct request *rq;
2183
	struct blk_plug *plug;
2184
	struct request *same_queue_rq = NULL;
2185
	unsigned int nr_segs;
2186
	blk_qc_t cookie;
2187
	blk_status_t ret;
J
Jeffle Xu 已提交
2188
	bool hipri;
2189 2190

	blk_queue_bounce(q, &bio);
2191
	__blk_queue_split(&bio, &nr_segs);
2192

2193
	if (!bio_integrity_prep(bio))
2194
		goto queue_exit;
2195

2196
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2197
	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2198
		goto queue_exit;
2199

2200
	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2201
		goto queue_exit;
2202

2203
	rq_qos_throttle(q, bio);
J
Jens Axboe 已提交
2204

J
Jeffle Xu 已提交
2205 2206
	hipri = bio->bi_opf & REQ_HIPRI;

2207
	data.cmd_flags = bio->bi_opf;
2208
	rq = __blk_mq_alloc_request(&data);
J
Jens Axboe 已提交
2209
	if (unlikely(!rq)) {
2210
		rq_qos_cleanup(q, bio);
J
Jens Axboe 已提交
2211
		if (bio->bi_opf & REQ_NOWAIT)
2212
			bio_wouldblock_error(bio);
2213
		goto queue_exit;
J
Jens Axboe 已提交
2214 2215
	}

2216
	trace_block_getrq(bio);
2217

2218
	rq_qos_track(q, rq, bio);
2219

2220
	cookie = request_to_qc_t(data.hctx, rq);
2221

2222 2223
	blk_mq_bio_to_request(rq, bio, nr_segs);

2224 2225 2226 2227 2228 2229 2230 2231
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
		return BLK_QC_T_NONE;
	}

2232
	plug = blk_mq_plug(q, bio);
2233
	if (unlikely(is_flush_fua)) {
2234
		/* Bypass scheduler for flush requests */
2235 2236
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
2237 2238 2239
	} else if (plug && (q->nr_hw_queues == 1 ||
		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2240 2241 2242
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
M
Ming Lei 已提交
2243 2244 2245
		 *
		 * Use normal plugging if this disk is slow HDD, as sequential
		 * IO may benefit a lot from plug merging.
2246
		 */
2247
		unsigned int request_count = plug->rq_count;
2248 2249
		struct request *last = NULL;

M
Ming Lei 已提交
2250
		if (!request_count)
2251
			trace_block_plug(q);
2252 2253
		else
			last = list_entry_rq(plug->mq_list.prev);
2254

2255
		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2256
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2257 2258
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
2259
		}
2260

2261
		blk_add_rq_to_plug(plug, rq);
2262
	} else if (q->elevator) {
2263
		/* Insert the request at the IO scheduler queue */
2264
		blk_mq_sched_insert_request(rq, false, true, true);
2265
	} else if (plug && !blk_queue_nomerges(q)) {
2266
		/*
2267
		 * We do limited plugging. If the bio can be merged, do that.
2268 2269
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
2270 2271
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
2272
		 */
2273 2274
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
2275
		if (same_queue_rq) {
2276
			list_del_init(&same_queue_rq->queuelist);
2277 2278
			plug->rq_count--;
		}
2279
		blk_add_rq_to_plug(plug, rq);
2280
		trace_block_plug(q);
2281

2282
		if (same_queue_rq) {
2283
			data.hctx = same_queue_rq->mq_hctx;
2284
			trace_block_unplug(q, 1, true);
2285
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2286
					&cookie);
2287
		}
2288 2289
	} else if ((q->nr_hw_queues > 1 && is_sync) ||
			!data.hctx->dispatch_busy) {
2290 2291 2292 2293
		/*
		 * There is no scheduler and we can try to send directly
		 * to the hardware.
		 */
2294
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2295
	} else {
2296
		/* Default case. */
2297
		blk_mq_sched_insert_request(rq, false, true, true);
2298
	}
2299

