blk-mq.c 105.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/blk-integrity.h>
14
#include <linux/kmemleak.h>
15 16 17 18 19
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
20
#include <linux/interrupt.h>
21 22 23 24
#include <linux/llist.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
25
#include <linux/sched/topology.h>
26
#include <linux/sched/signal.h>
27
#include <linux/delay.h>
28
#include <linux/crash_dump.h>
29
#include <linux/prefetch.h>
30
#include <linux/blk-crypto.h>
31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
35
#include <linux/t10-pi.h>
36 37
#include "blk.h"
#include "blk-mq.h"
38
#include "blk-mq-debugfs.h"
39
#include "blk-mq-tag.h"
40
#include "blk-pm.h"
41
#include "blk-stat.h"
42
#include "blk-mq-sched.h"
43
#include "blk-rq-qos.h"
44

45
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46

47 48 49
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

50 51
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
52
	int ddir, sectors, bucket;
53

J
Jens Axboe 已提交
54
	ddir = rq_data_dir(rq);
55
	sectors = blk_rq_stats_sectors(rq);
56

57
	bucket = ddir + 2 * ilog2(sectors);
58 59 60 61 62 63 64 65 66

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

67 68 69
#define BLK_QC_T_SHIFT		16
#define BLK_QC_T_INTERNAL	(1U << 31)

70 71 72 73 74 75
static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
		blk_qc_t qc)
{
	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
}

76 77 78
static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
		blk_qc_t qc)
{
79 80 81 82 83
	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);

	if (qc & BLK_QC_T_INTERNAL)
		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
	return blk_mq_tag_to_rq(hctx->tags, tag);
84 85
}

86 87 88 89 90 91 92
static inline blk_qc_t blk_rq_to_qc(struct request *rq)
{
	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
		(rq->tag != -1 ?
		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
}

93
/*
94 95
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
96
 */
97
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
98
{
99 100
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
101
			blk_mq_sched_has_work(hctx);
102 103
}

104 105 106 107 108 109
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
110 111 112 113
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
114 115 116 117 118
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
119 120 121
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
122 123
}

124
struct mq_inflight {
125
	struct block_device *part;
126
	unsigned int inflight[2];
127 128
};

129
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
130 131 132 133 134
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

135 136
	if ((!mi->part->bd_partno || rq->part == mi->part) &&
	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137
		mi->inflight[rq_data_dir(rq)]++;
138 139

	return true;
140 141
}

142 143
unsigned int blk_mq_in_flight(struct request_queue *q,
		struct block_device *part)
144
{
145
	struct mq_inflight mi = { .part = part };
146 147

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148

149
	return mi.inflight[0] + mi.inflight[1];
150 151
}

152 153
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
		unsigned int inflight[2])
154
{
155
	struct mq_inflight mi = { .part = part };
156

157
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158 159
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
160 161
}

162
void blk_freeze_queue_start(struct request_queue *q)
163
{
164 165
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
166
		percpu_ref_kill(&q->q_usage_counter);
167
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
168
		if (queue_is_mq(q))
169
			blk_mq_run_hw_queues(q, false);
170 171
	} else {
		mutex_unlock(&q->mq_freeze_lock);
172
	}
173
}
174
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175

176
void blk_mq_freeze_queue_wait(struct request_queue *q)
177
{
178
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179
}
180
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181

182 183 184 185 186 187 188 189
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190

191 192 193 194
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
195
void blk_freeze_queue(struct request_queue *q)
196
{
197 198 199 200 201 202 203
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
204
	blk_freeze_queue_start(q);
205 206
	blk_mq_freeze_queue_wait(q);
}
207 208 209 210 211 212 213 214 215

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
216
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217

218
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219
{
220
	mutex_lock(&q->mq_freeze_lock);
221 222
	if (force_atomic)
		q->q_usage_counter.data->force_atomic = true;
223 224 225
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
226
		percpu_ref_resurrect(&q->q_usage_counter);
227
		wake_up_all(&q->mq_freeze_wq);
228
	}
229
	mutex_unlock(&q->mq_freeze_lock);
230
}
231 232 233 234 235

void blk_mq_unfreeze_queue(struct request_queue *q)
{
	__blk_mq_unfreeze_queue(q, false);
}
236
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237

238 239 240 241 242 243
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
244
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
245 246 247
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

248
/**
249
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
250 251 252
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
253 254 255
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
256 257 258 259 260 261 262
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

263
	blk_mq_quiesce_queue_nowait(q);
264

265 266
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
267
			synchronize_srcu(hctx->srcu);
268 269 270 271 272 273 274 275
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

276 277 278 279 280 281 282 283 284
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
285
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
286

287 288
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
289 290 291
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

292 293 294 295 296 297 298 299 300 301
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

302
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
303
		unsigned int tag, u64 alloc_time_ns)
304
{
305 306 307 308
	struct blk_mq_ctx *ctx = data->ctx;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	struct request_queue *q = data->q;
	struct elevator_queue *e = q->elevator;
309 310
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
311
	unsigned int rq_flags = 0;
312

313
	if (e) {
314
		rq_flags = RQF_ELV;
315
		rq->tag = BLK_MQ_NO_TAG;
316 317 318
		rq->internal_tag = tag;
	} else {
		rq->tag = tag;
319
		rq->internal_tag = BLK_MQ_NO_TAG;
320 321
	}

322 323 324 325 326 327
	if (data->flags & BLK_MQ_REQ_PM)
		rq_flags |= RQF_PM;
	if (blk_queue_io_stat(q))
		rq_flags |= RQF_IO_STAT;
	rq->rq_flags = rq_flags;

328 329 330 331
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
332
	/* csd/requeue_work/fifo_time is initialized before use */
333 334 335
	rq->q = q;
	rq->mq_ctx = ctx;
	rq->mq_hctx = hctx;
336
	rq->cmd_flags = data->cmd_flags;
337 338
	rq->rq_disk = NULL;
	rq->part = NULL;
339 340 341
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
342
	rq->io_start_time_ns = 0;
343
	rq->stats_sectors = 0;
344 345 346 347
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
348
	rq->timeout = 0;
349 350 351
	rq->end_io = NULL;
	rq->end_io_data = NULL;

352 353 354 355
	blk_crypto_rq_set_defaults(rq);
	INIT_LIST_HEAD(&rq->queuelist);
	/* tag was already set */
	WRITE_ONCE(rq->deadline, 0);
K
Keith Busch 已提交
356
	refcount_set(&rq->ref, 1);
357

358
	if (rq->rq_flags & RQF_ELV) {
359 360 361
		struct elevator_queue *e = data->q->elevator;

		rq->elv.icq = NULL;
362 363 364 365 366
		INIT_HLIST_NODE(&rq->hash);
		RB_CLEAR_NODE(&rq->rb_node);

		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.prepare_request) {
367 368 369 370 371 372 373 374
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);

			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

375
	return rq;
376 377
}

J
Jens Axboe 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
		u64 alloc_time_ns)
{
	unsigned int tag, tag_offset;
	struct request *rq;
	unsigned long tags;
	int i, nr = 0;

	tags = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
	if (unlikely(!tags))
		return NULL;

	for (i = 0; tags; i++) {
		if (!(tags & (1UL << i)))
			continue;
		tag = tag_offset + i;
		tags &= ~(1UL << i);
		rq = blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397
		rq_list_add(data->cached_rq, rq);
J
Jens Axboe 已提交
398 399 400
	}
	data->nr_tags -= nr;

401
	return rq_list_pop(data->cached_rq);
J
Jens Axboe 已提交
402 403
}

404
static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
405
{
406
	struct request_queue *q = data->q;
407
	struct elevator_queue *e = q->elevator;
408
	u64 alloc_time_ns = 0;
409
	struct request *rq;
410
	unsigned int tag;
411

412 413 414 415
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

416
	if (data->cmd_flags & REQ_NOWAIT)
417
		data->flags |= BLK_MQ_REQ_NOWAIT;
418 419 420

	if (e) {
		/*
421
		 * Flush/passthrough requests are special and go directly to the
422 423
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
424
		 */
425
		if (!op_is_flush(data->cmd_flags) &&
426
		    !blk_op_is_passthrough(data->cmd_flags) &&
427
		    e->type->ops.limit_depth &&
428
		    !(data->flags & BLK_MQ_REQ_RESERVED))
429
			e->type->ops.limit_depth(data->cmd_flags, data);
430 431
	}

432
retry:
433 434
	data->ctx = blk_mq_get_ctx(q);
	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
435
	if (!e)
436 437
		blk_mq_tag_busy(data->hctx);

J
Jens Axboe 已提交
438 439 440 441 442 443 444 445 446 447
	/*
	 * Try batched alloc if we want more than 1 tag.
	 */
	if (data->nr_tags > 1) {
		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
		if (rq)
			return rq;
		data->nr_tags = 1;
	}

448 449 450 451 452
	/*
	 * Waiting allocations only fail because of an inactive hctx.  In that
	 * case just retry the hctx assignment and tag allocation as CPU hotplug
	 * should have migrated us to an online CPU by now.
	 */
J
Jens Axboe 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_NO_TAG) {
		if (data->flags & BLK_MQ_REQ_NOWAIT)
			return NULL;
		/*
		 * Give up the CPU and sleep for a random short time to
		 * ensure that thread using a realtime scheduling class
		 * are migrated off the CPU, and thus off the hctx that
		 * is going away.
		 */
		msleep(3);
		goto retry;
	}
466

J
Jens Axboe 已提交
467
	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
468 469
}

470
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
471
		blk_mq_req_flags_t flags)
472
{
473 474 475 476
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
477
		.nr_tags	= 1,
478
	};
479
	struct request *rq;
480
	int ret;
481

482
	ret = blk_queue_enter(q, flags);
483 484
	if (ret)
		return ERR_PTR(ret);
485

