intel_engine_cs.c 41.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31 32
#include "gt/intel_gt.h"

33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_pool.h"
36
#include "intel_engine_user.h"
37
#include "intel_context.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40

41 42 43 44 45 46 47 48 49
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

50
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
51 52
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
54
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
55 56 57

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

58
#define MAX_MMIO_BASES 3
59
struct engine_info {
60
	unsigned int hw_id;
61 62
	u8 class;
	u8 instance;
63 64 65 66 67
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
68 69 70
};

static const struct engine_info intel_engines[] = {
71 72
	[RCS0] = {
		.hw_id = RCS0_HW,
73 74
		.class = RENDER_CLASS,
		.instance = 0,
75 76 77
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
78
	},
79 80
	[BCS0] = {
		.hw_id = BCS0_HW,
81 82
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
83 84 85
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
86
	},
87 88
	[VCS0] = {
		.hw_id = VCS0_HW,
89 90
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
91 92 93 94 95
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
96
	},
97 98
	[VCS1] = {
		.hw_id = VCS1_HW,
99 100
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
101 102 103 104
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
105
	},
106 107
	[VCS2] = {
		.hw_id = VCS2_HW,
108 109
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
110 111 112
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
113
	},
114 115
	[VCS3] = {
		.hw_id = VCS3_HW,
116 117
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
118 119 120
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
121
	},
122 123
	[VECS0] = {
		.hw_id = VECS0_HW,
124 125
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
126 127 128 129
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
130
	},
131 132
	[VECS1] = {
		.hw_id = VECS1_HW,
133 134
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
135 136 137
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
138
	},
139 140
};

141
/**
142
 * intel_engine_context_size() - return the size of the context for an engine
143 144 145 146 147 148 149 150 151 152 153 154
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
155
u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
156 157 158 159 160 161 162 163 164 165
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
166
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
167 168
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
169
		case 10:
O
Oscar Mateo 已提交
170
			return GEN10_LR_CONTEXT_RENDER_SIZE;
171 172 173
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
174
			return GEN8_LR_CONTEXT_RENDER_SIZE;
175 176 177 178 179 180 181 182 183 184 185 186
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
187
		case 4:
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
204 205 206 207 208 209 210 211 212
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
213
		/* fall through */
214 215 216 217 218 219 220 221 222
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

238
static void __sprint_engine_name(struct intel_engine_cs *engine)
239
{
240 241 242 243 244 245 246 247
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
248 249
}

250 251 252 253 254 255
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
256
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
257 258
		return;

259 260
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
261
	else
262
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
263 264 265 266 267 268 269 270
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

271
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
272 273
{
	const struct engine_info *info = &intel_engines[id];
274 275
	struct intel_engine_cs *engine;

276 277 278
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

279
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
280 281
		return -EINVAL;

282
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
283 284
		return -EINVAL;

285
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
286 287
		return -EINVAL;

288 289 290
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
291

292 293
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

294
	engine->id = id;
295
	engine->mask = BIT(id);
296 297 298
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
299
	engine->hw_id = engine->guc_id = info->hw_id;
300
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
301

302 303
	engine->class = info->class;
	engine->instance = info->instance;
304
	__sprint_engine_name(engine);
305

306 307 308 309 310 311
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

312
	engine->context_size = intel_engine_context_size(gt->i915,
313
							 engine->class);
314 315
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
316
	if (engine->context_size)
317
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
318

319 320 321
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

322
	seqlock_init(&engine->stats.lock);
323

324 325
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

326 327 328
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

329 330 331 332 333
	gt->engine_class[info->class][info->instance] = engine;

	intel_engine_add_user(engine);
	gt->i915->engine[id] = engine;

334
	return 0;
335 336
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

static void intel_setup_engine_capabilities(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		__setup_engine_capabilities(engine);
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
 * @i915: the i915 devic
 */
void intel_engines_cleanup(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		engine->destroy(engine);
		i915->engine[id] = NULL;
	}
}

391
/**
392
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
393
 * @i915: the i915 device
394 395 396
 *
 * Return: non-zero if the initialization failed.
 */
397
int intel_engines_init_mmio(struct drm_i915_private *i915)
398
{
399 400
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
401
	unsigned int mask = 0;
402
	unsigned int i;
403
	int err;
404

405 406
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
407
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
408

409
	if (i915_inject_probe_failure(i915))
410 411
		return -ENODEV;

412
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
413
		if (!HAS_ENGINE(i915, i))
414 415
			continue;

