intel_ringbuffer.c 54.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31

32 33
#include <drm/drmP.h>
#include <drm/i915_drm.h>
34 35 36

#include "i915_drv.h"
#include "i915_gem_render_state.h"
37
#include "i915_trace.h"
38
#include "intel_drv.h"
39

40 41 42 43 44
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

45 46 47
static unsigned int __intel_ring_space(unsigned int head,
				       unsigned int tail,
				       unsigned int size)
48
{
49 50 51 52 53 54 55
	/*
	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
	 * same cacheline, the Head Pointer must not be greater than the Tail
	 * Pointer."
	 */
	GEM_BUG_ON(!is_power_of_2(size));
	return (head - tail - CACHELINE_BYTES) & (size - 1);
56 57
}

58
unsigned int intel_ring_update_space(struct intel_ring *ring)
59
{
60 61 62 63 64 65
	unsigned int space;

	space = __intel_ring_space(ring->head, ring->emit, ring->size);

	ring->space = space;
	return space;
66 67
}

68
static int
69
gen2_render_ring_flush(struct i915_request *rq, u32 mode)
70
{
71
	u32 cmd, *cs;
72 73 74

	cmd = MI_FLUSH;

75
	if (mode & EMIT_INVALIDATE)
76 77
		cmd |= MI_READ_FLUSH;

78
	cs = intel_ring_begin(rq, 2);
79 80
	if (IS_ERR(cs))
		return PTR_ERR(cs);
81

82 83
	*cs++ = cmd;
	*cs++ = MI_NOOP;
84
	intel_ring_advance(rq, cs);
85 86 87 88 89

	return 0;
}

static int
90
gen4_render_ring_flush(struct i915_request *rq, u32 mode)
91
{
92
	u32 cmd, *cs;
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

122
	cmd = MI_FLUSH;
123
	if (mode & EMIT_INVALIDATE) {
124
		cmd |= MI_EXE_FLUSH;
125
		if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
126 127
			cmd |= MI_INVALIDATE_ISP;
	}
128

129
	cs = intel_ring_begin(rq, 2);
130 131
	if (IS_ERR(cs))
		return PTR_ERR(cs);
132

133 134
	*cs++ = cmd;
	*cs++ = MI_NOOP;
135
	intel_ring_advance(rq, cs);
136 137

	return 0;
138 139
}

140
/*
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
178
intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
179
{
180
	u32 scratch_addr =
181
		i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
182 183
	u32 *cs;

184
	cs = intel_ring_begin(rq, 6);
185 186 187 188 189 190 191 192 193
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
194
	intel_ring_advance(rq, cs);
195

196
	cs = intel_ring_begin(rq, 6);
197 198 199 200 201 202 203 204 205
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
206
	intel_ring_advance(rq, cs);
207 208 209 210 211

	return 0;
}

static int
212
gen6_render_ring_flush(struct i915_request *rq, u32 mode)
213
{
214
	u32 scratch_addr =
215
		i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
216
	u32 *cs, flags = 0;
217 218
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(rq);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	cs = intel_ring_begin(rq, 4);
251 252
	if (IS_ERR(cs))
		return PTR_ERR(cs);
253

254 255 256 257
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
258
	intel_ring_advance(rq, cs);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct i915_request *rq)
265
{
266
	u32 *cs;
267

268
	cs = intel_ring_begin(rq, 4);
269 270
	if (IS_ERR(cs))
		return PTR_ERR(cs);
271

272 273 274 275
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
276
	intel_ring_advance(rq, cs);
277 278 279 280

	return 0;
}

281
static int
282
gen7_render_ring_flush(struct i915_request *rq, u32 mode)
283
{
284
	u32 scratch_addr =
285
		i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
286
	u32 *cs, flags = 0;
287

288 289 290 291 292 293 294 295 296 297
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

298 299 300 301
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
302
	if (mode & EMIT_FLUSH) {
303 304
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
305
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
306
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
307
	}
308
	if (mode & EMIT_INVALIDATE) {
309 310 311 312 313 314
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
315
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
316 317 318 319
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
320
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
321

322 323
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

324 325 326
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
327
		gen7_render_ring_cs_stall_wa(rq);
328 329
	}

330
	cs = intel_ring_begin(rq, 4);
331 332
	if (IS_ERR(cs))
		return PTR_ERR(cs);
333

334 335 336 337
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
338
	intel_ring_advance(rq, cs);
339 340 341 342

	return 0;
}

343
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
344
{
345
	struct drm_i915_private *dev_priv = engine->i915;
346 347 348
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
349
	if (INTEL_GEN(dev_priv) >= 4)
350 351 352 353
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

354
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
355
{
356
	struct drm_i915_private *dev_priv = engine->i915;
357
	i915_reg_t mmio;
358 359 360 361

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
362
	if (IS_GEN7(dev_priv)) {
363
		switch (engine->id) {
364 365 366 367 368 369
		/*
		 * No more rings exist on Gen7. Default case is only to shut up
		 * gcc switch check warning.
		 */
		default:
			GEM_BUG_ON(engine->id);
370 371 372 373 374 375 376 377 378 379 380 381 382
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
383
	} else if (IS_GEN6(dev_priv)) {
384
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
385
	} else {
386
		mmio = RING_HWS_PGA(engine->mmio_base);
387 388
	}

389 390 391
	if (INTEL_GEN(dev_priv) >= 6)
		I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);

392
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
393 394
	POSTING_READ(mmio);

395
	/* Flush the TLB for this page */
396
	if (IS_GEN(dev_priv, 6, 7)) {
397
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
398 399

		/* ring should be idle before issuing a sync flush*/
400
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
401 402 403 404

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
405 406 407
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
408
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
409
				  engine->name);
410 411 412
	}
}

413
static bool stop_ring(struct intel_engine_cs *engine)
414
{
415
	struct drm_i915_private *dev_priv = engine->i915;
416