486
	rq = __blk_mq_alloc_requests(&data);
487
	if (!rq)
488
		goto out_queue_exit;
489 490 491
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
492
	return rq;
493 494 495
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
496
}
497
EXPORT_SYMBOL(blk_mq_alloc_request);
498

499
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
500
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
501
{
502 503 504 505
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
506
		.nr_tags	= 1,
507
	};
508
	u64 alloc_time_ns = 0;
509
	unsigned int cpu;
510
	unsigned int tag;
M
Ming Lin 已提交
511 512
	int ret;

513 514 515 516
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

M
Ming Lin 已提交
517 518 519 520 521 522
	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
523
	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
M
Ming Lin 已提交
524 525 526 527 528
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

529
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
530 531 532
	if (ret)
		return ERR_PTR(ret);

533 534 535 536
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
537
	ret = -EXDEV;
538 539
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
540
		goto out_queue_exit;
541 542
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
543

544
	if (!q->elevator)
545 546
		blk_mq_tag_busy(data.hctx);

547
	ret = -EWOULDBLOCK;
548 549
	tag = blk_mq_get_tag(&data);
	if (tag == BLK_MQ_NO_TAG)
550
		goto out_queue_exit;
551 552
	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);

553 554 555
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
556 557 558
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
559 560 561 562
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
563
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
564 565
	const int sched_tag = rq->internal_tag;

566
	blk_crypto_free_request(rq);
567
	blk_pm_mark_last_busy(rq);
568
	rq->mq_hctx = NULL;
569
	if (rq->tag != BLK_MQ_NO_TAG)
570
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
571
	if (sched_tag != BLK_MQ_NO_TAG)
572
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
573 574 575 576
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

577
void blk_mq_free_request(struct request *rq)
578 579
{
	struct request_queue *q = rq->q;
580
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
581

582
	if (rq->rq_flags & RQF_ELVPRIV) {
583 584 585
		struct elevator_queue *e = q->elevator;

		if (e->type->ops.finish_request)
586
			e->type->ops.finish_request(rq);
587 588 589 590 591
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
592

593
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
594
		__blk_mq_dec_active_requests(hctx);
J
Jens Axboe 已提交
595

596
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
597
		laptop_io_completion(q->disk->bdi);
598

599
	rq_qos_done(q, rq);
600

K
Keith Busch 已提交
601 602 603
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
604
}
J
Jens Axboe 已提交
605
EXPORT_SYMBOL_GPL(blk_mq_free_request);
606

607 608
void blk_mq_free_plug_rqs(struct blk_plug *plug)
{
609
	struct request *rq;
610

611
	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) {
612 613 614 615 616
		percpu_ref_get(&rq->q->q_usage_counter);
		blk_mq_free_request(rq);
	}
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
static void req_bio_endio(struct request *rq, struct bio *bio,
			  unsigned int nbytes, blk_status_t error)
{
	if (error)
		bio->bi_status = error;

	if (unlikely(rq->rq_flags & RQF_QUIET))
		bio_set_flag(bio, BIO_QUIET);

	bio_advance(bio, nbytes);

	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
		/*
		 * Partial zone append completions cannot be supported as the
		 * BIO fragments may end up not being written sequentially.
		 */
		if (bio->bi_iter.bi_size)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_iter.bi_sector = rq->__sector;
	}

	/* don't actually finish bio if it's part of flush sequence */
	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
		bio_endio(bio);
}

static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
	if (req->part && blk_do_io_stat(req)) {
		const int sgrp = op_stat_group(req_op(req));

		part_stat_lock();
		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
		part_stat_unlock();
	}
}

/**
 * blk_update_request - Complete multiple bytes without completing the request
 * @req:      the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete for @req
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 *     the request structure even if @req doesn't have leftover.
 *     If @req has leftover, sets it up for the next range of segments.
 *
 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 *     %false return from this function.
 *
 * Note:
 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 *      except in the consistency check at the end of this function.
 *
 * Return:
 *     %false - this request doesn't have any more data
 *     %true  - this request has more data
 **/
bool blk_update_request(struct request *req, blk_status_t error,
		unsigned int nr_bytes)
{
	int total_bytes;

682
	trace_block_rq_complete(req, error, nr_bytes);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

	if (!req->bio)
		return false;

#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
	    error == BLK_STS_OK)
		req->q->integrity.profile->complete_fn(req, nr_bytes);
#endif

	if (unlikely(error && !blk_rq_is_passthrough(req) &&
		     !(req->rq_flags & RQF_QUIET)))
		blk_print_req_error(req, error);

	blk_account_io_completion(req, nr_bytes);

	total_bytes = 0;
	while (req->bio) {
		struct bio *bio = req->bio;
		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);

		if (bio_bytes == bio->bi_iter.bi_size)
			req->bio = bio->bi_next;

		/* Completion has already been traced */
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
		req_bio_endio(req, bio, bio_bytes, error);

		total_bytes += bio_bytes;
		nr_bytes -= bio_bytes;

		if (!nr_bytes)
			break;
	}

	/*
	 * completely done
	 */
	if (!req->bio) {
		/*
		 * Reset counters so that the request stacking driver
		 * can find how many bytes remain in the request
		 * later.
		 */
		req->__data_len = 0;
		return false;
	}

	req->__data_len -= total_bytes;

	/* update sector only for requests with clear definition of sector */
	if (!blk_rq_is_passthrough(req))
		req->__sector += total_bytes >> 9;

	/* mixed attributes always follow the first bio */
	if (req->rq_flags & RQF_MIXED_MERGE) {
		req->cmd_flags &= ~REQ_FAILFAST_MASK;
		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
	}

	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
		/*
		 * If total number of sectors is less than the first segment
		 * size, something has gone terribly wrong.
		 */
		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
			blk_dump_rq_flags(req, "request botched");
			req->__data_len = blk_rq_cur_bytes(req);
		}

		/* recalculate the number of segments */
		req->nr_phys_segments = blk_recalc_rq_segments(req);
	}

	return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);

761
static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
762
{
763 764 765 766
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq, now);
	}
767

768 769 770
	blk_mq_sched_completed_request(rq, now);
	blk_account_io_done(rq, now);
}
771

772 773 774 775
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
{
	if (blk_mq_need_time_stamp(rq))
		__blk_mq_end_request_acct(rq, ktime_get_ns());
776

C
Christoph Hellwig 已提交
777
	if (rq->end_io) {
778
		rq_qos_done(rq->q, rq);
779
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
780
	} else {
781
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
782
	}
783
}
784
EXPORT_SYMBOL(__blk_mq_end_request);
785

786
void blk_mq_end_request(struct request *rq, blk_status_t error)
787 788 789
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
790
	__blk_mq_end_request(rq, error);
791
}
792
EXPORT_SYMBOL(blk_mq_end_request);
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
#define TAG_COMP_BATCH		32

static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
					  int *tag_array, int nr_tags)
{
	struct request_queue *q = hctx->queue;

	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
}

void blk_mq_end_request_batch(struct io_comp_batch *iob)
{
	int tags[TAG_COMP_BATCH], nr_tags = 0;
	struct blk_mq_hw_ctx *last_hctx = NULL;
	struct request *rq;
	u64 now = 0;

	if (iob->need_ts)
		now = ktime_get_ns();

	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
		prefetch(rq->bio);
		prefetch(rq->rq_next);

		blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
		if (iob->need_ts)
			__blk_mq_end_request_acct(rq, now);

		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
		if (!refcount_dec_and_test(&rq->ref))
			continue;

		blk_crypto_free_request(rq);
		blk_pm_mark_last_busy(rq);
		rq_qos_done(rq->q, rq);

		if (nr_tags == TAG_COMP_BATCH ||
		    (last_hctx && last_hctx != rq->mq_hctx)) {
			blk_mq_flush_tag_batch(last_hctx, tags, nr_tags);
			nr_tags = 0;
		}
		tags[nr_tags++] = rq->tag;
		last_hctx = rq->mq_hctx;
	}

	if (nr_tags)
		blk_mq_flush_tag_batch(last_hctx, tags, nr_tags);
}
EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);

845
static void blk_complete_reqs(struct llist_head *list)
846
{
847 848
	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
	struct request *rq, *next;
849

850
	llist_for_each_entry_safe(rq, next, entry, ipi_list)
851
		rq->q->mq_ops->complete(rq);
852 853
}

854
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
855
{
856
	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
857 858
}

859 860
static int blk_softirq_cpu_dead(unsigned int cpu)
{
861
	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
862 863 864
	return 0;
}

865
static void __blk_mq_complete_request_remote(void *data)
866
{
867
	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
868 869
}

870 871 872 873 874 875 876
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
	int cpu = raw_smp_processor_id();

	if (!IS_ENABLED(CONFIG_SMP) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
		return false;
877 878 879 880 881 882
	/*
	 * With force threaded interrupts enabled, raising softirq from an SMP
	 * function call will always result in waking the ksoftirqd thread.
	 * This is probably worse than completing the request on a different
	 * cache domain.
	 */
883
	if (force_irqthreads())
884
		return false;
885 886 887 888 889 890 891 892 893 894 895

	/* same CPU or cache domain?  Complete locally */
	if (cpu == rq->mq_ctx->cpu ||
	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
		return false;

	/* don't try to IPI to an offline CPU */
	return cpu_online(rq->mq_ctx->cpu);
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static void blk_mq_complete_send_ipi(struct request *rq)
{
	struct llist_head *list;
	unsigned int cpu;

	cpu = rq->mq_ctx->cpu;
	list = &per_cpu(blk_cpu_done, cpu);
	if (llist_add(&rq->ipi_list, list)) {
		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
		smp_call_function_single_async(cpu, &rq->csd);
	}
}

static void blk_mq_raise_softirq(struct request *rq)
{
	struct llist_head *list;

	preempt_disable();
	list = this_cpu_ptr(&blk_cpu_done);
	if (llist_add(&rq->ipi_list, list))
		raise_softirq(BLOCK_SOFTIRQ);
	preempt_enable();
}