J
Jeffle Xu 已提交
2300 2301
	if (!hipri)
		return BLK_QC_T_NONE;
2302
	return cookie;
2303 2304 2305
queue_exit:
	blk_queue_exit(q);
	return BLK_QC_T_NONE;
2306 2307
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

/* called before freeing request pool in @tags */
static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
{
	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
	struct page *page;
	unsigned long flags;

	list_for_each_entry(page, &tags->page_list, lru) {
		unsigned long start = (unsigned long)page_address(page);
		unsigned long end = start + order_to_size(page->private);
		int i;

		for (i = 0; i < set->queue_depth; i++) {
			struct request *rq = drv_tags->rqs[i];
			unsigned long rq_addr = (unsigned long)rq;

			if (rq_addr >= start && rq_addr < end) {
				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
				cmpxchg(&drv_tags->rqs[i], rq, NULL);
			}
		}
	}

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&drv_tags->lock, flags);
	spin_unlock_irqrestore(&drv_tags->lock, flags);
}

2347 2348
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2349
{
2350
	struct page *page;
2351

2352
	if (tags->rqs && set->ops->exit_request) {
2353
		int i;
2354

2355
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2356 2357 2358
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2359
				continue;
2360
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2361
			tags->static_rqs[i] = NULL;
2362
		}
2363 2364
	}

2365 2366
	blk_mq_clear_rq_mapping(set, tags, hctx_idx);

2367 2368
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2369
		list_del_init(&page->lru);
2370 2371
		/*
		 * Remove kmemleak object previously allocated in
2372
		 * blk_mq_alloc_rqs().
2373 2374
		 */
		kmemleak_free(page_address(page));
2375 2376
		__free_pages(page, page->private);
	}
2377
}
2378

2379
void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2380
{
2381
	kfree(tags->rqs);
2382
	tags->rqs = NULL;
J
Jens Axboe 已提交
2383 2384
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2385

2386
	blk_mq_free_tags(tags, flags);
2387 2388
}

2389 2390 2391
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
2392 2393
					unsigned int reserved_tags,
					unsigned int flags)
2394
{
2395
	struct blk_mq_tags *tags;
2396
	int node;
2397

2398
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2399 2400 2401
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

2402
	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2403 2404
	if (!tags)
		return NULL;
2405

2406
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2407
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2408
				 node);
2409
	if (!tags->rqs) {
2410
		blk_mq_free_tags(tags, flags);
2411 2412
		return NULL;
	}
2413

2414 2415 2416
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2417 2418
	if (!tags->static_rqs) {
		kfree(tags->rqs);
2419
		blk_mq_free_tags(tags, flags);
J
Jens Axboe 已提交
2420 2421 2422
		return NULL;
	}

2423 2424 2425
	return tags;
}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2437
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2438 2439 2440
	return 0;
}

2441 2442 2443 2444 2445
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2446 2447
	int node;

2448
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2449 2450
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2451 2452 2453

	INIT_LIST_HEAD(&tags->page_list);

2454 2455 2456 2457
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2458
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2459
				cache_line_size());
2460
	left = rq_size * depth;
2461

2462
	for (i = 0; i < depth; ) {
2463 2464 2465 2466 2467
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2468
		while (this_order && left < order_to_size(this_order - 1))
2469 2470 2471
			this_order--;

		do {
2472
			page = alloc_pages_node(node,
2473
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2474
				this_order);
2475 2476 2477 2478 2479 2480 2481 2482 2483
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2484
			goto fail;
2485 2486

		page->private = this_order;
2487
		list_add_tail(&page->lru, &tags->page_list);
2488 2489

		p = page_address(page);
2490 2491 2492 2493
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2494
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2495
		entries_per_page = order_to_size(this_order) / rq_size;
2496
		to_do = min(entries_per_page, depth - i);
2497 2498
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2499 2500 2501
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2502 2503 2504
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2505 2506
			}

2507 2508 2509 2510
			p += rq_size;
			i++;
		}
	}
2511
	return 0;
2512

2513
fail:
2514 2515
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2516 2517
}

