blk-mq.c 105.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/blk-integrity.h>
14
#include <linux/kmemleak.h>
15 16 17 18 19
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
20
#include <linux/interrupt.h>
21 22 23 24 25
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
26
#include <linux/sched/topology.h>
27
#include <linux/sched/signal.h>
28
#include <linux/delay.h>
29
#include <linux/crash_dump.h>
30
#include <linux/prefetch.h>
31
#include <linux/blk-crypto.h>
32 33 34 35

#include <trace/events/block.h>

#include <linux/blk-mq.h>
36
#include <linux/t10-pi.h>
37 38
#include "blk.h"
#include "blk-mq.h"
39
#include "blk-mq-debugfs.h"
40
#include "blk-mq-tag.h"
41
#include "blk-pm.h"
42
#include "blk-stat.h"
43
#include "blk-mq-sched.h"
44
#include "blk-rq-qos.h"
45

46
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47

48 49 50
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

51 52
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
53
	int ddir, sectors, bucket;
54

J
Jens Axboe 已提交
55
	ddir = rq_data_dir(rq);
56
	sectors = blk_rq_stats_sectors(rq);
57

58
	bucket = ddir + 2 * ilog2(sectors);
59 60 61 62 63 64 65 66 67

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

68 69 70
#define BLK_QC_T_SHIFT		16
#define BLK_QC_T_INTERNAL	(1U << 31)

71 72 73 74 75 76
static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
		blk_qc_t qc)
{
	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
}

77 78 79
static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
		blk_qc_t qc)
{
80 81 82 83 84
	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);

	if (qc & BLK_QC_T_INTERNAL)
		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
	return blk_mq_tag_to_rq(hctx->tags, tag);
85 86
}

87 88 89 90 91 92 93
static inline blk_qc_t blk_rq_to_qc(struct request *rq)
{
	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
		(rq->tag != -1 ?
		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
}

94
/*
95 96
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
97
 */
98
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99
{
100 101
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
102
			blk_mq_sched_has_work(hctx);
103 104
}

105 106 107 108 109 110
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
111 112 113 114
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
115 116 117 118 119
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
120 121 122
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
123 124
}

125
struct mq_inflight {
126
	struct block_device *part;
127
	unsigned int inflight[2];
128 129
};

130
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
131 132 133 134 135
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

136 137
	if ((!mi->part->bd_partno || rq->part == mi->part) &&
	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138
		mi->inflight[rq_data_dir(rq)]++;
139 140

	return true;
141 142
}

143 144
unsigned int blk_mq_in_flight(struct request_queue *q,
		struct block_device *part)
145
{
146
	struct mq_inflight mi = { .part = part };
147 148

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149

150
	return mi.inflight[0] + mi.inflight[1];
151 152
}

153 154
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
		unsigned int inflight[2])
155
{
156
	struct mq_inflight mi = { .part = part };
157

158
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159 160
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
161 162
}

163
void blk_freeze_queue_start(struct request_queue *q)
164
{
165 166
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
167
		percpu_ref_kill(&q->q_usage_counter);
168
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
169
		if (queue_is_mq(q))
170
			blk_mq_run_hw_queues(q, false);
171 172
	} else {
		mutex_unlock(&q->mq_freeze_lock);
173
	}
174
}
175
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176

177
void blk_mq_freeze_queue_wait(struct request_queue *q)
178
{
179
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180
}
181
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182

183 184 185 186 187 188 189 190
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191

192 193 194 195
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
196
void blk_freeze_queue(struct request_queue *q)
197
{
198 199 200 201 202 203 204
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
205
	blk_freeze_queue_start(q);
206 207
	blk_mq_freeze_queue_wait(q);
}
208 209 210 211 212 213 214 215 216

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
217
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218

219
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220
{
221
	mutex_lock(&q->mq_freeze_lock);
222 223
	if (force_atomic)
		q->q_usage_counter.data->force_atomic = true;
224 225 226
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
227
		percpu_ref_resurrect(&q->q_usage_counter);
228
		wake_up_all(&q->mq_freeze_wq);
229
	}
230
	mutex_unlock(&q->mq_freeze_lock);
231
}
232 233 234 235 236

void blk_mq_unfreeze_queue(struct request_queue *q)
{
	__blk_mq_unfreeze_queue(q, false);
}
237
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238

239 240 241 242 243 244
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
245
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
246 247 248
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

249
/**
250
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
251 252 253
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
254 255 256
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
257 258 259 260 261 262 263
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

264
	blk_mq_quiesce_queue_nowait(q);
265

266 267
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
268
			synchronize_srcu(hctx->srcu);
269 270 271 272 273 274 275 276
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

277 278 279 280 281 282 283 284 285
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
286
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
287

288 289
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
290 291 292
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

293 294 295 296 297 298 299 300 301 302
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

303
/*
304 305
 * Only need start/end time stamping if we have iostat or
 * blk stats enabled, or using an IO scheduler.
306 307 308
 */
static inline bool blk_mq_need_time_stamp(struct request *rq)
{
309
	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_ELV));
310 311
}

312
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
313
		unsigned int tag, u64 alloc_time_ns)
314
{
315 316 317 318
	struct blk_mq_ctx *ctx = data->ctx;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	struct request_queue *q = data->q;
	struct elevator_queue *e = q->elevator;
319 320
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
321

322
	if (e) {
323
		rq->rq_flags = RQF_ELV;
324
		rq->tag = BLK_MQ_NO_TAG;
325 326
		rq->internal_tag = tag;
	} else {
327
		rq->rq_flags = 0;
328
		rq->tag = tag;
329
		rq->internal_tag = BLK_MQ_NO_TAG;
330 331
	}

332 333 334 335
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
336
	/* csd/requeue_work/fifo_time is initialized before use */
337 338 339
	rq->q = q;
	rq->mq_ctx = ctx;
	rq->mq_hctx = hctx;
340
	rq->cmd_flags = data->cmd_flags;
341 342
	if (data->flags & BLK_MQ_REQ_PM)
		rq->rq_flags |= RQF_PM;
343
	if (blk_queue_io_stat(q))
344
		rq->rq_flags |= RQF_IO_STAT;
345 346
	rq->rq_disk = NULL;
	rq->part = NULL;
347 348 349
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
350
	rq->io_start_time_ns = 0;
351
	rq->stats_sectors = 0;
352 353 354 355
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
356
	rq->timeout = 0;
357 358 359
	rq->end_io = NULL;
	rq->end_io_data = NULL;

360
	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
361 362 363 364
	blk_crypto_rq_set_defaults(rq);
	INIT_LIST_HEAD(&rq->queuelist);
	/* tag was already set */
	WRITE_ONCE(rq->deadline, 0);
K
Keith Busch 已提交
365
	refcount_set(&rq->ref, 1);
366

367
	if (rq->rq_flags & RQF_ELV) {
368 369 370
		struct elevator_queue *e = data->q->elevator;

		rq->elv.icq = NULL;
371 372 373 374 375
		INIT_HLIST_NODE(&rq->hash);
		RB_CLEAR_NODE(&rq->rb_node);

		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.prepare_request) {
376 377 378 379 380 381 382 383 384
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);

			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

	data->hctx->queued++;
385
	return rq;
386 387
}

J
Jens Axboe 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
		u64 alloc_time_ns)
{
	unsigned int tag, tag_offset;
	struct request *rq;
	unsigned long tags;
	int i, nr = 0;

	tags = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
	if (unlikely(!tags))
		return NULL;

	for (i = 0; tags; i++) {
		if (!(tags & (1UL << i)))
			continue;
		tag = tag_offset + i;
		tags &= ~(1UL << i);
		rq = blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
		rq->rq_next = *data->cached_rq;
		*data->cached_rq = rq;
	}
	data->nr_tags -= nr;

	if (!data->cached_rq)
		return NULL;

	rq = *data->cached_rq;
	*data->cached_rq = rq->rq_next;
	return rq;
}

420
static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
421
{
422
	struct request_queue *q = data->q;
423
	struct elevator_queue *e = q->elevator;
424
	u64 alloc_time_ns = 0;
425
	struct request *rq;
426
	unsigned int tag;
427

428 429 430 431
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

432
	if (data->cmd_flags & REQ_NOWAIT)
433
		data->flags |= BLK_MQ_REQ_NOWAIT;
434 435 436

	if (e) {
		/*
437
		 * Flush/passthrough requests are special and go directly to the
438 439
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
440
		 */
441
		if (!op_is_flush(data->cmd_flags) &&
442
		    !blk_op_is_passthrough(data->cmd_flags) &&
443
		    e->type->ops.limit_depth &&
444
		    !(data->flags & BLK_MQ_REQ_RESERVED))
445
			e->type->ops.limit_depth(data->cmd_flags, data);
446 447
	}

448
retry:
449 450
	data->ctx = blk_mq_get_ctx(q);
	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
451
	if (!e)
452 453
		blk_mq_tag_busy(data->hctx);

J
Jens Axboe 已提交
454 455 456 457 458 459 460 461 462 463
	/*
	 * Try batched alloc if we want more than 1 tag.
	 */
	if (data->nr_tags > 1) {
		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
		if (rq)
			return rq;
		data->nr_tags = 1;
	}

464 465 466 467 468
	/*
	 * Waiting allocations only fail because of an inactive hctx.  In that
	 * case just retry the hctx assignment and tag allocation as CPU hotplug
	 * should have migrated us to an online CPU by now.
	 */
J
Jens Axboe 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_NO_TAG) {
		if (data->flags & BLK_MQ_REQ_NOWAIT)
			return NULL;
		/*
		 * Give up the CPU and sleep for a random short time to
		 * ensure that thread using a realtime scheduling class
		 * are migrated off the CPU, and thus off the hctx that
		 * is going away.
		 */
		msleep(3);
		goto retry;
	}
482

J
Jens Axboe 已提交
483
	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
484 485
}

