blk-mq.c 106.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/blk-integrity.h>
14
#include <linux/kmemleak.h>
15 16 17 18 19
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
20
#include <linux/interrupt.h>
21 22 23 24 25
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
26
#include <linux/sched/topology.h>
27
#include <linux/sched/signal.h>
28
#include <linux/delay.h>
29
#include <linux/crash_dump.h>
30
#include <linux/prefetch.h>
31
#include <linux/blk-crypto.h>
32 33 34 35

#include <trace/events/block.h>

#include <linux/blk-mq.h>
36
#include <linux/t10-pi.h>
37 38
#include "blk.h"
#include "blk-mq.h"
39
#include "blk-mq-debugfs.h"
40
#include "blk-mq-tag.h"
41
#include "blk-pm.h"
42
#include "blk-stat.h"
43
#include "blk-mq-sched.h"
44
#include "blk-rq-qos.h"
45

46
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47

48 49 50
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

51 52
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
53
	int ddir, sectors, bucket;
54

J
Jens Axboe 已提交
55
	ddir = rq_data_dir(rq);
56
	sectors = blk_rq_stats_sectors(rq);
57

58
	bucket = ddir + 2 * ilog2(sectors);
59 60 61 62 63 64 65 66 67

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

68 69 70
#define BLK_QC_T_SHIFT		16
#define BLK_QC_T_INTERNAL	(1U << 31)

71 72 73 74 75 76
static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
		blk_qc_t qc)
{
	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
}

77 78 79
static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
		blk_qc_t qc)
{
80 81 82 83 84
	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);

	if (qc & BLK_QC_T_INTERNAL)
		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
	return blk_mq_tag_to_rq(hctx->tags, tag);
85 86
}

87 88 89 90 91 92 93
static inline blk_qc_t blk_rq_to_qc(struct request *rq)
{
	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
		(rq->tag != -1 ?
		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
}

94
/*
95 96
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
97
 */
98
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99
{
100 101
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
102
			blk_mq_sched_has_work(hctx);
103 104
}

105 106 107 108 109 110
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
111 112 113 114
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
115 116 117 118 119
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
120 121 122
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
123 124
}

125
struct mq_inflight {
126
	struct block_device *part;
127
	unsigned int inflight[2];
128 129
};

130
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
131 132 133 134 135
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

136 137
	if ((!mi->part->bd_partno || rq->part == mi->part) &&
	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138
		mi->inflight[rq_data_dir(rq)]++;
139 140

	return true;
141 142
}

143 144
unsigned int blk_mq_in_flight(struct request_queue *q,
		struct block_device *part)
145
{
146
	struct mq_inflight mi = { .part = part };
147 148

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149

150
	return mi.inflight[0] + mi.inflight[1];
151 152
}

153 154
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
		unsigned int inflight[2])
155
{
156
	struct mq_inflight mi = { .part = part };
157

158
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159 160
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
161 162
}

163
void blk_freeze_queue_start(struct request_queue *q)
164
{
165 166
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
167
		percpu_ref_kill(&q->q_usage_counter);
168
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
169
		if (queue_is_mq(q))
170
			blk_mq_run_hw_queues(q, false);
171 172
	} else {
		mutex_unlock(&q->mq_freeze_lock);
173
	}
174
}
175
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176

177
void blk_mq_freeze_queue_wait(struct request_queue *q)
178
{
179
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180
}
181
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182

183 184 185 186 187 188 189 190
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191

192 193 194 195
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
196
void blk_freeze_queue(struct request_queue *q)
197
{
198 199 200 201 202 203 204
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
205
	blk_freeze_queue_start(q);
206 207
	blk_mq_freeze_queue_wait(q);
}
208 209 210 211 212 213 214 215 216

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
217
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218

219
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220
{
221
	mutex_lock(&q->mq_freeze_lock);
222 223
	if (force_atomic)
		q->q_usage_counter.data->force_atomic = true;
224 225 226
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
227
		percpu_ref_resurrect(&q->q_usage_counter);
228
		wake_up_all(&q->mq_freeze_wq);
229
	}
230
	mutex_unlock(&q->mq_freeze_lock);
231
}
232 233 234 235 236

void blk_mq_unfreeze_queue(struct request_queue *q)
{
	__blk_mq_unfreeze_queue(q, false);
}
237
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238

239 240 241 242 243 244
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
245
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
246 247 248
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

249
/**
250
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
251 252 253
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
254 255 256
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
257 258 259 260 261 262 263
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

264
	blk_mq_quiesce_queue_nowait(q);
265

266 267
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
268
			synchronize_srcu(hctx->srcu);
269 270 271 272 273 274 275 276
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

277 278 279 280 281 282 283 284 285
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
286
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
287

288 289
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
290 291 292
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

293 294 295 296 297 298 299 300 301 302
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

303
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
304
		unsigned int tag, u64 alloc_time_ns)
305
{
306 307 308 309
	struct blk_mq_ctx *ctx = data->ctx;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	struct request_queue *q = data->q;
	struct elevator_queue *e = q->elevator;
310 311
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
312
	unsigned int rq_flags = 0;
313

314
	if (e) {
315
		rq_flags = RQF_ELV;
316
		rq->tag = BLK_MQ_NO_TAG;
317 318 319
		rq->internal_tag = tag;
	} else {
		rq->tag = tag;
320
		rq->internal_tag = BLK_MQ_NO_TAG;
321 322
	}

323 324 325 326 327 328
	if (data->flags & BLK_MQ_REQ_PM)
		rq_flags |= RQF_PM;
	if (blk_queue_io_stat(q))
		rq_flags |= RQF_IO_STAT;
	rq->rq_flags = rq_flags;

329 330 331 332
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
333
	/* csd/requeue_work/fifo_time is initialized before use */
334 335 336
	rq->q = q;
	rq->mq_ctx = ctx;
	rq->mq_hctx = hctx;
337
	rq->cmd_flags = data->cmd_flags;
338 339
	rq->rq_disk = NULL;
	rq->part = NULL;
340 341 342
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
343
	rq->io_start_time_ns = 0;
344
	rq->stats_sectors = 0;
345 346 347 348
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
349
	rq->timeout = 0;
350 351 352
	rq->end_io = NULL;
	rq->end_io_data = NULL;

353 354 355 356
	blk_crypto_rq_set_defaults(rq);
	INIT_LIST_HEAD(&rq->queuelist);
	/* tag was already set */
	WRITE_ONCE(rq->deadline, 0);
K
Keith Busch 已提交
357
	refcount_set(&rq->ref, 1);
358

359
	if (rq->rq_flags & RQF_ELV) {
360 361 362
		struct elevator_queue *e = data->q->elevator;

		rq->elv.icq = NULL;
363 364 365 366 367
		INIT_HLIST_NODE(&rq->hash);
		RB_CLEAR_NODE(&rq->rb_node);

		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.prepare_request) {
368 369 370 371 372 373 374 375
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);

			e->type->ops.prepare_request(rq);
			rq->rq_flags |= RQF_ELVPRIV;
		}
	}

376
	return rq;
377 378
}

J
Jens Axboe 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
		u64 alloc_time_ns)
{
	unsigned int tag, tag_offset;
	struct request *rq;
	unsigned long tags;
	int i, nr = 0;

	tags = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
	if (unlikely(!tags))
		return NULL;

	for (i = 0; tags; i++) {
		if (!(tags & (1UL << i)))
			continue;
		tag = tag_offset + i;
		tags &= ~(1UL << i);
		rq = blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
398
		rq_list_add(data->cached_rq, rq);
J
Jens Axboe 已提交
399 400 401
	}
	data->nr_tags -= nr;

402
	return rq_list_pop(data->cached_rq);
J
Jens Axboe 已提交
403 404
}

405
static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
406
{
407
	struct request_queue *q = data->q;
408
	struct elevator_queue *e = q->elevator;
409
	u64 alloc_time_ns = 0;
410
	struct request *rq;
411
	unsigned int tag;
412

413 414 415 416
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

417
	if (data->cmd_flags & REQ_NOWAIT)
418
		data->flags |= BLK_MQ_REQ_NOWAIT;
419 420 421

	if (e) {
		/*
422
		 * Flush/passthrough requests are special and go directly to the
423 424
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
425
		 */
426
		if (!op_is_flush(data->cmd_flags) &&
427
		    !blk_op_is_passthrough(data->cmd_flags) &&
428
		    e->type->ops.limit_depth &&
429
		    !(data->flags & BLK_MQ_REQ_RESERVED))
430
			e->type->ops.limit_depth(data->cmd_flags, data);
431 432
	}

433
retry:
434 435
	data->ctx = blk_mq_get_ctx(q);
	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
436
	if (!e)
437 438
		blk_mq_tag_busy(data->hctx);

J
Jens Axboe 已提交
439 440 441 442 443 444 445 446 447 448
	/*
	 * Try batched alloc if we want more than 1 tag.
	 */
	if (data->nr_tags > 1) {
		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
		if (rq)
			return rq;
		data->nr_tags = 1;
	}

449 450 451 452 453
	/*
	 * Waiting allocations only fail because of an inactive hctx.  In that
	 * case just retry the hctx assignment and tag allocation as CPU hotplug
	 * should have migrated us to an online CPU by now.
	 */
J
Jens Axboe 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_NO_TAG) {
		if (data->flags & BLK_MQ_REQ_NOWAIT)
			return NULL;
		/*
		 * Give up the CPU and sleep for a random short time to
		 * ensure that thread using a realtime scheduling class
		 * are migrated off the CPU, and thus off the hctx that
		 * is going away.
		 */
		msleep(3);
		goto retry;
	}
467

J
Jens Axboe 已提交
468
	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
469 470
}

471
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
472
		blk_mq_req_flags_t flags)
473
{
474 475 476 477
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
478
		.nr_tags	= 1,
479
	};
480
	struct request *rq;
481
	int ret;
482

483
	ret = blk_queue_enter(q, flags);
484 485
	if (ret)
		return ERR_PTR(ret);
486

487
	rq = __blk_mq_alloc_requests(&data);
488
	if (!rq)
489
		goto out_queue_exit;
490 491 492
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
493
	return rq;
494 495 496
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(-EWOULDBLOCK);
497
}
498
EXPORT_SYMBOL(blk_mq_alloc_request);
499