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
struct rq_iter_data {
	struct blk_mq_hw_ctx *hctx;
	bool has_rq;
};

static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
{
	struct rq_iter_data *iter_data = data;

	if (rq->mq_hctx != iter_data->hctx)
		return true;
	iter_data->has_rq = true;
	return false;
}

static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->sched_tags ?
			hctx->sched_tags : hctx->tags;
	struct rq_iter_data data = {
		.hctx	= hctx,
	};

	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
	return data.has_rq;
}

static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
		struct blk_mq_hw_ctx *hctx)
{
	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
		return false;
	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
		return false;
	return true;
}

static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
		return 0;

	/*
	 * Prevent new request from being allocated on the current hctx.
	 *
	 * The smp_mb__after_atomic() Pairs with the implied barrier in
	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
	 * seen once we return from the tag allocator.
	 */
	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	smp_mb__after_atomic();

	/*
	 * Try to grab a reference to the queue and wait for any outstanding
	 * requests.  If we could not grab a reference the queue has been
	 * frozen and there are no requests.
	 */
	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
		while (blk_mq_hctx_has_requests(hctx))
			msleep(5);
		percpu_ref_put(&hctx->queue->q_usage_counter);
	}

	return 0;
}

static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (cpumask_test_cpu(cpu, hctx->cpumask))
		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	return 0;
}

J
Jens Axboe 已提交
2598 2599 2600 2601 2602
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2603
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2604
{
2605
	struct blk_mq_hw_ctx *hctx;
2606 2607
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
2608
	enum hctx_type type;
2609

2610
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2611 2612 2613
	if (!cpumask_test_cpu(cpu, hctx->cpumask))
		return 0;

J
Jens Axboe 已提交
2614
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
2615
	type = hctx->type;
2616 2617

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2618 2619
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
2620 2621 2622 2623 2624
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2625
		return 0;
2626

J
Jens Axboe 已提交
2627 2628 2629
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2630 2631

	blk_mq_run_hw_queue(hctx, true);
2632
	return 0;
2633 2634
}

2635
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2636
{
2637 2638 2639
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
						    &hctx->cpuhp_online);
2640 2641
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2642 2643
}

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
/*
 * Before freeing hw queue, clearing the flush request reference in
 * tags->rqs[] for avoiding potential UAF.
 */
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
		unsigned int queue_depth, struct request *flush_rq)
{
	int i;
	unsigned long flags;

	/* The hw queue may not be mapped yet */
	if (!tags)
		return;

	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);

	for (i = 0; i < queue_depth; i++)
		cmpxchg(&tags->rqs[i], flush_rq, NULL);

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&tags->lock, flags);
	spin_unlock_irqrestore(&tags->lock, flags);
}

2673
/* hctx->ctxs will be freed in queue's release handler */
2674 2675 2676 2677
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2678 2679
	struct request *flush_rq = hctx->fq->flush_rq;

2680 2681
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2682

2683 2684
	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
			set->queue_depth, flush_rq);
2685
	if (set->ops->exit_request)
2686
		set->ops->exit_request(set, flush_rq, hctx_idx);
2687

2688 2689 2690
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2691
	blk_mq_remove_cpuhp(hctx);
2692 2693 2694 2695

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
2696 2697
}

M
Ming Lei 已提交
2698 2699 2700 2701 2702 2703 2704 2705 2706
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2707
		blk_mq_debugfs_unregister_hctx(hctx);
2708
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2709 2710 2711
	}
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2726 2727 2728
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2729
{
2730 2731
	hctx->queue_num = hctx_idx;

2732 2733 2734
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
				&hctx->cpuhp_online);
2735 2736 2737 2738 2739 2740 2741
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
2742

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
2771
	if (node == NUMA_NO_NODE)
2772 2773
		node = set->numa_node;
	hctx->numa_node = node;
2774

2775
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2776 2777 2778
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2779
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2780

2781 2782
	INIT_LIST_HEAD(&hctx->hctx_list);