486
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
487
		blk_mq_req_flags_t flags)
488
{
489 490 491 492
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
493
		.nr_tags	= 1,
494
	};
495
	struct request *rq;
496
	int ret;
497

498
	ret = blk_queue_enter(q, flags);
499 500
	if (ret)
		return ERR_PTR(ret);
501

502
	rq = __blk_mq_alloc_requests(&data);
503
	if (!rq)
504
		goto out_queue_exit;
505 506 507
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
508
	return rq;
509 510 511
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
512
}
513
EXPORT_SYMBOL(blk_mq_alloc_request);
514

515
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
516
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
517
{
518 519 520 521
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
522
		.nr_tags	= 1,
523
	};
524
	u64 alloc_time_ns = 0;
525
	unsigned int cpu;
526
	unsigned int tag;
M
Ming Lin 已提交
527 528
	int ret;

529 530 531 532
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

M
Ming Lin 已提交
533 534 535 536 537 538
	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
539
	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
M
Ming Lin 已提交
540 541 542 543 544
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

545
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
546 547 548
	if (ret)
		return ERR_PTR(ret);

549 550 551 552
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
553
	ret = -EXDEV;
554 555
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
556
		goto out_queue_exit;
557 558
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
559

560
	if (!q->elevator)
561 562
		blk_mq_tag_busy(data.hctx);

563
	ret = -EWOULDBLOCK;
564 565
	tag = blk_mq_get_tag(&data);
	if (tag == BLK_MQ_NO_TAG)
566
		goto out_queue_exit;
567 568
	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);

569 570 571
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
572 573 574
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
575 576 577 578
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
579
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
580 581
	const int sched_tag = rq->internal_tag;

582
	blk_crypto_free_request(rq);
583
	blk_pm_mark_last_busy(rq);
584
	rq->mq_hctx = NULL;
585
	if (rq->tag != BLK_MQ_NO_TAG)
586
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
587
	if (sched_tag != BLK_MQ_NO_TAG)
588
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
589 590 591 592
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

593
void blk_mq_free_request(struct request *rq)
594 595
{
	struct request_queue *q = rq->q;
596
	struct blk_mq_ctx *ctx = rq->mq_ctx;
597
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
598

599 600 601 602
	if (rq->rq_flags & (RQF_ELVPRIV | RQF_ELV)) {
		struct elevator_queue *e = q->elevator;

		if (e->type->ops.finish_request)
603
			e->type->ops.finish_request(rq);
604 605 606 607 608
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
609

610
	ctx->rq_completed[rq_is_sync(rq)]++;
611
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
612
		__blk_mq_dec_active_requests(hctx);
J
Jens Axboe 已提交
613

614
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
615
		laptop_io_completion(q->disk->bdi);
616

617
	rq_qos_done(q, rq);
618

K
Keith Busch 已提交
619 620 621
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
622
}
J
Jens Axboe 已提交
623
EXPORT_SYMBOL_GPL(blk_mq_free_request);
624

625 626 627 628 629 630 631 632 633 634 635 636
void blk_mq_free_plug_rqs(struct blk_plug *plug)
{
	while (plug->cached_rq) {
		struct request *rq;

		rq = plug->cached_rq;
		plug->cached_rq = rq->rq_next;
		percpu_ref_get(&rq->q->q_usage_counter);
		blk_mq_free_request(rq);
	}
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
static void req_bio_endio(struct request *rq, struct bio *bio,
			  unsigned int nbytes, blk_status_t error)
{
	if (error)
		bio->bi_status = error;

	if (unlikely(rq->rq_flags & RQF_QUIET))
		bio_set_flag(bio, BIO_QUIET);

	bio_advance(bio, nbytes);

	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
		/*
		 * Partial zone append completions cannot be supported as the
		 * BIO fragments may end up not being written sequentially.
		 */
		if (bio->bi_iter.bi_size)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_iter.bi_sector = rq->__sector;
	}

	/* don't actually finish bio if it's part of flush sequence */
	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
		bio_endio(bio);
}

static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
	if (req->part && blk_do_io_stat(req)) {
		const int sgrp = op_stat_group(req_op(req));

		part_stat_lock();
		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
		part_stat_unlock();
	}
}

/**
 * blk_update_request - Complete multiple bytes without completing the request
 * @req:      the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete for @req
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 *     the request structure even if @req doesn't have leftover.
 *     If @req has leftover, sets it up for the next range of segments.
 *
 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 *     %false return from this function.
 *
 * Note:
 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 *      except in the consistency check at the end of this function.
 *
 * Return:
 *     %false - this request doesn't have any more data
 *     %true  - this request has more data
 **/
bool blk_update_request(struct request *req, blk_status_t error,
		unsigned int nr_bytes)
{
	int total_bytes;

	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);

	if (!req->bio)
		return false;

#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
	    error == BLK_STS_OK)
		req->q->integrity.profile->complete_fn(req, nr_bytes);
#endif

	if (unlikely(error && !blk_rq_is_passthrough(req) &&
		     !(req->rq_flags & RQF_QUIET)))
		blk_print_req_error(req, error);

	blk_account_io_completion(req, nr_bytes);

	total_bytes = 0;
	while (req->bio) {
		struct bio *bio = req->bio;
		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);

		if (bio_bytes == bio->bi_iter.bi_size)
			req->bio = bio->bi_next;

		/* Completion has already been traced */
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
		req_bio_endio(req, bio, bio_bytes, error);

		total_bytes += bio_bytes;
		nr_bytes -= bio_bytes;

		if (!nr_bytes)
			break;
	}

	/*
	 * completely done
	 */
	if (!req->bio) {
		/*
		 * Reset counters so that the request stacking driver
		 * can find how many bytes remain in the request
		 * later.
		 */
		req->__data_len = 0;
		return false;
	}

	req->__data_len -= total_bytes;

	/* update sector only for requests with clear definition of sector */
	if (!blk_rq_is_passthrough(req))
		req->__sector += total_bytes >> 9;

	/* mixed attributes always follow the first bio */
	if (req->rq_flags & RQF_MIXED_MERGE) {
		req->cmd_flags &= ~REQ_FAILFAST_MASK;
		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
	}

	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
		/*
		 * If total number of sectors is less than the first segment
		 * size, something has gone terribly wrong.
		 */
		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
			blk_dump_rq_flags(req, "request botched");
			req->__data_len = blk_rq_cur_bytes(req);
		}

		/* recalculate the number of segments */
		req->nr_phys_segments = blk_recalc_rq_segments(req);
	}

	return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);

781
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
782
{
783 784
	if (blk_mq_need_time_stamp(rq)) {
		u64 now = ktime_get_ns();
785

786 787 788 789
		if (rq->rq_flags & RQF_STATS) {
			blk_mq_poll_stats_start(rq->q);
			blk_stat_add(rq, now);
		}
790

791 792
		blk_mq_sched_completed_request(rq, now);
		blk_account_io_done(rq, now);
793 794
	}

C
Christoph Hellwig 已提交
795
	if (rq->end_io) {
796
		rq_qos_done(rq->q, rq);
797
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
798
	} else {
799
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
800
	}
801
}
802
EXPORT_SYMBOL(__blk_mq_end_request);
803

804
void blk_mq_end_request(struct request *rq, blk_status_t error)
805 806 807
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
808
	__blk_mq_end_request(rq, error);
809
}
810
EXPORT_SYMBOL(blk_mq_end_request);
811

812
static void blk_complete_reqs(struct llist_head *list)
813
{
814 815
	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
	struct request *rq, *next;
816

817
	llist_for_each_entry_safe(rq, next, entry, ipi_list)
818
		rq->q->mq_ops->complete(rq);
819 820
}

821
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
822
{
823
	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
824 825
}

826 827
static int blk_softirq_cpu_dead(unsigned int cpu)
{
828
	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
829 830 831
	return 0;
}

832
static void __blk_mq_complete_request_remote(void *data)
833
{
834
	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
835 836
}

837 838 839 840 841 842 843
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
	int cpu = raw_smp_processor_id();

	if (!IS_ENABLED(CONFIG_SMP) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
		return false;
844 845 846 847 848 849
	/*
	 * With force threaded interrupts enabled, raising softirq from an SMP
	 * function call will always result in waking the ksoftirqd thread.
	 * This is probably worse than completing the request on a different
	 * cache domain.
	 */
850
	if (force_irqthreads())
851
		return false;
852 853 854 855 856 857 858 859 860 861 862

	/* same CPU or cache domain?  Complete locally */
	if (cpu == rq->mq_ctx->cpu ||
	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
		return false;

	/* don't try to IPI to an offline CPU */
	return cpu_online(rq->mq_ctx->cpu);
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static void blk_mq_complete_send_ipi(struct request *rq)
{
	struct llist_head *list;
	unsigned int cpu;

	cpu = rq->mq_ctx->cpu;
	list = &per_cpu(blk_cpu_done, cpu);
	if (llist_add(&rq->ipi_list, list)) {
		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
		smp_call_function_single_async(cpu, &rq->csd);
	}
}

static void blk_mq_raise_softirq(struct request *rq)
{
	struct llist_head *list;

	preempt_disable();
	list = this_cpu_ptr(&blk_cpu_done);
	if (llist_add(&rq->ipi_list, list))
		raise_softirq(BLOCK_SOFTIRQ);
	preempt_enable();
}

887
bool blk_mq_complete_request_remote(struct request *rq)
888
{
889
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
890

891 892 893 894
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
895
	if (rq->cmd_flags & REQ_POLLED)
896
		return false;
C
Christoph Hellwig 已提交
897

898
	if (blk_mq_complete_need_ipi(rq)) {
899 900
		blk_mq_complete_send_ipi(rq);
		return true;
901
	}
902