920
bool blk_mq_complete_request_remote(struct request *rq)
921
{
922
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
923

924 925 926 927
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
928
	if (rq->cmd_flags & REQ_POLLED)
929
		return false;
C
Christoph Hellwig 已提交
930

931
	if (blk_mq_complete_need_ipi(rq)) {
932 933
		blk_mq_complete_send_ipi(rq);
		return true;
934
	}
935

936 937 938 939 940
	if (rq->q->nr_hw_queues == 1) {
		blk_mq_raise_softirq(rq);
		return true;
	}
	return false;
941 942 943 944 945 946 947 948 949 950 951 952 953 954
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Complete a request by scheduling the ->complete_rq operation.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (!blk_mq_complete_request_remote(rq))
		rq->q->mq_ops->complete(rq);
955
}
956
EXPORT_SYMBOL(blk_mq_complete_request);
957

958
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
959
	__releases(hctx->srcu)
960 961 962 963
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
964
		srcu_read_unlock(hctx->srcu, srcu_idx);
965 966 967
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
968
	__acquires(hctx->srcu)
969
{
970 971 972
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
973
		rcu_read_lock();
974
	} else
975
		*srcu_idx = srcu_read_lock(hctx->srcu);
976 977
}

978 979 980 981 982 983 984 985
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
986
void blk_mq_start_request(struct request *rq)
987 988 989
{
	struct request_queue *q = rq->q;

990
	trace_block_rq_issue(rq);
991

992
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
993 994 995 996 997 998 999 1000
		u64 start_time;
#ifdef CONFIG_BLK_CGROUP
		if (rq->bio)
			start_time = bio_issue_time(&rq->bio->bi_issue);
		else
#endif
			start_time = ktime_get_ns();
		rq->io_start_time_ns = start_time;
1001
		rq->stats_sectors = blk_rq_sectors(rq);
1002
		rq->rq_flags |= RQF_STATS;
1003
		rq_qos_issue(q, rq);
1004 1005
	}

1006
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1007

1008
	blk_add_timer(rq);
K
Keith Busch 已提交
1009
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1010

1011 1012 1013 1014
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
1015 1016
	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1017
}
1018
EXPORT_SYMBOL(blk_mq_start_request);
1019

1020
static void __blk_mq_requeue_request(struct request *rq)
1021 1022 1023
{
	struct request_queue *q = rq->q;

1024 1025
	blk_mq_put_driver_tag(rq);

1026
	trace_block_rq_requeue(rq);
1027
	rq_qos_requeue(q, rq);
1028

K
Keith Busch 已提交
1029 1030
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1031
		rq->rq_flags &= ~RQF_TIMED_OUT;
1032
	}
1033 1034
}

1035
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1036 1037 1038
{
	__blk_mq_requeue_request(rq);

1039 1040 1041
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
1042
	BUG_ON(!list_empty(&rq->queuelist));
1043
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1044 1045 1046
}
EXPORT_SYMBOL(blk_mq_requeue_request);

1047 1048 1049
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
1050
		container_of(work, struct request_queue, requeue_work.work);
1051 1052 1053
	LIST_HEAD(rq_list);
	struct request *rq, *next;

1054
	spin_lock_irq(&q->requeue_lock);
1055
	list_splice_init(&q->requeue_list, &rq_list);
1056
	spin_unlock_irq(&q->requeue_lock);
1057 1058

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1059
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1060 1061
			continue;

1062
		rq->rq_flags &= ~RQF_SOFTBARRIER;
1063
		list_del_init(&rq->queuelist);
1064 1065 1066 1067 1068 1069
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
1070
			blk_mq_request_bypass_insert(rq, false, false);
1071 1072
		else
			blk_mq_sched_insert_request(rq, true, false, false);
1073 1074 1075 1076 1077
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
1078
		blk_mq_sched_insert_request(rq, false, false, false);
1079 1080
	}

1081
	blk_mq_run_hw_queues(q, false);
1082 1083
}

1084 1085
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
1086 1087 1088 1089 1090 1091
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
1092
	 * request head insertion from the workqueue.
1093
	 */
1094
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1095 1096 1097

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
1098
		rq->rq_flags |= RQF_SOFTBARRIER;
1099 1100 1101 1102 1103
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
1104 1105 1106

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
1107 1108 1109 1110
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
1111
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1112 1113 1114
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

1115 1116 1117
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
1118 1119
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
1120 1121 1122
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

1123 1124
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
1125 1126
{
	/*
1127
	 * If we find a request that isn't idle and the queue matches,
1128
	 * we know the queue is busy. Return false to stop the iteration.
1129
	 */
1130
	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1131 1132 1133 1134 1135 1136 1137 1138 1139
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

1140
bool blk_mq_queue_inflight(struct request_queue *q)
1141 1142 1143
{
	bool busy = false;

1144
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1145 1146
	return busy;
}
1147
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1148

1149
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1150
{
1151
	req->rq_flags |= RQF_TIMED_OUT;
1152 1153 1154 1155 1156 1157 1158
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1159
	}
1160 1161

	blk_add_timer(req);
1162
}
1163

K
Keith Busch 已提交
1164
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1165
{
K
Keith Busch 已提交
1166
	unsigned long deadline;
1167

K
Keith Busch 已提交
1168 1169
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
1170 1171
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
1172

1173
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
1174 1175
	if (time_after_eq(jiffies, deadline))
		return true;
1176

K
Keith Busch 已提交
1177 1178 1179 1180 1181
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
1182 1183
}

1184 1185
void blk_mq_put_rq_ref(struct request *rq)
{
M
Ming Lei 已提交
1186
	if (is_flush_rq(rq))
1187 1188 1189 1190 1191
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
}

1192
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1193 1194
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
1195 1196 1197
	unsigned long *next = priv;

	/*
1198 1199 1200 1201 1202
	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
	 * be reallocated underneath the timeout handler's processing, then
	 * the expire check is reliable. If the request is not expired, then
	 * it was completed and reallocated as a new request after returning
	 * from blk_mq_check_expired().
1203
	 */
K
Keith Busch 已提交
1204
	if (blk_mq_req_expired(rq, next))
1205
		blk_mq_rq_timed_out(rq, reserved);
1206
	return true;
1207 1208
}

1209
static void blk_mq_timeout_work(struct work_struct *work)
1210
{
1211 1212
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
1213
	unsigned long next = 0;
1214
	struct blk_mq_hw_ctx *hctx;
1215
	int i;
1216

1217 1218 1219 1220 1221 1222 1223 1224 1225
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
1226
	 * blk_freeze_queue_start, and the moment the last request is
1227 1228 1229 1230
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
1231 1232
		return;

K
Keith Busch 已提交
1233
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1234

K
Keith Busch 已提交
1235 1236
	if (next != 0) {
		mod_timer(&q->timeout, next);
1237
	} else {
1238 1239 1240 1241 1242 1243
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
1244 1245 1246 1247 1248
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
1249
	}
1250
	blk_queue_exit(q);
1251 1252
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1263
	enum hctx_type type = hctx->type;
1264 1265

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1266
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1267
	sbitmap_clear_bit(sb, bitnr);
1268 1269 1270 1271
	spin_unlock(&ctx->lock);
	return true;
}

1272 1273 1274 1275
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1276
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1277
{
1278 1279 1280 1281
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1282

1283
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1284
}
1285
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1298
	enum hctx_type type = hctx->type;
1299 1300

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1301 1302
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1303
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1304
		if (list_empty(&ctx->rq_lists[type]))
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1315
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1327 1328
static bool __blk_mq_get_driver_tag(struct request *rq)
{
1329
	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1330 1331 1332
	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
	int tag;

1333 1334
	blk_mq_tag_busy(rq->mq_hctx);

1335
	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1336
		bt = &rq->mq_hctx->tags->breserved_tags;
1337
		tag_offset = 0;
1338 1339 1340
	} else {
		if (!hctx_may_queue(rq->mq_hctx, bt))
			return false;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	}

	tag = __sbitmap_queue_get(bt);
	if (tag == BLK_MQ_NO_TAG)
		return false;

	rq->tag = tag + tag_offset;
	return true;
}

1351
bool blk_mq_get_driver_tag(struct request *rq)
1352
{
1353 1354 1355 1356 1357
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
		return false;

1358
	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1359 1360
			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
		rq->rq_flags |= RQF_MQ_INFLIGHT;
1361
		__blk_mq_inc_active_requests(hctx);
1362 1363 1364
	}
	hctx->tags->rqs[rq->tag] = rq;
	return true;
1365 1366
}

1367 1368
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1369 1370 1371 1372 1373
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1374
	spin_lock(&hctx->dispatch_wait_lock);
1375 1376 1377 1378
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
1379
		sbq = &hctx->tags->bitmap_tags;
1380 1381
		atomic_dec(&sbq->ws_active);
	}
1382 1383
	spin_unlock(&hctx->dispatch_wait_lock);

1384 1385 1386 1387
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1388 1389
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1390 1391
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1392 1393
 * marking us as waiting.
 */
1394
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1395
				 struct request *rq)
1396
{
1397
	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1398
	struct wait_queue_head *wq;
1399 1400
	wait_queue_entry_t *wait;
	bool ret;
1401

1402
	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1403
		blk_mq_sched_mark_restart_hctx(hctx);
1404

1405 1406 1407 1408 1409 1410 1411 1412
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1413
		return blk_mq_get_driver_tag(rq);
1414 1415
	}

1416
	wait = &hctx->dispatch_wait;
1417 1418 1419
	if (!list_empty_careful(&wait->entry))
		return false;

1420
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1421 1422 1423

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1424
	if (!list_empty(&wait->entry)) {
1425 1426
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1427
		return false;
1428 1429
	}