2783
	/*
2784 2785
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2786
	 */
2787
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2788
			gfp, node);
2789
	if (!hctx->ctxs)
2790
		goto free_cpumask;
2791

2792
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2793
				gfp, node, false, false))
2794 2795
		goto free_ctxs;
	hctx->nr_ctx = 0;
2796

2797
	spin_lock_init(&hctx->dispatch_wait_lock);
2798 2799 2800
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2801
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2802
	if (!hctx->fq)
2803
		goto free_bitmap;
2804

2805
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2806
		init_srcu_struct(hctx->srcu);
2807
	blk_mq_hctx_kobj_init(hctx);
2808

2809
	return hctx;
2810

2811
 free_bitmap:
2812
	sbitmap_free(&hctx->ctx_map);
2813 2814
 free_ctxs:
	kfree(hctx->ctxs);
2815 2816 2817 2818 2819 2820
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
2821
}
2822 2823 2824 2825

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
2826 2827
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
2828 2829 2830 2831

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
2832
		int k;
2833 2834 2835

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
2836 2837 2838
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

2839 2840 2841 2842 2843 2844
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
2845 2846 2847
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2848
				hctx->numa_node = cpu_to_node(i);
J
Jens Axboe 已提交
2849
		}
2850 2851 2852
	}
}

2853 2854
static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
					int hctx_idx)
2855
{
2856
	unsigned int flags = set->flags;
2857 2858 2859
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2860
					set->queue_depth, set->reserved_tags, flags);
2861 2862 2863 2864 2865 2866 2867 2868
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

2869
	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2870 2871 2872 2873 2874 2875 2876
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2877 2878
	unsigned int flags = set->flags;

2879
	if (set->tags && set->tags[hctx_idx]) {
2880
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2881
		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2882 2883
		set->tags[hctx_idx] = NULL;
	}
2884 2885
}

2886
static void blk_mq_map_swqueue(struct request_queue *q)
2887
{
J
Jens Axboe 已提交
2888
	unsigned int i, j, hctx_idx;
2889 2890
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2891
	struct blk_mq_tag_set *set = q->tag_set;
2892 2893

	queue_for_each_hw_ctx(q, hctx, i) {
2894
		cpumask_clear(hctx->cpumask);
2895
		hctx->nr_ctx = 0;
2896
		hctx->dispatch_from = NULL;
2897 2898 2899
	}

	/*
2900
	 * Map software to hardware queues.
2901 2902
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2903
	 */
2904
	for_each_possible_cpu(i) {
2905

2906
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
2907
		for (j = 0; j < set->nr_maps; j++) {
2908 2909 2910
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
2911
				continue;
2912
			}
2913 2914 2915
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
2916
			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2917 2918 2919 2920 2921 2922 2923 2924
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
2925

J
Jens Axboe 已提交
2926
			hctx = blk_mq_map_queue_type(q, j, i);
2927
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
2947 2948 2949 2950

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
2951
	}
2952 2953

	queue_for_each_hw_ctx(q, hctx, i) {
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2969

M
Ming Lei 已提交
2970 2971 2972
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2973 2974 2975 2976 2977
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2978
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2979

2980 2981 2982
		/*
		 * Initialize batch roundrobin counts
		 */
2983
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2984 2985
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2986 2987
}

2988 2989 2990 2991
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2992
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2993 2994 2995 2996
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2997
	queue_for_each_hw_ctx(q, hctx, i) {
2998
		if (shared) {
2999
			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3000 3001
		} else {
			blk_mq_tag_idle(hctx);
3002
			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3003
		}
3004 3005 3006
	}
}

3007 3008
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
					 bool shared)
3009 3010
{
	struct request_queue *q;
3011

3012 3013
	lockdep_assert_held(&set->tag_list_lock);