500
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
501
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
502
{
503 504 505 506
	struct blk_mq_alloc_data data = {
		.q		= q,
		.flags		= flags,
		.cmd_flags	= op,
507
		.nr_tags	= 1,
508
	};
509
	u64 alloc_time_ns = 0;
510
	unsigned int cpu;
511
	unsigned int tag;
M
Ming Lin 已提交
512 513
	int ret;

514 515 516 517
	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

M
Ming Lin 已提交
518 519 520 521 522 523
	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
524
	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
M
Ming Lin 已提交
525 526 527 528 529
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

530
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
531 532 533
	if (ret)
		return ERR_PTR(ret);

534 535 536 537
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
538
	ret = -EXDEV;
539 540
	data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(data.hctx))
541
		goto out_queue_exit;
542 543
	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
	data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
544

545
	if (!q->elevator)
546 547
		blk_mq_tag_busy(data.hctx);

548
	ret = -EWOULDBLOCK;
549 550
	tag = blk_mq_get_tag(&data);
	if (tag == BLK_MQ_NO_TAG)
551
		goto out_queue_exit;
552 553
	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);

554 555 556
out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
557 558 559
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
560 561 562 563
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
564
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
565 566
	const int sched_tag = rq->internal_tag;

567
	blk_crypto_free_request(rq);
568
	blk_pm_mark_last_busy(rq);
569
	rq->mq_hctx = NULL;
570
	if (rq->tag != BLK_MQ_NO_TAG)
571
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
572
	if (sched_tag != BLK_MQ_NO_TAG)
573
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
574 575 576 577
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

578
void blk_mq_free_request(struct request *rq)
579 580
{
	struct request_queue *q = rq->q;
581
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
582

583 584 585 586
	if (rq->rq_flags & (RQF_ELVPRIV | RQF_ELV)) {
		struct elevator_queue *e = q->elevator;

		if (e->type->ops.finish_request)
587
			e->type->ops.finish_request(rq);
588 589 590 591 592
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
593

594
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
595
		__blk_mq_dec_active_requests(hctx);
J
Jens Axboe 已提交
596

597
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
598
		laptop_io_completion(q->disk->bdi);
599

600
	rq_qos_done(q, rq);
601

K
Keith Busch 已提交
602 603 604
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
605
}
J
Jens Axboe 已提交
606
EXPORT_SYMBOL_GPL(blk_mq_free_request);
607

608 609
void blk_mq_free_plug_rqs(struct blk_plug *plug)
{
610
	struct request *rq;
611

612
	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) {
613 614 615 616 617
		percpu_ref_get(&rq->q->q_usage_counter);
		blk_mq_free_request(rq);
	}
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
static void req_bio_endio(struct request *rq, struct bio *bio,
			  unsigned int nbytes, blk_status_t error)
{
	if (error)
		bio->bi_status = error;

	if (unlikely(rq->rq_flags & RQF_QUIET))
		bio_set_flag(bio, BIO_QUIET);

	bio_advance(bio, nbytes);

	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
		/*
		 * Partial zone append completions cannot be supported as the
		 * BIO fragments may end up not being written sequentially.
		 */
		if (bio->bi_iter.bi_size)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_iter.bi_sector = rq->__sector;
	}

	/* don't actually finish bio if it's part of flush sequence */
	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
		bio_endio(bio);
}

static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
	if (req->part && blk_do_io_stat(req)) {
		const int sgrp = op_stat_group(req_op(req));

		part_stat_lock();
		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
		part_stat_unlock();
	}
}

/**
 * blk_update_request - Complete multiple bytes without completing the request
 * @req:      the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete for @req
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 *     the request structure even if @req doesn't have leftover.
 *     If @req has leftover, sets it up for the next range of segments.
 *
 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 *     %false return from this function.
 *
 * Note:
 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 *      except in the consistency check at the end of this function.
 *
 * Return:
 *     %false - this request doesn't have any more data
 *     %true  - this request has more data
 **/
bool blk_update_request(struct request *req, blk_status_t error,
		unsigned int nr_bytes)
{
	int total_bytes;

	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);

	if (!req->bio)
		return false;

#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
	    error == BLK_STS_OK)
		req->q->integrity.profile->complete_fn(req, nr_bytes);
#endif

	if (unlikely(error && !blk_rq_is_passthrough(req) &&
		     !(req->rq_flags & RQF_QUIET)))
		blk_print_req_error(req, error);

	blk_account_io_completion(req, nr_bytes);

	total_bytes = 0;
	while (req->bio) {
		struct bio *bio = req->bio;
		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);

		if (bio_bytes == bio->bi_iter.bi_size)
			req->bio = bio->bi_next;

		/* Completion has already been traced */
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
		req_bio_endio(req, bio, bio_bytes, error);

		total_bytes += bio_bytes;
		nr_bytes -= bio_bytes;

		if (!nr_bytes)
			break;
	}

	/*
	 * completely done
	 */
	if (!req->bio) {
		/*
		 * Reset counters so that the request stacking driver
		 * can find how many bytes remain in the request
		 * later.
		 */
		req->__data_len = 0;
		return false;
	}

	req->__data_len -= total_bytes;

	/* update sector only for requests with clear definition of sector */
	if (!blk_rq_is_passthrough(req))
		req->__sector += total_bytes >> 9;

	/* mixed attributes always follow the first bio */
	if (req->rq_flags & RQF_MIXED_MERGE) {
		req->cmd_flags &= ~REQ_FAILFAST_MASK;
		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
	}

	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
		/*
		 * If total number of sectors is less than the first segment
		 * size, something has gone terribly wrong.
		 */
		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
			blk_dump_rq_flags(req, "request botched");
			req->__data_len = blk_rq_cur_bytes(req);
		}

		/* recalculate the number of segments */
		req->nr_phys_segments = blk_recalc_rq_segments(req);
	}

	return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);

762
static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
763
{
764 765 766 767
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq, now);
	}
768

769 770 771
	blk_mq_sched_completed_request(rq, now);
	blk_account_io_done(rq, now);
}
772

773 774 775 776
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
{
	if (blk_mq_need_time_stamp(rq))
		__blk_mq_end_request_acct(rq, ktime_get_ns());
777

C
Christoph Hellwig 已提交
778
	if (rq->end_io) {
779
		rq_qos_done(rq->q, rq);
780
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
781
	} else {
782
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
783
	}
784
}
785
EXPORT_SYMBOL(__blk_mq_end_request);
786

787
void blk_mq_end_request(struct request *rq, blk_status_t error)
788 789 790
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
791
	__blk_mq_end_request(rq, error);
792
}
793
EXPORT_SYMBOL(blk_mq_end_request);
794

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
#define TAG_COMP_BATCH		32

static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
					  int *tag_array, int nr_tags)
{
	struct request_queue *q = hctx->queue;

	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
}

void blk_mq_end_request_batch(struct io_comp_batch *iob)
{
	int tags[TAG_COMP_BATCH], nr_tags = 0;
	struct blk_mq_hw_ctx *last_hctx = NULL;
	struct request *rq;
	u64 now = 0;

	if (iob->need_ts)
		now = ktime_get_ns();

	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
		prefetch(rq->bio);
		prefetch(rq->rq_next);

		blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
		if (iob->need_ts)
			__blk_mq_end_request_acct(rq, now);

		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
		if (!refcount_dec_and_test(&rq->ref))
			continue;

		blk_crypto_free_request(rq);
		blk_pm_mark_last_busy(rq);
		rq_qos_done(rq->q, rq);

		if (nr_tags == TAG_COMP_BATCH ||
		    (last_hctx && last_hctx != rq->mq_hctx)) {
			blk_mq_flush_tag_batch(last_hctx, tags, nr_tags);
			nr_tags = 0;
		}
		tags[nr_tags++] = rq->tag;
		last_hctx = rq->mq_hctx;
	}

	if (nr_tags)
		blk_mq_flush_tag_batch(last_hctx, tags, nr_tags);
}
EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);

846
static void blk_complete_reqs(struct llist_head *list)
847
{
848 849
	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
	struct request *rq, *next;
850

851
	llist_for_each_entry_safe(rq, next, entry, ipi_list)
852
		rq->q->mq_ops->complete(rq);
853 854
}

855
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
856
{
857
	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
858 859
}

860 861
static int blk_softirq_cpu_dead(unsigned int cpu)
{
862
	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
863 864 865
	return 0;
}

866
static void __blk_mq_complete_request_remote(void *data)
867
{
868
	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
869 870
}

871 872 873 874 875 876 877
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
	int cpu = raw_smp_processor_id();

	if (!IS_ENABLED(CONFIG_SMP) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
		return false;
878 879 880 881 882 883
	/*
	 * With force threaded interrupts enabled, raising softirq from an SMP
	 * function call will always result in waking the ksoftirqd thread.
	 * This is probably worse than completing the request on a different
	 * cache domain.
	 */
884
	if (force_irqthreads())
885
		return false;
886 887 888 889 890 891 892 893 894 895 896

	/* same CPU or cache domain?  Complete locally */
	if (cpu == rq->mq_ctx->cpu ||
	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
		return false;

	/* don't try to IPI to an offline CPU */
	return cpu_online(rq->mq_ctx->cpu);
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
static void blk_mq_complete_send_ipi(struct request *rq)
{
	struct llist_head *list;
	unsigned int cpu;

	cpu = rq->mq_ctx->cpu;
	list = &per_cpu(blk_cpu_done, cpu);
	if (llist_add(&rq->ipi_list, list)) {
		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
		smp_call_function_single_async(cpu, &rq->csd);
	}
}

static void blk_mq_raise_softirq(struct request *rq)
{
	struct llist_head *list;

	preempt_disable();
	list = this_cpu_ptr(&blk_cpu_done);
	if (llist_add(&rq->ipi_list, list))
		raise_softirq(BLOCK_SOFTIRQ);
	preempt_enable();
}

921
bool blk_mq_complete_request_remote(struct request *rq)
922
{
923
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
924

925 926 927 928
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
929
	if (rq->cmd_flags & REQ_POLLED)
930
		return false;
C
Christoph Hellwig 已提交
931

932
	if (blk_mq_complete_need_ipi(rq)) {
933 934
		blk_mq_complete_send_ipi(rq);
		return true;
935
	}
936