1430
	atomic_inc(&sbq->ws_active);
1431 1432
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1433

1434
	/*
1435 1436 1437
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1438
	 */
1439
	ret = blk_mq_get_driver_tag(rq);
1440
	if (!ret) {
1441 1442
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1443
		return false;
1444
	}
1445 1446 1447 1448 1449 1450

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1451
	atomic_dec(&sbq->ws_active);
1452 1453
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1454 1455

	return true;
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1484 1485
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
enum prep_dispatch {
	PREP_DISPATCH_OK,
	PREP_DISPATCH_NO_TAG,
	PREP_DISPATCH_NO_BUDGET,
};

static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
						  bool need_budget)
{
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1526
	int budget_token = -1;
1527

1528 1529 1530 1531 1532 1533 1534
	if (need_budget) {
		budget_token = blk_mq_get_dispatch_budget(rq->q);
		if (budget_token < 0) {
			blk_mq_put_driver_tag(rq);
			return PREP_DISPATCH_NO_BUDGET;
		}
		blk_mq_set_rq_budget_token(rq, budget_token);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	}

	if (!blk_mq_get_driver_tag(rq)) {
		/*
		 * The initial allocation attempt failed, so we need to
		 * rerun the hardware queue when a tag is freed. The
		 * waitqueue takes care of that. If the queue is run
		 * before we add this entry back on the dispatch list,
		 * we'll re-run it below.
		 */
		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1546 1547 1548 1549 1550
			/*
			 * All budgets not got from this function will be put
			 * together during handling partial dispatch
			 */
			if (need_budget)
1551
				blk_mq_put_dispatch_budget(rq->q, budget_token);
1552 1553 1554 1555 1556 1557 1558
			return PREP_DISPATCH_NO_TAG;
		}
	}

	return PREP_DISPATCH_OK;
}

1559 1560
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
1561
		struct list_head *list)
1562
{
1563
	struct request *rq;
1564

1565 1566
	list_for_each_entry(rq, list, queuelist) {
		int budget_token = blk_mq_get_rq_budget_token(rq);
1567

1568 1569 1570
		if (budget_token >= 0)
			blk_mq_put_dispatch_budget(q, budget_token);
	}
1571 1572
}

1573 1574 1575
/*
 * Returns true if we did some work AND can potentially do more.
 */
1576
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1577
			     unsigned int nr_budgets)
1578
{
1579
	enum prep_dispatch prep;
1580
	struct request_queue *q = hctx->queue;
1581
	struct request *rq, *nxt;
1582
	int errors, queued;
1583
	blk_status_t ret = BLK_STS_OK;
1584
	LIST_HEAD(zone_list);
1585

1586 1587 1588
	if (list_empty(list))
		return false;

1589 1590 1591
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1592
	errors = queued = 0;
1593
	do {
1594
		struct blk_mq_queue_data bd;
1595

1596
		rq = list_first_entry(list, struct request, queuelist);
1597

1598
		WARN_ON_ONCE(hctx != rq->mq_hctx);
1599
		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1600
		if (prep != PREP_DISPATCH_OK)
1601
			break;
1602

1603 1604
		list_del_init(&rq->queuelist);

1605
		bd.rq = rq;
1606 1607 1608 1609 1610 1611 1612 1613 1614

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1615
			bd.last = !blk_mq_get_driver_tag(nxt);
1616
		}
1617

1618 1619 1620 1621 1622 1623
		/*
		 * once the request is queued to lld, no need to cover the
		 * budget any more
		 */
		if (nr_budgets)
			nr_budgets--;
1624
		ret = q->mq_ops->queue_rq(hctx, &bd);
1625 1626 1627
		switch (ret) {
		case BLK_STS_OK:
			queued++;
1628
			break;
1629 1630 1631 1632 1633
		case BLK_STS_RESOURCE:
		case BLK_STS_DEV_RESOURCE:
			blk_mq_handle_dev_resource(rq, list);
			goto out;
		case BLK_STS_ZONE_RESOURCE:
1634 1635 1636 1637 1638 1639
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
1640 1641
			break;
		default:
1642
			errors++;
1643
			blk_mq_end_request(rq, ret);
1644
		}
1645
	} while (!list_empty(list));
1646
out:
1647 1648 1649
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1650 1651 1652 1653 1654
	/* If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
		q->mq_ops->commit_rqs(hctx);
1655 1656 1657 1658
	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1659
	if (!list_empty(list)) {
1660
		bool needs_restart;
1661 1662
		/* For non-shared tags, the RESTART check will suffice */
		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1663
			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1664
		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1665

1666 1667
		if (nr_budgets)
			blk_mq_release_budgets(q, list);
1668

1669
		spin_lock(&hctx->lock);
1670
		list_splice_tail_init(list, &hctx->dispatch);
1671
		spin_unlock(&hctx->lock);
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681
		/*
		 * Order adding requests to hctx->dispatch and checking
		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
		 * in blk_mq_sched_restart(). Avoid restart code path to
		 * miss the new added requests to hctx->dispatch, meantime
		 * SCHED_RESTART is observed here.
		 */
		smp_mb();

1682
		/*
1683 1684 1685
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1686
		 *
1687 1688 1689 1690
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1691
		 *
1692 1693 1694 1695 1696 1697 1698
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1699
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1700
		 *   and dm-rq.
1701 1702 1703
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1704 1705
		 * that could otherwise occur if the queue is idle.  We'll do
		 * similar if we couldn't get budget and SCHED_RESTART is set.
1706
		 */
1707 1708
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1709
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1710
			blk_mq_run_hw_queue(hctx, true);
1711 1712
		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
					   no_budget_avail))
1713
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1714

1715
		blk_mq_update_dispatch_busy(hctx, true);
1716
		return false;
1717 1718
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1719

1720
	return (queued + errors) != 0;
1721 1722
}

1723 1724 1725 1726 1727 1728
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1729 1730 1731 1732
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1733 1734 1735 1736 1737 1738
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1739
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1740

1741 1742 1743
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1744 1745
}

1746 1747 1748 1749 1750 1751 1752 1753 1754
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1755 1756 1757 1758 1759 1760 1761 1762
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1763
	bool tried = false;
1764
	int next_cpu = hctx->next_cpu;
1765

1766 1767
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1768 1769

	if (--hctx->next_cpu_batch <= 0) {
1770
select_cpu:
1771
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1772
				cpu_online_mask);
1773
		if (next_cpu >= nr_cpu_ids)
1774
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1775 1776 1777
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1778 1779 1780 1781
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1782
	if (!cpu_online(next_cpu)) {
1783 1784 1785 1786 1787 1788 1789 1790 1791
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1792
		hctx->next_cpu = next_cpu;
1793 1794 1795
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1796 1797 1798

	hctx->next_cpu = next_cpu;
	return next_cpu;
1799 1800
}

1801 1802 1803 1804
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
1805
 * @msecs: Milliseconds of delay to wait before running the queue.
1806 1807 1808 1809
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1810 1811
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1812
{
1813
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1814 1815
		return;

1816
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1817 1818
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1819
			__blk_mq_run_hw_queue(hctx);
1820
			put_cpu();
1821 1822
			return;
		}
1823

1824
		put_cpu();
1825
	}
1826

1827 1828
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1829 1830
}

1831 1832 1833
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
1834
 * @msecs: Milliseconds of delay to wait before running the queue.
1835 1836 1837
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
1838 1839 1840 1841 1842 1843
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1844 1845 1846 1847 1848 1849 1850 1851 1852
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
1853
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1854
{
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1866 1867 1868 1869
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1870

1871
	if (need_run)
1872
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1873
}
O
Omar Sandoval 已提交
1874
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/*
 * Is the request queue handled by an IO scheduler that does not respect
 * hardware queues when dispatching?
 */
static bool blk_mq_has_sqsched(struct request_queue *q)
{
	struct elevator_queue *e = q->elevator;

	if (e && e->type->ops.dispatch_request &&
	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
		return true;
	return false;
}

/*
 * Return prefered queue to dispatch from (if any) for non-mq aware IO
 * scheduler.
 */
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;

	/*
	 * If the IO scheduler does not respect hardware queues when
	 * dispatching, we just don't bother with multiple HW queues and
	 * dispatch from hctx for the current CPU since running multiple queues
	 * just causes lock contention inside the scheduler and pointless cache
	 * bouncing.
	 */
	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
				     raw_smp_processor_id());
	if (!blk_mq_hctx_stopped(hctx))
		return hctx;
	return NULL;
}

1912
/**
1913
 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1914 1915 1916
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
1917
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1918
{
1919
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1920 1921
	int i;

1922 1923 1924
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
1925
	queue_for_each_hw_ctx(q, hctx, i) {
1926
		if (blk_mq_hctx_stopped(hctx))
1927
			continue;
1928 1929 1930 1931 1932 1933 1934 1935
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_run_hw_queue(hctx, async);
1936 1937
	}
}
1938
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1939

1940 1941 1942
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
1943
 * @msecs: Milliseconds of delay to wait before running the queues.
1944 1945 1946
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
1947
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1948 1949
	int i;

1950 1951 1952
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
1953 1954 1955
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;
1956 1957 1958 1959 1960 1961 1962 1963
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_delay_run_hw_queue(hctx, msecs);
1964 1965 1966 1967
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1988 1989 1990
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1991
 * BLK_STS_RESOURCE is usually returned.
1992 1993 1994 1995 1996
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1997 1998
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1999
	cancel_delayed_work(&hctx->run_work);
2000

2001
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2002
}
2003
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2004

2005 2006 2007
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
2008
 * BLK_STS_RESOURCE is usually returned.
2009 2010 2011 2012 2013
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
2014 2015
void blk_mq_stop_hw_queues(struct request_queue *q)
{
2016 2017 2018 2019 2020
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
2021 2022 2023
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