3014 3015
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
3016
		queue_set_hctx_shared(q, shared);
3017 3018 3019 3020 3021 3022 3023 3024 3025
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
3026
	list_del(&q->tag_set_list);
3027 3028
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
3029
		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3030
		/* update existing queue */
3031
		blk_mq_update_tag_set_shared(set, false);
3032
	}
3033
	mutex_unlock(&set->tag_list_lock);
3034
	INIT_LIST_HEAD(&q->tag_set_list);
3035 3036 3037 3038 3039 3040
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
3041

3042 3043 3044 3045
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
3046 3047
	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3048
		/* update existing queue */
3049
		blk_mq_update_tag_set_shared(set, true);
3050
	}
3051
	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3052
		queue_set_hctx_shared(q, true);
3053
	list_add_tail(&q->tag_set_list, &set->tag_list);
3054

3055 3056 3057
	mutex_unlock(&set->tag_list_lock);
}

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

3086 3087 3088 3089 3090 3091 3092 3093
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
3094 3095
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
3096

3097 3098 3099 3100 3101 3102
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
3103
		kobject_put(&hctx->kobj);
3104
	}
3105 3106 3107

	kfree(q->queue_hw_ctx);

3108 3109 3110 3111 3112
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
3113 3114
}

3115
static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3116
		void *queuedata)
3117
{
3118 3119
	struct request_queue *q;
	int ret;
3120

3121 3122
	q = blk_alloc_queue(set->numa_node);
	if (!q)
3123
		return ERR_PTR(-ENOMEM);
3124 3125 3126 3127 3128 3129
	q->queuedata = queuedata;
	ret = blk_mq_init_allocated_queue(set, q);
	if (ret) {
		blk_cleanup_queue(q);
		return ERR_PTR(ret);
	}
3130 3131
	return q;
}
3132 3133 3134 3135 3136

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
3137 3138
EXPORT_SYMBOL(blk_mq_init_queue);

3139 3140
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
		struct lock_class_key *lkclass)
3141 3142
{
	struct request_queue *q;
3143
	struct gendisk *disk;
3144

3145 3146 3147
	q = blk_mq_init_queue_data(set, queuedata);
	if (IS_ERR(q))
		return ERR_CAST(q);
3148

3149
	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3150 3151 3152
	if (!disk) {
		blk_cleanup_queue(q);
		return ERR_PTR(-ENOMEM);
3153
	}
3154
	return disk;
3155
}
3156
EXPORT_SYMBOL(__blk_mq_alloc_disk);
3157

3158 3159 3160 3161
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
3162
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3163

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
3178
	if (!hctx)
3179
		goto fail;
3180

3181 3182
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
3183 3184

	return hctx;
3185 3186 3187 3188 3189

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
3190 3191
}

K
Keith Busch 已提交
3192 3193
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
3194
{
3195
	int i, j, end;
K
Keith Busch 已提交
3196
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3197

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

3214 3215
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
3216
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
3217
		int node;
3218
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
3219

3220
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3221 3222 3223 3224 3225 3226 3227
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
3228

3229 3230
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
3231
			if (hctxs[i])
3232 3233 3234 3235 3236 3237 3238 3239 3240
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
3241
		}
3242
	}
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
3255

3256
	for (; j < end; j++) {
K
Keith Busch 已提交
3257 3258 3259
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
3260 3261
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
3262 3263 3264 3265
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
3266
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
3267 3268
}

3269 3270
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
		struct request_queue *q)
K
Keith Busch 已提交
3271
{
M
Ming Lei 已提交
3272 3273 3274
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

3275
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3276 3277
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
3278 3279 3280
	if (!q->poll_cb)
		goto err_exit;

3281
	if (blk_mq_alloc_ctxs(q))
3282
		goto err_poll;
K
Keith Busch 已提交
3283

3284 3285 3286
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

3287 3288 3289
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
3290 3291 3292
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
3293

3294
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3295
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3296

J
Jens Axboe 已提交
3297
	q->tag_set = set;
3298

3299
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3300 3301
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
3302
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3303

3304
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3305 3306 3307
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

3308 3309
	q->nr_requests = set->queue_depth;

3310 3311 3312
	/*
	 * Default to classic polling
	 */
3313
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3314