903 904 905 906 907
	if (rq->q->nr_hw_queues == 1) {
		blk_mq_raise_softirq(rq);
		return true;
	}
	return false;
908 909 910 911 912 913 914 915 916 917 918 919 920 921
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Complete a request by scheduling the ->complete_rq operation.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (!blk_mq_complete_request_remote(rq))
		rq->q->mq_ops->complete(rq);
922
}
923
EXPORT_SYMBOL(blk_mq_complete_request);
924

925
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
926
	__releases(hctx->srcu)
927 928 929 930
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
931
		srcu_read_unlock(hctx->srcu, srcu_idx);
932 933 934
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
935
	__acquires(hctx->srcu)
936
{
937 938 939
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
940
		rcu_read_lock();
941
	} else
942
		*srcu_idx = srcu_read_lock(hctx->srcu);
943 944
}

945 946 947 948 949 950 951 952
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
953
void blk_mq_start_request(struct request *rq)
954 955 956
{
	struct request_queue *q = rq->q;

957
	trace_block_rq_issue(rq);
958

959
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
960 961 962 963 964 965 966 967
		u64 start_time;
#ifdef CONFIG_BLK_CGROUP
		if (rq->bio)
			start_time = bio_issue_time(&rq->bio->bi_issue);
		else
#endif
			start_time = ktime_get_ns();
		rq->io_start_time_ns = start_time;
968
		rq->stats_sectors = blk_rq_sectors(rq);
969
		rq->rq_flags |= RQF_STATS;
970
		rq_qos_issue(q, rq);
971 972
	}

973
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
974

975
	blk_add_timer(rq);
K
Keith Busch 已提交
976
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
977

978 979 980 981
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
982 983
	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
984
}
985
EXPORT_SYMBOL(blk_mq_start_request);
986

987
static void __blk_mq_requeue_request(struct request *rq)
988 989 990
{
	struct request_queue *q = rq->q;

991 992
	blk_mq_put_driver_tag(rq);

993
	trace_block_rq_requeue(rq);
994
	rq_qos_requeue(q, rq);
995

K
Keith Busch 已提交
996 997
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
998
		rq->rq_flags &= ~RQF_TIMED_OUT;
999
	}
1000 1001
}

1002
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1003 1004 1005
{
	__blk_mq_requeue_request(rq);

1006 1007 1008
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
1009
	BUG_ON(!list_empty(&rq->queuelist));
1010
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1011 1012 1013
}
EXPORT_SYMBOL(blk_mq_requeue_request);

1014 1015 1016
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
1017
		container_of(work, struct request_queue, requeue_work.work);
1018 1019 1020
	LIST_HEAD(rq_list);
	struct request *rq, *next;

1021
	spin_lock_irq(&q->requeue_lock);
1022
	list_splice_init(&q->requeue_list, &rq_list);
1023
	spin_unlock_irq(&q->requeue_lock);
1024 1025

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1026
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1027 1028
			continue;

1029
		rq->rq_flags &= ~RQF_SOFTBARRIER;
1030
		list_del_init(&rq->queuelist);
1031 1032 1033 1034 1035 1036
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
1037
			blk_mq_request_bypass_insert(rq, false, false);
1038 1039
		else
			blk_mq_sched_insert_request(rq, true, false, false);
1040 1041 1042 1043 1044
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
1045
		blk_mq_sched_insert_request(rq, false, false, false);
1046 1047
	}

1048
	blk_mq_run_hw_queues(q, false);
1049 1050
}

1051 1052
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
1053 1054 1055 1056 1057 1058
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
1059
	 * request head insertion from the workqueue.
1060
	 */
1061
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1062 1063 1064

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
1065
		rq->rq_flags |= RQF_SOFTBARRIER;
1066 1067 1068 1069 1070
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
1071 1072 1073

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
1074 1075 1076 1077
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
1078
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1079 1080 1081
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

1082 1083 1084
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
1085 1086
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
1087 1088 1089
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

1090 1091
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
1092 1093
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
1094
		return tags->rqs[tag];
1095
	}
1096 1097

	return NULL;
1098 1099 1100
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

1101 1102
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
1103 1104
{
	/*
1105
	 * If we find a request that isn't idle and the queue matches,
1106
	 * we know the queue is busy. Return false to stop the iteration.
1107
	 */
1108
	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1109 1110 1111 1112 1113 1114 1115 1116 1117
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

1118
bool blk_mq_queue_inflight(struct request_queue *q)
1119 1120 1121
{
	bool busy = false;

1122
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1123 1124
	return busy;
}
1125
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1126

1127
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1128
{
1129
	req->rq_flags |= RQF_TIMED_OUT;
1130 1131 1132 1133 1134 1135 1136
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1137
	}
1138 1139

	blk_add_timer(req);
1140
}
1141

K
Keith Busch 已提交
1142
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1143
{
K
Keith Busch 已提交
1144
	unsigned long deadline;
1145

K
Keith Busch 已提交
1146 1147
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
1148 1149
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
1150

1151
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
1152 1153
	if (time_after_eq(jiffies, deadline))
		return true;
1154

K
Keith Busch 已提交
1155 1156 1157 1158 1159
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
1160 1161
}

1162 1163
void blk_mq_put_rq_ref(struct request *rq)
{
M
Ming Lei 已提交
1164
	if (is_flush_rq(rq))
1165 1166 1167 1168 1169
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
}

1170
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1171 1172
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
1173 1174 1175
	unsigned long *next = priv;

	/*
1176 1177 1178 1179 1180
	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
	 * be reallocated underneath the timeout handler's processing, then
	 * the expire check is reliable. If the request is not expired, then
	 * it was completed and reallocated as a new request after returning
	 * from blk_mq_check_expired().
1181
	 */
K
Keith Busch 已提交
1182
	if (blk_mq_req_expired(rq, next))
1183
		blk_mq_rq_timed_out(rq, reserved);
1184
	return true;
1185 1186
}

1187
static void blk_mq_timeout_work(struct work_struct *work)
1188
{
1189 1190
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
1191
	unsigned long next = 0;
1192
	struct blk_mq_hw_ctx *hctx;
1193
	int i;
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
1204
	 * blk_freeze_queue_start, and the moment the last request is
1205 1206 1207 1208
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
1209 1210
		return;

K
Keith Busch 已提交
1211
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1212

K
Keith Busch 已提交
1213 1214
	if (next != 0) {
		mod_timer(&q->timeout, next);
1215
	} else {
1216 1217 1218 1219 1220 1221
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
1222 1223 1224 1225 1226
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
1227
	}
1228
	blk_queue_exit(q);
1229 1230
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1241
	enum hctx_type type = hctx->type;
1242 1243

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1244
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1245
	sbitmap_clear_bit(sb, bitnr);
1246 1247 1248 1249
	spin_unlock(&ctx->lock);
	return true;
}

1250 1251 1252 1253
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1254
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1255
{
1256 1257 1258 1259
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1260

1261
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1262
}
1263
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1276
	enum hctx_type type = hctx->type;
1277 1278

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1279 1280
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1281
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1282
		if (list_empty(&ctx->rq_lists[type]))
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1293
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1305 1306 1307 1308
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1309

1310
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1311 1312
}

1313 1314
static bool __blk_mq_get_driver_tag(struct request *rq)
{
1315
	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1316 1317 1318
	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
	int tag;

1319 1320
	blk_mq_tag_busy(rq->mq_hctx);

1321
	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1322
		bt = &rq->mq_hctx->tags->breserved_tags;
1323
		tag_offset = 0;
1324 1325 1326
	} else {
		if (!hctx_may_queue(rq->mq_hctx, bt))
			return false;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	}

	tag = __sbitmap_queue_get(bt);
	if (tag == BLK_MQ_NO_TAG)
		return false;

	rq->tag = tag + tag_offset;
	return true;
}

1337
bool blk_mq_get_driver_tag(struct request *rq)
1338
{
1339 1340 1341 1342 1343
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
		return false;

1344
	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1345 1346
			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
		rq->rq_flags |= RQF_MQ_INFLIGHT;
1347
		__blk_mq_inc_active_requests(hctx);
1348 1349 1350
	}
	hctx->tags->rqs[rq->tag] = rq;
	return true;
1351 1352
}

1353 1354
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1355 1356 1357 1358 1359
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1360
	spin_lock(&hctx->dispatch_wait_lock);
1361 1362 1363 1364
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
1365
		sbq = &hctx->tags->bitmap_tags;
1366 1367
		atomic_dec(&sbq->ws_active);
	}
1368 1369
	spin_unlock(&hctx->dispatch_wait_lock);

1370 1371 1372 1373
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1374 1375
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1376 1377
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1378 1379
 * marking us as waiting.
 */
1380
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1381
				 struct request *rq)
1382
{
1383
	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1384
	struct wait_queue_head *wq;
1385 1386
	wait_queue_entry_t *wait;
	bool ret;
1387

1388
	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1389
		blk_mq_sched_mark_restart_hctx(hctx);
1390

1391 1392 1393 1394 1395 1396 1397 1398
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1399
		return blk_mq_get_driver_tag(rq);
1400 1401
	}

1402
	wait = &hctx->dispatch_wait;
1403 1404 1405
	if (!list_empty_careful(&wait->entry))
		return false;

1406
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1407 1408 1409

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1410
	if (!list_empty(&wait->entry)) {
1411 1412
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1413
		return false;
1414 1415
	}

1416
	atomic_inc(&sbq->ws_active);
1417 1418
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1419

1420
	/*
1421 1422 1423
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1424
	 */
1425
	ret = blk_mq_get_driver_tag(rq);
1426
	if (!ret) {
1427 1428
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1429
		return false;
1430
	}
1431 1432 1433 1434 1435 1436

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1437
	atomic_dec(&sbq->ws_active);
1438 1439
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1440 1441

	return true;
1442 1443
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1470 1471
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
enum prep_dispatch {
	PREP_DISPATCH_OK,
	PREP_DISPATCH_NO_TAG,
	PREP_DISPATCH_NO_BUDGET,
};

static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
						  bool need_budget)
{
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1512
	int budget_token = -1;
1513