416
		err = intel_engine_setup(&i915->gt, i);
417 418 419
		if (err)
			goto cleanup;

420
		mask |= BIT(i);
421 422 423 424 425 426 427
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
428 429
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
430

431
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
432

433
	intel_gt_check_and_clear_faults(&i915->gt);
434

435 436
	intel_setup_engine_capabilities(i915);

437 438 439
	return 0;

cleanup:
440
	intel_engines_cleanup(i915);
441 442 443 444
	return err;
}

/**
445
 * intel_engines_init() - init the Engine Command Streamers
446
 * @i915: i915 device private
447 448 449
 *
 * Return: non-zero if the initialization failed.
 */
450
int intel_engines_init(struct drm_i915_private *i915)
451
{
452
	int (*init)(struct intel_engine_cs *engine);
453
	struct intel_engine_cs *engine;
454
	enum intel_engine_id id;
455
	int err;
456

457 458 459 460
	if (HAS_EXECLISTS(i915))
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
461

462
	for_each_engine(engine, i915, id) {
463
		err = init(engine);
464
		if (err)
465 466 467 468 469 470
			goto cleanup;
	}

	return 0;

cleanup:
471
	intel_engines_cleanup(i915);
472
	return err;
473 474
}

475
void intel_engine_init_execlists(struct intel_engine_cs *engine)
476 477 478
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

479
	execlists->port_mask = 1;
480
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
481 482
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

483 484 485 486
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

487
	execlists->queue_priority_hint = INT_MIN;
488
	execlists->queue = RB_ROOT_CACHED;
489 490
}

491
static void cleanup_status_page(struct intel_engine_cs *engine)
492
{
493 494
	struct i915_vma *vma;

495 496 497
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

498 499 500
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
501

502 503 504 505
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
506
	i915_gem_object_put(vma->obj);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
530

531
	return i915_vma_pin(vma, 0, 0, flags);
532 533 534 535 536 537 538 539 540
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

541 542 543 544 545 546 547
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
548 549 550 551 552 553
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

554
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
555

556
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
557 558 559 560 561 562 563 564
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
565
		goto err;
566 567
	}

568
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
569
	engine->status_page.vma = vma;
570 571 572 573 574 575 576

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

577 578 579
	return 0;

err_unpin:
580
	i915_gem_object_unpin_map(obj);
581 582 583 584 585
err:
	i915_gem_object_put(obj);
	return ret;
}

586
static int intel_engine_setup_common(struct intel_engine_cs *engine)
587 588 589
{
	int err;

590 591
	init_llist_head(&engine->barrier_tasks);

592 593 594 595
	err = init_status_page(engine);
	if (err)
		return err;

596
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
597
	intel_engine_init_breadcrumbs(engine);
598
	intel_engine_init_execlists(engine);
599 600
	intel_engine_init_hangcheck(engine);
	intel_engine_init_cmd_parser(engine);
601
	intel_engine_init__pm(engine);
602

603 604
	intel_engine_pool_init(&engine->pool);

605 606 607 608
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

609 610 611 612
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

613 614 615
	return 0;
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
/**
 * intel_engines_setup- setup engine state not requiring hw access
 * @i915: Device to setup.
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engines_setup(struct drm_i915_private *i915)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, i915, id) {
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

646 647 648
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

649 650 651 652 653 654
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
655
	intel_engines_cleanup(i915);
656 657 658
	return err;
}

659 660
struct measure_breadcrumb {
	struct i915_request rq;
661
	struct intel_timeline timeline;
662 663 664 665
	struct intel_ring ring;
	u32 cs[1024];
};

666
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
667 668
{
	struct measure_breadcrumb *frame;
669
	int dw = -ENOMEM;
670

671
	GEM_BUG_ON(!engine->gt->scratch);
672 673 674 675 676

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

677 678 679
	if (intel_timeline_init(&frame->timeline,
				engine->gt,
				engine->status_page.vma))
680
		goto out_frame;
681 682 683 684 685 686 687 688 689 690 691 692 693

	INIT_LIST_HEAD(&frame->ring.request_list);
	frame->ring.timeline = &frame->timeline;
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
	frame->rq.timeline = &frame->timeline;

694
	dw = intel_timeline_pin(&frame->timeline);
695 696 697
	if (dw < 0)
		goto out_timeline;

698
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
699
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
700

701
	intel_timeline_unpin(&frame->timeline);
702

703
out_timeline:
704
	intel_timeline_fini(&frame->timeline);
705 706
out_frame:
	kfree(frame);
707 708 709
	return dw;
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