417
	if (INTEL_GEN(dev_priv) > 2) {
418
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
419 420 421 422 423
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
424 425
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
426 427 428 429
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
430
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
431
				return false;
432 433
		}
	}
434

435 436
	I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));

437
	I915_WRITE_HEAD(engine, 0);
438
	I915_WRITE_TAIL(engine, 0);
439

440 441 442
	/* The ring must be empty before it is disabled */
	I915_WRITE_CTL(engine, 0);

443
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
444
}
445

446
static int init_ring_common(struct intel_engine_cs *engine)
447
{
448
	struct drm_i915_private *dev_priv = engine->i915;
449
	struct intel_ring *ring = engine->buffer;
450 451
	int ret = 0;

452
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
453

454
	if (!stop_ring(engine)) {
455
		/* G45 ring initialization often fails to reset head to zero */
456 457 458 459 460 461 462
		DRM_DEBUG_DRIVER("%s head not reset to zero "
				"ctl %08x head %08x tail %08x start %08x\n",
				engine->name,
				I915_READ_CTL(engine),
				I915_READ_HEAD(engine),
				I915_READ_TAIL(engine),
				I915_READ_START(engine));
463

464
		if (!stop_ring(engine)) {
465 466
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
467 468 469 470 471
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
472 473
			ret = -EIO;
			goto out;
474
		}
475 476
	}

477
	if (HWS_NEEDS_PHYSICAL(dev_priv))
478
		ring_setup_phys_status_page(engine);
479 480
	else
		intel_ring_setup_status_page(engine);
481

482
	intel_engine_reset_breadcrumbs(engine);
483

484
	/* Enforce ordering by reading HEAD register back */
485
	I915_READ_HEAD(engine);
486

487 488 489 490
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
491
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
492 493

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
494
	if (I915_READ_HEAD(engine))
495 496
		DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
				 engine->name, I915_READ_HEAD(engine));
497 498 499 500 501

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
502

503
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
504 505

	/* If the head is still not zero, the ring is dead */
506 507 508
	if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
				    RING_VALID, RING_VALID,
				    50)) {
509
		DRM_ERROR("%s initialization failed "
510
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
511 512 513
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
514 515
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
516
			  I915_READ_START(engine),
517
			  i915_ggtt_offset(ring->vma));
518 519
		ret = -EIO;
		goto out;
520 521
	}

522
	intel_engine_init_hangcheck(engine);
523

524 525 526
	if (INTEL_GEN(dev_priv) > 2)
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));

527
out:
528
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
529 530

	return ret;
531 532
}

533
static void reset_ring_common(struct intel_engine_cs *engine,
534
			      struct i915_request *request)
535
{
536 537 538 539 540 541 542 543 544 545
	/*
	 * RC6 must be prevented until the reset is complete and the engine
	 * reinitialised. If it occurs in the middle of this sequence, the
	 * state written to/loaded from the power context is ill-defined (e.g.
	 * the PP_BASE_DIR may be lost).
	 */
	assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);

	/*
	 * Try to restore the logical GPU state to match the continuation
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	 * of the request queue. If we skip the context/PD restore, then
	 * the next request may try to execute assuming that its context
	 * is valid and loaded on the GPU and so may try to access invalid
	 * memory, prompting repeated GPU hangs.
	 *
	 * If the request was guilty, we still restore the logical state
	 * in case the next request requires it (e.g. the aliasing ppgtt),
	 * but skip over the hung batch.
	 *
	 * If the request was innocent, we try to replay the request with
	 * the restored context.
	 */
	if (request) {
		struct drm_i915_private *dev_priv = request->i915;
		struct intel_context *ce = &request->ctx->engine[engine->id];
		struct i915_hw_ppgtt *ppgtt;

		if (ce->state) {
			I915_WRITE(CCID,
				   i915_ggtt_offset(ce->state) |
				   BIT(8) /* must be set! */ |
				   CCID_EXTENDED_STATE_SAVE |
				   CCID_EXTENDED_STATE_RESTORE |
				   CCID_EN);
		}

		ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
		if (ppgtt) {
			u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;

			I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
			I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);

			/* Wait for the PD reload to complete */
			if (intel_wait_for_register(dev_priv,
						    RING_PP_DIR_BASE(engine),
						    BIT(0), 0,
						    10))
				DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
585

586 587 588 589
			ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
		}

		/* If the rq hung, jump to its breadcrumb and skip the batch */
590 591
		if (request->fence.error == -EIO)
			request->ring->head = request->postfix;
592 593
	} else {
		engine->legacy_active_context = NULL;
594
		engine->legacy_active_ppgtt = NULL;
595
	}
596 597
}

598
static int intel_rcs_ctx_init(struct i915_request *rq)
599 600 601
{
	int ret;

602
	ret = intel_ring_workarounds_emit(rq);
603 604 605
	if (ret != 0)
		return ret;

606
	ret = i915_gem_render_state_emit(rq);
607
	if (ret)
608
		return ret;
609

610
	return 0;
611 612
}

613
static int init_render_ring(struct intel_engine_cs *engine)
614
{
615
	struct drm_i915_private *dev_priv = engine->i915;
616
	int ret = init_ring_common(engine);
617 618
	if (ret)
		return ret;
619

620
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
621
	if (IS_GEN(dev_priv, 4, 6))
622
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
623 624 625 626

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
627
	 *
628
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
629
	 */
630
	if (IS_GEN(dev_priv, 6, 7))
631 632
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

633
	/* Required for the hardware to program scanline values for waiting */
634
	/* WaEnableFlushTlbInvalidationMode:snb */
635
	if (IS_GEN6(dev_priv))
636
		I915_WRITE(GFX_MODE,
637
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
638

639
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
640
	if (IS_GEN7(dev_priv))
641
		I915_WRITE(GFX_MODE_GEN7,
642
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
643
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
644