1514 1515 1516 1517 1518 1519 1520
	if (need_budget) {
		budget_token = blk_mq_get_dispatch_budget(rq->q);
		if (budget_token < 0) {
			blk_mq_put_driver_tag(rq);
			return PREP_DISPATCH_NO_BUDGET;
		}
		blk_mq_set_rq_budget_token(rq, budget_token);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	}

	if (!blk_mq_get_driver_tag(rq)) {
		/*
		 * The initial allocation attempt failed, so we need to
		 * rerun the hardware queue when a tag is freed. The
		 * waitqueue takes care of that. If the queue is run
		 * before we add this entry back on the dispatch list,
		 * we'll re-run it below.
		 */
		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1532 1533 1534 1535 1536
			/*
			 * All budgets not got from this function will be put
			 * together during handling partial dispatch
			 */
			if (need_budget)
1537
				blk_mq_put_dispatch_budget(rq->q, budget_token);
1538 1539 1540 1541 1542 1543 1544
			return PREP_DISPATCH_NO_TAG;
		}
	}

	return PREP_DISPATCH_OK;
}

1545 1546
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
1547
		struct list_head *list)
1548
{
1549
	struct request *rq;
1550

1551 1552
	list_for_each_entry(rq, list, queuelist) {
		int budget_token = blk_mq_get_rq_budget_token(rq);
1553

1554 1555 1556
		if (budget_token >= 0)
			blk_mq_put_dispatch_budget(q, budget_token);
	}
1557 1558
}

1559 1560 1561
/*
 * Returns true if we did some work AND can potentially do more.
 */
1562
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1563
			     unsigned int nr_budgets)
1564
{
1565
	enum prep_dispatch prep;
1566
	struct request_queue *q = hctx->queue;
1567
	struct request *rq, *nxt;
1568
	int errors, queued;
1569
	blk_status_t ret = BLK_STS_OK;
1570
	LIST_HEAD(zone_list);
1571

1572 1573 1574
	if (list_empty(list))
		return false;

1575 1576 1577
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1578
	errors = queued = 0;
1579
	do {
1580
		struct blk_mq_queue_data bd;
1581

1582
		rq = list_first_entry(list, struct request, queuelist);
1583

1584
		WARN_ON_ONCE(hctx != rq->mq_hctx);
1585
		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1586
		if (prep != PREP_DISPATCH_OK)
1587
			break;
1588

1589 1590
		list_del_init(&rq->queuelist);

1591
		bd.rq = rq;
1592 1593 1594 1595 1596 1597 1598 1599 1600

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1601
			bd.last = !blk_mq_get_driver_tag(nxt);
1602
		}
1603

1604 1605 1606 1607 1608 1609
		/*
		 * once the request is queued to lld, no need to cover the
		 * budget any more
		 */
		if (nr_budgets)
			nr_budgets--;
1610
		ret = q->mq_ops->queue_rq(hctx, &bd);
1611 1612 1613
		switch (ret) {
		case BLK_STS_OK:
			queued++;
1614
			break;
1615 1616 1617 1618 1619
		case BLK_STS_RESOURCE:
		case BLK_STS_DEV_RESOURCE:
			blk_mq_handle_dev_resource(rq, list);
			goto out;
		case BLK_STS_ZONE_RESOURCE:
1620 1621 1622 1623 1624 1625
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
1626 1627
			break;
		default:
1628
			errors++;
1629
			blk_mq_end_request(rq, ret);
1630
		}
1631
	} while (!list_empty(list));
1632
out:
1633 1634 1635
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1636
	hctx->dispatched[queued_to_index(queued)]++;
1637

1638 1639 1640 1641 1642
	/* If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
		q->mq_ops->commit_rqs(hctx);
1643 1644 1645 1646
	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1647
	if (!list_empty(list)) {
1648
		bool needs_restart;
1649 1650
		/* For non-shared tags, the RESTART check will suffice */
		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1651
			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1652
		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1653

1654 1655
		if (nr_budgets)
			blk_mq_release_budgets(q, list);
1656

1657
		spin_lock(&hctx->lock);
1658
		list_splice_tail_init(list, &hctx->dispatch);
1659
		spin_unlock(&hctx->lock);
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669
		/*
		 * Order adding requests to hctx->dispatch and checking
		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
		 * in blk_mq_sched_restart(). Avoid restart code path to
		 * miss the new added requests to hctx->dispatch, meantime
		 * SCHED_RESTART is observed here.
		 */
		smp_mb();

1670
		/*
1671 1672 1673
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1674
		 *
1675 1676 1677 1678
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1679
		 *
1680 1681 1682 1683 1684 1685 1686
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1687
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1688
		 *   and dm-rq.
1689 1690 1691
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1692 1693
		 * that could otherwise occur if the queue is idle.  We'll do
		 * similar if we couldn't get budget and SCHED_RESTART is set.
1694
		 */
1695 1696
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1697
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1698
			blk_mq_run_hw_queue(hctx, true);
1699 1700
		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
					   no_budget_avail))
1701
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1702

1703
		blk_mq_update_dispatch_busy(hctx, true);
1704
		return false;
1705 1706
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1707

1708
	return (queued + errors) != 0;
1709 1710
}

1711 1712 1713 1714 1715 1716
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1717 1718 1719 1720
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1721 1722 1723 1724 1725 1726
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1727
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1728

1729 1730 1731
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1732 1733
}

1734 1735 1736 1737 1738 1739 1740 1741 1742
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1743 1744 1745 1746 1747 1748 1749 1750
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1751
	bool tried = false;
1752
	int next_cpu = hctx->next_cpu;
1753

1754 1755
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1756 1757

	if (--hctx->next_cpu_batch <= 0) {
1758
select_cpu:
1759
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1760
				cpu_online_mask);
1761
		if (next_cpu >= nr_cpu_ids)
1762
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1763 1764 1765
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1766 1767 1768 1769
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1770
	if (!cpu_online(next_cpu)) {
1771 1772 1773 1774 1775 1776 1777 1778 1779
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1780
		hctx->next_cpu = next_cpu;
1781 1782 1783
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1784 1785 1786

	hctx->next_cpu = next_cpu;
	return next_cpu;
1787 1788
}

1789 1790 1791 1792
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
1793
 * @msecs: Milliseconds of delay to wait before running the queue.
1794 1795 1796 1797
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1798 1799
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1800
{
1801
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1802 1803
		return;

1804
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1805 1806
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1807
			__blk_mq_run_hw_queue(hctx);
1808
			put_cpu();
1809 1810
			return;
		}
1811

1812
		put_cpu();
1813
	}
1814

1815 1816
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1817 1818
}

1819 1820 1821
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
1822
 * @msecs: Milliseconds of delay to wait before running the queue.
1823 1824 1825
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
1826 1827 1828 1829 1830 1831
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1832 1833 1834 1835 1836 1837 1838 1839 1840
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
1841
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1842
{
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1854 1855 1856 1857
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1858

1859
	if (need_run)
1860
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1861
}
O
Omar Sandoval 已提交
1862
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1863

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
/*
 * Is the request queue handled by an IO scheduler that does not respect
 * hardware queues when dispatching?
 */
static bool blk_mq_has_sqsched(struct request_queue *q)
{
	struct elevator_queue *e = q->elevator;

	if (e && e->type->ops.dispatch_request &&
	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
		return true;
	return false;
}

/*
 * Return prefered queue to dispatch from (if any) for non-mq aware IO
 * scheduler.
 */
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;

	/*
	 * If the IO scheduler does not respect hardware queues when
	 * dispatching, we just don't bother with multiple HW queues and
	 * dispatch from hctx for the current CPU since running multiple queues
	 * just causes lock contention inside the scheduler and pointless cache
	 * bouncing.
	 */
	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
				     raw_smp_processor_id());
	if (!blk_mq_hctx_stopped(hctx))
		return hctx;
	return NULL;
}

1900
/**
1901
 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1902 1903 1904
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
1905
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1906
{
1907
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1908 1909
	int i;

1910 1911 1912
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
1913
	queue_for_each_hw_ctx(q, hctx, i) {
1914
		if (blk_mq_hctx_stopped(hctx))
1915
			continue;
1916 1917 1918 1919 1920 1921 1922 1923
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_run_hw_queue(hctx, async);
1924 1925
	}
}
1926
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1927

1928 1929 1930
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
1931
 * @msecs: Milliseconds of delay to wait before running the queues.
1932 1933 1934
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
1935
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1936 1937
	int i;

1938 1939 1940
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
1941 1942 1943
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;
1944 1945 1946 1947 1948 1949 1950 1951
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_delay_run_hw_queue(hctx, msecs);
1952 1953 1954 1955
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1976 1977 1978
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1979
 * BLK_STS_RESOURCE is usually returned.
1980 1981 1982 1983 1984
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1985 1986
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1987
	cancel_delayed_work(&hctx->run_work);
1988

1989
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1990
}
1991
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1992

1993 1994 1995
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1996
 * BLK_STS_RESOURCE is usually returned.
1997 1998 1999 2000 2001
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
2002 2003
void blk_mq_stop_hw_queues(struct request_queue *q)
{
2004 2005 2006 2007 2008
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
2009 2010 2011
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

2012 2013 2014
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2015

2016
	blk_mq_run_hw_queue(hctx, false);
2017 2018 2019
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

2040
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2041 2042 2043 2044
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2045 2046
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
2047 2048 2049
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

2050
static void blk_mq_run_work_fn(struct work_struct *work)
2051 2052 2053
{
	struct blk_mq_hw_ctx *hctx;

2054
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2055

2056
	/*
M
Ming Lei 已提交
2057
	 * If we are stopped, don't run the queue.
2058
	 */
2059
	if (blk_mq_hctx_stopped(hctx))
2060
		return;
2061 2062 2063 2064