937 938 939 940 941
	if (rq->q->nr_hw_queues == 1) {
		blk_mq_raise_softirq(rq);
		return true;
	}
	return false;
942 943 944 945 946 947 948 949 950 951 952 953 954 955
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Complete a request by scheduling the ->complete_rq operation.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (!blk_mq_complete_request_remote(rq))
		rq->q->mq_ops->complete(rq);
956
}
957
EXPORT_SYMBOL(blk_mq_complete_request);
958

959
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
960
	__releases(hctx->srcu)
961 962 963 964
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
965
		srcu_read_unlock(hctx->srcu, srcu_idx);
966 967 968
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
969
	__acquires(hctx->srcu)
970
{
971 972 973
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
974
		rcu_read_lock();
975
	} else
976
		*srcu_idx = srcu_read_lock(hctx->srcu);
977 978
}

979 980 981 982 983 984 985 986
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
987
void blk_mq_start_request(struct request *rq)
988 989 990
{
	struct request_queue *q = rq->q;

991
	trace_block_rq_issue(rq);
992

993
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
994 995 996 997 998 999 1000 1001
		u64 start_time;
#ifdef CONFIG_BLK_CGROUP
		if (rq->bio)
			start_time = bio_issue_time(&rq->bio->bi_issue);
		else
#endif
			start_time = ktime_get_ns();
		rq->io_start_time_ns = start_time;
1002
		rq->stats_sectors = blk_rq_sectors(rq);
1003
		rq->rq_flags |= RQF_STATS;
1004
		rq_qos_issue(q, rq);
1005 1006
	}

1007
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1008

1009
	blk_add_timer(rq);
K
Keith Busch 已提交
1010
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1011

1012 1013 1014 1015
#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
1016 1017
	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1018
}
1019
EXPORT_SYMBOL(blk_mq_start_request);
1020

1021
static void __blk_mq_requeue_request(struct request *rq)
1022 1023 1024
{
	struct request_queue *q = rq->q;

1025 1026
	blk_mq_put_driver_tag(rq);

1027
	trace_block_rq_requeue(rq);
1028
	rq_qos_requeue(q, rq);
1029

K
Keith Busch 已提交
1030 1031
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1032
		rq->rq_flags &= ~RQF_TIMED_OUT;
1033
	}
1034 1035
}

1036
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1037 1038 1039
{
	__blk_mq_requeue_request(rq);

1040 1041 1042
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
1043
	BUG_ON(!list_empty(&rq->queuelist));
1044
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1045 1046 1047
}
EXPORT_SYMBOL(blk_mq_requeue_request);

1048 1049 1050
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
1051
		container_of(work, struct request_queue, requeue_work.work);
1052 1053 1054
	LIST_HEAD(rq_list);
	struct request *rq, *next;

1055
	spin_lock_irq(&q->requeue_lock);
1056
	list_splice_init(&q->requeue_list, &rq_list);
1057
	spin_unlock_irq(&q->requeue_lock);
1058 1059

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1060
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1061 1062
			continue;

1063
		rq->rq_flags &= ~RQF_SOFTBARRIER;
1064
		list_del_init(&rq->queuelist);
1065 1066 1067 1068 1069 1070
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
1071
			blk_mq_request_bypass_insert(rq, false, false);
1072 1073
		else
			blk_mq_sched_insert_request(rq, true, false, false);
1074 1075 1076 1077 1078
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
1079
		blk_mq_sched_insert_request(rq, false, false, false);
1080 1081
	}

1082
	blk_mq_run_hw_queues(q, false);
1083 1084
}

1085 1086
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
1087 1088 1089 1090 1091 1092
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
1093
	 * request head insertion from the workqueue.
1094
	 */
1095
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1096 1097 1098

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
1099
		rq->rq_flags |= RQF_SOFTBARRIER;
1100 1101 1102 1103 1104
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
1105 1106 1107

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
1108 1109 1110 1111
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
1112
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1113 1114 1115
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

1116 1117 1118
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
1119 1120
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
1121 1122 1123
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

1124 1125
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
1126 1127
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
1128
		return tags->rqs[tag];
1129
	}
1130 1131

	return NULL;
1132 1133 1134
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

1135 1136
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
1137 1138
{
	/*
1139
	 * If we find a request that isn't idle and the queue matches,
1140
	 * we know the queue is busy. Return false to stop the iteration.
1141
	 */
1142
	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1143 1144 1145 1146 1147 1148 1149 1150 1151
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

1152
bool blk_mq_queue_inflight(struct request_queue *q)
1153 1154 1155
{
	bool busy = false;

1156
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1157 1158
	return busy;
}
1159
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1160

1161
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1162
{
1163
	req->rq_flags |= RQF_TIMED_OUT;
1164 1165 1166 1167 1168 1169 1170
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1171
	}
1172 1173

	blk_add_timer(req);
1174
}
1175

K
Keith Busch 已提交
1176
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1177
{
K
Keith Busch 已提交
1178
	unsigned long deadline;
1179

K
Keith Busch 已提交
1180 1181
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
1182 1183
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
1184

1185
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
1186 1187
	if (time_after_eq(jiffies, deadline))
		return true;
1188

K
Keith Busch 已提交
1189 1190 1191 1192 1193
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
1194 1195
}

1196 1197
void blk_mq_put_rq_ref(struct request *rq)
{
M
Ming Lei 已提交
1198
	if (is_flush_rq(rq))
1199 1200 1201 1202 1203
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
}

1204
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1205 1206
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
1207 1208 1209
	unsigned long *next = priv;

	/*
1210 1211 1212 1213 1214
	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
	 * be reallocated underneath the timeout handler's processing, then
	 * the expire check is reliable. If the request is not expired, then
	 * it was completed and reallocated as a new request after returning
	 * from blk_mq_check_expired().
1215
	 */
K
Keith Busch 已提交
1216
	if (blk_mq_req_expired(rq, next))
1217
		blk_mq_rq_timed_out(rq, reserved);
1218
	return true;
1219 1220
}

1221
static void blk_mq_timeout_work(struct work_struct *work)
1222
{
1223 1224
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
1225
	unsigned long next = 0;
1226
	struct blk_mq_hw_ctx *hctx;
1227
	int i;
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
1238
	 * blk_freeze_queue_start, and the moment the last request is
1239 1240 1241 1242
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
1243 1244
		return;

K
Keith Busch 已提交
1245
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1246

K
Keith Busch 已提交
1247 1248
	if (next != 0) {
		mod_timer(&q->timeout, next);
1249
	} else {
1250 1251 1252 1253 1254 1255
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
1256 1257 1258 1259 1260
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
1261
	}
1262
	blk_queue_exit(q);
1263 1264
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1275
	enum hctx_type type = hctx->type;
1276 1277

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1278
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1279
	sbitmap_clear_bit(sb, bitnr);
1280 1281 1282 1283
	spin_unlock(&ctx->lock);
	return true;
}

1284 1285 1286 1287
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1288
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1289
{
1290 1291 1292 1293
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1294

1295
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1296
}
1297
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
1310
	enum hctx_type type = hctx->type;
1311 1312

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1313 1314
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1315
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
1316
		if (list_empty(&ctx->rq_lists[type]))
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1327
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1339 1340
static bool __blk_mq_get_driver_tag(struct request *rq)
{
1341
	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1342 1343 1344
	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
	int tag;

1345 1346
	blk_mq_tag_busy(rq->mq_hctx);

1347
	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1348
		bt = &rq->mq_hctx->tags->breserved_tags;
1349
		tag_offset = 0;
1350 1351 1352
	} else {
		if (!hctx_may_queue(rq->mq_hctx, bt))
			return false;
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	}

	tag = __sbitmap_queue_get(bt);
	if (tag == BLK_MQ_NO_TAG)
		return false;

	rq->tag = tag + tag_offset;
	return true;
}

1363
bool blk_mq_get_driver_tag(struct request *rq)
1364
{
1365 1366 1367 1368 1369
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
		return false;

1370
	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1371 1372
			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
		rq->rq_flags |= RQF_MQ_INFLIGHT;
1373
		__blk_mq_inc_active_requests(hctx);
1374 1375 1376
	}
	hctx->tags->rqs[rq->tag] = rq;
	return true;
1377 1378
}

1379 1380
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1381 1382 1383 1384 1385
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1386
	spin_lock(&hctx->dispatch_wait_lock);
1387 1388 1389 1390
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
1391
		sbq = &hctx->tags->bitmap_tags;
1392 1393
		atomic_dec(&sbq->ws_active);
	}
1394 1395
	spin_unlock(&hctx->dispatch_wait_lock);

1396 1397 1398 1399
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1400 1401
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1402 1403
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1404 1405
 * marking us as waiting.
 */
1406
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1407
				 struct request *rq)
1408
{
1409
	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1410
	struct wait_queue_head *wq;
1411 1412
	wait_queue_entry_t *wait;
	bool ret;
1413

1414
	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1415
		blk_mq_sched_mark_restart_hctx(hctx);
1416

1417 1418 1419 1420 1421 1422 1423 1424
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1425
		return blk_mq_get_driver_tag(rq);
1426 1427
	}

1428
	wait = &hctx->dispatch_wait;
1429 1430 1431
	if (!list_empty_careful(&wait->entry))
		return false;

1432
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1433 1434 1435

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1436
	if (!list_empty(&wait->entry)) {
1437 1438
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1439
		return false;
1440 1441
	}

1442
	atomic_inc(&sbq->ws_active);
1443 1444
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1445

1446
	/*
1447 1448 1449
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1450
	 */
1451
	ret = blk_mq_get_driver_tag(rq);
1452
	if (!ret) {
1453 1454
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1455
		return false;
1456
	}
1457 1458 1459 1460 1461 1462

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1463
	atomic_dec(&sbq->ws_active);
1464 1465
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1466 1467

	return true;
1468 1469
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1496 1497
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static void blk_mq_handle_zone_resource(struct request *rq,
					struct list_head *zone_list)
{
	/*
	 * If we end up here it is because we cannot dispatch a request to a
	 * specific zone due to LLD level zone-write locking or other zone
	 * related resource not being available. In this case, set the request
	 * aside in zone_list for retrying it later.
	 */
	list_add(&rq->queuelist, zone_list);
	__blk_mq_requeue_request(rq);
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
enum prep_dispatch {
	PREP_DISPATCH_OK,
	PREP_DISPATCH_NO_TAG,
	PREP_DISPATCH_NO_BUDGET,
};

static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
						  bool need_budget)
{
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1538
	int budget_token = -1;
1539