645
	if (IS_GEN6(dev_priv)) {
646 647 648 649 650 651
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
652
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
653 654
	}

655
	if (IS_GEN(dev_priv, 6, 7))
656
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
657

658
	if (INTEL_GEN(dev_priv) >= 6)
659
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
660

661
	return init_workarounds_ring(engine);
662 663
}

664
static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
665
{
666
	struct drm_i915_private *dev_priv = rq->i915;
667
	struct intel_engine_cs *engine;
668
	enum intel_engine_id id;
C
Chris Wilson 已提交
669
	int num_rings = 0;
670

671
	for_each_engine(engine, dev_priv, id) {
672 673 674 675
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
676

677
		mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
678
		if (i915_mmio_reg_valid(mbox_reg)) {
679 680
			*cs++ = MI_LOAD_REGISTER_IMM(1);
			*cs++ = i915_mmio_reg_offset(mbox_reg);
681
			*cs++ = rq->global_seqno;
C
Chris Wilson 已提交
682
			num_rings++;
683 684
		}
	}
C
Chris Wilson 已提交
685
	if (num_rings & 1)
686
		*cs++ = MI_NOOP;
687

688
	return cs;
689 690
}

691 692
static void cancel_requests(struct intel_engine_cs *engine)
{
693
	struct i915_request *request;
694 695 696 697 698 699 700
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Mark all submitted requests as skipped. */
	list_for_each_entry(request, &engine->timeline->requests, link) {
		GEM_BUG_ON(!request->global_seqno);
701
		if (!i915_request_completed(request))
702 703 704 705 706 707 708
			dma_fence_set_error(&request->fence, -EIO);
	}
	/* Remaining _unready_ requests will be nop'ed when submitted */

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

709
static void i9xx_submit_request(struct i915_request *request)
710 711 712
{
	struct drm_i915_private *dev_priv = request->i915;

713
	i915_request_submit(request);
714

715 716
	I915_WRITE_TAIL(request->engine,
			intel_ring_set_tail(request->ring, request->tail));
717 718
}

719
static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
720
{
721 722
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
723
	*cs++ = rq->global_seqno;
724
	*cs++ = MI_USER_INTERRUPT;
725

726 727
	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
728 729
}

730 731
static const int i9xx_emit_breadcrumb_sz = 4;

732
static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
733
{
734
	return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
735 736
}

737
static int
738
gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
739
{
740 741 742
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
743
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
744
	u32 *cs;
745

746
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
747

748
	cs = intel_ring_begin(rq, 4);
749 750
	if (IS_ERR(cs))
		return PTR_ERR(cs);
751

752
	*cs++ = dw1 | wait_mbox;
753 754 755 756
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
757 758 759
	*cs++ = signal->global_seqno - 1;
	*cs++ = 0;
	*cs++ = MI_NOOP;
760
	intel_ring_advance(rq, cs);
761 762 763 764

	return 0;
}

765
static void
766
gen5_seqno_barrier(struct intel_engine_cs *engine)
767
{
768 769 770
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
771
	 *
772 773 774 775 776 777 778
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
779
	 */
780
	usleep_range(125, 250);
781 782
}

783 784
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
785
{
786
	struct drm_i915_private *dev_priv = engine->i915;
787

788 789
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
790 791 792 793 794 795 796 797 798
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
799 800 801
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
802
	 */
803
	spin_lock_irq(&dev_priv->uncore.lock);
804
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
805
	spin_unlock_irq(&dev_priv->uncore.lock);
806 807
}

808 809
static void
gen5_irq_enable(struct intel_engine_cs *engine)
810
{
811
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
812 813 814
}

static void
815
gen5_irq_disable(struct intel_engine_cs *engine)
816
{
817
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
818 819
}

820 821
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
822
{
823
	struct drm_i915_private *dev_priv = engine->i915;
824

825 826 827
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
828 829
}

830
static void
831
i9xx_irq_disable(struct intel_engine_cs *engine)
832
{
833
	struct drm_i915_private *dev_priv = engine->i915;
834

835 836
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
837 838
}

839 840
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
841
{
842
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
843

844 845 846
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
847 848 849
}

static void
850
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
851
{
852
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
853

854 855
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
856 857
}

858
static int
859
bsd_ring_flush(struct i915_request *rq, u32 mode)
860
{
861
	u32 *cs;
862

863
	cs = intel_ring_begin(rq, 2);
864 865
	if (IS_ERR(cs))
		return PTR_ERR(cs);
866

867 868
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
869
	intel_ring_advance(rq, cs);
870
	return 0;
871 872
}

873 874
static void
gen6_irq_enable(struct intel_engine_cs *engine)
875
{
876
	struct drm_i915_private *dev_priv = engine->i915;
877

878 879 880
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
881
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
882 883 884
}

static void
885
gen6_irq_disable(struct intel_engine_cs *engine)
886
{
887
	struct drm_i915_private *dev_priv = engine->i915;
888

889
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
890
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
891 892
}

893 894
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
895
{
896
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
897

898
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
899
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
900 901 902
}

static void
903
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
904
{
905
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
906

907
	I915_WRITE_IMR(engine, ~0);
908
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
909 910
}

911
static int
912
i965_emit_bb_start(struct i915_request *rq,
913 914
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
915
{
916
	u32 *cs;
917

918
	cs = intel_ring_begin(rq, 2);
919 920
	if (IS_ERR(cs))
		return PTR_ERR(cs);
921

922 923 924
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
925
	intel_ring_advance(rq, cs);
926

927 928 929
	return 0;
}

930 931
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
932 933
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
934
static int
935
i830_emit_bb_start(struct i915_request *rq,
936 937
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
938
{
939
	u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
940

941
	cs = intel_ring_begin(rq, 6);
942 943
	if (IS_ERR(cs))
		return PTR_ERR(cs);
944

945
	/* Evict the invalid PTE TLBs */
946 947 948 949 950 951
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
952
	intel_ring_advance(rq, cs);
953