	__blk_mq_run_hw_queue(hctx);
}

2065 2066 2067
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
2068
{
J
Jens Axboe 已提交
2069
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
2070
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
2071

2072 2073
	lockdep_assert_held(&ctx->lock);

2074
	trace_block_rq_insert(rq);
2075

2076
	if (at_head)
M
Ming Lei 已提交
2077
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2078
	else
M
Ming Lei 已提交
2079
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2080
}
2081

2082 2083
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
2084 2085 2086
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

2087 2088
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
2089
	__blk_mq_insert_req_list(hctx, rq, at_head);
2090 2091 2092
	blk_mq_hctx_mark_pending(hctx, ctx);
}

2093 2094 2095
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
2096
 * @at_head: true if the request should be inserted at the head of the list.
2097 2098
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
2099 2100 2101
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
2102 2103
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
2104
{
2105
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2106 2107

	spin_lock(&hctx->lock);
2108 2109 2110 2111
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
2112 2113
	spin_unlock(&hctx->lock);

2114 2115
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
2116 2117
}

2118 2119
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
2120 2121

{
2122
	struct request *rq;
M
Ming Lei 已提交
2123
	enum hctx_type type = hctx->type;
2124

2125 2126 2127 2128
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
2129
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
2130
		BUG_ON(rq->mq_ctx != ctx);
2131
		trace_block_rq_insert(rq);
2132
	}
2133 2134

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2135
	list_splice_tail_init(list, &ctx->rq_lists[type]);
2136
	blk_mq_hctx_mark_pending(hctx, ctx);
2137 2138 2139
	spin_unlock(&ctx->lock);
}

2140 2141
static int plug_rq_cmp(void *priv, const struct list_head *a,
		       const struct list_head *b)
2142 2143 2144 2145
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

P
Pavel Begunkov 已提交
2146 2147 2148 2149
	if (rqa->mq_ctx != rqb->mq_ctx)
		return rqa->mq_ctx > rqb->mq_ctx;
	if (rqa->mq_hctx != rqb->mq_hctx)
		return rqa->mq_hctx > rqb->mq_hctx;
J
Jens Axboe 已提交
2150 2151

	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
2152 2153 2154 2155 2156 2157
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(list);

2158 2159
	if (list_empty(&plug->mq_list))
		return;
2160 2161
	list_splice_init(&plug->mq_list, &list);

2162 2163
	if (plug->rq_count > 2 && plug->multiple_queues)
		list_sort(NULL, &list, plug_rq_cmp);
2164

2165 2166
	plug->rq_count = 0;

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	do {
		struct list_head rq_list;
		struct request *rq, *head_rq = list_entry_rq(list.next);
		struct list_head *pos = &head_rq->queuelist; /* skip first */
		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
		unsigned int depth = 1;

		list_for_each_continue(pos, &list) {
			rq = list_entry_rq(pos);
			BUG_ON(!rq->q);
			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
				break;
			depth++;
2181 2182
		}

2183 2184
		list_cut_before(&rq_list, &list, pos);
		trace_block_unplug(head_rq->q, depth, !from_schedule);
2185
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
2186
						from_schedule);
2187
	} while(!list_empty(&list));
2188 2189
}

2190 2191
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
2192
{
2193 2194
	int err;

2195 2196 2197 2198 2199
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
2200
	blk_rq_bio_prep(rq, bio, nr_segs);
2201 2202 2203 2204

	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
	WARN_ON_ONCE(err);
2205

2206
	blk_account_io_start(rq);
2207 2208
}

2209
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2210
					    struct request *rq, bool last)
2211 2212 2213 2214
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
2215
		.last = last,
2216
	};
2217
	blk_status_t ret;
2218 2219 2220 2221 2222 2223 2224 2225 2226

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
2227
		blk_mq_update_dispatch_busy(hctx, false);
2228 2229
		break;
	case BLK_STS_RESOURCE:
2230
	case BLK_STS_DEV_RESOURCE:
2231
		blk_mq_update_dispatch_busy(hctx, true);
2232 2233 2234
		__blk_mq_requeue_request(rq);
		break;
	default:
2235
		blk_mq_update_dispatch_busy(hctx, false);
2236 2237 2238 2239 2240 2241
		break;
	}

	return ret;
}

2242
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2243
						struct request *rq,
2244
						bool bypass_insert, bool last)
2245 2246
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
2247
	bool run_queue = true;
2248
	int budget_token;
M
Ming Lei 已提交
2249

2250
	/*
2251
	 * RCU or SRCU read lock is needed before checking quiesced flag.
2252
	 *
2253 2254 2255
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
2256
	 */
2257
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
2258
		run_queue = false;
2259 2260
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
2261
	}
2262

2263
	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2264
		goto insert;
2265

2266 2267
	budget_token = blk_mq_get_dispatch_budget(q);
	if (budget_token < 0)
2268
		goto insert;
2269

2270 2271
	blk_mq_set_rq_budget_token(rq, budget_token);

2272
	if (!blk_mq_get_driver_tag(rq)) {
2273
		blk_mq_put_dispatch_budget(q, budget_token);
2274
		goto insert;
2275
	}
2276

2277
	return __blk_mq_issue_directly(hctx, rq, last);
2278 2279 2280 2281
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

2282 2283
	blk_mq_sched_insert_request(rq, false, run_queue, false);

2284 2285 2286
	return BLK_STS_OK;
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
2297
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2298
		struct request *rq)
2299 2300 2301 2302 2303 2304 2305 2306
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

2307
	ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2308
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2309
		blk_mq_request_bypass_insert(rq, false, true);
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
	blk_status_t ret;
	int srcu_idx;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
2323
	ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2324
	hctx_unlock(hctx, srcu_idx);
2325 2326

	return ret;
2327 2328
}

2329 2330 2331
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
2332
	int queued = 0;
2333
	int errors = 0;
2334

2335
	while (!list_empty(list)) {
2336
		blk_status_t ret;
2337 2338 2339 2340
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
2341 2342 2343 2344
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
2345
				blk_mq_request_bypass_insert(rq, false,
2346
							list_empty(list));
2347 2348 2349
				break;
			}
			blk_mq_end_request(rq, ret);
2350
			errors++;
2351 2352
		} else
			queued++;
2353
	}
J
Jens Axboe 已提交
2354 2355 2356 2357 2358 2359

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2360 2361
	if ((!list_empty(list) || errors) &&
	     hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2362
		hctx->queue->mq_ops->commit_rqs(hctx);
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	plug->rq_count++;
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

2379
/*
2380
 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2381 2382 2383 2384 2385 2386
 * queues. This is important for md arrays to benefit from merging
 * requests.
 */
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
{
	if (plug->multiple_queues)
2387
		return BLK_MAX_REQUEST_COUNT * 2;
2388 2389 2390
	return BLK_MAX_REQUEST_COUNT;
}

2391
/**
2392
 * blk_mq_submit_bio - Create and send a request to block device.
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 */
2404
void blk_mq_submit_bio(struct bio *bio)
2405
{
2406
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2407
	const int is_sync = op_is_sync(bio->bi_opf);
2408
	const int is_flush_fua = op_is_flush(bio->bi_opf);
2409
	struct request *rq;
2410
	struct blk_plug *plug;
2411
	struct request *same_queue_rq = NULL;
2412
	unsigned int nr_segs = 1;
2413
	blk_status_t ret;
2414 2415

	blk_queue_bounce(q, &bio);
2416 2417
	if (blk_may_split(q, bio))
		__blk_queue_split(q, &bio, &nr_segs);
2418

2419
	if (!bio_integrity_prep(bio))
2420
		goto queue_exit;
2421

2422
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2423
	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2424
		goto queue_exit;
2425

2426
	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2427
		goto queue_exit;
2428

2429
	rq_qos_throttle(q, bio);
J
Jens Axboe 已提交
2430

2431 2432 2433 2434 2435 2436
	plug = blk_mq_plug(q, bio);
	if (plug && plug->cached_rq) {
		rq = plug->cached_rq;
		plug->cached_rq = rq->rq_next;
		INIT_LIST_HEAD(&rq->queuelist);
	} else {
2437 2438 2439 2440 2441 2442
		struct blk_mq_alloc_data data = {
			.q		= q,
			.nr_tags	= 1,
			.cmd_flags	= bio->bi_opf,
		};

2443 2444 2445 2446 2447
		if (plug) {
			data.nr_tags = plug->nr_ios;
			plug->nr_ios = 1;
			data.cached_rq = &plug->cached_rq;
		}
2448
		rq = __blk_mq_alloc_requests(&data);
2449 2450 2451 2452 2453 2454
		if (unlikely(!rq)) {
			rq_qos_cleanup(q, bio);
			if (bio->bi_opf & REQ_NOWAIT)
				bio_wouldblock_error(bio);
			goto queue_exit;
		}
J
Jens Axboe 已提交
2455 2456
	}

2457
	trace_block_getrq(bio);
2458

2459
	rq_qos_track(q, rq, bio);
2460

2461 2462
	blk_mq_bio_to_request(rq, bio, nr_segs);

2463 2464 2465 2466 2467
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
2468
		return;
2469 2470
	}

2471
	if (unlikely(is_flush_fua)) {
2472
		struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2473
		/* Bypass scheduler for flush requests */
2474
		blk_insert_flush(rq);
2475
		blk_mq_run_hw_queue(hctx, true);
2476
	} else if (plug && (q->nr_hw_queues == 1 ||
2477
		   blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2478
		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2479 2480 2481
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
M
Ming Lei 已提交
2482 2483 2484
		 *
		 * Use normal plugging if this disk is slow HDD, as sequential
		 * IO may benefit a lot from plug merging.
2485
		 */
2486
		unsigned int request_count = plug->rq_count;
2487 2488
		struct request *last = NULL;

M
Ming Lei 已提交
2489
		if (!request_count)
2490
			trace_block_plug(q);
2491 2492
		else
			last = list_entry_rq(plug->mq_list.prev);
2493

