extent_io.c 194.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
B
Boris Burkov 已提交
16
#include <linux/fsverity.h>
17
#include "misc.h"
18
#include "extent_io.h"
19
#include "extent-io-tree.h"
20
#include "extent_map.h"
21 22
#include "ctree.h"
#include "btrfs_inode.h"
23
#include "volumes.h"
24
#include "check-integrity.h"
25
#include "locking.h"
26
#include "rcu-string.h"
27
#include "backref.h"
28
#include "disk-io.h"
29
#include "subpage.h"
30
#include "zoned.h"
31
#include "block-group.h"
32 33 34

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
35
static struct bio_set btrfs_bioset;
36

37 38 39 40 41
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

42
#ifdef CONFIG_BTRFS_DEBUG
43
static LIST_HEAD(states);
C
Chris Mason 已提交
44
static DEFINE_SPINLOCK(leak_lock);
45

46 47 48
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
49 50 51
{
	unsigned long flags;

52
	spin_lock_irqsave(lock, flags);
53
	list_add(new, head);
54
	spin_unlock_irqrestore(lock, flags);
55 56
}

57 58
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
59 60 61
{
	unsigned long flags;

62
	spin_lock_irqsave(lock, flags);
63
	list_del(entry);
64
	spin_unlock_irqrestore(lock, flags);
65 66
}

67
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
68 69
{
	struct extent_buffer *eb;
70
	unsigned long flags;
71

72 73 74 75 76 77 78
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

79 80 81 82
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
83 84 85 86
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
87 88 89
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
90
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
91 92 93 94 95 96
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

97 98
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
99
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
100 101
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
102
		       refcount_read(&state->refs));
103 104 105 106
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
107

108 109
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
110
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
111
		struct extent_io_tree *tree, u64 start, u64 end)
112
{
113 114 115 116 117 118 119 120 121 122 123 124
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
125
}
126
#else
127 128
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
129
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
130
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
131
#endif
132 133 134 135 136 137 138 139

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
140
	struct btrfs_bio_ctrl bio_ctrl;
141 142 143
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
144 145
	unsigned int extent_locked:1;

146
	/* tells the submit_bio code to use REQ_SYNC */
147
	unsigned int sync_io:1;
148 149
};

150
static int add_extent_changeset(struct extent_state *state, u32 bits,
151 152 153 154 155 156
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
157
		return 0;
158
	if (set && (state->state & bits) == bits)
159
		return 0;
160
	if (!set && (state->state & bits) == 0)
161
		return 0;
162
	changeset->bytes_changed += state->end - state->start + 1;
163
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
164
			GFP_ATOMIC);
165
	return ret;
166 167
}

168 169
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
170 171 172 173 174 175
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

176 177
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
178 179 180 181
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
182 183
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
184 185 186 187

	return blk_status_to_errno(ret);
}

188 189 190
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
191 192 193 194 195 196
	struct bio *bio = epd->bio_ctrl.bio;

	if (bio) {
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
		epd->bio_ctrl.bio = NULL;
197 198 199
	}
}

200 201 202 203 204 205 206
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
207
{
208
	int ret = 0;
209
	struct bio *bio = epd->bio_ctrl.bio;
210

211 212
	if (bio) {
		ret = submit_one_bio(bio, 0, 0);
213 214 215 216 217 218 219
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
220
		epd->bio_ctrl.bio = NULL;
221
	}
222
	return ret;
223
}
224

225
int __init extent_state_cache_init(void)
226
{
D
David Sterba 已提交
227
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
228
			sizeof(struct extent_state), 0,
229
			SLAB_MEM_SPREAD, NULL);
230 231
	if (!extent_state_cache)
		return -ENOMEM;
232 233
	return 0;
}
234

235 236
int __init extent_io_init(void)
{
D
David Sterba 已提交
237
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
238
			sizeof(struct extent_buffer), 0,
239
			SLAB_MEM_SPREAD, NULL);
240
	if (!extent_buffer_cache)
241
		return -ENOMEM;
242

243
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
244
			offsetof(struct btrfs_bio, bio),
245
			BIOSET_NEED_BVECS))
246
		goto free_buffer_cache;
247

248
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
249 250
		goto free_bioset;