731 732 733 734 735 736 737 738 739 740
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce;
	int err;

	ce = intel_context_create(engine->i915->kernel_context, engine);
	if (IS_ERR(ce))
		return ce;

741 742
	ce->ring = __intel_context_ring_size(SZ_4K);

743 744 745 746 747 748 749 750 751
	err = intel_context_pin(ce);
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

	return ce;
}

752 753 754 755 756 757 758 759 760 761 762 763 764
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
765
	struct intel_context *ce;
766 767
	int ret;

768 769
	engine->set_default_submission(engine);

770 771
	/*
	 * We may need to do things with the shrinker which
772 773 774 775 776 777
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
778 779 780 781 782
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	engine->kernel_context = ce;
783

784
	ret = measure_breadcrumb_dw(engine);
785
	if (ret < 0)
786
		goto err_unpin;
787

788
	engine->emit_fini_breadcrumb_dw = ret;
789

790
	return 0;
791

792
err_unpin:
793 794
	intel_context_unpin(ce);
	intel_context_put(ce);
795
	return ret;
796
}
797 798 799 800 801 802 803 804 805 806

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
807 808
	GEM_BUG_ON(!list_empty(&engine->active.requests));

809
	cleanup_status_page(engine);
810

811
	intel_engine_pool_fini(&engine->pool);
812
	intel_engine_fini_breadcrumbs(engine);
813
	intel_engine_cleanup_cmd_parser(engine);
814

815 816 817
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

818
	intel_context_unpin(engine->kernel_context);
819
	intel_context_put(engine->kernel_context);
820
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
821

822
	intel_wa_list_free(&engine->ctx_wa_list);
823
	intel_wa_list_free(&engine->wa_list);
824
	intel_wa_list_free(&engine->whitelist);
825
}
826

827
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
828
{
829 830
	struct drm_i915_private *i915 = engine->i915;

831 832
	u64 acthd;

833 834 835 836
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
837
	else
838
		acthd = ENGINE_READ(engine, ACTHD);
839 840 841 842

	return acthd;
}

843
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
844 845 846
{
	u64 bbaddr;

847 848
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
849
	else
850
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
851 852 853

	return bbaddr;
}
854

855 856
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
857
	struct intel_uncore *uncore = engine->uncore;
858 859 860 861
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

862
	if (INTEL_GEN(engine->i915) < 3)
863 864 865 866
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

867
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
868 869

	err = 0;
870
	if (__intel_wait_for_register_fw(uncore,
871 872 873 874 875 876 877 878
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
879
	intel_uncore_posting_read_fw(uncore, mode);
880 881 882 883

	return err;
}

884 885 886 887
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

888
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
889 890
}

891 892 893 894 895 896 897 898 899 900 901
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

902 903 904
static u32
read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
		  i915_reg_t reg)
905
{
906 907
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
908
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
909 910
	enum forcewake_domains fw_domains;

911
	if (INTEL_GEN(i915) >= 11) {
912 913
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
914
	} else {
915 916
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
917 918
	}

919
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
920
						    FW_REG_READ);
921
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
922 923 924
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

925 926
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
927

928
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
929

930 931
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
932
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
933

934
	val = intel_uncore_read_fw(uncore, reg);
935

936 937
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
938

939
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
940

941 942
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
943

944
	return val;
945 946 947 948 949 950
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
951
	struct drm_i915_private *i915 = engine->i915;
952
	struct intel_uncore *uncore = engine->uncore;
953 954 955 956 957 958
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

959
	switch (INTEL_GEN(i915)) {
960
	default:
961 962
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
963

964
		if (engine->id != RCS0)
965 966
			break;

967 968
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
969
		for_each_instdone_slice_subslice(i915, slice, subslice) {
970
			instdone->sampler[slice][subslice] =
971
				read_subslice_reg(engine, slice, subslice,
972 973
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
974
				read_subslice_reg(engine, slice, subslice,
975 976 977 978
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
979 980
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
981

982
		if (engine->id != RCS0)
983 984
			break;

985 986 987 988 989 990
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
991 992 993 994 995

		break;
	case 6:
	case 5:
	case 4:
996 997
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
998
		if (engine->id == RCS0)
999
			/* HACK: Using the wrong struct member */
1000 1001
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1002 1003 1004
		break;
	case 3:
	case 2:
1005
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1006 1007 1008
		break;
	}
}
1009

1010 1011 1012
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1013
	intel_wakeref_t wakeref;
1014 1015
	bool idle = true;