2494
		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2495
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2496 2497
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
2498
		}
2499

2500
		blk_add_rq_to_plug(plug, rq);
2501
	} else if (rq->rq_flags & RQF_ELV) {
2502
		/* Insert the request at the IO scheduler queue */
2503
		blk_mq_sched_insert_request(rq, false, true, true);
2504
	} else if (plug && !blk_queue_nomerges(q)) {
2505
		/*
2506
		 * We do limited plugging. If the bio can be merged, do that.
2507 2508
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
2509 2510
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
2511
		 */
2512 2513
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
2514
		if (same_queue_rq) {
2515
			list_del_init(&same_queue_rq->queuelist);
2516 2517
			plug->rq_count--;
		}
2518
		blk_add_rq_to_plug(plug, rq);
2519
		trace_block_plug(q);
2520

2521
		if (same_queue_rq) {
2522
			trace_block_unplug(q, 1, true);
2523
			blk_mq_try_issue_directly(same_queue_rq->mq_hctx,
2524
						  same_queue_rq);
2525
		}
2526
	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2527
		   !rq->mq_hctx->dispatch_busy) {
2528 2529 2530 2531
		/*
		 * There is no scheduler and we can try to send directly
		 * to the hardware.
		 */
2532
		blk_mq_try_issue_directly(rq->mq_hctx, rq);
2533
	} else {
2534
		/* Default case. */
2535
		blk_mq_sched_insert_request(rq, false, true, true);
2536
	}
2537

2538
	return;
2539 2540
queue_exit:
	blk_queue_exit(q);
2541 2542
}

2543 2544 2545 2546 2547 2548
static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

/* called before freeing request pool in @tags */
2549 2550
static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
				    struct blk_mq_tags *tags)
2551 2552 2553 2554
{
	struct page *page;
	unsigned long flags;

2555 2556 2557 2558
	/* There is no need to clear a driver tags own mapping */
	if (drv_tags == tags)
		return;

2559 2560 2561 2562 2563
	list_for_each_entry(page, &tags->page_list, lru) {
		unsigned long start = (unsigned long)page_address(page);
		unsigned long end = start + order_to_size(page->private);
		int i;

2564
		for (i = 0; i < drv_tags->nr_tags; i++) {
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
			struct request *rq = drv_tags->rqs[i];
			unsigned long rq_addr = (unsigned long)rq;

			if (rq_addr >= start && rq_addr < end) {
				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
				cmpxchg(&drv_tags->rqs[i], rq, NULL);
			}
		}
	}

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&drv_tags->lock, flags);
	spin_unlock_irqrestore(&drv_tags->lock, flags);
}

2585 2586
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2587
{
2588
	struct blk_mq_tags *drv_tags;
2589
	struct page *page;
2590

2591 2592
	if (blk_mq_is_shared_tags(set->flags))
		drv_tags = set->shared_tags;
2593 2594
	else
		drv_tags = set->tags[hctx_idx];
2595

2596
	if (tags->static_rqs && set->ops->exit_request) {
2597
		int i;
2598

2599
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2600 2601 2602
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2603
				continue;
2604
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2605
			tags->static_rqs[i] = NULL;
2606
		}
2607 2608
	}

2609
	blk_mq_clear_rq_mapping(drv_tags, tags);
2610

2611 2612
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2613
		list_del_init(&page->lru);
2614 2615
		/*
		 * Remove kmemleak object previously allocated in
2616
		 * blk_mq_alloc_rqs().
2617 2618
		 */
		kmemleak_free(page_address(page));
2619 2620
		__free_pages(page, page->private);
	}
2621
}
2622

2623
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2624
{
2625
	kfree(tags->rqs);
2626
	tags->rqs = NULL;
J
Jens Axboe 已提交
2627 2628
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2629

2630
	blk_mq_free_tags(tags);
2631 2632
}

2633 2634 2635
static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					       unsigned int hctx_idx,
					       unsigned int nr_tags,
2636
					       unsigned int reserved_tags)
2637
{
2638
	struct blk_mq_tags *tags;
2639
	int node;
2640

2641
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2642 2643 2644
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

2645 2646
	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2647 2648
	if (!tags)
		return NULL;
2649

2650
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2651
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2652
				 node);
2653
	if (!tags->rqs) {
2654
		blk_mq_free_tags(tags);
2655 2656
		return NULL;
	}
2657

2658 2659 2660
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2661 2662
	if (!tags->static_rqs) {
		kfree(tags->rqs);
2663
		blk_mq_free_tags(tags);
J
Jens Axboe 已提交
2664 2665 2666
		return NULL;
	}

2667 2668 2669
	return tags;
}

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2681
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2682 2683 2684
	return 0;
}

2685 2686 2687
static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
			    struct blk_mq_tags *tags,
			    unsigned int hctx_idx, unsigned int depth)
2688 2689 2690
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2691 2692
	int node;

2693
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2694 2695
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2696 2697 2698

	INIT_LIST_HEAD(&tags->page_list);

2699 2700 2701 2702
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2703
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2704
				cache_line_size());
2705
	left = rq_size * depth;
2706

2707
	for (i = 0; i < depth; ) {
2708 2709 2710 2711 2712
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2713
		while (this_order && left < order_to_size(this_order - 1))
2714 2715 2716
			this_order--;

		do {
2717
			page = alloc_pages_node(node,
2718
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2719
				this_order);
2720 2721 2722 2723 2724 2725 2726 2727 2728
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2729
			goto fail;
2730 2731

		page->private = this_order;
2732
		list_add_tail(&page->lru, &tags->page_list);
2733 2734

		p = page_address(page);
2735 2736 2737 2738
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2739
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2740
		entries_per_page = order_to_size(this_order) / rq_size;
2741
		to_do = min(entries_per_page, depth - i);
2742 2743
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2744 2745 2746
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2747 2748 2749
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2750 2751
			}

2752 2753 2754 2755
			p += rq_size;
			i++;
		}
	}
2756
	return 0;
2757

2758
fail:
2759 2760
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2761 2762
}

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
struct rq_iter_data {
	struct blk_mq_hw_ctx *hctx;
	bool has_rq;
};

static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
{
	struct rq_iter_data *iter_data = data;

	if (rq->mq_hctx != iter_data->hctx)
		return true;
	iter_data->has_rq = true;
	return false;
}

static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->sched_tags ?
			hctx->sched_tags : hctx->tags;
	struct rq_iter_data data = {
		.hctx	= hctx,
	};

	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
	return data.has_rq;
}

static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
		struct blk_mq_hw_ctx *hctx)
{
	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
		return false;
	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
		return false;
	return true;
}

static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
		return 0;

	/*
	 * Prevent new request from being allocated on the current hctx.
	 *
	 * The smp_mb__after_atomic() Pairs with the implied barrier in
	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
	 * seen once we return from the tag allocator.
	 */
	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	smp_mb__after_atomic();

	/*
	 * Try to grab a reference to the queue and wait for any outstanding
	 * requests.  If we could not grab a reference the queue has been
	 * frozen and there are no requests.
	 */
	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
		while (blk_mq_hctx_has_requests(hctx))
			msleep(5);
		percpu_ref_put(&hctx->queue->q_usage_counter);
	}

	return 0;
}

static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (cpumask_test_cpu(cpu, hctx->cpumask))
		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	return 0;
}

J
Jens Axboe 已提交
2843 2844 2845 2846 2847
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2848
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2849
{
2850
	struct blk_mq_hw_ctx *hctx;
2851 2852
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
2853
	enum hctx_type type;
2854

2855
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2856 2857 2858
	if (!cpumask_test_cpu(cpu, hctx->cpumask))
		return 0;

J
Jens Axboe 已提交
2859
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
2860
	type = hctx->type;
2861 2862

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2863 2864
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
2865 2866 2867 2868 2869
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2870
		return 0;
2871

J
Jens Axboe 已提交
2872 2873 2874
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2875 2876

	blk_mq_run_hw_queue(hctx, true);
2877
	return 0;
2878 2879
}

2880
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2881
{
2882 2883 2884
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
						    &hctx->cpuhp_online);
2885 2886
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2887 2888
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
/*
 * Before freeing hw queue, clearing the flush request reference in
 * tags->rqs[] for avoiding potential UAF.
 */
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
		unsigned int queue_depth, struct request *flush_rq)
{
	int i;
	unsigned long flags;

	/* The hw queue may not be mapped yet */
	if (!tags)
		return;

	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);

	for (i = 0; i < queue_depth; i++)
		cmpxchg(&tags->rqs[i], flush_rq, NULL);

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&tags->lock, flags);
	spin_unlock_irqrestore(&tags->lock, flags);
}

2918
/* hctx->ctxs will be freed in queue's release handler */
2919 2920 2921 2922
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2923 2924
	struct request *flush_rq = hctx->fq->flush_rq;

2925 2926
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2927

2928 2929
	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
			set->queue_depth, flush_rq);
2930
	if (set->ops->exit_request)
2931
		set->ops->exit_request(set, flush_rq, hctx_idx);
2932

2933 2934 2935
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2936
	blk_mq_remove_cpuhp(hctx);
2937 2938 2939 2940

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
2941 2942
}

M
Ming Lei 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2952
		blk_mq_debugfs_unregister_hctx(hctx);
2953
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2954 2955 2956
	}
}

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2971 2972 2973
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2974
{
2975 2976
	hctx->queue_num = hctx_idx;

2977 2978 2979
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
				&hctx->cpuhp_online);
2980 2981 2982 2983 2984 2985 2986
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
2987

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
3016
	if (node == NUMA_NO_NODE)
3017 3018
		node = set->numa_node;
	hctx->numa_node = node;
3019

3020
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3021 3022 3023
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
3024
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3025

3026 3027
	INIT_LIST_HEAD(&hctx->hctx_list);