1540 1541 1542 1543 1544 1545 1546
	if (need_budget) {
		budget_token = blk_mq_get_dispatch_budget(rq->q);
		if (budget_token < 0) {
			blk_mq_put_driver_tag(rq);
			return PREP_DISPATCH_NO_BUDGET;
		}
		blk_mq_set_rq_budget_token(rq, budget_token);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	}

	if (!blk_mq_get_driver_tag(rq)) {
		/*
		 * The initial allocation attempt failed, so we need to
		 * rerun the hardware queue when a tag is freed. The
		 * waitqueue takes care of that. If the queue is run
		 * before we add this entry back on the dispatch list,
		 * we'll re-run it below.
		 */
		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1558 1559 1560 1561 1562
			/*
			 * All budgets not got from this function will be put
			 * together during handling partial dispatch
			 */
			if (need_budget)
1563
				blk_mq_put_dispatch_budget(rq->q, budget_token);
1564 1565 1566 1567 1568 1569 1570
			return PREP_DISPATCH_NO_TAG;
		}
	}

	return PREP_DISPATCH_OK;
}

1571 1572
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
1573
		struct list_head *list)
1574
{
1575
	struct request *rq;
1576

1577 1578
	list_for_each_entry(rq, list, queuelist) {
		int budget_token = blk_mq_get_rq_budget_token(rq);
1579

1580 1581 1582
		if (budget_token >= 0)
			blk_mq_put_dispatch_budget(q, budget_token);
	}
1583 1584
}

1585 1586 1587
/*
 * Returns true if we did some work AND can potentially do more.
 */
1588
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1589
			     unsigned int nr_budgets)
1590
{
1591
	enum prep_dispatch prep;
1592
	struct request_queue *q = hctx->queue;
1593
	struct request *rq, *nxt;
1594
	int errors, queued;
1595
	blk_status_t ret = BLK_STS_OK;
1596
	LIST_HEAD(zone_list);
1597

1598 1599 1600
	if (list_empty(list))
		return false;

1601 1602 1603
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1604
	errors = queued = 0;
1605
	do {
1606
		struct blk_mq_queue_data bd;
1607

1608
		rq = list_first_entry(list, struct request, queuelist);
1609

1610
		WARN_ON_ONCE(hctx != rq->mq_hctx);
1611
		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1612
		if (prep != PREP_DISPATCH_OK)
1613
			break;
1614

1615 1616
		list_del_init(&rq->queuelist);

1617
		bd.rq = rq;
1618 1619 1620 1621 1622 1623 1624 1625 1626

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1627
			bd.last = !blk_mq_get_driver_tag(nxt);
1628
		}
1629

1630 1631 1632 1633 1634 1635
		/*
		 * once the request is queued to lld, no need to cover the
		 * budget any more
		 */
		if (nr_budgets)
			nr_budgets--;
1636
		ret = q->mq_ops->queue_rq(hctx, &bd);
1637 1638 1639
		switch (ret) {
		case BLK_STS_OK:
			queued++;
1640
			break;
1641 1642 1643 1644 1645
		case BLK_STS_RESOURCE:
		case BLK_STS_DEV_RESOURCE:
			blk_mq_handle_dev_resource(rq, list);
			goto out;
		case BLK_STS_ZONE_RESOURCE:
1646 1647 1648 1649 1650 1651
			/*
			 * Move the request to zone_list and keep going through
			 * the dispatch list to find more requests the drive can
			 * accept.
			 */
			blk_mq_handle_zone_resource(rq, &zone_list);
1652 1653
			break;
		default:
1654
			errors++;
1655
			blk_mq_end_request(rq, ret);
1656
		}
1657
	} while (!list_empty(list));
1658
out:
1659 1660 1661
	if (!list_empty(&zone_list))
		list_splice_tail_init(&zone_list, list);

1662 1663 1664 1665 1666
	/* If we didn't flush the entire list, we could have told the driver
	 * there was more coming, but that turned out to be a lie.
	 */
	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
		q->mq_ops->commit_rqs(hctx);
1667 1668 1669 1670
	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1671
	if (!list_empty(list)) {
1672
		bool needs_restart;
1673 1674
		/* For non-shared tags, the RESTART check will suffice */
		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1675
			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1676
		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1677

1678 1679
		if (nr_budgets)
			blk_mq_release_budgets(q, list);
1680

1681
		spin_lock(&hctx->lock);
1682
		list_splice_tail_init(list, &hctx->dispatch);
1683
		spin_unlock(&hctx->lock);
1684

1685 1686 1687 1688 1689 1690 1691 1692 1693
		/*
		 * Order adding requests to hctx->dispatch and checking
		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
		 * in blk_mq_sched_restart(). Avoid restart code path to
		 * miss the new added requests to hctx->dispatch, meantime
		 * SCHED_RESTART is observed here.
		 */
		smp_mb();

1694
		/*
1695 1696 1697
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1698
		 *
1699 1700 1701 1702
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1703
		 *
1704 1705 1706 1707 1708 1709 1710
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1711
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1712
		 *   and dm-rq.
1713 1714 1715
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
1716 1717
		 * that could otherwise occur if the queue is idle.  We'll do
		 * similar if we couldn't get budget and SCHED_RESTART is set.
1718
		 */
1719 1720
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1721
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1722
			blk_mq_run_hw_queue(hctx, true);
1723 1724
		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
					   no_budget_avail))
1725
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1726

1727
		blk_mq_update_dispatch_busy(hctx, true);
1728
		return false;
1729 1730
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1731

1732
	return (queued + errors) != 0;
1733 1734
}

1735 1736 1737 1738 1739 1740
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1741 1742 1743 1744
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1745 1746 1747 1748 1749 1750
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1751
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1752

1753 1754 1755
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1756 1757
}

1758 1759 1760 1761 1762 1763 1764 1765 1766
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1767 1768 1769 1770 1771 1772 1773 1774
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1775
	bool tried = false;
1776
	int next_cpu = hctx->next_cpu;
1777

1778 1779
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1780 1781

	if (--hctx->next_cpu_batch <= 0) {
1782
select_cpu:
1783
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1784
				cpu_online_mask);
1785
		if (next_cpu >= nr_cpu_ids)
1786
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1787 1788 1789
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1790 1791 1792 1793
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1794
	if (!cpu_online(next_cpu)) {
1795 1796 1797 1798 1799 1800 1801 1802 1803
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1804
		hctx->next_cpu = next_cpu;
1805 1806 1807
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1808 1809 1810

	hctx->next_cpu = next_cpu;
	return next_cpu;
1811 1812
}

1813 1814 1815 1816
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
1817
 * @msecs: Milliseconds of delay to wait before running the queue.
1818 1819 1820 1821
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1822 1823
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1824
{
1825
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1826 1827
		return;

1828
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1829 1830
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1831
			__blk_mq_run_hw_queue(hctx);
1832
			put_cpu();
1833 1834
			return;
		}
1835

1836
		put_cpu();
1837
	}
1838

1839 1840
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1841 1842
}

1843 1844 1845
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
1846
 * @msecs: Milliseconds of delay to wait before running the queue.
1847 1848 1849
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
1850 1851 1852 1853 1854 1855
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1856 1857 1858 1859 1860 1861 1862 1863 1864
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
1865
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1866
{
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1878 1879 1880 1881
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1882

1883
	if (need_run)
1884
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1885
}
O
Omar Sandoval 已提交
1886
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/*
 * Is the request queue handled by an IO scheduler that does not respect
 * hardware queues when dispatching?
 */
static bool blk_mq_has_sqsched(struct request_queue *q)
{
	struct elevator_queue *e = q->elevator;

	if (e && e->type->ops.dispatch_request &&
	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
		return true;
	return false;
}

/*
 * Return prefered queue to dispatch from (if any) for non-mq aware IO
 * scheduler.
 */
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;

	/*
	 * If the IO scheduler does not respect hardware queues when
	 * dispatching, we just don't bother with multiple HW queues and
	 * dispatch from hctx for the current CPU since running multiple queues
	 * just causes lock contention inside the scheduler and pointless cache
	 * bouncing.
	 */
	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
				     raw_smp_processor_id());
	if (!blk_mq_hctx_stopped(hctx))
		return hctx;
	return NULL;
}

1924
/**
1925
 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1926 1927 1928
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
1929
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1930
{
1931
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1932 1933
	int i;

1934 1935 1936
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
1937
	queue_for_each_hw_ctx(q, hctx, i) {
1938
		if (blk_mq_hctx_stopped(hctx))
1939
			continue;
1940 1941 1942 1943 1944 1945 1946 1947
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_run_hw_queue(hctx, async);
1948 1949
	}
}
1950
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1951

1952 1953 1954
/**
 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
 * @q: Pointer to the request queue to run.
1955
 * @msecs: Milliseconds of delay to wait before running the queues.
1956 1957 1958
 */
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
1959
	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1960 1961
	int i;

1962 1963 1964
	sq_hctx = NULL;
	if (blk_mq_has_sqsched(q))
		sq_hctx = blk_mq_get_sq_hctx(q);
1965 1966 1967
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_hctx_stopped(hctx))
			continue;
1968 1969 1970 1971 1972 1973 1974 1975
		/*
		 * Dispatch from this hctx either if there's no hctx preferred
		 * by IO scheduler or if it has requests that bypass the
		 * scheduler.
		 */
		if (!sq_hctx || sq_hctx == hctx ||
		    !list_empty_careful(&hctx->dispatch))
			blk_mq_delay_run_hw_queue(hctx, msecs);
1976 1977 1978 1979
	}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

2000 2001 2002
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
2003
 * BLK_STS_RESOURCE is usually returned.
2004 2005 2006 2007 2008
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
2009 2010
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
2011
	cancel_delayed_work(&hctx->run_work);
2012

2013
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2014
}
2015
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2016

2017 2018 2019
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
2020
 * BLK_STS_RESOURCE is usually returned.
2021 2022 2023 2024 2025
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
2026 2027
void blk_mq_stop_hw_queues(struct request_queue *q)
{
2028 2029 2030 2031 2032
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
2033 2034 2035
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