2024 2025 2026
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2027

2028
	blk_mq_run_hw_queue(hctx, false);
2029 2030 2031
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

2052
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2053 2054 2055 2056
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2057 2058
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
2059 2060 2061
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

2062
static void blk_mq_run_work_fn(struct work_struct *work)
2063 2064 2065
{
	struct blk_mq_hw_ctx *hctx;

2066
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2067

2068
	/*
M
Ming Lei 已提交
2069
	 * If we are stopped, don't run the queue.
2070
	 */
2071
	if (blk_mq_hctx_stopped(hctx))
2072
		return;
2073 2074 2075 2076

	__blk_mq_run_hw_queue(hctx);
}

2077 2078 2079
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
2080
{
J
Jens Axboe 已提交
2081
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
2082
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
2083

2084 2085
	lockdep_assert_held(&ctx->lock);

2086
	trace_block_rq_insert(rq);
2087

2088
	if (at_head)
M
Ming Lei 已提交
2089
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2090
	else
M
Ming Lei 已提交
2091
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2092
}
2093

2094 2095
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
2096 2097 2098
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

2099 2100
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
2101
	__blk_mq_insert_req_list(hctx, rq, at_head);
2102 2103 2104
	blk_mq_hctx_mark_pending(hctx, ctx);
}

2105 2106 2107
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
2108
 * @at_head: true if the request should be inserted at the head of the list.
2109 2110
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
2111 2112 2113
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
2114 2115
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
2116
{
2117
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2118 2119

	spin_lock(&hctx->lock);
2120 2121 2122 2123
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
2124 2125
	spin_unlock(&hctx->lock);

2126 2127
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
2128 2129
}

2130 2131
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
2132 2133

{
2134
	struct request *rq;
M
Ming Lei 已提交
2135
	enum hctx_type type = hctx->type;
2136

2137 2138 2139 2140
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
2141
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
2142
		BUG_ON(rq->mq_ctx != ctx);
2143
		trace_block_rq_insert(rq);
2144
	}
2145 2146

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2147
	list_splice_tail_init(list, &ctx->rq_lists[type]);
2148
	blk_mq_hctx_mark_pending(hctx, ctx);
2149 2150 2151 2152 2153 2154 2155
	spin_unlock(&ctx->lock);
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(list);

2156 2157
	if (list_empty(&plug->mq_list))
		return;
2158
	list_splice_init(&plug->mq_list, &list);
2159 2160
	plug->rq_count = 0;

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	do {
		struct list_head rq_list;
		struct request *rq, *head_rq = list_entry_rq(list.next);
		struct list_head *pos = &head_rq->queuelist; /* skip first */
		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
		unsigned int depth = 1;

		list_for_each_continue(pos, &list) {
			rq = list_entry_rq(pos);
			BUG_ON(!rq->q);
			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
				break;
			depth++;
2175 2176
		}

2177 2178
		list_cut_before(&rq_list, &list, pos);
		trace_block_unplug(head_rq->q, depth, !from_schedule);
2179
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
2180
						from_schedule);
2181
	} while(!list_empty(&list));
2182 2183
}

2184 2185
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
2186
{
2187 2188
	int err;

2189 2190 2191 2192 2193
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
2194
	blk_rq_bio_prep(rq, bio, nr_segs);
2195 2196 2197 2198

	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
	WARN_ON_ONCE(err);
2199

2200
	blk_account_io_start(rq);
2201 2202
}

2203
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2204
					    struct request *rq, bool last)
2205 2206 2207 2208
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
2209
		.last = last,
2210
	};
2211
	blk_status_t ret;
2212 2213 2214 2215 2216 2217 2218 2219 2220

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
2221
		blk_mq_update_dispatch_busy(hctx, false);
2222 2223
		break;
	case BLK_STS_RESOURCE:
2224
	case BLK_STS_DEV_RESOURCE:
2225
		blk_mq_update_dispatch_busy(hctx, true);
2226 2227 2228
		__blk_mq_requeue_request(rq);
		break;
	default:
2229
		blk_mq_update_dispatch_busy(hctx, false);
2230 2231 2232 2233 2234 2235
		break;
	}

	return ret;
}

2236
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2237
						struct request *rq,
2238
						bool bypass_insert, bool last)
2239 2240
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
2241
	bool run_queue = true;
2242
	int budget_token;
M
Ming Lei 已提交
2243

2244
	/*
2245
	 * RCU or SRCU read lock is needed before checking quiesced flag.
2246
	 *
2247 2248 2249
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
2250
	 */
2251
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
2252
		run_queue = false;
2253 2254
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
2255
	}
2256

2257
	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2258
		goto insert;
2259

2260 2261
	budget_token = blk_mq_get_dispatch_budget(q);
	if (budget_token < 0)
2262
		goto insert;
2263

2264 2265
	blk_mq_set_rq_budget_token(rq, budget_token);

2266
	if (!blk_mq_get_driver_tag(rq)) {
2267
		blk_mq_put_dispatch_budget(q, budget_token);
2268
		goto insert;
2269
	}
2270

2271
	return __blk_mq_issue_directly(hctx, rq, last);
2272 2273 2274 2275
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

2276 2277
	blk_mq_sched_insert_request(rq, false, run_queue, false);

2278 2279 2280
	return BLK_STS_OK;
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
2291
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2292
		struct request *rq)
2293 2294 2295 2296 2297 2298 2299 2300
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

2301
	ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2302
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2303
		blk_mq_request_bypass_insert(rq, false, true);
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
	blk_status_t ret;
	int srcu_idx;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
2317
	ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2318
	hctx_unlock(hctx, srcu_idx);
2319 2320

	return ret;
2321 2322
}

2323 2324 2325
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
2326
	int queued = 0;
2327
	int errors = 0;
2328

2329
	while (!list_empty(list)) {
2330
		blk_status_t ret;
2331 2332 2333 2334
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
2335 2336 2337 2338
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
2339
				blk_mq_request_bypass_insert(rq, false,
2340
							list_empty(list));
2341 2342 2343
				break;
			}
			blk_mq_end_request(rq, ret);
2344
			errors++;
2345 2346
		} else
			queued++;
2347
	}
J
Jens Axboe 已提交
2348 2349 2350 2351 2352 2353

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2354 2355
	if ((!list_empty(list) || errors) &&
	     hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2356
		hctx->queue->mq_ops->commit_rqs(hctx);
2357 2358
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	plug->rq_count++;
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

2373
/*
2374
 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2375 2376 2377 2378 2379 2380
 * queues. This is important for md arrays to benefit from merging
 * requests.
 */
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
{
	if (plug->multiple_queues)
2381
		return BLK_MAX_REQUEST_COUNT * 2;
2382 2383 2384
	return BLK_MAX_REQUEST_COUNT;
}

2385
/**
2386
 * blk_mq_submit_bio - Create and send a request to block device.
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 */
2398
void blk_mq_submit_bio(struct bio *bio)
2399
{
2400
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2401
	const int is_sync = op_is_sync(bio->bi_opf);
2402
	const int is_flush_fua = op_is_flush(bio->bi_opf);
2403
	struct request *rq;
2404
	struct blk_plug *plug;
2405
	bool same_queue_rq = false;
2406
	unsigned int nr_segs = 1;
2407
	blk_status_t ret;
2408 2409

	blk_queue_bounce(q, &bio);
2410 2411
	if (blk_may_split(q, bio))
		__blk_queue_split(q, &bio, &nr_segs);
2412

2413
	if (!bio_integrity_prep(bio))
2414
		goto queue_exit;
2415

2416
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2417
	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2418
		goto queue_exit;
2419

2420
	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2421
		goto queue_exit;
2422

2423
	rq_qos_throttle(q, bio);
J
Jens Axboe 已提交
2424

2425 2426
	plug = blk_mq_plug(q, bio);
	if (plug && plug->cached_rq) {
2427
		rq = rq_list_pop(&plug->cached_rq);
2428 2429
		INIT_LIST_HEAD(&rq->queuelist);
	} else {
2430 2431 2432 2433 2434 2435
		struct blk_mq_alloc_data data = {
			.q		= q,
			.nr_tags	= 1,
			.cmd_flags	= bio->bi_opf,
		};

2436 2437 2438 2439 2440
		if (plug) {
			data.nr_tags = plug->nr_ios;
			plug->nr_ios = 1;
			data.cached_rq = &plug->cached_rq;
		}
2441
		rq = __blk_mq_alloc_requests(&data);
2442 2443 2444 2445 2446 2447
		if (unlikely(!rq)) {
			rq_qos_cleanup(q, bio);
			if (bio->bi_opf & REQ_NOWAIT)
				bio_wouldblock_error(bio);
			goto queue_exit;
		}
J
Jens Axboe 已提交
2448 2449
	}

2450
	trace_block_getrq(bio);
2451

2452
	rq_qos_track(q, rq, bio);
2453

2454 2455
	blk_mq_bio_to_request(rq, bio, nr_segs);

2456 2457 2458 2459 2460
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
2461
		return;
2462 2463
	}

2464
	if (unlikely(is_flush_fua)) {
2465
		struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2466
		/* Bypass scheduler for flush requests */
2467
		blk_insert_flush(rq);
2468
		blk_mq_run_hw_queue(hctx, true);
2469
	} else if (plug && (q->nr_hw_queues == 1 ||
2470
		   blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2471
		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2472 2473 2474
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
M
Ming Lei 已提交
2475 2476 2477
		 *
		 * Use normal plugging if this disk is slow HDD, as sequential
		 * IO may benefit a lot from plug merging.
2478
		 */
2479
		unsigned int request_count = plug->rq_count;
2480 2481
		struct request *last = NULL;

M
Ming Lei 已提交
2482
		if (!request_count)
2483
			trace_block_plug(q);
2484 2485
		else
			last = list_entry_rq(plug->mq_list.prev);
2486