3028
	/*
3029 3030
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
3031
	 */
3032
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3033
			gfp, node);
3034
	if (!hctx->ctxs)
3035
		goto free_cpumask;
3036

3037
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3038
				gfp, node, false, false))
3039 3040
		goto free_ctxs;
	hctx->nr_ctx = 0;
3041

3042
	spin_lock_init(&hctx->dispatch_wait_lock);
3043 3044 3045
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

3046
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3047
	if (!hctx->fq)
3048
		goto free_bitmap;
3049

3050
	if (hctx->flags & BLK_MQ_F_BLOCKING)
3051
		init_srcu_struct(hctx->srcu);
3052
	blk_mq_hctx_kobj_init(hctx);
3053

3054
	return hctx;
3055

3056
 free_bitmap:
3057
	sbitmap_free(&hctx->ctx_map);
3058 3059
 free_ctxs:
	kfree(hctx->ctxs);
3060 3061 3062 3063 3064 3065
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
3066
}
3067 3068 3069 3070

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
3071 3072
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
3073 3074 3075 3076

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
3077
		int k;
3078 3079 3080

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
3081 3082 3083
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

3084 3085 3086 3087 3088 3089
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
3090 3091 3092
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3093
				hctx->numa_node = cpu_to_node(i);
J
Jens Axboe 已提交
3094
		}
3095 3096 3097
	}
}

3098 3099 3100
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
					     unsigned int hctx_idx,
					     unsigned int depth)
3101
{
3102 3103
	struct blk_mq_tags *tags;
	int ret;
3104

3105
	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3106 3107
	if (!tags)
		return NULL;
3108

3109 3110
	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
	if (ret) {
3111
		blk_mq_free_rq_map(tags);
3112 3113
		return NULL;
	}
3114

3115 3116 3117 3118 3119 3120
	return tags;
}

static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
				       int hctx_idx)
{
3121 3122
	if (blk_mq_is_shared_tags(set->flags)) {
		set->tags[hctx_idx] = set->shared_tags;
3123 3124 3125 3126

		return true;
	}

3127 3128 3129 3130
	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
						       set->queue_depth);

	return set->tags[hctx_idx];
3131 3132
}

3133 3134 3135
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
			     struct blk_mq_tags *tags,
			     unsigned int hctx_idx)
3136
{
3137 3138
	if (tags) {
		blk_mq_free_rqs(set, tags, hctx_idx);
3139
		blk_mq_free_rq_map(tags);
3140
	}
3141 3142
}

3143 3144 3145
static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
				      unsigned int hctx_idx)
{
3146
	if (!blk_mq_is_shared_tags(set->flags))
3147 3148 3149 3150 3151
		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);

	set->tags[hctx_idx] = NULL;
}

3152
static void blk_mq_map_swqueue(struct request_queue *q)
3153
{
J
Jens Axboe 已提交
3154
	unsigned int i, j, hctx_idx;
3155 3156
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
3157
	struct blk_mq_tag_set *set = q->tag_set;
3158 3159

	queue_for_each_hw_ctx(q, hctx, i) {
3160
		cpumask_clear(hctx->cpumask);
3161
		hctx->nr_ctx = 0;
3162
		hctx->dispatch_from = NULL;
3163 3164 3165
	}

	/*
3166
	 * Map software to hardware queues.
3167 3168
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
3169
	 */
3170
	for_each_possible_cpu(i) {
3171

3172
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
3173
		for (j = 0; j < set->nr_maps; j++) {
3174 3175 3176
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
3177
				continue;
3178
			}
3179 3180 3181
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
3182
			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3183 3184 3185 3186 3187 3188 3189 3190
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
3191

J
Jens Axboe 已提交
3192
			hctx = blk_mq_map_queue_type(q, j, i);
3193
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
3213 3214 3215 3216

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
3217
	}
3218 3219

	queue_for_each_hw_ctx(q, hctx, i) {
3220 3221 3222 3223 3224 3225 3226 3227 3228
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
3229 3230
			if (i)
				__blk_mq_free_map_and_rqs(set, i);
3231 3232 3233 3234

			hctx->tags = NULL;
			continue;
		}
3235

M
Ming Lei 已提交
3236 3237 3238
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

3239 3240 3241 3242 3243
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
3244
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3245

3246 3247 3248
		/*
		 * Initialize batch roundrobin counts
		 */
3249
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3250 3251
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
3252 3253
}

3254 3255 3256 3257
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
3258
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3259 3260 3261 3262
{
	struct blk_mq_hw_ctx *hctx;
	int i;

3263
	queue_for_each_hw_ctx(q, hctx, i) {
3264
		if (shared) {
3265
			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3266 3267
		} else {
			blk_mq_tag_idle(hctx);
3268
			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3269
		}
3270 3271 3272
	}
}

3273 3274
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
					 bool shared)
3275 3276
{
	struct request_queue *q;
3277

3278 3279
	lockdep_assert_held(&set->tag_list_lock);

3280 3281
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
3282
		queue_set_hctx_shared(q, shared);
3283 3284 3285 3286 3287 3288 3289 3290 3291
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
3292
	list_del(&q->tag_set_list);
3293 3294
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
3295
		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3296
		/* update existing queue */
3297
		blk_mq_update_tag_set_shared(set, false);
3298
	}
3299
	mutex_unlock(&set->tag_list_lock);
3300
	INIT_LIST_HEAD(&q->tag_set_list);
3301 3302 3303 3304 3305 3306
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
3307

3308 3309 3310 3311
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
3312 3313
	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3314
		/* update existing queue */
3315
		blk_mq_update_tag_set_shared(set, true);
3316
	}
3317
	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3318
		queue_set_hctx_shared(q, true);
3319
	list_add_tail(&q->tag_set_list, &set->tag_list);
3320

3321 3322 3323
	mutex_unlock(&set->tag_list_lock);
}

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

3352 3353 3354 3355 3356 3357 3358 3359
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
3360 3361
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
3362

3363 3364 3365 3366 3367 3368
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
3369
		kobject_put(&hctx->kobj);
3370
	}
3371 3372 3373

	kfree(q->queue_hw_ctx);

3374 3375 3376 3377 3378
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
3379 3380
}

3381
static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3382
		void *queuedata)
3383
{
3384 3385
	struct request_queue *q;
	int ret;
3386

3387 3388
	q = blk_alloc_queue(set->numa_node);
	if (!q)
3389
		return ERR_PTR(-ENOMEM);
3390 3391 3392 3393 3394 3395
	q->queuedata = queuedata;
	ret = blk_mq_init_allocated_queue(set, q);
	if (ret) {
		blk_cleanup_queue(q);
		return ERR_PTR(ret);
	}
3396 3397
	return q;
}
3398 3399 3400 3401 3402

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
3403 3404
EXPORT_SYMBOL(blk_mq_init_queue);

3405 3406
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
		struct lock_class_key *lkclass)
3407 3408
{
	struct request_queue *q;
3409
	struct gendisk *disk;
3410

3411 3412 3413
	q = blk_mq_init_queue_data(set, queuedata);
	if (IS_ERR(q))
		return ERR_CAST(q);
3414

3415
	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3416 3417 3418
	if (!disk) {
		blk_cleanup_queue(q);
		return ERR_PTR(-ENOMEM);
3419
	}
3420
	return disk;
3421
}
3422
EXPORT_SYMBOL(__blk_mq_alloc_disk);
3423

3424 3425 3426 3427
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
3428
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3429

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
3444
	if (!hctx)
3445
		goto fail;
3446

3447 3448
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
3449 3450

	return hctx;
3451 3452 3453 3454 3455

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
3456 3457
}

K
Keith Busch 已提交
3458 3459
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
3460
{
3461
	int i, j, end;
K
Keith Busch 已提交
3462
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3463

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

3480 3481
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
3482
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
3483
		int node;
3484
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
3485

3486
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3487 3488 3489 3490 3491 3492 3493
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
3494

3495 3496
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
3497
			if (hctxs[i])
3498 3499 3500 3501 3502 3503 3504 3505 3506
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
3507
		}
3508
	}
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
3521

3522
	for (; j < end; j++) {
K
Keith Busch 已提交
3523 3524 3525
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
3526
			__blk_mq_free_map_and_rqs(set, j);
K
Keith Busch 已提交
3527 3528 3529 3530
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
3531
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
3532 3533
}

3534 3535
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
		struct request_queue *q)
K
Keith Busch 已提交
3536
{
M
Ming Lei 已提交
3537 3538 3539
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

3540
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3541 3542
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
3543 3544 3545
	if (!q->poll_cb)
		goto err_exit;

3546
	if (blk_mq_alloc_ctxs(q))
3547
		goto err_poll;
K
Keith Busch 已提交
3548

3549 3550 3551
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

3552 3553 3554
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
3555 3556 3557
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
3558

3559
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3560
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3561

J
Jens Axboe 已提交
3562
	q->tag_set = set;
3563

3564
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3565 3566
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
3567
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3568

3569
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3570 3571 3572
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

3573 3574
	q->nr_requests = set->queue_depth;

3575 3576 3577
	/*
	 * Default to classic polling
	 */
3578
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3579

3580
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3581
	blk_mq_add_queue_tag_set(set, q);
3582
	blk_mq_map_swqueue(q);
3583
	return 0;
3584

3585
err_hctxs:
K
Keith Busch 已提交
3586
	kfree(q->queue_hw_ctx);
3587
	q->nr_hw_queues = 0;
3588
	blk_mq_sysfs_deinit(q);
3589 3590 3591
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
3592 3593
err_exit:
	q->mq_ops = NULL;
3594
	return -ENOMEM;
3595
}
3596
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3597

3598 3599
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
3600
{
3601
	struct blk_mq_tag_set *set = q->tag_set;
3602

3603
	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
M
Ming Lei 已提交
3604
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3605 3606
	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
	blk_mq_del_queue_tag_set(q);
3607 3608
}