954
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
955 956 957
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

958
		cs = intel_ring_begin(rq, 6 + 2);
959 960
		if (IS_ERR(cs))
			return PTR_ERR(cs);
961 962 963 964 965

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
966 967 968 969 970 971 972 973 974
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
975
		intel_ring_advance(rq, cs);
976 977

		/* ... and execute it. */
978
		offset = cs_offset;
979
	}
980

981
	cs = intel_ring_begin(rq, 2);
982 983
	if (IS_ERR(cs))
		return PTR_ERR(cs);
984

985 986 987
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
988
	intel_ring_advance(rq, cs);
989

990 991 992 993
	return 0;
}

static int
994
i915_emit_bb_start(struct i915_request *rq,
995 996
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
997
{
998
	u32 *cs;
999

1000
	cs = intel_ring_begin(rq, 2);
1001 1002
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1003

1004 1005 1006
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1007
	intel_ring_advance(rq, cs);
1008 1009 1010 1011 1012

	return 0;
}


1013

1014 1015 1016
int intel_ring_pin(struct intel_ring *ring,
		   struct drm_i915_private *i915,
		   unsigned int offset_bias)
1017
{
1018
	enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1019
	struct i915_vma *vma = ring->vma;
1020
	unsigned int flags;
1021
	void *addr;
1022 1023
	int ret;

1024
	GEM_BUG_ON(ring->vaddr);
1025

1026

1027 1028 1029
	flags = PIN_GLOBAL;
	if (offset_bias)
		flags |= PIN_OFFSET_BIAS | offset_bias;
1030
	if (vma->obj->stolen)
1031
		flags |= PIN_MAPPABLE;
1032

1033
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1034
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1035 1036 1037 1038
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1039
			return ret;
1040
	}
1041

1042 1043 1044
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1045

1046
	if (i915_vma_is_map_and_fenceable(vma))
1047 1048
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1049
		addr = i915_gem_object_pin_map(vma->obj, map);
1050 1051
	if (IS_ERR(addr))
		goto err;
1052

1053 1054
	vma->obj->pin_global++;

1055
	ring->vaddr = addr;
1056
	return 0;
1057

1058 1059 1060
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071
void intel_ring_reset(struct intel_ring *ring, u32 tail)
{
	GEM_BUG_ON(!list_empty(&ring->request_list));
	ring->tail = tail;
	ring->head = tail;
	ring->emit = tail;
	intel_ring_update_space(ring);
}

1072 1073 1074 1075 1076
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1077 1078 1079
	/* Discard any unused bytes beyond that submitted to hw. */
	intel_ring_reset(ring, ring->tail);

1080
	if (i915_vma_is_map_and_fenceable(ring->vma))
1081
		i915_vma_unpin_iomap(ring->vma);
1082 1083
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1084 1085
	ring->vaddr = NULL;

1086
	ring->vma->obj->pin_global--;
1087
	i915_vma_unpin(ring->vma);
1088 1089
}

1090 1091
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1092
{
1093
	struct drm_i915_gem_object *obj;
1094
	struct i915_vma *vma;
1095

1096
	obj = i915_gem_object_create_stolen(dev_priv, size);
1097
	if (!obj)
1098
		obj = i915_gem_object_create_internal(dev_priv, size);
1099 1100
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1101

1102 1103 1104
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1105
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1106 1107 1108 1109
	if (IS_ERR(vma))
		goto err;

	return vma;
1110

1111 1112 1113
err:
	i915_gem_object_put(obj);
	return vma;
1114 1115
}

1116 1117
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1118
{
1119
	struct intel_ring *ring;
1120
	struct i915_vma *vma;
1121

1122
	GEM_BUG_ON(!is_power_of_2(size));
1123
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1124

1125
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1126
	if (!ring)
1127 1128
		return ERR_PTR(-ENOMEM);

1129 1130
	INIT_LIST_HEAD(&ring->request_list);

1131 1132 1133 1134 1135 1136
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1137
	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1138 1139 1140 1141
		ring->effective_size -= 2 * CACHELINE_BYTES;

	intel_ring_update_space(ring);

1142 1143
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1144
		kfree(ring);
1145
		return ERR_CAST(vma);
1146
	}
1147
	ring->vma = vma;
1148 1149 1150 1151 1152

	return ring;
}

void
1153
intel_ring_free(struct intel_ring *ring)
1154
{
1155 1156 1157 1158 1159
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1160 1161 1162
	kfree(ring);
}

1163
static int context_pin(struct i915_gem_context *ctx)
1164 1165 1166 1167
{
	struct i915_vma *vma = ctx->engine[RCS].state;
	int ret;

1168 1169
	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
1170 1171 1172 1173
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1174
		ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1175 1176 1177 1178
		if (ret)
			return ret;
	}

1179 1180
	return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
			    PIN_GLOBAL | PIN_HIGH);
1181 1182
}

1183 1184 1185 1186 1187 1188
static struct i915_vma *
alloc_context_vma(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
1189
	int err;
1190

1191
	obj = i915_gem_object_create(i915, engine->context_size);
1192 1193 1194
	if (IS_ERR(obj))
		return ERR_CAST(obj);

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	if (engine->default_state) {
		void *defaults, *vaddr;

		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_obj;
		}

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults)) {
			err = PTR_ERR(defaults);
			goto err_map;
		}

		memcpy(vaddr, defaults, engine->context_size);

		i915_gem_object_unpin_map(engine->default_state);
		i915_gem_object_unpin_map(obj);
	}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	/*
	 * Try to make the context utilize L3 as well as LLC.
	 *
	 * On VLV we don't have L3 controls in the PTEs so we
	 * shouldn't touch the cache level, especially as that
	 * would make the object snooped which might have a
	 * negative performance impact.
	 *
	 * Snooping is required on non-llc platforms in execlist
	 * mode, but since all GGTT accesses use PAT entry 0 we
	 * get snooping anyway regardless of cache_level.
	 *
	 * This is only applicable for Ivy Bridge devices since
	 * later platforms don't have L3 control bits in the PTE.
	 */
	if (IS_IVYBRIDGE(i915)) {
		/* Ignore any error, regard it as a simple optimisation */
		i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1238 1239 1240 1241
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err_obj;
	}
1242 1243

	return vma;
1244 1245 1246 1247 1248 1249

err_map:
	i915_gem_object_unpin_map(obj);
err_obj:
	i915_gem_object_put(obj);
	return ERR_PTR(err);
1250 1251
}