2036 2037 2038
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2039

2040
	blk_mq_run_hw_queue(hctx, false);
2041 2042 2043
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

2064
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2065 2066 2067 2068
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2069 2070
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
2071 2072 2073
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

2074
static void blk_mq_run_work_fn(struct work_struct *work)
2075 2076 2077
{
	struct blk_mq_hw_ctx *hctx;

2078
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2079

2080
	/*
M
Ming Lei 已提交
2081
	 * If we are stopped, don't run the queue.
2082
	 */
2083
	if (blk_mq_hctx_stopped(hctx))
2084
		return;
2085 2086 2087 2088

	__blk_mq_run_hw_queue(hctx);
}

2089 2090 2091
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
2092
{
J
Jens Axboe 已提交
2093
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
2094
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
2095

2096 2097
	lockdep_assert_held(&ctx->lock);

2098
	trace_block_rq_insert(rq);
2099

2100
	if (at_head)
M
Ming Lei 已提交
2101
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2102
	else
M
Ming Lei 已提交
2103
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2104
}
2105

2106 2107
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
2108 2109 2110
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

2111 2112
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
2113
	__blk_mq_insert_req_list(hctx, rq, at_head);
2114 2115 2116
	blk_mq_hctx_mark_pending(hctx, ctx);
}

2117 2118 2119
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
2120
 * @at_head: true if the request should be inserted at the head of the list.
2121 2122
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
2123 2124 2125
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
2126 2127
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
2128
{
2129
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2130 2131

	spin_lock(&hctx->lock);
2132 2133 2134 2135
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
2136 2137
	spin_unlock(&hctx->lock);

2138 2139
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
2140 2141
}

2142 2143
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
2144 2145

{
2146
	struct request *rq;
M
Ming Lei 已提交
2147
	enum hctx_type type = hctx->type;
2148

2149 2150 2151 2152
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
2153
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
2154
		BUG_ON(rq->mq_ctx != ctx);
2155
		trace_block_rq_insert(rq);
2156
	}
2157 2158

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2159
	list_splice_tail_init(list, &ctx->rq_lists[type]);
2160
	blk_mq_hctx_mark_pending(hctx, ctx);
2161 2162 2163
	spin_unlock(&ctx->lock);
}

2164 2165
static int plug_rq_cmp(void *priv, const struct list_head *a,
		       const struct list_head *b)
2166 2167 2168 2169
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

P
Pavel Begunkov 已提交
2170 2171 2172 2173
	if (rqa->mq_ctx != rqb->mq_ctx)
		return rqa->mq_ctx > rqb->mq_ctx;
	if (rqa->mq_hctx != rqb->mq_hctx)
		return rqa->mq_hctx > rqb->mq_hctx;
J
Jens Axboe 已提交
2174 2175

	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
2176 2177 2178 2179 2180 2181
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(list);

2182 2183
	if (list_empty(&plug->mq_list))
		return;
2184 2185
	list_splice_init(&plug->mq_list, &list);

2186 2187
	if (plug->rq_count > 2 && plug->multiple_queues)
		list_sort(NULL, &list, plug_rq_cmp);
2188

2189 2190
	plug->rq_count = 0;

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	do {
		struct list_head rq_list;
		struct request *rq, *head_rq = list_entry_rq(list.next);
		struct list_head *pos = &head_rq->queuelist; /* skip first */
		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
		unsigned int depth = 1;

		list_for_each_continue(pos, &list) {
			rq = list_entry_rq(pos);
			BUG_ON(!rq->q);
			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
				break;
			depth++;
2205 2206
		}

2207 2208
		list_cut_before(&rq_list, &list, pos);
		trace_block_unplug(head_rq->q, depth, !from_schedule);
2209
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
2210
						from_schedule);
2211
	} while(!list_empty(&list));
2212 2213
}

2214 2215
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
2216
{
2217 2218
	int err;

2219 2220 2221 2222 2223
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
2224
	blk_rq_bio_prep(rq, bio, nr_segs);
2225 2226 2227 2228

	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
	WARN_ON_ONCE(err);
2229

2230
	blk_account_io_start(rq);
2231 2232
}

2233
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2234
					    struct request *rq, bool last)
2235 2236 2237 2238
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
2239
		.last = last,
2240
	};
2241
	blk_status_t ret;
2242 2243 2244 2245 2246 2247 2248 2249 2250

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
2251
		blk_mq_update_dispatch_busy(hctx, false);
2252 2253
		break;
	case BLK_STS_RESOURCE:
2254
	case BLK_STS_DEV_RESOURCE:
2255
		blk_mq_update_dispatch_busy(hctx, true);
2256 2257 2258
		__blk_mq_requeue_request(rq);
		break;
	default:
2259
		blk_mq_update_dispatch_busy(hctx, false);
2260 2261 2262 2263 2264 2265
		break;
	}

	return ret;
}

2266
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2267
						struct request *rq,
2268
						bool bypass_insert, bool last)
2269 2270
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
2271
	bool run_queue = true;
2272
	int budget_token;
M
Ming Lei 已提交
2273

2274
	/*
2275
	 * RCU or SRCU read lock is needed before checking quiesced flag.
2276
	 *
2277 2278 2279
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
2280
	 */
2281
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
2282
		run_queue = false;
2283 2284
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
2285
	}
2286

2287
	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2288
		goto insert;
2289

2290 2291
	budget_token = blk_mq_get_dispatch_budget(q);
	if (budget_token < 0)
2292
		goto insert;
2293

2294 2295
	blk_mq_set_rq_budget_token(rq, budget_token);

2296
	if (!blk_mq_get_driver_tag(rq)) {
2297
		blk_mq_put_dispatch_budget(q, budget_token);
2298
		goto insert;
2299
	}
2300

2301
	return __blk_mq_issue_directly(hctx, rq, last);
2302 2303 2304 2305
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

2306 2307
	blk_mq_sched_insert_request(rq, false, run_queue, false);

2308 2309 2310
	return BLK_STS_OK;
}

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
2321
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2322
		struct request *rq)
2323 2324 2325 2326 2327 2328 2329 2330
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

2331
	ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2332
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2333
		blk_mq_request_bypass_insert(rq, false, true);
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
	blk_status_t ret;
	int srcu_idx;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
2347
	ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2348
	hctx_unlock(hctx, srcu_idx);
2349 2350

	return ret;
2351 2352
}

2353 2354 2355
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
2356
	int queued = 0;
2357
	int errors = 0;
2358

2359
	while (!list_empty(list)) {
2360
		blk_status_t ret;
2361 2362 2363 2364
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
2365 2366 2367 2368
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
2369
				blk_mq_request_bypass_insert(rq, false,
2370
							list_empty(list));
2371 2372 2373
				break;
			}
			blk_mq_end_request(rq, ret);
2374
			errors++;
2375 2376
		} else
			queued++;
2377
	}
J
Jens Axboe 已提交
2378 2379 2380 2381 2382 2383

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
2384 2385
	if ((!list_empty(list) || errors) &&
	     hctx->queue->mq_ops->commit_rqs && queued)
J
Jens Axboe 已提交
2386
		hctx->queue->mq_ops->commit_rqs(hctx);
2387 2388
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	plug->rq_count++;
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

2403
/*
2404
 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2405 2406 2407 2408 2409 2410
 * queues. This is important for md arrays to benefit from merging
 * requests.
 */
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
{
	if (plug->multiple_queues)
2411
		return BLK_MAX_REQUEST_COUNT * 2;
2412 2413 2414
	return BLK_MAX_REQUEST_COUNT;
}

2415
/**
2416
 * blk_mq_submit_bio - Create and send a request to block device.
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 */
2428
void blk_mq_submit_bio(struct bio *bio)
2429
{
2430
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2431
	const int is_sync = op_is_sync(bio->bi_opf);
2432
	const int is_flush_fua = op_is_flush(bio->bi_opf);
2433
	struct request *rq;
2434
	struct blk_plug *plug;
2435
	struct request *same_queue_rq = NULL;
2436
	unsigned int nr_segs = 1;
2437
	blk_status_t ret;
2438 2439

	blk_queue_bounce(q, &bio);
2440 2441
	if (blk_may_split(q, bio))
		__blk_queue_split(q, &bio, &nr_segs);
2442

2443
	if (!bio_integrity_prep(bio))
2444
		goto queue_exit;
2445

2446
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2447
	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2448
		goto queue_exit;
2449

2450
	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2451
		goto queue_exit;
2452

2453
	rq_qos_throttle(q, bio);
J
Jens Axboe 已提交
2454

2455 2456
	plug = blk_mq_plug(q, bio);
	if (plug && plug->cached_rq) {
2457
		rq = rq_list_pop(&plug->cached_rq);
2458 2459
		INIT_LIST_HEAD(&rq->queuelist);
	} else {
2460 2461 2462 2463 2464 2465
		struct blk_mq_alloc_data data = {
			.q		= q,
			.nr_tags	= 1,
			.cmd_flags	= bio->bi_opf,
		};

2466 2467 2468 2469 2470
		if (plug) {
			data.nr_tags = plug->nr_ios;
			plug->nr_ios = 1;
			data.cached_rq = &plug->cached_rq;
		}
2471
		rq = __blk_mq_alloc_requests(&data);
2472 2473 2474 2475 2476 2477
		if (unlikely(!rq)) {
			rq_qos_cleanup(q, bio);
			if (bio->bi_opf & REQ_NOWAIT)
				bio_wouldblock_error(bio);
			goto queue_exit;
		}
J
Jens Axboe 已提交
2478 2479
	}

2480
	trace_block_getrq(bio);
2481

2482
	rq_qos_track(q, rq, bio);
2483

2484 2485
	blk_mq_bio_to_request(rq, bio, nr_segs);

2486 2487 2488 2489 2490
	ret = blk_crypto_init_request(rq);
	if (ret != BLK_STS_OK) {
		bio->bi_status = ret;
		bio_endio(bio);
		blk_mq_free_request(rq);
2491
		return;
2492 2493
	}

2494
	if (unlikely(is_flush_fua)) {
2495
		struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2496
		/* Bypass scheduler for flush requests */
2497
		blk_insert_flush(rq);
2498
		blk_mq_run_hw_queue(hctx, true);
2499
	} else if (plug && (q->nr_hw_queues == 1 ||
2500
		   blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2501
		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2502 2503 2504
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
M
Ming Lei 已提交
2505 2506 2507
		 *
		 * Use normal plugging if this disk is slow HDD, as sequential
		 * IO may benefit a lot from plug merging.
2508
		 */
2509
		unsigned int request_count = plug->rq_count;
2510 2511
		struct request *last = NULL;