251 252
	return 0;

253
free_bioset:
254
	bioset_exit(&btrfs_bioset);
255

256 257 258
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
259 260
	return -ENOMEM;
}
261

262 263 264
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
265 266 267
	kmem_cache_destroy(extent_state_cache);
}

268
void __cold extent_io_exit(void)
269
{
270 271 272 273 274
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
275
	kmem_cache_destroy(extent_buffer_cache);
276
	bioset_exit(&btrfs_bioset);
277 278
}

279 280 281 282 283 284 285 286 287
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

288
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
289 290
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
291
{
292
	tree->fs_info = fs_info;
293
	tree->state = RB_ROOT;
294
	tree->dirty_bytes = 0;
295
	spin_lock_init(&tree->lock);
296
	tree->private_data = private_data;
297
	tree->owner = owner;
298 299
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
300 301
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

331
static struct extent_state *alloc_extent_state(gfp_t mask)
332 333 334
{
	struct extent_state *state;

335 336 337 338 339
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
340
	state = kmem_cache_alloc(extent_state_cache, mask);
341
	if (!state)
342 343
		return state;
	state->state = 0;
344
	state->failrec = NULL;
345
	RB_CLEAR_NODE(&state->rb_node);
346
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
347
	refcount_set(&state->refs, 1);
348
	init_waitqueue_head(&state->wq);
349
	trace_alloc_extent_state(state, mask, _RET_IP_);
350 351 352
	return state;
}

353
void free_extent_state(struct extent_state *state)
354 355 356
{
	if (!state)
		return;
357
	if (refcount_dec_and_test(&state->refs)) {
358
		WARN_ON(extent_state_in_tree(state));
359
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
360
		trace_free_extent_state(state, _RET_IP_);
361 362 363 364
		kmem_cache_free(extent_state_cache, state);
	}
}

365 366 367
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
368 369 370
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
371
{
372
	struct rb_node **p;
C
Chris Mason 已提交
373
	struct rb_node *parent = NULL;
374 375
	struct tree_entry *entry;

376 377 378 379 380 381
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

382
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
383
	while (*p) {
384 385 386 387 388 389 390 391 392 393 394
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

395
do_insert:
396 397 398 399 400
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
401
/**
402 403
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
404
 *
405 406 407 408 409 410 411
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
412 413 414 415 416 417 418
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
419
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
420
				      struct rb_node **next_ret,
421
				      struct rb_node **prev_ret,
422 423
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
424
{
425
	struct rb_root *root = &tree->state;
426
	struct rb_node **n = &root->rb_node;
427 428 429 430 431
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

432 433 434
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
435 436 437
		prev_entry = entry;

		if (offset < entry->start)
438
			n = &(*n)->rb_left;
439
		else if (offset > entry->end)
440
			n = &(*n)->rb_right;
C
Chris Mason 已提交
441
		else
442
			return *n;
443 444
	}

445 446 447 448 449
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

450
	if (next_ret) {
451
		orig_prev = prev;
C
Chris Mason 已提交
452
		while (prev && offset > prev_entry->end) {
453 454 455
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
456
		*next_ret = prev;
457 458 459
		prev = orig_prev;
	}

460
	if (prev_ret) {
461
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
462
		while (prev && offset < prev_entry->start) {
463 464 465
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
466
		*prev_ret = prev;
467 468 469 470
	}
	return NULL;
}

471 472 473 474 475
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
476
{
477
	struct rb_node *next= NULL;
478
	struct rb_node *ret;
479

480
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
481
	if (!ret)
482
		return next;
483 484 485
	return ret;
}

486 487 488 489 490 491
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

492 493 494 495 496 497 498 499 500
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
501 502
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
503 504 505 506
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
507
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
508
		return;
509 510 511 512 513 514

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
515 516 517 518
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
519 520
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
521
			RB_CLEAR_NODE(&other->rb_node);
522 523 524 525 526 527 528 529
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
530 531 532 533
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
534 535
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
536
			RB_CLEAR_NODE(&other->rb_node);
537
			free_extent_state(other);
538 539 540 541
		}
	}
}

542
static void set_state_bits(struct extent_io_tree *tree,
543
			   struct extent_state *state, u32 *bits,
544
			   struct extent_changeset *changeset);
545