1252 1253 1254
static struct intel_ring *
intel_ring_context_pin(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
1255 1256 1257 1258
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1259
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1260

1261 1262
	if (likely(ce->pin_count++))
		goto out;
1263
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1264

1265
	if (!ce->state && engine->context_size) {
1266 1267 1268 1269 1270
		struct i915_vma *vma;

		vma = alloc_context_vma(engine);
		if (IS_ERR(vma)) {
			ret = PTR_ERR(vma);
1271
			goto err;
1272 1273 1274 1275 1276
		}

		ce->state = vma;
	}

1277
	if (ce->state) {
1278
		ret = context_pin(ctx);
1279
		if (ret)
1280
			goto err;
1281

1282
		ce->state->obj->pin_global++;
1283 1284
	}

1285
	i915_gem_context_get(ctx);
1286

1287 1288 1289 1290 1291
out:
	/* One ringbuffer to rule them all */
	return engine->buffer;

err:
1292
	ce->pin_count = 0;
1293
	return ERR_PTR(ret);
1294 1295
}

1296 1297
static void intel_ring_context_unpin(struct intel_engine_cs *engine,
				     struct i915_gem_context *ctx)
1298 1299 1300
{
	struct intel_context *ce = &ctx->engine[engine->id];

1301
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1302
	GEM_BUG_ON(ce->pin_count == 0);
1303 1304 1305 1306

	if (--ce->pin_count)
		return;

1307 1308
	if (ce->state) {
		ce->state->obj->pin_global--;
1309
		i915_vma_unpin(ce->state);
1310
	}
1311

1312
	i915_gem_context_put(ctx);
1313 1314
}

1315
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1316
{
1317
	struct intel_ring *ring;
1318
	int err;
1319

1320 1321
	intel_engine_setup_common(engine);

1322 1323 1324
	err = intel_engine_init_common(engine);
	if (err)
		goto err;
1325

1326 1327
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
1328
		err = PTR_ERR(ring);
1329
		goto err;
1330 1331
	}

1332
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1333 1334 1335 1336 1337
	err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
	if (err)
		goto err_ring;

	GEM_BUG_ON(engine->buffer);
1338
	engine->buffer = ring;
1339

1340
	return 0;
1341

1342 1343 1344 1345 1346
err_ring:
	intel_ring_free(ring);
err:
	intel_engine_cleanup_common(engine);
	return err;
1347 1348
}

1349
void intel_engine_cleanup(struct intel_engine_cs *engine)
1350
{
1351
	struct drm_i915_private *dev_priv = engine->i915;
1352

1353 1354
	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
		(I915_READ_MODE(engine) & MODE_IDLE) == 0);
1355

1356 1357
	intel_ring_unpin(engine->buffer);
	intel_ring_free(engine->buffer);
1358

1359 1360
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
1361

1362
	intel_engine_cleanup_common(engine);
1363

1364 1365
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1366 1367
}

1368 1369 1370
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1371
	enum intel_engine_id id;
1372

1373
	/* Restart from the beginning of the rings for convenience */
1374
	for_each_engine(engine, dev_priv, id)
1375
		intel_ring_reset(engine->buffer, 0);
1376 1377
}

1378
static inline int mi_set_context(struct i915_request *rq, u32 flags)
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
{
	struct drm_i915_private *i915 = rq->i915;
	struct intel_engine_cs *engine = rq->engine;
	enum intel_engine_id id;
	const int num_rings =
		/* Use an extended w/a on gen7 if signalling from other rings */
		(HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
		INTEL_INFO(i915)->num_rings - 1 :
		0;
	int len;
	u32 *cs;

	flags |= MI_MM_SPACE_GTT;
	if (IS_HASWELL(i915))
		/* These flags are for resource streamer on HSW+ */
		flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
	else
		flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;

	len = 4;
	if (IS_GEN7(i915))
		len += 2 + (num_rings ? 4*num_rings + 6 : 0);

	cs = intel_ring_begin(rq, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
	if (IS_GEN7(i915)) {
		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
		if (num_rings) {
			struct intel_engine_cs *signaller;

			*cs++ = MI_LOAD_REGISTER_IMM(num_rings);
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				*cs++ = i915_mmio_reg_offset(
					   RING_PSMI_CTL(signaller->mmio_base));
				*cs++ = _MASKED_BIT_ENABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}
		}
	}

	*cs++ = MI_NOOP;
	*cs++ = MI_SET_CONTEXT;
	*cs++ = i915_ggtt_offset(rq->ctx->engine[RCS].state) | flags;
	/*
	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
	 * WaMiSetContext_Hang:snb,ivb,vlv
	 */
	*cs++ = MI_NOOP;

	if (IS_GEN7(i915)) {
		if (num_rings) {
			struct intel_engine_cs *signaller;
			i915_reg_t last_reg = {}; /* keep gcc quiet */

			*cs++ = MI_LOAD_REGISTER_IMM(num_rings);
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				last_reg = RING_PSMI_CTL(signaller->mmio_base);
				*cs++ = i915_mmio_reg_offset(last_reg);
				*cs++ = _MASKED_BIT_DISABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}