3315
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3316
	blk_mq_add_queue_tag_set(set, q);
3317
	blk_mq_map_swqueue(q);
3318
	return 0;
3319

3320
err_hctxs:
K
Keith Busch 已提交
3321
	kfree(q->queue_hw_ctx);
3322
	q->nr_hw_queues = 0;
3323
	blk_mq_sysfs_deinit(q);
3324 3325 3326
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
3327 3328
err_exit:
	q->mq_ops = NULL;
3329
	return -ENOMEM;
3330
}
3331
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3332

3333 3334
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
3335
{
3336
	struct blk_mq_tag_set *set = q->tag_set;
3337

3338
	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
M
Ming Lei 已提交
3339
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3340 3341
	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
	blk_mq_del_queue_tag_set(q);
3342 3343
}

3344 3345 3346 3347
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

3348
	for (i = 0; i < set->nr_hw_queues; i++) {
3349
		if (!__blk_mq_alloc_map_and_request(set, i))
3350
			goto out_unwind;
3351 3352
		cond_resched();
	}
3353 3354 3355 3356 3357

	return 0;

out_unwind:
	while (--i >= 0)
3358
		blk_mq_free_map_and_requests(set, i);
3359 3360 3361 3362 3363 3364 3365 3366 3367

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
3368
static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

3398 3399
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
3400 3401 3402 3403 3404 3405 3406 3407
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

3408
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
3409 3410
		int i;

3411 3412 3413 3414 3415 3416 3417
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
3418
		 * 		set->map[x].mq_map[cpu] = queue;
3419 3420 3421 3422 3423 3424
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
3425 3426
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
3427

3428
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
3429 3430
	} else {
		BUG_ON(set->nr_maps > 1);
3431
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
3432
	}
3433 3434
}

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

3458 3459 3460 3461 3462 3463
static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
				int new_nr_hw_queues)
{
	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
}

3464 3465 3466
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
3467
 * requested depth down, if it's too large. In that case, the set
3468 3469
 * value will be stored in set->queue_depth.
 */
3470 3471
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3472
	int i, ret;
3473

B
Bart Van Assche 已提交
3474 3475
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

3476 3477
	if (!set->nr_hw_queues)
		return -EINVAL;
3478
	if (!set->queue_depth)
3479 3480 3481 3482
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
3483
	if (!set->ops->queue_rq)
3484 3485
		return -EINVAL;

3486 3487 3488
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

3489 3490 3491 3492 3493
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
3494

J
Jens Axboe 已提交
3495 3496 3497 3498 3499
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

3500 3501 3502 3503 3504 3505 3506
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
3507
		set->nr_maps = 1;
3508 3509
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
3510
	/*
3511 3512
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
3513
	 */
3514
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3515
		set->nr_hw_queues = nr_cpu_ids;
3516

3517
	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3518
		return -ENOMEM;
3519

3520
	ret = -ENOMEM;
J
Jens Axboe 已提交
3521 3522
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3523
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
3524 3525 3526
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
3527
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
3528
	}
3529

3530
	ret = blk_mq_update_queue_map(set);
3531 3532 3533
	if (ret)
		goto out_free_mq_map;

3534
	ret = blk_mq_alloc_map_and_requests(set);
3535
	if (ret)
3536
		goto out_free_mq_map;
3537

3538
	if (blk_mq_is_sbitmap_shared(set->flags)) {
3539 3540
		atomic_set(&set->active_queues_shared_sbitmap, 0);

3541
		if (blk_mq_init_shared_sbitmap(set)) {
3542 3543 3544 3545 3546
			ret = -ENOMEM;
			goto out_free_mq_rq_maps;
		}
	}