2487
		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2488
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2489 2490
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
2491
		}
2492

2493
		blk_add_rq_to_plug(plug, rq);
2494
	} else if (rq->rq_flags & RQF_ELV) {
2495
		/* Insert the request at the IO scheduler queue */
2496
		blk_mq_sched_insert_request(rq, false, true, true);
2497
	} else if (plug && !blk_queue_nomerges(q)) {
2498 2499
		struct request *next_rq = NULL;

2500
		/*
2501
		 * We do limited plugging. If the bio can be merged, do that.
2502 2503
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
2504 2505
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
2506
		 */
2507
		if (same_queue_rq) {
2508 2509 2510 2511
			next_rq = list_last_entry(&plug->mq_list,
							struct request,
							queuelist);
			list_del_init(&next_rq->queuelist);
2512 2513
			plug->rq_count--;
		}
2514
		blk_add_rq_to_plug(plug, rq);
2515
		trace_block_plug(q);
2516

2517
		if (next_rq) {
2518
			trace_block_unplug(q, 1, true);
2519
			blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq);
2520
		}
2521
	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2522
		   !rq->mq_hctx->dispatch_busy) {
2523 2524 2525 2526
		/*
		 * There is no scheduler and we can try to send directly
		 * to the hardware.
		 */
2527
		blk_mq_try_issue_directly(rq->mq_hctx, rq);
2528
	} else {
2529
		/* Default case. */
2530
		blk_mq_sched_insert_request(rq, false, true, true);
2531
	}
2532

2533
	return;
2534 2535
queue_exit:
	blk_queue_exit(q);
2536 2537
}

2538 2539 2540 2541 2542 2543
static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

/* called before freeing request pool in @tags */
2544 2545
static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
				    struct blk_mq_tags *tags)
2546 2547 2548 2549
{
	struct page *page;
	unsigned long flags;

2550 2551 2552 2553
	/* There is no need to clear a driver tags own mapping */
	if (drv_tags == tags)
		return;

2554 2555 2556 2557 2558
	list_for_each_entry(page, &tags->page_list, lru) {
		unsigned long start = (unsigned long)page_address(page);
		unsigned long end = start + order_to_size(page->private);
		int i;

2559
		for (i = 0; i < drv_tags->nr_tags; i++) {
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
			struct request *rq = drv_tags->rqs[i];
			unsigned long rq_addr = (unsigned long)rq;

			if (rq_addr >= start && rq_addr < end) {
				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
				cmpxchg(&drv_tags->rqs[i], rq, NULL);
			}
		}
	}

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&drv_tags->lock, flags);
	spin_unlock_irqrestore(&drv_tags->lock, flags);
}

2580 2581
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2582
{
2583
	struct blk_mq_tags *drv_tags;
2584
	struct page *page;
2585

2586 2587
	if (blk_mq_is_shared_tags(set->flags))
		drv_tags = set->shared_tags;
2588 2589
	else
		drv_tags = set->tags[hctx_idx];
2590

2591
	if (tags->static_rqs && set->ops->exit_request) {
2592
		int i;
2593

2594
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2595 2596 2597
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2598
				continue;
2599
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2600
			tags->static_rqs[i] = NULL;
2601
		}
2602 2603
	}

2604
	blk_mq_clear_rq_mapping(drv_tags, tags);
2605

2606 2607
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2608
		list_del_init(&page->lru);
2609 2610
		/*
		 * Remove kmemleak object previously allocated in
2611
		 * blk_mq_alloc_rqs().
2612 2613
		 */
		kmemleak_free(page_address(page));
2614 2615
		__free_pages(page, page->private);
	}
2616
}
2617

2618
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2619
{
2620
	kfree(tags->rqs);
2621
	tags->rqs = NULL;
J
Jens Axboe 已提交
2622 2623
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2624

2625
	blk_mq_free_tags(tags);
2626 2627
}

2628 2629 2630
static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					       unsigned int hctx_idx,
					       unsigned int nr_tags,
2631
					       unsigned int reserved_tags)
2632
{
2633
	struct blk_mq_tags *tags;
2634
	int node;
2635

2636
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2637 2638 2639
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

2640 2641
	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2642 2643
	if (!tags)
		return NULL;
2644

2645
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2646
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2647
				 node);
2648
	if (!tags->rqs) {
2649
		blk_mq_free_tags(tags);
2650 2651
		return NULL;
	}
2652

2653 2654 2655
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2656 2657
	if (!tags->static_rqs) {
		kfree(tags->rqs);
2658
		blk_mq_free_tags(tags);
J
Jens Axboe 已提交
2659 2660 2661
		return NULL;
	}

2662 2663 2664
	return tags;
}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2676
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2677 2678 2679
	return 0;
}

2680 2681 2682
static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
			    struct blk_mq_tags *tags,
			    unsigned int hctx_idx, unsigned int depth)
2683 2684 2685
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2686 2687
	int node;

2688
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2689 2690
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2691 2692 2693

	INIT_LIST_HEAD(&tags->page_list);

2694 2695 2696 2697
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2698
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2699
				cache_line_size());
2700
	left = rq_size * depth;
2701

2702
	for (i = 0; i < depth; ) {
2703 2704 2705 2706 2707
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2708
		while (this_order && left < order_to_size(this_order - 1))
2709 2710 2711
			this_order--;

		do {
2712
			page = alloc_pages_node(node,
2713
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2714
				this_order);
2715 2716 2717 2718 2719 2720 2721 2722 2723
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2724
			goto fail;
2725 2726

		page->private = this_order;
2727
		list_add_tail(&page->lru, &tags->page_list);
2728 2729

		p = page_address(page);
2730 2731 2732 2733
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2734
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2735
		entries_per_page = order_to_size(this_order) / rq_size;
2736
		to_do = min(entries_per_page, depth - i);
2737 2738
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2739 2740 2741
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2742 2743 2744
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2745 2746
			}

2747 2748 2749 2750
			p += rq_size;
			i++;
		}
	}
2751
	return 0;
2752

2753
fail:
2754 2755
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2756 2757
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
struct rq_iter_data {
	struct blk_mq_hw_ctx *hctx;
	bool has_rq;
};

static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
{
	struct rq_iter_data *iter_data = data;

	if (rq->mq_hctx != iter_data->hctx)
		return true;
	iter_data->has_rq = true;
	return false;
}

static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->sched_tags ?
			hctx->sched_tags : hctx->tags;
	struct rq_iter_data data = {
		.hctx	= hctx,
	};

	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
	return data.has_rq;
}

static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
		struct blk_mq_hw_ctx *hctx)
{
	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
		return false;
	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
		return false;
	return true;
}

static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
		return 0;

	/*
	 * Prevent new request from being allocated on the current hctx.
	 *
	 * The smp_mb__after_atomic() Pairs with the implied barrier in
	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
	 * seen once we return from the tag allocator.
	 */
	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	smp_mb__after_atomic();

	/*
	 * Try to grab a reference to the queue and wait for any outstanding
	 * requests.  If we could not grab a reference the queue has been
	 * frozen and there are no requests.
	 */
	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
		while (blk_mq_hctx_has_requests(hctx))
			msleep(5);
		percpu_ref_put(&hctx->queue->q_usage_counter);
	}

	return 0;
}

static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (cpumask_test_cpu(cpu, hctx->cpumask))
		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	return 0;
}

J
Jens Axboe 已提交
2838 2839 2840 2841 2842
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2843
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2844
{
2845
	struct blk_mq_hw_ctx *hctx;
2846 2847
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
2848
	enum hctx_type type;
2849

2850
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2851 2852 2853
	if (!cpumask_test_cpu(cpu, hctx->cpumask))
		return 0;

J
Jens Axboe 已提交
2854
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
2855
	type = hctx->type;
2856 2857

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2858 2859
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
2860 2861 2862 2863 2864
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2865
		return 0;
2866

J
Jens Axboe 已提交
2867 2868 2869
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2870 2871

	blk_mq_run_hw_queue(hctx, true);
2872
	return 0;
2873 2874
}

2875
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2876
{
2877 2878 2879
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
						    &hctx->cpuhp_online);
2880 2881
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2882 2883
}

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
/*
 * Before freeing hw queue, clearing the flush request reference in
 * tags->rqs[] for avoiding potential UAF.
 */
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
		unsigned int queue_depth, struct request *flush_rq)
{
	int i;
	unsigned long flags;

	/* The hw queue may not be mapped yet */
	if (!tags)
		return;

	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);

	for (i = 0; i < queue_depth; i++)
		cmpxchg(&tags->rqs[i], flush_rq, NULL);

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&tags->lock, flags);
	spin_unlock_irqrestore(&tags->lock, flags);
}

2913
/* hctx->ctxs will be freed in queue's release handler */
2914 2915 2916 2917
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2918 2919
	struct request *flush_rq = hctx->fq->flush_rq;

2920 2921
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2922

2923 2924
	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
			set->queue_depth, flush_rq);
2925
	if (set->ops->exit_request)
2926
		set->ops->exit_request(set, flush_rq, hctx_idx);
2927

2928 2929 2930
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2931
	blk_mq_remove_cpuhp(hctx);
2932 2933 2934 2935

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
2936 2937
}

M
Ming Lei 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2947
		blk_mq_debugfs_unregister_hctx(hctx);
2948
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2949 2950 2951
	}
}

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2966 2967 2968
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2969
{
2970 2971
	hctx->queue_num = hctx_idx;

2972 2973 2974
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
				&hctx->cpuhp_online);
2975 2976 2977 2978 2979 2980 2981
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
2982

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
3011
	if (node == NUMA_NO_NODE)
3012 3013
		node = set->numa_node;
	hctx->numa_node = node;
3014

3015
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3016 3017 3018
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
3019
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3020

3021 3022
	INIT_LIST_HEAD(&hctx->hctx_list);