1016 1017 1018
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1019
	/* If the whole device is asleep, the engine must be idle */
1020
	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
1021
	if (!wakeref)
1022
		return true;
1023

1024
	/* First check that no commands are left in the ring */
1025 1026
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1027
		idle = false;
1028

1029
	/* No bit for gen2, so assume the CS parser is idle */
1030 1031
	if (INTEL_GEN(dev_priv) > 2 &&
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1032 1033
		idle = false;

1034
	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1035 1036 1037 1038

	return idle;
}

1039 1040 1041 1042 1043 1044 1045 1046 1047
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1048
	/* More white lies, if wedged, hw state is inconsistent */
1049
	if (intel_gt_is_wedged(engine->gt))
1050 1051
		return true;

1052
	if (!intel_engine_pm_is_awake(engine))
1053 1054
		return true;

1055
	/* Waiting to drain ELSP? */
1056
	if (execlists_active(&engine->execlists)) {
1057
		struct tasklet_struct *t = &engine->execlists.tasklet;
1058

1059
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1060

1061
		local_bh_disable();
1062 1063 1064 1065 1066
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1067
		}
1068
		local_bh_enable();
1069

1070 1071 1072
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1073
		if (execlists_active(&engine->execlists))
1074 1075
			return false;
	}
1076

1077
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1078
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1079 1080
		return false;

1081
	/* Ring stopped? */
1082
	return ring_is_idle(engine);
1083 1084
}

1085
bool intel_engines_are_idle(struct intel_gt *gt)
1086 1087 1088 1089
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1090 1091
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1092 1093
	 * report that it is still busy, even though we have stopped using it.
	 */
1094
	if (intel_gt_is_wedged(gt))
1095 1096
		return true;

1097
	/* Already parked (and passed an idleness test); must still be idle */
1098
	if (!READ_ONCE(gt->awake))
1099 1100
		return true;

1101
	for_each_engine(engine, gt->i915, id) {
1102 1103 1104 1105 1106 1107 1108
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1109
void intel_engines_reset_default_submission(struct intel_gt *gt)
1110 1111 1112 1113
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1114
	for_each_engine(engine, gt->i915, id)
1115 1116 1117
		engine->set_default_submission(engine);
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1133 1134 1135
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1136 1137
{
	if (attr->priority == I915_PRIORITY_INVALID)
1138 1139 1140 1141
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1142

1143
	return x;
1144 1145
}

1146
static void print_request(struct drm_printer *m,
1147
			  struct i915_request *rq,
1148 1149
			  const char *prefix)
{
1150
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1151
	char buf[80] = "";
1152 1153 1154
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1155

1156
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1157
		   prefix,
1158
		   rq->fence.context, rq->fence.seqno,
1159 1160 1161
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1162 1163
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1164
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1165 1166
			    &rq->fence.flags) ? "-" :
		   "",
1167
		   buf,
1168
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1169
		   name);
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1194
		drm_printf(m, "[%04zx] %s\n", pos, line);
1195 1196 1197 1198 1199 1200

		prev = buf + pos;
		skip = false;
	}
}

1201
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1202
					 struct drm_printer *m)
1203 1204
{
	struct drm_i915_private *dev_priv = engine->i915;
1205 1206
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1207
	unsigned long flags;
1208 1209
	u64 addr;

1210
	if (engine->id == RCS0 && IS_GEN_RANGE(dev_priv, 4, 7))
1211
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1212
	drm_printf(m, "\tRING_START: 0x%08x\n",
1213
		   ENGINE_READ(engine, RING_START));
1214
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1215
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1216
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1217
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1218
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1219 1220
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1221 1222
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1223 1224
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1225
	}
1226 1227

	if (INTEL_GEN(dev_priv) >= 6) {
1228 1229
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1230 1231
	}

1232 1233 1234 1235 1236 1237
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1238
	if (INTEL_GEN(dev_priv) >= 8)
1239
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1240
	else if (INTEL_GEN(dev_priv) >= 4)
1241
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1242
	else
1243
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1244 1245 1246 1247
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1248
			   ENGINE_READ(engine, RING_IPEIR));
1249
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1250
			   ENGINE_READ(engine, RING_IPEHR));
1251
	} else {
1252 1253
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1254
	}
1255

1256
	if (HAS_EXECLISTS(dev_priv)) {
1257
		struct i915_request * const *port, *rq;
1258 1259
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1260
		const u8 num_entries = execlists->csb_size;
1261
		unsigned int idx;
1262
		u8 read, write;
1263

1264
		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1265
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1266 1267
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   num_entries);
1268