3547 3548 3549
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

3550
	return 0;
3551

3552 3553 3554
out_free_mq_rq_maps:
	for (i = 0; i < set->nr_hw_queues; i++)
		blk_mq_free_map_and_requests(set, i);
3555
out_free_mq_map:
J
Jens Axboe 已提交
3556 3557 3558 3559
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
3560 3561
	kfree(set->tags);
	set->tags = NULL;
3562
	return ret;
3563 3564 3565
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
/* allocate and initialize a tagset for a simple single-queue device */
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
		const struct blk_mq_ops *ops, unsigned int queue_depth,
		unsigned int set_flags)
{
	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
	set->nr_maps = 1;
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;
	return blk_mq_alloc_tag_set(set);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);

3582 3583
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3584
	int i, j;
3585

3586
	for (i = 0; i < set->nr_hw_queues; i++)
3587
		blk_mq_free_map_and_requests(set, i);
3588

3589 3590 3591
	if (blk_mq_is_sbitmap_shared(set->flags))
		blk_mq_exit_shared_sbitmap(set);

J
Jens Axboe 已提交
3592 3593 3594 3595
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
3596

M
Ming Lei 已提交
3597
	kfree(set->tags);
3598
	set->tags = NULL;
3599 3600 3601
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3602 3603 3604 3605 3606 3607
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3608
	if (!set)
3609 3610
		return -EINVAL;

3611 3612 3613
	if (q->nr_requests == nr)
		return 0;

3614
	blk_mq_freeze_queue(q);
3615
	blk_mq_quiesce_queue(q);
3616

3617 3618
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3619 3620
		if (!hctx->tags)
			continue;
3621 3622 3623 3624
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3625
		if (!hctx->sched_tags) {
3626
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3627
							false);
3628 3629
			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
				blk_mq_tag_resize_shared_sbitmap(set, nr);
3630 3631 3632
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
3633 3634 3635 3636 3637 3638
			if (blk_mq_is_sbitmap_shared(set->flags)) {
				hctx->sched_tags->bitmap_tags =
					&q->sched_bitmap_tags;
				hctx->sched_tags->breserved_tags =
					&q->sched_breserved_tags;
			}
3639
		}
3640 3641
		if (ret)
			break;
3642 3643
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
3644
	}
3645
	if (!ret) {
3646
		q->nr_requests = nr;
3647 3648 3649 3650
		if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
			sbitmap_queue_resize(&q->sched_bitmap_tags,
					     nr - set->reserved_tags);
	}
3651

3652
	blk_mq_unquiesce_queue(q);
3653 3654
	blk_mq_unfreeze_queue(q);

3655 3656 3657
	return ret;
}

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3728 3729
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3730 3731
{
	struct request_queue *q;
3732
	LIST_HEAD(head);
3733
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3734

3735 3736
	lockdep_assert_held(&set->tag_list_lock);

3737
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3738
		nr_hw_queues = nr_cpu_ids;
3739 3740 3741
	if (nr_hw_queues < 1)
		return;
	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
K
Keith Busch 已提交
3742 3743 3744 3745
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3746 3747 3748 3749 3750 3751 3752 3753
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3754

3755 3756 3757 3758 3759
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3760
	prev_nr_hw_queues = set->nr_hw_queues;
3761 3762 3763 3764
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
3765
	set->nr_hw_queues = nr_hw_queues;
3766
fallback:
3767
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
3768 3769
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3770 3771 3772 3773
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
3774
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3775 3776
			goto fallback;
		}
3777 3778 3779
		blk_mq_map_swqueue(q);
	}

3780
reregister:
3781 3782 3783
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3784 3785
	}

3786 3787 3788 3789
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3790 3791 3792
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3793 3794 3795 3796 3797 3798 3799

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3800 3801
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3802 3803 3804 3805
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3806
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3828
	int bucket;
3829

3830 3831 3832 3833
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3834 3835
}

3836 3837 3838 3839
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
3840
	int bucket;
3841 3842 3843 3844 3845

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3846
	if (!blk_poll_stats_enable(q))
3847 3848 3849 3850 3851 3852 3853 3854
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3855 3856
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3857
	 */
3858 3859 3860 3861 3862 3863
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3864 3865 3866 3867

	return ret;
}

3868 3869 3870 3871 3872
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3873
	unsigned int nsecs;
3874 3875
	ktime_t kt;