3023
	/*
3024 3025
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
3026
	 */
3027
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3028
			gfp, node);
3029
	if (!hctx->ctxs)
3030
		goto free_cpumask;
3031

3032
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3033
				gfp, node, false, false))
3034 3035
		goto free_ctxs;
	hctx->nr_ctx = 0;
3036

3037
	spin_lock_init(&hctx->dispatch_wait_lock);
3038 3039 3040
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

3041
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3042
	if (!hctx->fq)
3043
		goto free_bitmap;
3044

3045
	if (hctx->flags & BLK_MQ_F_BLOCKING)
3046
		init_srcu_struct(hctx->srcu);
3047
	blk_mq_hctx_kobj_init(hctx);
3048

3049
	return hctx;
3050

3051
 free_bitmap:
3052
	sbitmap_free(&hctx->ctx_map);
3053 3054
 free_ctxs:
	kfree(hctx->ctxs);
3055 3056 3057 3058 3059 3060
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
3061
}
3062 3063 3064 3065

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
3066 3067
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
3068 3069 3070 3071

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
3072
		int k;
3073 3074 3075

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
3076 3077 3078
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

3079 3080 3081 3082 3083 3084
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
3085 3086 3087
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3088
				hctx->numa_node = cpu_to_node(i);
J
Jens Axboe 已提交
3089
		}
3090 3091 3092
	}
}

3093 3094 3095
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
					     unsigned int hctx_idx,
					     unsigned int depth)
3096
{
3097 3098
	struct blk_mq_tags *tags;
	int ret;
3099

3100
	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3101 3102
	if (!tags)
		return NULL;
3103

3104 3105
	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
	if (ret) {
3106
		blk_mq_free_rq_map(tags);
3107 3108
		return NULL;
	}
3109

3110 3111 3112 3113 3114 3115
	return tags;
}

static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
				       int hctx_idx)
{
3116 3117
	if (blk_mq_is_shared_tags(set->flags)) {
		set->tags[hctx_idx] = set->shared_tags;
3118 3119 3120 3121

		return true;
	}

3122 3123 3124 3125
	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
						       set->queue_depth);

	return set->tags[hctx_idx];
3126 3127
}

3128 3129 3130
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
			     struct blk_mq_tags *tags,
			     unsigned int hctx_idx)
3131
{
3132 3133
	if (tags) {
		blk_mq_free_rqs(set, tags, hctx_idx);
3134
		blk_mq_free_rq_map(tags);
3135
	}
3136 3137
}

3138 3139 3140
static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
				      unsigned int hctx_idx)
{
3141
	if (!blk_mq_is_shared_tags(set->flags))
3142 3143 3144 3145 3146
		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);

	set->tags[hctx_idx] = NULL;
}

3147
static void blk_mq_map_swqueue(struct request_queue *q)
3148
{
J
Jens Axboe 已提交
3149
	unsigned int i, j, hctx_idx;
3150 3151
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
3152
	struct blk_mq_tag_set *set = q->tag_set;
3153 3154

	queue_for_each_hw_ctx(q, hctx, i) {
3155
		cpumask_clear(hctx->cpumask);
3156
		hctx->nr_ctx = 0;
3157
		hctx->dispatch_from = NULL;
3158 3159 3160
	}

	/*
3161
	 * Map software to hardware queues.
3162 3163
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
3164
	 */
3165
	for_each_possible_cpu(i) {
3166

3167
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
3168
		for (j = 0; j < set->nr_maps; j++) {
3169 3170 3171
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
3172
				continue;
3173
			}
3174 3175 3176
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
3177
			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3178 3179 3180 3181 3182 3183 3184 3185
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
3186

J
Jens Axboe 已提交
3187
			hctx = blk_mq_map_queue_type(q, j, i);
3188
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
3208 3209 3210 3211

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
3212
	}
3213 3214

	queue_for_each_hw_ctx(q, hctx, i) {
3215 3216 3217 3218 3219 3220 3221 3222 3223
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
3224 3225
			if (i)
				__blk_mq_free_map_and_rqs(set, i);
3226 3227 3228 3229

			hctx->tags = NULL;
			continue;
		}
3230

M
Ming Lei 已提交
3231 3232 3233
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

3234 3235 3236 3237 3238
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
3239
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3240

3241 3242 3243
		/*
		 * Initialize batch roundrobin counts
		 */
3244
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3245 3246
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
3247 3248
}

3249 3250 3251 3252
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
3253
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3254 3255 3256 3257
{
	struct blk_mq_hw_ctx *hctx;
	int i;

3258
	queue_for_each_hw_ctx(q, hctx, i) {
3259
		if (shared) {
3260
			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3261 3262
		} else {
			blk_mq_tag_idle(hctx);
3263
			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3264
		}
3265 3266 3267
	}
}

3268 3269
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
					 bool shared)
3270 3271
{
	struct request_queue *q;
3272

3273 3274
	lockdep_assert_held(&set->tag_list_lock);

3275 3276
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
3277
		queue_set_hctx_shared(q, shared);
3278 3279 3280 3281 3282 3283 3284 3285 3286
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
3287
	list_del(&q->tag_set_list);
3288 3289
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
3290
		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3291
		/* update existing queue */
3292
		blk_mq_update_tag_set_shared(set, false);
3293
	}
3294
	mutex_unlock(&set->tag_list_lock);
3295
	INIT_LIST_HEAD(&q->tag_set_list);
3296 3297 3298 3299 3300 3301
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
3302

3303 3304 3305 3306
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
3307 3308
	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3309
		/* update existing queue */
3310
		blk_mq_update_tag_set_shared(set, true);
3311
	}
3312
	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3313
		queue_set_hctx_shared(q, true);
3314
	list_add_tail(&q->tag_set_list, &set->tag_list);
3315

3316 3317 3318
	mutex_unlock(&set->tag_list_lock);
}

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

3347 3348 3349 3350 3351 3352 3353 3354
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
3355 3356
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
3357

3358 3359 3360 3361 3362 3363
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
3364
		kobject_put(&hctx->kobj);
3365
	}
3366 3367 3368

	kfree(q->queue_hw_ctx);

3369 3370 3371 3372 3373
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
3374 3375
}

3376
static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3377
		void *queuedata)
3378
{
3379 3380
	struct request_queue *q;
	int ret;
3381

3382 3383
	q = blk_alloc_queue(set->numa_node);
	if (!q)
3384
		return ERR_PTR(-ENOMEM);
3385 3386 3387 3388 3389 3390
	q->queuedata = queuedata;
	ret = blk_mq_init_allocated_queue(set, q);
	if (ret) {
		blk_cleanup_queue(q);
		return ERR_PTR(ret);
	}
3391 3392
	return q;
}
3393 3394 3395 3396 3397

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
3398 3399
EXPORT_SYMBOL(blk_mq_init_queue);

3400 3401
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
		struct lock_class_key *lkclass)
3402 3403
{
	struct request_queue *q;
3404
	struct gendisk *disk;
3405

3406 3407 3408
	q = blk_mq_init_queue_data(set, queuedata);
	if (IS_ERR(q))
		return ERR_CAST(q);
3409

3410
	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3411 3412 3413
	if (!disk) {
		blk_cleanup_queue(q);
		return ERR_PTR(-ENOMEM);
3414
	}
3415
	return disk;
3416
}
3417
EXPORT_SYMBOL(__blk_mq_alloc_disk);
3418

3419 3420 3421 3422
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
3423
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
3439
	if (!hctx)
3440
		goto fail;
3441

3442 3443
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
3444 3445

	return hctx;
3446 3447 3448 3449 3450

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
3451 3452
}

K
Keith Busch 已提交
3453 3454
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
3455
{
3456
	int i, j, end;
K
Keith Busch 已提交
3457
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

3475 3476
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
3477
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
3478
		int node;
3479
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
3480

3481
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3482 3483 3484 3485 3486 3487 3488
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
3489

3490 3491
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
3492
			if (hctxs[i])
3493 3494 3495 3496 3497 3498 3499 3500 3501
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
3502
		}
3503
	}
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
3516

3517
	for (; j < end; j++) {
K
Keith Busch 已提交
3518 3519 3520
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
3521
			__blk_mq_free_map_and_rqs(set, j);
K
Keith Busch 已提交
3522 3523 3524 3525
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
3526
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
3527 3528
}

3529 3530
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
		struct request_queue *q)
K
Keith Busch 已提交
3531
{
M
Ming Lei 已提交
3532 3533 3534
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

3535
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3536 3537
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
3538 3539 3540
	if (!q->poll_cb)
		goto err_exit;

3541
	if (blk_mq_alloc_ctxs(q))
3542
		goto err_poll;
K
Keith Busch 已提交
3543

3544 3545 3546
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

3547 3548 3549
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
3550 3551 3552
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
3553

3554
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3555
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3556

J
Jens Axboe 已提交
3557
	q->tag_set = set;
3558

3559
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3560 3561
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
3562
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3563

3564
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3565 3566 3567
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

3568 3569
	q->nr_requests = set->queue_depth;

3570 3571 3572
	/*
	 * Default to classic polling
	 */
3573
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3574

3575
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3576
	blk_mq_add_queue_tag_set(set, q);
3577
	blk_mq_map_swqueue(q);
3578
	return 0;
3579

3580
err_hctxs:
K
Keith Busch 已提交
3581
	kfree(q->queue_hw_ctx);
3582
	q->nr_hw_queues = 0;
3583
	blk_mq_sysfs_deinit(q);
3584 3585 3586
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
3587 3588
err_exit:
	q->mq_ops = NULL;
3589
	return -ENOMEM;
3590
}
3591
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3592

3593 3594
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
3595
{
3596
	struct blk_mq_tag_set *set = q->tag_set;
3597

3598
	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
M
Ming Lei 已提交
3599
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3600 3601
	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
	blk_mq_del_queue_tag_set(q);
3602 3603
}