			/* Insert a delay before the next switch! */
			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
			*cs++ = i915_mmio_reg_offset(last_reg);
			*cs++ = i915_ggtt_offset(engine->scratch);
			*cs++ = MI_NOOP;
		}
		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	}

	intel_ring_advance(rq, cs);

	return 0;
}

1464
static int remap_l3(struct i915_request *rq, int slice)
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
{
	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
	int i;

	if (!remap_info)
		return 0;

	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
		*cs++ = remap_info[i];
	}
	*cs++ = MI_NOOP;
	intel_ring_advance(rq, cs);

	return 0;
}

1492
static int switch_context(struct i915_request *rq)
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
{
	struct intel_engine_cs *engine = rq->engine;
	struct i915_gem_context *to_ctx = rq->ctx;
	struct i915_hw_ppgtt *to_mm =
		to_ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
	struct i915_gem_context *from_ctx = engine->legacy_active_context;
	struct i915_hw_ppgtt *from_mm = engine->legacy_active_ppgtt;
	u32 hw_flags = 0;
	int ret, i;

	lockdep_assert_held(&rq->i915->drm.struct_mutex);
	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));

	if (to_mm != from_mm ||
	    (to_mm && intel_engine_flag(engine) & to_mm->pd_dirty_rings)) {
		trace_switch_mm(engine, to_ctx);
		ret = to_mm->switch_mm(to_mm, rq);
		if (ret)
			goto err;

		to_mm->pd_dirty_rings &= ~intel_engine_flag(engine);
		engine->legacy_active_ppgtt = to_mm;
		hw_flags = MI_FORCE_RESTORE;
	}

	if (to_ctx->engine[engine->id].state &&
	    (to_ctx != from_ctx || hw_flags & MI_FORCE_RESTORE)) {
		GEM_BUG_ON(engine->id != RCS);

		/*
		 * The kernel context(s) is treated as pure scratch and is not
		 * expected to retain any state (as we sacrifice it during
		 * suspend and on resume it may be corrupted). This is ok,
		 * as nothing actually executes using the kernel context; it
		 * is purely used for flushing user contexts.
		 */
		if (i915_gem_context_is_kernel(to_ctx))
			hw_flags = MI_RESTORE_INHIBIT;

		ret = mi_set_context(rq, hw_flags);
		if (ret)
			goto err_mm;

		engine->legacy_active_context = to_ctx;
	}

	if (to_ctx->remap_slice) {
		for (i = 0; i < MAX_L3_SLICES; i++) {
			if (!(to_ctx->remap_slice & BIT(i)))
				continue;

			ret = remap_l3(rq, i);
			if (ret)
				goto err_ctx;
		}

		to_ctx->remap_slice = 0;
	}

	return 0;

err_ctx:
	engine->legacy_active_context = from_ctx;
err_mm:
	engine->legacy_active_ppgtt = from_mm;
err:
	return ret;
}

1562
static int ring_request_alloc(struct i915_request *request)
1563
{
1564
	int ret;
1565

1566 1567
	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);

1568 1569 1570 1571
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1572
	request->reserved_space += LEGACY_REQUEST_SIZE;
1573

1574 1575 1576
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1577

1578
	ret = switch_context(request);
1579 1580 1581
	if (ret)
		return ret;

1582
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1583
	return 0;
1584 1585
}

1586
static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1587
{
1588
	struct i915_request *target;
1589 1590
	long timeout;

1591
	lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1592

1593
	if (intel_ring_update_space(ring) >= bytes)
1594 1595
		return 0;

1596
	GEM_BUG_ON(list_empty(&ring->request_list));
1597
	list_for_each_entry(target, &ring->request_list, ring_link) {
1598
		/* Would completion of this request free enough space? */
1599 1600
		if (bytes <= __intel_ring_space(target->postfix,
						ring->emit, ring->size))
1601
			break;
1602
	}
1603

1604
	if (WARN_ON(&target->ring_link == &ring->request_list))
1605 1606
		return -ENOSPC;

1607
	timeout = i915_request_wait(target,
1608 1609 1610 1611
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
1612

1613
	i915_request_retire_upto(target);
1614 1615 1616 1617

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
1618 1619
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
{
	GEM_BUG_ON(bytes > ring->effective_size);
	if (unlikely(bytes > ring->effective_size - ring->emit))
		bytes += ring->size - ring->emit;

	if (unlikely(bytes > ring->space)) {
		int ret = wait_for_space(ring, bytes);
		if (unlikely(ret))
			return ret;
	}

	GEM_BUG_ON(ring->space < bytes);
	return 0;
}

1636
u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
M
Mika Kuoppala 已提交
1637
{
1638
	struct intel_ring *ring = rq->ring;
1639 1640 1641 1642
	const unsigned int remain_usable = ring->effective_size - ring->emit;
	const unsigned int bytes = num_dwords * sizeof(u32);
	unsigned int need_wrap = 0;
	unsigned int total_bytes;
1643
	u32 *cs;
1644

1645 1646 1647
	/* Packets must be qword aligned. */
	GEM_BUG_ON(num_dwords & 1);

1648
	total_bytes = bytes + rq->reserved_space;
1649
	GEM_BUG_ON(total_bytes > ring->effective_size);
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	if (unlikely(total_bytes > remain_usable)) {
		const int remain_actual = ring->size - ring->emit;

		if (bytes > remain_usable) {
			/*
			 * Not enough space for the basic request. So need to
			 * flush out the remainder and then wait for
			 * base + reserved.
			 */
			total_bytes += remain_actual;
			need_wrap = remain_actual | 1;
		} else  {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So we don't need an immediate
			 * wrap and only need to effectively wait for the
			 * reserved size from the start of ringbuffer.
			 */
1669
			total_bytes = rq->reserved_space + remain_actual;
1670
		}
M
Mika Kuoppala 已提交
1671 1672
	}

1673
	if (unlikely(total_bytes > ring->space)) {
1674 1675 1676 1677 1678 1679 1680 1681 1682
		int ret;