M
Ming Lei 已提交
2512
		if (!request_count)
2513
			trace_block_plug(q);
2514 2515
		else
			last = list_entry_rq(plug->mq_list.prev);
2516

2517
		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2518
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2519 2520
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
2521
		}
2522

2523
		blk_add_rq_to_plug(plug, rq);
2524
	} else if (rq->rq_flags & RQF_ELV) {
2525
		/* Insert the request at the IO scheduler queue */
2526
		blk_mq_sched_insert_request(rq, false, true, true);
2527
	} else if (plug && !blk_queue_nomerges(q)) {
2528
		/*
2529
		 * We do limited plugging. If the bio can be merged, do that.
2530 2531
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
2532 2533
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
2534
		 */
2535 2536
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
2537
		if (same_queue_rq) {
2538
			list_del_init(&same_queue_rq->queuelist);
2539 2540
			plug->rq_count--;
		}
2541
		blk_add_rq_to_plug(plug, rq);
2542
		trace_block_plug(q);
2543

2544
		if (same_queue_rq) {
2545
			trace_block_unplug(q, 1, true);
2546
			blk_mq_try_issue_directly(same_queue_rq->mq_hctx,
2547
						  same_queue_rq);
2548
		}
2549
	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2550
		   !rq->mq_hctx->dispatch_busy) {
2551 2552 2553 2554
		/*
		 * There is no scheduler and we can try to send directly
		 * to the hardware.
		 */
2555
		blk_mq_try_issue_directly(rq->mq_hctx, rq);
2556
	} else {
2557
		/* Default case. */
2558
		blk_mq_sched_insert_request(rq, false, true, true);
2559
	}
2560

2561
	return;
2562 2563
queue_exit:
	blk_queue_exit(q);
2564 2565
}

2566 2567 2568 2569 2570 2571
static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

/* called before freeing request pool in @tags */
2572 2573
static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
				    struct blk_mq_tags *tags)
2574 2575 2576 2577
{
	struct page *page;
	unsigned long flags;

2578 2579 2580 2581
	/* There is no need to clear a driver tags own mapping */
	if (drv_tags == tags)
		return;

2582 2583 2584 2585 2586
	list_for_each_entry(page, &tags->page_list, lru) {
		unsigned long start = (unsigned long)page_address(page);
		unsigned long end = start + order_to_size(page->private);
		int i;

2587
		for (i = 0; i < drv_tags->nr_tags; i++) {
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
			struct request *rq = drv_tags->rqs[i];
			unsigned long rq_addr = (unsigned long)rq;

			if (rq_addr >= start && rq_addr < end) {
				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
				cmpxchg(&drv_tags->rqs[i], rq, NULL);
			}
		}
	}

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&drv_tags->lock, flags);
	spin_unlock_irqrestore(&drv_tags->lock, flags);
}

2608 2609
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2610
{
2611
	struct blk_mq_tags *drv_tags;
2612
	struct page *page;
2613

2614 2615
	if (blk_mq_is_shared_tags(set->flags))
		drv_tags = set->shared_tags;
2616 2617
	else
		drv_tags = set->tags[hctx_idx];
2618

2619
	if (tags->static_rqs && set->ops->exit_request) {
2620
		int i;
2621

2622
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2623 2624 2625
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2626
				continue;
2627
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2628
			tags->static_rqs[i] = NULL;
2629
		}
2630 2631
	}

2632
	blk_mq_clear_rq_mapping(drv_tags, tags);
2633

2634 2635
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2636
		list_del_init(&page->lru);
2637 2638
		/*
		 * Remove kmemleak object previously allocated in
2639
		 * blk_mq_alloc_rqs().
2640 2641
		 */
		kmemleak_free(page_address(page));
2642 2643
		__free_pages(page, page->private);
	}
2644
}
2645

2646
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2647
{
2648
	kfree(tags->rqs);
2649
	tags->rqs = NULL;
J
Jens Axboe 已提交
2650 2651
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2652

2653
	blk_mq_free_tags(tags);
2654 2655
}

2656 2657 2658
static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					       unsigned int hctx_idx,
					       unsigned int nr_tags,
2659
					       unsigned int reserved_tags)
2660
{
2661
	struct blk_mq_tags *tags;
2662
	int node;
2663

2664
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2665 2666 2667
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

2668 2669
	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2670 2671
	if (!tags)
		return NULL;
2672

2673
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2674
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2675
				 node);
2676
	if (!tags->rqs) {
2677
		blk_mq_free_tags(tags);
2678 2679
		return NULL;
	}
2680

2681 2682 2683
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2684 2685
	if (!tags->static_rqs) {
		kfree(tags->rqs);
2686
		blk_mq_free_tags(tags);
J
Jens Axboe 已提交
2687 2688 2689
		return NULL;
	}

2690 2691 2692
	return tags;
}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2704
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2705 2706 2707
	return 0;
}

2708 2709 2710
static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
			    struct blk_mq_tags *tags,
			    unsigned int hctx_idx, unsigned int depth)
2711 2712 2713
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2714 2715
	int node;

2716
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2717 2718
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2719 2720 2721

	INIT_LIST_HEAD(&tags->page_list);

2722 2723 2724 2725
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2726
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2727
				cache_line_size());
2728
	left = rq_size * depth;
2729

2730
	for (i = 0; i < depth; ) {
2731 2732 2733 2734 2735
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2736
		while (this_order && left < order_to_size(this_order - 1))
2737 2738 2739
			this_order--;

		do {
2740
			page = alloc_pages_node(node,
2741
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2742
				this_order);
2743 2744 2745 2746 2747 2748 2749 2750 2751
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2752
			goto fail;
2753 2754

		page->private = this_order;
2755
		list_add_tail(&page->lru, &tags->page_list);
2756 2757

		p = page_address(page);
2758 2759 2760 2761
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2762
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2763
		entries_per_page = order_to_size(this_order) / rq_size;
2764
		to_do = min(entries_per_page, depth - i);
2765 2766
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2767 2768 2769
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2770 2771 2772
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2773 2774
			}

2775 2776 2777 2778
			p += rq_size;
			i++;
		}
	}
2779
	return 0;
2780

2781
fail:
2782 2783
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2784 2785
}

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
struct rq_iter_data {
	struct blk_mq_hw_ctx *hctx;
	bool has_rq;
};

static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
{
	struct rq_iter_data *iter_data = data;

	if (rq->mq_hctx != iter_data->hctx)
		return true;
	iter_data->has_rq = true;
	return false;
}

static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->sched_tags ?
			hctx->sched_tags : hctx->tags;
	struct rq_iter_data data = {
		.hctx	= hctx,
	};

	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
	return data.has_rq;
}

static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
		struct blk_mq_hw_ctx *hctx)
{
	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
		return false;
	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
		return false;
	return true;
}

static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
		return 0;

	/*
	 * Prevent new request from being allocated on the current hctx.
	 *
	 * The smp_mb__after_atomic() Pairs with the implied barrier in
	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
	 * seen once we return from the tag allocator.
	 */
	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	smp_mb__after_atomic();

	/*
	 * Try to grab a reference to the queue and wait for any outstanding
	 * requests.  If we could not grab a reference the queue has been
	 * frozen and there are no requests.
	 */
	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
		while (blk_mq_hctx_has_requests(hctx))
			msleep(5);
		percpu_ref_put(&hctx->queue->q_usage_counter);
	}

	return 0;
}

static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
			struct blk_mq_hw_ctx, cpuhp_online);

	if (cpumask_test_cpu(cpu, hctx->cpumask))
		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
	return 0;
}

J
Jens Axboe 已提交
2866 2867 2868 2869 2870
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2871
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2872
{
2873
	struct blk_mq_hw_ctx *hctx;
2874 2875
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
2876
	enum hctx_type type;
2877

2878
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2879 2880 2881
	if (!cpumask_test_cpu(cpu, hctx->cpumask))
		return 0;

J
Jens Axboe 已提交
2882
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
2883
	type = hctx->type;
2884 2885

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2886 2887
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
2888 2889 2890 2891 2892
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2893
		return 0;
2894

J
Jens Axboe 已提交
2895 2896 2897
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2898 2899

	blk_mq_run_hw_queue(hctx, true);
2900
	return 0;
2901 2902
}

2903
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2904
{
2905 2906 2907
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
						    &hctx->cpuhp_online);
2908 2909
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2910 2911
}

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
/*
 * Before freeing hw queue, clearing the flush request reference in
 * tags->rqs[] for avoiding potential UAF.
 */
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
		unsigned int queue_depth, struct request *flush_rq)
{
	int i;
	unsigned long flags;

	/* The hw queue may not be mapped yet */
	if (!tags)
		return;

	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);

	for (i = 0; i < queue_depth; i++)
		cmpxchg(&tags->rqs[i], flush_rq, NULL);

	/*
	 * Wait until all pending iteration is done.
	 *
	 * Request reference is cleared and it is guaranteed to be observed
	 * after the ->lock is released.
	 */
	spin_lock_irqsave(&tags->lock, flags);
	spin_unlock_irqrestore(&tags->lock, flags);
}

2941
/* hctx->ctxs will be freed in queue's release handler */
2942 2943 2944 2945
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2946 2947
	struct request *flush_rq = hctx->fq->flush_rq;

2948 2949
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2950

2951 2952
	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
			set->queue_depth, flush_rq);
2953
	if (set->ops->exit_request)
2954
		set->ops->exit_request(set, flush_rq, hctx_idx);
2955

2956 2957 2958
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2959
	blk_mq_remove_cpuhp(hctx);
2960 2961 2962 2963

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
2964 2965
}

M
Ming Lei 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2975
		blk_mq_debugfs_unregister_hctx(hctx);
2976
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2977 2978 2979
	}
}

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2994 2995 2996
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2997
{
2998 2999
	hctx->queue_num = hctx_idx;

3000 3001 3002
	if (!(hctx->flags & BLK_MQ_F_STACKING))
		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
				&hctx->cpuhp_online);
3003 3004 3005 3006 3007 3008 3009
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
3010