3609 3610 3611 3612
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

3613 3614
	if (blk_mq_is_shared_tags(set->flags)) {
		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3615 3616
						BLK_MQ_NO_HCTX_IDX,
						set->queue_depth);
3617
		if (!set->shared_tags)
3618 3619 3620
			return -ENOMEM;
	}

3621
	for (i = 0; i < set->nr_hw_queues; i++) {
3622
		if (!__blk_mq_alloc_map_and_rqs(set, i))
3623
			goto out_unwind;
3624 3625
		cond_resched();
	}
3626 3627 3628 3629

	return 0;

out_unwind:
3630 3631 3632
	while (--i >= 0)
		__blk_mq_free_map_and_rqs(set, i);

3633 3634
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
3635
					BLK_MQ_NO_HCTX_IDX);
3636
	}
3637 3638 3639 3640 3641 3642 3643 3644 3645

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
3646
static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

3676 3677
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
3678 3679 3680 3681 3682 3683 3684 3685
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

3686
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
3687 3688
		int i;

3689 3690 3691 3692 3693 3694 3695
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
3696
		 * 		set->map[x].mq_map[cpu] = queue;
3697 3698 3699 3700 3701 3702
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
3703 3704
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
3705

3706
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
3707 3708
	} else {
		BUG_ON(set->nr_maps > 1);
3709
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
3710
	}
3711 3712
}

3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

3736 3737 3738 3739 3740 3741
static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
				int new_nr_hw_queues)
{
	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
}

3742 3743 3744
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
3745
 * requested depth down, if it's too large. In that case, the set
3746 3747
 * value will be stored in set->queue_depth.
 */
3748 3749
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3750
	int i, ret;
3751

B
Bart Van Assche 已提交
3752 3753
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

3754 3755
	if (!set->nr_hw_queues)
		return -EINVAL;
3756
	if (!set->queue_depth)
3757 3758 3759 3760
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
3761
	if (!set->ops->queue_rq)
3762 3763
		return -EINVAL;

3764 3765 3766
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

3767 3768 3769 3770 3771
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
3772

J
Jens Axboe 已提交
3773 3774 3775 3776 3777
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

3778 3779 3780 3781 3782 3783 3784
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
3785
		set->nr_maps = 1;
3786 3787
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
3788
	/*
3789 3790
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
3791
	 */
3792
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3793
		set->nr_hw_queues = nr_cpu_ids;
3794

3795
	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3796
		return -ENOMEM;
3797

3798
	ret = -ENOMEM;
J
Jens Axboe 已提交
3799 3800
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3801
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
3802 3803 3804
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
3805
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
3806
	}
3807

3808
	ret = blk_mq_update_queue_map(set);
3809 3810 3811
	if (ret)
		goto out_free_mq_map;

3812
	ret = blk_mq_alloc_set_map_and_rqs(set);
3813
	if (ret)
3814
		goto out_free_mq_map;
3815

3816 3817 3818
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

3819
	return 0;
3820 3821

out_free_mq_map:
J
Jens Axboe 已提交
3822 3823 3824 3825
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
3826 3827
	kfree(set->tags);
	set->tags = NULL;
3828
	return ret;
3829 3830 3831
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
/* allocate and initialize a tagset for a simple single-queue device */
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
		const struct blk_mq_ops *ops, unsigned int queue_depth,
		unsigned int set_flags)
{
	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
	set->nr_maps = 1;
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;
	return blk_mq_alloc_tag_set(set);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);

3848 3849
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3850
	int i, j;
3851

3852 3853
	for (i = 0; i < set->nr_hw_queues; i++)
		__blk_mq_free_map_and_rqs(set, i);
3854

3855 3856
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
3857 3858
					BLK_MQ_NO_HCTX_IDX);
	}
3859

J
Jens Axboe 已提交
3860 3861 3862 3863
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
3864

M
Ming Lei 已提交
3865
	kfree(set->tags);
3866
	set->tags = NULL;
3867 3868 3869
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3870 3871 3872 3873 3874 3875
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3876
	if (!set)
3877 3878
		return -EINVAL;

3879 3880 3881
	if (q->nr_requests == nr)
		return 0;

3882
	blk_mq_freeze_queue(q);
3883
	blk_mq_quiesce_queue(q);
3884

3885 3886
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3887 3888
		if (!hctx->tags)
			continue;
3889 3890 3891 3892
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3893
		if (hctx->sched_tags) {
3894
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3895 3896 3897 3898
						      nr, true);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
						      false);
3899
		}
3900 3901
		if (ret)
			break;
3902 3903
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
3904
	}
3905
	if (!ret) {
3906
		q->nr_requests = nr;
3907
		if (blk_mq_is_shared_tags(set->flags)) {
3908
			if (q->elevator)
3909
				blk_mq_tag_update_sched_shared_tags(q);
3910
			else
3911
				blk_mq_tag_resize_shared_tags(set, nr);
3912
		}
3913
	}
3914

3915
	blk_mq_unquiesce_queue(q);
3916 3917
	blk_mq_unfreeze_queue(q);

3918 3919 3920
	return ret;
}

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3991 3992
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3993 3994
{
	struct request_queue *q;
3995
	LIST_HEAD(head);
3996
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3997

3998 3999
	lockdep_assert_held(&set->tag_list_lock);

4000
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
4001
		nr_hw_queues = nr_cpu_ids;
4002 4003 4004
	if (nr_hw_queues < 1)
		return;
	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
K
Keith Busch 已提交
4005 4006 4007 4008
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
4009 4010 4011 4012 4013 4014 4015 4016
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
4017

4018 4019 4020 4021 4022
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

4023
	prev_nr_hw_queues = set->nr_hw_queues;
4024 4025 4026 4027
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
4028
	set->nr_hw_queues = nr_hw_queues;
4029
fallback:
4030
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
4031 4032
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
4033 4034 4035 4036
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
4037
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4038 4039
			goto fallback;
		}
4040 4041 4042
		blk_mq_map_swqueue(q);
	}

4043
reregister:
4044 4045 4046
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
4047 4048
	}

4049 4050 4051 4052
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
4053 4054 4055
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
4056 4057 4058 4059 4060 4061 4062

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
4063 4064
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

4065 4066 4067 4068
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4069
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
4091
	int bucket;
4092

4093 4094 4095 4096
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
4097 4098
}

4099 4100 4101 4102
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
4103
	int bucket;
4104 4105 4106 4107 4108

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
4109
	if (!blk_poll_stats_enable(q))
4110 4111 4112 4113 4114 4115 4116 4117
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
4118 4119
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
4120
	 */
4121 4122 4123 4124 4125 4126
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
4127 4128 4129 4130

	return ret;
}

4131
static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4132
{
4133 4134
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
	struct request *rq = blk_qc_to_rq(hctx, qc);
4135 4136
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
4137
	unsigned int nsecs;
4138 4139
	ktime_t kt;

4140 4141 4142 4143 4144
	/*
	 * If a request has completed on queue that uses an I/O scheduler, we
	 * won't get back a request from blk_qc_to_rq.
	 */
	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4145 4146 4147
		return false;

	/*
4148
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4149 4150 4151 4152
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
4153
	if (q->poll_nsec > 0)
4154 4155
		nsecs = q->poll_nsec;
	else
4156
		nsecs = blk_mq_poll_nsecs(q, rq);
4157 4158

	if (!nsecs)
4159 4160
		return false;

J
Jens Axboe 已提交
4161
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4162 4163 4164 4165 4166

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
4167
	kt = nsecs;
4168 4169

	mode = HRTIMER_MODE_REL;
4170
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4171 4172 4173
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
4174
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4175 4176
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
4177
		hrtimer_sleeper_start_expires(&hs, mode);
4178 4179 4180 4181 4182 4183 4184 4185
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
4186 4187 4188 4189 4190 4191 4192 4193

	/*
	 * If we sleep, have the caller restart the poll loop to reset the
	 * state.  Like for the other success return cases, the caller is
	 * responsible for checking if the IO completed.  If the IO isn't
	 * complete, we'll get called again and will go straight to the busy
	 * poll loop.
	 */
4194 4195 4196
	return true;
}

4197
static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4198
		unsigned int flags)
J
Jens Axboe 已提交
4199
{
4200 4201 4202
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
	long state = get_current_state();
	int ret;
4203

4204
	hctx->poll_considered++;
4205

4206 4207
	do {
		hctx->poll_invoked++;
4208

4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
		ret = q->mq_ops->poll(hctx);
		if (ret > 0) {
			hctx->poll_success++;
			__set_current_state(TASK_RUNNING);
			return ret;
		}

		if (signal_pending_state(state, current))
			__set_current_state(TASK_RUNNING);
		if (task_is_running(current))
			return 1;

4221
		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4222 4223 4224 4225 4226 4227
			break;
		cpu_relax();
	} while (!need_resched());

	__set_current_state(TASK_RUNNING);
	return 0;
4228 4229
}

4230
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, unsigned int flags)
4231
{
4232 4233
	if (!(flags & BLK_POLL_NOSLEEP) &&
	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4234
		if (blk_mq_poll_hybrid(q, cookie))
4235
			return 1;
4236
	}
4237
	return blk_mq_poll_classic(q, cookie, flags);
J
Jens Axboe 已提交
4238 4239
}

J
Jens Axboe 已提交
4240 4241 4242 4243 4244 4245
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

4246 4247
static int __init blk_mq_init(void)
{
4248 4249 4250
	int i;

	for_each_possible_cpu(i)
4251
		init_llist_head(&per_cpu(blk_cpu_done, i));
4252 4253 4254 4255 4256
	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);

	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
				  "block/softirq:dead", NULL,
				  blk_softirq_cpu_dead);
4257 4258
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
4259 4260 4261
	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
				blk_mq_hctx_notify_online,
				blk_mq_hctx_notify_offline);
4262 4263 4264
	return 0;
}
subsys_initcall(blk_mq_init);