1269 1270 1271
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1272
		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1273
			   read, write,
1274 1275 1276
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1277
		if (read >= num_entries)
1278
			read = 0;
1279
		if (write >= num_entries)
1280 1281
			write = 0;
		if (read > write)
1282
			write += num_entries;
1283
		while (read < write) {
1284 1285 1286
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1287 1288
		}

1289
		spin_lock_irqsave(&engine->active.lock, flags);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
				       "\t\tActive[%d: ",
				       (int)(port - execlists->active));
			if (!i915_request_signaled(rq))
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
						rq->timeline->hwsp_offset,
						hwsp_seqno(rq));
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1307
			char hdr[80];
1308

1309 1310 1311 1312 1313 1314 1315
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
				 rq->timeline->hwsp_offset,
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1316
		}
1317
		spin_unlock_irqrestore(&engine->active.lock, flags);
1318 1319
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1320
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1321
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1322
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1323
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1324
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1325
	}
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1361 1362 1363 1364 1365
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1366
	struct i915_request *rq;
1367
	intel_wakeref_t wakeref;
1368
	unsigned long flags;
1369 1370 1371 1372 1373 1374 1375 1376 1377

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1378
	if (intel_gt_is_wedged(engine->gt))
1379 1380
		drm_printf(m, "*** WEDGED ***\n");

1381
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1382
	drm_printf(m, "\tHangcheck: %d ms ago\n",
1383
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1384 1385 1386 1387 1388 1389
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1390
	spin_lock_irqsave(&engine->active.lock, flags);
1391
	rq = intel_engine_find_active_request(engine);
1392 1393
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1394

1395
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1396
			   i915_ggtt_offset(rq->ring->vma));
1397
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1398
			   rq->ring->head);
1399
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1400
			   rq->ring->tail);
1401 1402 1403 1404
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1405 1406
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   rq->timeline->hwsp_offset);
1407 1408

		print_request_ring(m, rq);
1409
	}
1410
	spin_unlock_irqrestore(&engine->active.lock, flags);
1411

1412
	wakeref = intel_runtime_pm_get_if_in_use(&engine->i915->runtime_pm);
1413
	if (wakeref) {
1414
		intel_engine_print_registers(engine, m);
1415
		intel_runtime_pm_put(&engine->i915->runtime_pm, wakeref);
1416 1417 1418
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1419

1420
	intel_execlists_show_requests(engine, m, print_request, 8);
1421

1422
	drm_printf(m, "HWSP:\n");
1423
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1424

1425
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1426 1427

	intel_engine_print_breadcrumbs(engine, m);
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1440
	struct intel_engine_execlists *execlists = &engine->execlists;
1441
	unsigned long flags;
1442
	int err = 0;
1443

1444
	if (!intel_engine_supports_stats(engine))
1445 1446
		return -ENODEV;

1447
	spin_lock_irqsave(&engine->active.lock, flags);
1448
	write_seqlock(&engine->stats.lock);
1449 1450 1451 1452 1453 1454

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1455
	if (engine->stats.enabled++ == 0) {
1456 1457
		struct i915_request * const *port;
		struct i915_request *rq;
1458

1459
		engine->stats.enabled_at = ktime_get();
1460 1461

		/* XXX submission method oblivious? */
1462
		for (port = execlists->active; (rq = *port); port++)
1463
			engine->stats.active++;
1464 1465 1466 1467 1468

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
			if (intel_context_inflight_count(rq->hw_context) == 1)
				engine->stats.active++;
1469 1470 1471 1472 1473
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1474

1475
unlock:
1476
	write_sequnlock(&engine->stats.lock);
1477
	spin_unlock_irqrestore(&engine->active.lock, flags);
1478

1479
	return err;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1505
	unsigned int seq;
1506 1507
	ktime_t total;

1508 1509 1510 1511
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1526
	if (!intel_engine_supports_stats(engine))
1527 1528
		return;

1529
	write_seqlock_irqsave(&engine->stats.lock, flags);
1530 1531 1532 1533 1534
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1535
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1536 1537
}

1538 1539
static bool match_ring(struct i915_request *rq)
{
1540
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1561
	lockdep_assert_held(&engine->active.lock);
1562
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1563 1564 1565 1566
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1567
			continue;
1568 1569 1570

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1571
			continue;
1572 1573 1574 1575 1576 1577 1578 1579

		active = request;
		break;
	}

	return active;
}

1580
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1581
#include "mock_engine.c"
1582
#include "selftest_engine.c"
1583
#include "selftest_engine_cs.c"
1584
#endif