J
Jens Axboe 已提交
3876
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3877 3878 3879
		return false;

	/*
3880
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3881 3882 3883 3884
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
3885
	if (q->poll_nsec > 0)
3886 3887
		nsecs = q->poll_nsec;
	else
3888
		nsecs = blk_mq_poll_nsecs(q, rq);
3889 3890

	if (!nsecs)
3891 3892
		return false;

J
Jens Axboe 已提交
3893
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3894 3895 3896 3897 3898

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3899
	kt = nsecs;
3900 3901

	mode = HRTIMER_MODE_REL;
3902
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3903 3904 3905
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
3906
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3907 3908
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
3909
		hrtimer_sleeper_start_expires(&hs, mode);
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

3921 3922
static bool blk_mq_poll_hybrid(struct request_queue *q,
			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
J
Jens Axboe 已提交
3923
{
3924 3925
	struct request *rq;

3926
	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
		return false;

	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else {
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}

3943
	return blk_mq_poll_hybrid_sleep(q, rq);
3944 3945
}

C
Christoph Hellwig 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
/**
 * blk_poll - poll for IO completions
 * @q:  the queue
 * @cookie: cookie passed back at IO submission time
 * @spin: whether to spin for completions
 *
 * Description:
 *    Poll for completions on the passed in queue. Returns number of
 *    completed entries found. If @spin is true, then blk_poll will continue
 *    looping until at least one completion is found, unless the task is
 *    otherwise marked running (or we need to reschedule).
 */
int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3959 3960
{
	struct blk_mq_hw_ctx *hctx;
3961
	unsigned int state;
J
Jens Axboe 已提交
3962

C
Christoph Hellwig 已提交
3963 3964
	if (!blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3965 3966
		return 0;

C
Christoph Hellwig 已提交
3967 3968 3969
	if (current->plug)
		blk_flush_plug_list(current->plug, false);

3970 3971
	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];

3972 3973 3974 3975 3976
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
3977 3978
	 * straight to the busy poll loop. If specified not to spin,
	 * we also should not sleep.
3979
	 */
3980
	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3981
		return 1;
3982

J
Jens Axboe 已提交
3983 3984
	hctx->poll_considered++;

P
Peter Zijlstra 已提交
3985
	state = get_current_state();
3986
	do {
J
Jens Axboe 已提交
3987 3988 3989 3990
		int ret;

		hctx->poll_invoked++;

3991
		ret = q->mq_ops->poll(hctx);
J
Jens Axboe 已提交
3992 3993
		if (ret > 0) {
			hctx->poll_success++;
3994
			__set_current_state(TASK_RUNNING);
3995
			return ret;
J
Jens Axboe 已提交
3996 3997 3998
		}

		if (signal_pending_state(state, current))
3999
			__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
4000

4001
		if (task_is_running(current))
4002
			return 1;
4003
		if (ret < 0 || !spin)
J
Jens Axboe 已提交
4004 4005
			break;
		cpu_relax();
4006
	} while (!need_resched());
J
Jens Axboe 已提交
4007

4008
	__set_current_state(TASK_RUNNING);
4009
	return 0;
J
Jens Axboe 已提交
4010
}
C
Christoph Hellwig 已提交
4011
EXPORT_SYMBOL_GPL(blk_poll);
J
Jens Axboe 已提交
4012

J
Jens Axboe 已提交
4013 4014 4015 4016 4017 4018
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

4019 4020
static int __init blk_mq_init(void)
{
4021 4022 4023
	int i;

	for_each_possible_cpu(i)
4024
		init_llist_head(&per_cpu(blk_cpu_done, i));
4025 4026 4027 4028 4029
	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);

	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
				  "block/softirq:dead", NULL,
				  blk_softirq_cpu_dead);
4030 4031
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
4032 4033 4034
	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
				blk_mq_hctx_notify_online,
				blk_mq_hctx_notify_offline);
4035 4036 4037
	return 0;
}
subsys_initcall(blk_mq_init);