		/*
		 * Space is reserved in the ringbuffer for finalising the
		 * request, as that cannot be allowed to fail. During request
		 * finalisation, reserved_space is set to 0 to stop the
		 * overallocation and the assumption is that then we never need
		 * to wait (which has the risk of failing with EINTR).
		 *
1683
		 * See also i915_request_alloc() and i915_request_add().
1684
		 */
1685
		GEM_BUG_ON(!rq->reserved_space);
1686 1687

		ret = wait_for_space(ring, total_bytes);
M
Mika Kuoppala 已提交
1688
		if (unlikely(ret))
1689
			return ERR_PTR(ret);
M
Mika Kuoppala 已提交
1690 1691
	}

1692
	if (unlikely(need_wrap)) {
1693 1694 1695
		need_wrap &= ~1;
		GEM_BUG_ON(need_wrap > ring->space);
		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1696
		GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1697

1698
		/* Fill the tail with MI_NOOP */
1699
		memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1700
		ring->space -= need_wrap;
1701
		ring->emit = 0;
1702
	}
1703

1704
	GEM_BUG_ON(ring->emit > ring->size - bytes);
1705
	GEM_BUG_ON(ring->space < bytes);
1706
	cs = ring->vaddr + ring->emit;
1707
	GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1708
	ring->emit += bytes;
1709
	ring->space -= bytes;
1710 1711

	return cs;
1712
}
1713

1714
/* Align the ring tail to a cacheline boundary */
1715
int intel_ring_cacheline_align(struct i915_request *rq)
1716
{
1717
	int num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1718
	u32 *cs;
1719 1720 1721 1722

	if (num_dwords == 0)
		return 0;

1723 1724
	num_dwords = CACHELINE_BYTES / sizeof(u32) - num_dwords;
	cs = intel_ring_begin(rq, num_dwords);
1725 1726
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1727 1728

	while (num_dwords--)
1729
		*cs++ = MI_NOOP;
1730

1731
	intel_ring_advance(rq, cs);
1732 1733 1734 1735

	return 0;
}

1736
static void gen6_bsd_submit_request(struct i915_request *request)
1737
{
1738
	struct drm_i915_private *dev_priv = request->i915;
1739

1740 1741
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

1742
       /* Every tail move must follow the sequence below */
1743 1744 1745 1746

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
1747 1748
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1749 1750

	/* Clear the context id. Here be magic! */
1751
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1752

1753
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1754 1755 1756 1757 1758
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_BSD_SLEEP_PSMI_CONTROL,
					 GEN6_BSD_SLEEP_INDICATOR,
					 0,
					 1000, 0, NULL))
1759
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1760

1761
	/* Now that the ring is fully powered up, update the tail */
1762
	i9xx_submit_request(request);
1763 1764 1765 1766

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
1767 1768 1769 1770
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1771 1772
}

1773
static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1774
{
1775
	u32 cmd, *cs;
1776

1777
	cs = intel_ring_begin(rq, 4);
1778 1779
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1780

1781
	cmd = MI_FLUSH_DW;
1782 1783 1784 1785 1786 1787 1788 1789

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1790 1791 1792 1793 1794 1795
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1796
	if (mode & EMIT_INVALIDATE)
1797 1798
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

1799 1800
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1801
	*cs++ = 0;
1802
	*cs++ = MI_NOOP;
1803
	intel_ring_advance(rq, cs);
1804 1805 1806
	return 0;
}

1807
static int
1808
hsw_emit_bb_start(struct i915_request *rq,
1809 1810
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
1811
{
1812
	u32 *cs;
1813

1814
	cs = intel_ring_begin(rq, 2);
1815 1816
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1817

1818 1819 1820 1821
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
		(dispatch_flags & I915_DISPATCH_RS ?
		MI_BATCH_RESOURCE_STREAMER : 0);
1822
	/* bit0-7 is the length on GEN6+ */
1823
	*cs++ = offset;
1824
	intel_ring_advance(rq, cs);
1825 1826 1827 1828

	return 0;
}

1829
static int
1830
gen6_emit_bb_start(struct i915_request *rq,
1831 1832
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1833
{
1834
	u32 *cs;
1835

1836
	cs = intel_ring_begin(rq, 2);
1837 1838
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1839

1840 1841
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
1842
	/* bit0-7 is the length on GEN6+ */
1843
	*cs++ = offset;
1844
	intel_ring_advance(rq, cs);
1845

1846
	return 0;
1847 1848
}

1849 1850
/* Blitter support (SandyBridge+) */

1851
static int gen6_ring_flush(struct i915_request *rq, u32 mode)
Z
Zou Nan hai 已提交
1852
{
1853
	u32 cmd, *cs;
1854

1855
	cs = intel_ring_begin(rq, 4);
1856 1857
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1858

1859
	cmd = MI_FLUSH_DW;
1860 1861 1862 1863 1864 1865 1866 1867

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1868 1869 1870 1871 1872 1873
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1874
	if (mode & EMIT_INVALIDATE)
1875
		cmd |= MI_INVALIDATE_TLB;
1876 1877
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1878 1879
	*cs++ = 0;
	*cs++ = MI_NOOP;
1880
	intel_ring_advance(rq, cs);
R
Rodrigo Vivi 已提交
1881

1882
	return 0;
Z
Zou Nan hai 已提交
1883 1884
}

1885 1886 1887
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
1888
	int i;
1889

1890
	if (!HAS_LEGACY_SEMAPHORES(dev_priv))
1891 1892
		return;

1893 1894 1895
	GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
	engine->semaphore.sync_to = gen6_ring_sync_to;
	engine->semaphore.signal = gen6_signal;
1896