3604 3605 3606 3607
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

3608 3609
	if (blk_mq_is_shared_tags(set->flags)) {
		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3610 3611
						BLK_MQ_NO_HCTX_IDX,
						set->queue_depth);
3612
		if (!set->shared_tags)
3613 3614 3615
			return -ENOMEM;
	}

3616
	for (i = 0; i < set->nr_hw_queues; i++) {
3617
		if (!__blk_mq_alloc_map_and_rqs(set, i))
3618
			goto out_unwind;
3619 3620
		cond_resched();
	}
3621 3622 3623 3624

	return 0;

out_unwind:
3625 3626 3627
	while (--i >= 0)
		__blk_mq_free_map_and_rqs(set, i);

3628 3629
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
3630
					BLK_MQ_NO_HCTX_IDX);
3631
	}
3632 3633 3634 3635 3636 3637 3638 3639 3640

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
3641
static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

3671 3672
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
3673 3674 3675 3676 3677 3678 3679 3680
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

3681
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
3682 3683
		int i;

3684 3685 3686 3687 3688 3689 3690
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
3691
		 * 		set->map[x].mq_map[cpu] = queue;
3692 3693 3694 3695 3696 3697
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
3698 3699
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
3700

3701
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
3702 3703
	} else {
		BUG_ON(set->nr_maps > 1);
3704
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
3705
	}
3706 3707
}

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

3731 3732 3733 3734 3735 3736
static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
				int new_nr_hw_queues)
{
	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
}

3737 3738 3739
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
3740
 * requested depth down, if it's too large. In that case, the set
3741 3742
 * value will be stored in set->queue_depth.
 */
3743 3744
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3745
	int i, ret;
3746

B
Bart Van Assche 已提交
3747 3748
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

3749 3750
	if (!set->nr_hw_queues)
		return -EINVAL;
3751
	if (!set->queue_depth)
3752 3753 3754 3755
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
3756
	if (!set->ops->queue_rq)
3757 3758
		return -EINVAL;

3759 3760 3761
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

3762 3763 3764 3765 3766
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
3767

J
Jens Axboe 已提交
3768 3769 3770 3771 3772
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

3773 3774 3775 3776 3777 3778 3779
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
3780
		set->nr_maps = 1;
3781 3782
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
3783
	/*
3784 3785
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
3786
	 */
3787
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3788
		set->nr_hw_queues = nr_cpu_ids;
3789

3790
	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3791
		return -ENOMEM;
3792

3793
	ret = -ENOMEM;
J
Jens Axboe 已提交
3794 3795
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3796
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
3797 3798 3799
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
3800
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
3801
	}
3802

3803
	ret = blk_mq_update_queue_map(set);
3804 3805 3806
	if (ret)
		goto out_free_mq_map;

3807
	ret = blk_mq_alloc_set_map_and_rqs(set);
3808
	if (ret)
3809
		goto out_free_mq_map;
3810

3811 3812 3813
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

3814
	return 0;
3815 3816

out_free_mq_map:
J
Jens Axboe 已提交
3817 3818 3819 3820
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
3821 3822
	kfree(set->tags);
	set->tags = NULL;
3823
	return ret;
3824 3825 3826
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
/* allocate and initialize a tagset for a simple single-queue device */
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
		const struct blk_mq_ops *ops, unsigned int queue_depth,
		unsigned int set_flags)
{
	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
	set->nr_maps = 1;
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;
	return blk_mq_alloc_tag_set(set);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);

3843 3844
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3845
	int i, j;
3846

3847 3848
	for (i = 0; i < set->nr_hw_queues; i++)
		__blk_mq_free_map_and_rqs(set, i);
3849

3850 3851
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
3852 3853
					BLK_MQ_NO_HCTX_IDX);
	}
3854

J
Jens Axboe 已提交
3855 3856 3857 3858
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
3859

M
Ming Lei 已提交
3860
	kfree(set->tags);
3861
	set->tags = NULL;
3862 3863 3864
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3865 3866 3867 3868 3869 3870
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3871
	if (!set)
3872 3873
		return -EINVAL;

3874 3875 3876
	if (q->nr_requests == nr)
		return 0;

3877
	blk_mq_freeze_queue(q);
3878
	blk_mq_quiesce_queue(q);
3879

3880 3881
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3882 3883
		if (!hctx->tags)
			continue;
3884 3885 3886 3887
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3888
		if (hctx->sched_tags) {
3889
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3890 3891 3892 3893
						      nr, true);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
						      false);
3894
		}
3895 3896
		if (ret)
			break;
3897 3898
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
3899
	}
3900
	if (!ret) {
3901
		q->nr_requests = nr;
3902
		if (blk_mq_is_shared_tags(set->flags)) {
3903
			if (q->elevator)
3904
				blk_mq_tag_update_sched_shared_tags(q);
3905
			else
3906
				blk_mq_tag_resize_shared_tags(set, nr);
3907
		}
3908
	}
3909

3910
	blk_mq_unquiesce_queue(q);
3911 3912
	blk_mq_unfreeze_queue(q);

3913 3914 3915
	return ret;
}

3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3986 3987
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3988 3989
{
	struct request_queue *q;
3990
	LIST_HEAD(head);
3991
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3992

3993 3994
	lockdep_assert_held(&set->tag_list_lock);

3995
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3996
		nr_hw_queues = nr_cpu_ids;
3997 3998 3999
	if (nr_hw_queues < 1)
		return;
	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
K
Keith Busch 已提交
4000 4001 4002 4003
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
4004 4005 4006 4007 4008 4009 4010 4011
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
4012

4013 4014 4015 4016 4017
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

4018
	prev_nr_hw_queues = set->nr_hw_queues;
4019 4020 4021 4022
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
4023
	set->nr_hw_queues = nr_hw_queues;
4024
fallback:
4025
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
4026 4027
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
4028 4029 4030 4031
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
4032
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4033 4034
			goto fallback;
		}
4035 4036 4037
		blk_mq_map_swqueue(q);
	}

4038
reregister:
4039 4040 4041
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
4042 4043
	}

4044 4045 4046 4047
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
4048 4049 4050
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
4051 4052 4053 4054 4055 4056 4057

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
4058 4059
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

4060 4061 4062 4063
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4064
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
4086
	int bucket;
4087

4088 4089 4090 4091
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
4092 4093
}

4094 4095 4096 4097
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
4098
	int bucket;
4099 4100 4101 4102 4103

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
4104
	if (!blk_poll_stats_enable(q))
4105 4106 4107 4108 4109 4110 4111 4112
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
4113 4114
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
4115
	 */
4116 4117 4118 4119 4120 4121
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
4122 4123 4124 4125

	return ret;
}

4126
static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4127
{
4128 4129
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
	struct request *rq = blk_qc_to_rq(hctx, qc);
4130 4131
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
4132
	unsigned int nsecs;
4133 4134
	ktime_t kt;

4135 4136 4137 4138 4139
	/*
	 * If a request has completed on queue that uses an I/O scheduler, we
	 * won't get back a request from blk_qc_to_rq.
	 */
	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4140 4141 4142
		return false;

	/*
4143
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4144 4145 4146 4147
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
4148
	if (q->poll_nsec > 0)
4149 4150
		nsecs = q->poll_nsec;
	else
4151
		nsecs = blk_mq_poll_nsecs(q, rq);
4152 4153

	if (!nsecs)
4154 4155
		return false;

J
Jens Axboe 已提交
4156
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4157 4158 4159 4160 4161

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
4162
	kt = nsecs;
4163 4164

	mode = HRTIMER_MODE_REL;
4165
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4166 4167 4168
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
4169
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4170 4171
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
4172
		hrtimer_sleeper_start_expires(&hs, mode);
4173 4174 4175 4176 4177 4178 4179 4180
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
4181 4182 4183 4184 4185 4186 4187 4188

	/*
	 * If we sleep, have the caller restart the poll loop to reset the
	 * state.  Like for the other success return cases, the caller is
	 * responsible for checking if the IO completed.  If the IO isn't
	 * complete, we'll get called again and will go straight to the busy
	 * poll loop.
	 */
4189 4190 4191
	return true;
}

4192
static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4193
			       struct io_comp_batch *iob, unsigned int flags)
J
Jens Axboe 已提交
4194
{
4195 4196 4197
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
	long state = get_current_state();
	int ret;
4198

4199
	do {
4200
		ret = q->mq_ops->poll(hctx, iob);
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
		if (ret > 0) {
			__set_current_state(TASK_RUNNING);
			return ret;
		}

		if (signal_pending_state(state, current))
			__set_current_state(TASK_RUNNING);
		if (task_is_running(current))
			return 1;

4211
		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4212 4213 4214 4215 4216 4217
			break;
		cpu_relax();
	} while (!need_resched());

	__set_current_state(TASK_RUNNING);
	return 0;
4218 4219
}

4220 4221
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
		unsigned int flags)
4222
{
4223 4224
	if (!(flags & BLK_POLL_NOSLEEP) &&
	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4225
		if (blk_mq_poll_hybrid(q, cookie))
4226
			return 1;
4227
	}
4228
	return blk_mq_poll_classic(q, cookie, iob, flags);
J
Jens Axboe 已提交
4229 4230
}

J
Jens Axboe 已提交
4231 4232 4233 4234 4235 4236
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

4237 4238
static int __init blk_mq_init(void)
{
4239 4240 4241
	int i;

	for_each_possible_cpu(i)
4242
		init_llist_head(&per_cpu(blk_cpu_done, i));
4243 4244 4245 4246 4247
	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);

	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
				  "block/softirq:dead", NULL,
				  blk_softirq_cpu_dead);
4248 4249
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
4250 4251 4252
	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
				blk_mq_hctx_notify_online,
				blk_mq_hctx_notify_offline);
4253 4254 4255
	return 0;
}
subsys_initcall(blk_mq_init);