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
3039
	if (node == NUMA_NO_NODE)
3040 3041
		node = set->numa_node;
	hctx->numa_node = node;
3042

3043
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3044 3045 3046
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
3047
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3048

3049 3050
	INIT_LIST_HEAD(&hctx->hctx_list);

3051
	/*
3052 3053
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
3054
	 */
3055
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3056
			gfp, node);
3057
	if (!hctx->ctxs)
3058
		goto free_cpumask;
3059

3060
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3061
				gfp, node, false, false))
3062 3063
		goto free_ctxs;
	hctx->nr_ctx = 0;
3064

3065
	spin_lock_init(&hctx->dispatch_wait_lock);
3066 3067 3068
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

3069
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3070
	if (!hctx->fq)
3071
		goto free_bitmap;
3072

3073
	if (hctx->flags & BLK_MQ_F_BLOCKING)
3074
		init_srcu_struct(hctx->srcu);
3075
	blk_mq_hctx_kobj_init(hctx);
3076

3077
	return hctx;
3078

3079
 free_bitmap:
3080
	sbitmap_free(&hctx->ctx_map);
3081 3082
 free_ctxs:
	kfree(hctx->ctxs);
3083 3084 3085 3086 3087 3088
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
3089
}
3090 3091 3092 3093

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
3094 3095
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
3096 3097 3098 3099

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
3100
		int k;
3101 3102 3103

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
3104 3105 3106
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

3107 3108 3109 3110 3111 3112
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
3113 3114 3115
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3116
				hctx->numa_node = cpu_to_node(i);
J
Jens Axboe 已提交
3117
		}
3118 3119 3120
	}
}

3121 3122 3123
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
					     unsigned int hctx_idx,
					     unsigned int depth)
3124
{
3125 3126
	struct blk_mq_tags *tags;
	int ret;
3127

3128
	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3129 3130
	if (!tags)
		return NULL;
3131

3132 3133
	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
	if (ret) {
3134
		blk_mq_free_rq_map(tags);
3135 3136
		return NULL;
	}
3137

3138 3139 3140 3141 3142 3143
	return tags;
}

static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
				       int hctx_idx)
{
3144 3145
	if (blk_mq_is_shared_tags(set->flags)) {
		set->tags[hctx_idx] = set->shared_tags;
3146 3147 3148 3149

		return true;
	}

3150 3151 3152 3153
	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
						       set->queue_depth);

	return set->tags[hctx_idx];
3154 3155
}

3156 3157 3158
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
			     struct blk_mq_tags *tags,
			     unsigned int hctx_idx)
3159
{
3160 3161
	if (tags) {
		blk_mq_free_rqs(set, tags, hctx_idx);
3162
		blk_mq_free_rq_map(tags);
3163
	}
3164 3165
}

3166 3167 3168
static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
				      unsigned int hctx_idx)
{
3169
	if (!blk_mq_is_shared_tags(set->flags))
3170 3171 3172 3173 3174
		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);

	set->tags[hctx_idx] = NULL;
}

3175
static void blk_mq_map_swqueue(struct request_queue *q)
3176
{
J
Jens Axboe 已提交
3177
	unsigned int i, j, hctx_idx;
3178 3179
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
3180
	struct blk_mq_tag_set *set = q->tag_set;
3181 3182

	queue_for_each_hw_ctx(q, hctx, i) {
3183
		cpumask_clear(hctx->cpumask);
3184
		hctx->nr_ctx = 0;
3185
		hctx->dispatch_from = NULL;
3186 3187 3188
	}

	/*
3189
	 * Map software to hardware queues.
3190 3191
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
3192
	 */
3193
	for_each_possible_cpu(i) {
3194

3195
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
3196
		for (j = 0; j < set->nr_maps; j++) {
3197 3198 3199
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
3200
				continue;
3201
			}
3202 3203 3204
			hctx_idx = set->map[j].mq_map[i];
			/* unmapped hw queue can be remapped after CPU topo changed */
			if (!set->tags[hctx_idx] &&
3205
			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3206 3207 3208 3209 3210 3211 3212 3213
				/*
				 * If tags initialization fail for some hctx,
				 * that hctx won't be brought online.  In this
				 * case, remap the current ctx to hctx[0] which
				 * is guaranteed to always have tags allocated
				 */
				set->map[j].mq_map[i] = 0;
			}
3214

J
Jens Axboe 已提交
3215
			hctx = blk_mq_map_queue_type(q, j, i);
3216
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
3236 3237 3238 3239

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
3240
	}
3241 3242

	queue_for_each_hw_ctx(q, hctx, i) {
3243 3244 3245 3246 3247 3248 3249 3250 3251
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
3252 3253
			if (i)
				__blk_mq_free_map_and_rqs(set, i);
3254 3255 3256 3257

			hctx->tags = NULL;
			continue;
		}
3258

M
Ming Lei 已提交
3259 3260 3261
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

3262 3263 3264 3265 3266
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
3267
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3268

3269 3270 3271
		/*
		 * Initialize batch roundrobin counts
		 */
3272
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3273 3274
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
3275 3276
}

3277 3278 3279 3280
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
3281
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3282 3283 3284 3285
{
	struct blk_mq_hw_ctx *hctx;
	int i;

3286
	queue_for_each_hw_ctx(q, hctx, i) {
3287
		if (shared) {
3288
			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3289 3290
		} else {
			blk_mq_tag_idle(hctx);
3291
			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3292
		}
3293 3294 3295
	}
}

3296 3297
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
					 bool shared)
3298 3299
{
	struct request_queue *q;
3300

3301 3302
	lockdep_assert_held(&set->tag_list_lock);

3303 3304
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
3305
		queue_set_hctx_shared(q, shared);
3306 3307 3308 3309 3310 3311 3312 3313 3314
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
3315
	list_del(&q->tag_set_list);
3316 3317
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
3318
		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3319
		/* update existing queue */
3320
		blk_mq_update_tag_set_shared(set, false);
3321
	}
3322
	mutex_unlock(&set->tag_list_lock);
3323
	INIT_LIST_HEAD(&q->tag_set_list);
3324 3325 3326 3327 3328 3329
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
3330

3331 3332 3333 3334
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
3335 3336
	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3337
		/* update existing queue */
3338
		blk_mq_update_tag_set_shared(set, true);
3339
	}
3340
	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3341
		queue_set_hctx_shared(q, true);
3342
	list_add_tail(&q->tag_set_list, &set->tag_list);
3343

3344 3345 3346
	mutex_unlock(&set->tag_list_lock);
}

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

3375 3376 3377 3378 3379 3380 3381 3382
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
3383 3384
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
3385

3386 3387 3388 3389 3390 3391
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
3392
		kobject_put(&hctx->kobj);
3393
	}
3394 3395 3396

	kfree(q->queue_hw_ctx);

3397 3398 3399 3400 3401
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
3402 3403
}

3404
static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3405
		void *queuedata)
3406
{
3407 3408
	struct request_queue *q;
	int ret;
3409

3410 3411
	q = blk_alloc_queue(set->numa_node);
	if (!q)
3412
		return ERR_PTR(-ENOMEM);
3413 3414 3415 3416 3417 3418
	q->queuedata = queuedata;
	ret = blk_mq_init_allocated_queue(set, q);
	if (ret) {
		blk_cleanup_queue(q);
		return ERR_PTR(ret);
	}
3419 3420
	return q;
}
3421 3422 3423 3424 3425

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
3426 3427
EXPORT_SYMBOL(blk_mq_init_queue);

3428 3429
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
		struct lock_class_key *lkclass)
3430 3431
{
	struct request_queue *q;
3432
	struct gendisk *disk;
3433

3434 3435 3436
	q = blk_mq_init_queue_data(set, queuedata);
	if (IS_ERR(q))
		return ERR_CAST(q);
3437

3438
	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3439 3440 3441
	if (!disk) {
		blk_cleanup_queue(q);
		return ERR_PTR(-ENOMEM);
3442
	}
3443
	return disk;
3444
}
3445
EXPORT_SYMBOL(__blk_mq_alloc_disk);
3446

3447 3448 3449 3450
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
3451
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3452

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
3467
	if (!hctx)
3468
		goto fail;
3469

3470 3471
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
3472 3473

	return hctx;
3474 3475 3476 3477 3478

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
3479 3480
}

K
Keith Busch 已提交
3481 3482
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
3483
{
3484
	int i, j, end;
K
Keith Busch 已提交
3485
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

3503 3504
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
3505
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
3506
		int node;
3507
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
3508

3509
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3510 3511 3512 3513 3514 3515 3516
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
3517

3518 3519
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
3520
			if (hctxs[i])
3521 3522 3523 3524 3525 3526 3527 3528 3529
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
3530
		}
3531
	}
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
3544

3545
	for (; j < end; j++) {
K
Keith Busch 已提交
3546 3547 3548
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
3549
			__blk_mq_free_map_and_rqs(set, j);
K
Keith Busch 已提交
3550 3551 3552 3553
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
3554
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
3555 3556
}

3557 3558
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
		struct request_queue *q)
K
Keith Busch 已提交
3559
{
M
Ming Lei 已提交
3560 3561 3562
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

3563
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3564 3565
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
3566 3567 3568
	if (!q->poll_cb)
		goto err_exit;

3569
	if (blk_mq_alloc_ctxs(q))
3570
		goto err_poll;
K
Keith Busch 已提交
3571

3572 3573 3574
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

3575 3576 3577
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
3578 3579 3580
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
3581

3582
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3583
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3584

J
Jens Axboe 已提交
3585
	q->tag_set = set;
3586

3587
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3588 3589
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
3590
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3591

3592
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3593 3594 3595
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

3596 3597
	q->nr_requests = set->queue_depth;

3598 3599 3600
	/*
	 * Default to classic polling
	 */
3601
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3602

3603
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3604
	blk_mq_add_queue_tag_set(set, q);
3605
	blk_mq_map_swqueue(q);
3606
	return 0;
3607

3608
err_hctxs:
K
Keith Busch 已提交
3609
	kfree(q->queue_hw_ctx);
3610
	q->nr_hw_queues = 0;
3611
	blk_mq_sysfs_deinit(q);
3612 3613 3614
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
3615 3616
err_exit:
	q->mq_ops = NULL;
3617
	return -ENOMEM;
3618
}
3619
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3620