1897 1898 1899 1900 1901 1902 1903 1904
	/*
	 * The current semaphore is only applied on pre-gen8
	 * platform.  And there is no VCS2 ring on the pre-gen8
	 * platform. So the semaphore between RCS and VCS2 is
	 * initialized as INVALID.
	 */
	for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
		static const struct {
1905 1906
			u32 wait_mbox;
			i915_reg_t mbox_reg;
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
		} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
			[RCS_HW] = {
				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
			},
			[VCS_HW] = {
				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
			},
			[BCS_HW] = {
				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
			},
			[VECS_HW] = {
				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
			},
		};
		u32 wait_mbox;
		i915_reg_t mbox_reg;
1931

1932 1933 1934 1935 1936 1937
		if (i == engine->hw_id) {
			wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
			mbox_reg = GEN6_NOSYNC;
		} else {
			wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
			mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1938
		}
1939

1940 1941 1942
		engine->semaphore.mbox.wait[i] = wait_mbox;
		engine->semaphore.mbox.signal[i] = mbox_reg;
	}
1943 1944
}

1945 1946 1947
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
1948
	if (INTEL_GEN(dev_priv) >= 6) {
1949 1950
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
1951 1952
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
1953 1954
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
1955
		engine->irq_seqno_barrier = gen5_seqno_barrier;
1956
	} else if (INTEL_GEN(dev_priv) >= 3) {
1957 1958
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
1959
	} else {
1960 1961
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
1962 1963 1964
	}
}

1965 1966 1967
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = i9xx_submit_request;
1968
	engine->cancel_requests = cancel_requests;
1969 1970 1971

	engine->park = NULL;
	engine->unpark = NULL;
1972 1973 1974 1975
}

static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
1976
	i9xx_set_default_submission(engine);
1977 1978 1979
	engine->submit_request = gen6_bsd_submit_request;
}

1980 1981 1982
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
1983 1984 1985
	/* gen8+ are only supported with execlists */
	GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);

1986 1987 1988
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

1989
	engine->init_hw = init_ring_common;
1990
	engine->reset_hw = reset_ring_common;
1991

1992 1993 1994
	engine->context_pin = intel_ring_context_pin;
	engine->context_unpin = intel_ring_context_unpin;

1995 1996
	engine->request_alloc = ring_request_alloc;

1997
	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
1998
	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
1999
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2000 2001
		int num_rings;

2002
		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2003

2004
		num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2005 2006 2007
		engine->emit_breadcrumb_sz += num_rings * 3;
		if (num_rings & 1)
			engine->emit_breadcrumb_sz++;
2008
	}
2009 2010

	engine->set_default_submission = i9xx_set_default_submission;
2011

2012
	if (INTEL_GEN(dev_priv) >= 6)
2013
		engine->emit_bb_start = gen6_emit_bb_start;
2014
	else if (INTEL_GEN(dev_priv) >= 4)
2015
		engine->emit_bb_start = i965_emit_bb_start;
2016
	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2017
		engine->emit_bb_start = i830_emit_bb_start;
2018
	else
2019
		engine->emit_bb_start = i915_emit_bb_start;
2020 2021
}

2022
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2023
{
2024
	struct drm_i915_private *dev_priv = engine->i915;
2025
	int ret;
2026

2027 2028
	intel_ring_default_vfuncs(dev_priv, engine);

2029 2030
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2031

2032 2033
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;

2034
	if (INTEL_GEN(dev_priv) >= 6) {
2035
		engine->init_context = intel_rcs_ctx_init;
2036
		engine->emit_flush = gen7_render_ring_flush;
2037
		if (IS_GEN6(dev_priv))
2038
			engine->emit_flush = gen6_render_ring_flush;
2039
	} else if (IS_GEN5(dev_priv)) {
2040
		engine->emit_flush = gen4_render_ring_flush;
2041
	} else {
2042
		if (INTEL_GEN(dev_priv) < 4)
2043
			engine->emit_flush = gen2_render_ring_flush;
2044
		else
2045
			engine->emit_flush = gen4_render_ring_flush;
2046
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2047
	}
B
Ben Widawsky 已提交
2048

2049
	if (IS_HASWELL(dev_priv))
2050
		engine->emit_bb_start = hsw_emit_bb_start;
2051

2052
	engine->init_hw = init_render_ring;
2053

2054
	ret = intel_init_ring_buffer(engine);
2055 2056 2057
	if (ret)
		return ret;

2058
	if (INTEL_GEN(dev_priv) >= 6) {
2059
		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2060 2061 2062
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2063
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2064 2065 2066 2067 2068
		if (ret)
			return ret;
	}

	return 0;
2069 2070
}

2071
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2072
{
2073
	struct drm_i915_private *dev_priv = engine->i915;
2074

2075 2076
	intel_ring_default_vfuncs(dev_priv, engine);

2077
	if (INTEL_GEN(dev_priv) >= 6) {
2078
		/* gen6 bsd needs a special wa for tail updates */
2079
		if (IS_GEN6(dev_priv))
2080
			engine->set_default_submission = gen6_bsd_set_default_submission;
2081
		engine->emit_flush = gen6_bsd_ring_flush;
2082
		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2083
	} else {
2084
		engine->emit_flush = bsd_ring_flush;
2085
		if (IS_GEN5(dev_priv))
2086
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2087
		else
2088
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2089 2090
	}

2091
	return intel_init_ring_buffer(engine);
2092
}
2093

2094
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2095
{
2096
	struct drm_i915_private *dev_priv = engine->i915;
2097 2098 2099

	intel_ring_default_vfuncs(dev_priv, engine);

2100
	engine->emit_flush = gen6_ring_flush;
2101
	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2102

2103
	return intel_init_ring_buffer(engine);
2104
}
2105

2106
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2107
{
2108
	struct drm_i915_private *dev_priv = engine->i915;
2109 2110 2111

	intel_ring_default_vfuncs(dev_priv, engine);

2112
	engine->emit_flush = gen6_ring_flush;
2113 2114 2115
	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
	engine->irq_enable = hsw_vebox_irq_enable;
	engine->irq_disable = hsw_vebox_irq_disable;
B
Ben Widawsky 已提交
2116

2117
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2118
}