3621 3622
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
3623
{
3624
	struct blk_mq_tag_set *set = q->tag_set;
3625

3626
	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
M
Ming Lei 已提交
3627
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3628 3629
	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
	blk_mq_del_queue_tag_set(q);
3630 3631
}

3632 3633 3634 3635
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

3636 3637
	if (blk_mq_is_shared_tags(set->flags)) {
		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3638 3639
						BLK_MQ_NO_HCTX_IDX,
						set->queue_depth);
3640
		if (!set->shared_tags)
3641 3642 3643
			return -ENOMEM;
	}

3644
	for (i = 0; i < set->nr_hw_queues; i++) {
3645
		if (!__blk_mq_alloc_map_and_rqs(set, i))
3646
			goto out_unwind;
3647 3648
		cond_resched();
	}
3649 3650 3651 3652

	return 0;

out_unwind:
3653 3654 3655
	while (--i >= 0)
		__blk_mq_free_map_and_rqs(set, i);

3656 3657
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
3658
					BLK_MQ_NO_HCTX_IDX);
3659
	}
3660 3661 3662 3663 3664 3665 3666 3667 3668

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
3669
static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

3699 3700
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
3701 3702 3703 3704 3705 3706 3707 3708
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

3709
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
3710 3711
		int i;

3712 3713 3714 3715 3716 3717 3718
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
3719
		 * 		set->map[x].mq_map[cpu] = queue;
3720 3721 3722 3723 3724 3725
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
3726 3727
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
3728

3729
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
3730 3731
	} else {
		BUG_ON(set->nr_maps > 1);
3732
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
3733
	}
3734 3735
}

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

3759 3760 3761 3762 3763 3764
static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
				int new_nr_hw_queues)
{
	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
}

3765 3766 3767
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
3768
 * requested depth down, if it's too large. In that case, the set
3769 3770
 * value will be stored in set->queue_depth.
 */
3771 3772
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3773
	int i, ret;
3774

B
Bart Van Assche 已提交
3775 3776
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

3777 3778
	if (!set->nr_hw_queues)
		return -EINVAL;
3779
	if (!set->queue_depth)
3780 3781 3782 3783
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
3784
	if (!set->ops->queue_rq)
3785 3786
		return -EINVAL;

3787 3788 3789
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

3790 3791 3792 3793 3794
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
3795

J
Jens Axboe 已提交
3796 3797 3798 3799 3800
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

3801 3802 3803 3804 3805 3806 3807
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
3808
		set->nr_maps = 1;
3809 3810
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
3811
	/*
3812 3813
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
3814
	 */
3815
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3816
		set->nr_hw_queues = nr_cpu_ids;
3817

3818
	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3819
		return -ENOMEM;
3820

3821
	ret = -ENOMEM;
J
Jens Axboe 已提交
3822 3823
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3824
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
3825 3826 3827
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
3828
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
3829
	}
3830

3831
	ret = blk_mq_update_queue_map(set);
3832 3833 3834
	if (ret)
		goto out_free_mq_map;

3835
	ret = blk_mq_alloc_set_map_and_rqs(set);
3836
	if (ret)
3837
		goto out_free_mq_map;
3838

3839 3840 3841
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

3842
	return 0;
3843 3844

out_free_mq_map:
J
Jens Axboe 已提交
3845 3846 3847 3848
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
3849 3850
	kfree(set->tags);
	set->tags = NULL;
3851
	return ret;
3852 3853 3854
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
/* allocate and initialize a tagset for a simple single-queue device */
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
		const struct blk_mq_ops *ops, unsigned int queue_depth,
		unsigned int set_flags)
{
	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
	set->nr_maps = 1;
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;
	return blk_mq_alloc_tag_set(set);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);

3871 3872
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3873
	int i, j;
3874

3875 3876
	for (i = 0; i < set->nr_hw_queues; i++)
		__blk_mq_free_map_and_rqs(set, i);
3877

3878 3879
	if (blk_mq_is_shared_tags(set->flags)) {
		blk_mq_free_map_and_rqs(set, set->shared_tags,
3880 3881
					BLK_MQ_NO_HCTX_IDX);
	}
3882

J
Jens Axboe 已提交
3883 3884 3885 3886
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
3887

M
Ming Lei 已提交
3888
	kfree(set->tags);
3889
	set->tags = NULL;
3890 3891 3892
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3893 3894 3895 3896 3897 3898
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3899
	if (!set)
3900 3901
		return -EINVAL;

3902 3903 3904
	if (q->nr_requests == nr)
		return 0;

3905
	blk_mq_freeze_queue(q);
3906
	blk_mq_quiesce_queue(q);
3907

3908 3909
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3910 3911
		if (!hctx->tags)
			continue;
3912 3913 3914 3915
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3916
		if (hctx->sched_tags) {
3917
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3918 3919 3920 3921
						      nr, true);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
						      false);
3922
		}
3923 3924
		if (ret)
			break;
3925 3926
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
3927
	}
3928
	if (!ret) {
3929
		q->nr_requests = nr;
3930
		if (blk_mq_is_shared_tags(set->flags)) {
3931
			if (q->elevator)
3932
				blk_mq_tag_update_sched_shared_tags(q);
3933
			else
3934
				blk_mq_tag_resize_shared_tags(set, nr);
3935
		}
3936
	}
3937

3938
	blk_mq_unquiesce_queue(q);
3939 3940
	blk_mq_unfreeze_queue(q);

3941 3942 3943
	return ret;
}

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

4014 4015
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
4016 4017
{
	struct request_queue *q;
4018
	LIST_HEAD(head);
4019
	int prev_nr_hw_queues;
K
Keith Busch 已提交
4020

4021 4022
	lockdep_assert_held(&set->tag_list_lock);

4023
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
4024
		nr_hw_queues = nr_cpu_ids;
4025 4026 4027
	if (nr_hw_queues < 1)
		return;
	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
K
Keith Busch 已提交
4028 4029 4030 4031
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
4032 4033 4034 4035 4036 4037 4038 4039
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
4040

4041 4042 4043 4044 4045
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

4046
	prev_nr_hw_queues = set->nr_hw_queues;
4047 4048 4049 4050
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

K
Keith Busch 已提交
4051
	set->nr_hw_queues = nr_hw_queues;
4052
fallback:
4053
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
4054 4055
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
4056 4057 4058 4059
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
4060
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4061 4062
			goto fallback;
		}
4063 4064 4065
		blk_mq_map_swqueue(q);
	}

4066
reregister:
4067 4068 4069
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
4070 4071
	}

4072 4073 4074 4075
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
4076 4077 4078
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
4079 4080 4081 4082 4083 4084 4085

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
4086 4087
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

4088 4089 4090 4091
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4092
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
4114
	int bucket;
4115

4116 4117 4118 4119
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
4120 4121
}

4122 4123 4124 4125
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
4126
	int bucket;
4127 4128 4129 4130 4131

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
4132
	if (!blk_poll_stats_enable(q))
4133 4134 4135 4136 4137 4138 4139 4140
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
4141 4142
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
4143
	 */
4144 4145 4146 4147 4148 4149
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
4150 4151 4152 4153

	return ret;
}

4154
static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4155
{
4156 4157
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
	struct request *rq = blk_qc_to_rq(hctx, qc);
4158 4159
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
4160
	unsigned int nsecs;
4161 4162
	ktime_t kt;

4163 4164 4165 4166 4167
	/*
	 * If a request has completed on queue that uses an I/O scheduler, we
	 * won't get back a request from blk_qc_to_rq.
	 */
	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4168 4169 4170
		return false;

	/*
4171
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4172 4173 4174 4175
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
4176
	if (q->poll_nsec > 0)
4177 4178
		nsecs = q->poll_nsec;
	else
4179
		nsecs = blk_mq_poll_nsecs(q, rq);
4180 4181

	if (!nsecs)
4182 4183
		return false;

J
Jens Axboe 已提交
4184
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4185 4186 4187 4188 4189

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
4190
	kt = nsecs;
4191 4192

	mode = HRTIMER_MODE_REL;
4193
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4194 4195 4196
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
4197
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4198 4199
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
4200
		hrtimer_sleeper_start_expires(&hs, mode);
4201 4202 4203 4204 4205 4206 4207 4208
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
4209 4210 4211 4212 4213 4214 4215 4216

	/*
	 * If we sleep, have the caller restart the poll loop to reset the
	 * state.  Like for the other success return cases, the caller is
	 * responsible for checking if the IO completed.  If the IO isn't
	 * complete, we'll get called again and will go straight to the busy
	 * poll loop.
	 */
4217 4218 4219
	return true;
}

4220
static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4221
			       struct io_comp_batch *iob, unsigned int flags)
J
Jens Axboe 已提交
4222
{
4223 4224 4225
	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
	long state = get_current_state();
	int ret;
4226

4227
	do {
4228
		ret = q->mq_ops->poll(hctx, iob);
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
		if (ret > 0) {
			__set_current_state(TASK_RUNNING);
			return ret;
		}

		if (signal_pending_state(state, current))
			__set_current_state(TASK_RUNNING);
		if (task_is_running(current))
			return 1;

4239
		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4240 4241 4242 4243 4244 4245
			break;
		cpu_relax();
	} while (!need_resched());

	__set_current_state(TASK_RUNNING);
	return 0;
4246 4247
}

4248 4249
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
		unsigned int flags)
4250
{
4251 4252
	if (!(flags & BLK_POLL_NOSLEEP) &&
	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4253
		if (blk_mq_poll_hybrid(q, cookie))
4254
			return 1;
4255
	}
4256
	return blk_mq_poll_classic(q, cookie, iob, flags);
J
Jens Axboe 已提交
4257 4258
}

J
Jens Axboe 已提交
4259 4260 4261 4262 4263 4264
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

4265 4266
static int __init blk_mq_init(void)
{
4267 4268 4269
	int i;

	for_each_possible_cpu(i)
4270
		init_llist_head(&per_cpu(blk_cpu_done, i));
4271 4272 4273 4274 4275
	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);

	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
				  "block/softirq:dead", NULL,
				  blk_softirq_cpu_dead);
4276 4277
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
4278 4279 4280
	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
				blk_mq_hctx_notify_online,
				blk_mq_hctx_notify_offline);
4281 4282 4283
	return 0;
}
subsys_initcall(blk_mq_init);