546 547 548 549 550 551 552 553 554 555 556 557
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
558 559
			struct rb_node ***p,
			struct rb_node **parent,
560
			u32 *bits, struct extent_changeset *changeset)
561 562 563
{
	struct rb_node *node;

564 565 566 567 568
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
569 570
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
571

572
	set_state_bits(tree, state, bits, changeset);
573

574
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
575 576 577
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
578 579
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
580
		       found->start, found->end, start, end);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
605

606 607
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
608

609 610 611 612 613
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

614 615
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
616 617 618 619 620 621 622
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

623 624 625 626 627 628 629 630 631
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

632 633
/*
 * utility function to clear some bits in an extent state struct.
634
 * it will optionally wake up anyone waiting on this state (wake == 1).
635 636 637 638
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
639 640
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
641
					    u32 *bits, int wake,
642
					    struct extent_changeset *changeset)
643
{
644
	struct extent_state *next;
645
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
646
	int ret;
647

648
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
649 650 651 652
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
653 654 655 656

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

657 658
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
659
	state->state &= ~bits_to_clear;
660 661
	if (wake)
		wake_up(&state->wq);
662
	if (state->state == 0) {
663
		next = next_state(state);
664
		if (extent_state_in_tree(state)) {
665
			rb_erase(&state->rb_node, &tree->state);
666
			RB_CLEAR_NODE(&state->rb_node);
667 668 669 670 671 672
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
673
		next = next_state(state);
674
	}
675
	return next;
676 677
}

678 679 680 681 682 683 684 685 686
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

687
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
688
{
689
	btrfs_panic(tree->fs_info, err,
690
	"locking error: extent tree was modified by another thread while locked");
691 692
}

693 694 695 696 697 698 699 700 701 702
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
703
 * This takes the tree lock, and returns 0 on success and < 0 on error.
704
 */
705
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
706 707 708
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
709 710
{
	struct extent_state *state;
711
	struct extent_state *cached;
712 713
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
714
	u64 last_end;
715
	int err;
716
	int clear = 0;
717

718
	btrfs_debug_check_extent_io_range(tree, start, end);
719
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
720

721 722 723
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

724 725 726
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
727
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
728
		clear = 1;
729
again:
730
	if (!prealloc && gfpflags_allow_blocking(mask)) {
731 732 733 734 735 736 737
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
738 739 740
		prealloc = alloc_extent_state(mask);
	}

741
	spin_lock(&tree->lock);
742 743
	if (cached_state) {
		cached = *cached_state;
744 745 746 747 748 749

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

750 751
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
752
			if (clear)
753
				refcount_dec(&cached->refs);
754
			state = cached;
755
			goto hit_next;
756
		}
757 758
		if (clear)
			free_extent_state(cached);
759
	}
760 761 762 763
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
764
	node = tree_search(tree, start);
765 766 767
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
768
hit_next:
769 770 771
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
772
	last_end = state->end;
773

774
	/* the state doesn't have the wanted bits, go ahead */
775 776
	if (!(state->state & bits)) {
		state = next_state(state);
777
		goto next;
778
	}
779

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
797 798
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
799
		err = split_state(tree, state, prealloc, start);
800 801 802
		if (err)
			extent_io_tree_panic(tree, err);

803 804 805 806
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
807 808
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
809
			goto next;
810 811 812 813 814 815 816 817 818 819
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
820 821
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
822
		err = split_state(tree, state, prealloc, end + 1);
823 824 825
		if (err)
			extent_io_tree_panic(tree, err);

826 827
		if (wake)
			wake_up(&state->wq);
828

829
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
830

831 832 833
		prealloc = NULL;
		goto out;
	}
834

835
	state = clear_state_bit(tree, state, &bits, wake, changeset);
836
next:
837 838 839
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
840
	if (start <= end && state && !need_resched())
841
		goto hit_next;
842 843 844 845

search_again:
	if (start > end)
		goto out;
846
	spin_unlock(&tree->lock);
847
	if (gfpflags_allow_blocking(mask))
848 849
		cond_resched();
	goto again;
850 851 852 853 854 855 856 857

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

858 859
}

860 861
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
862 863
		__releases(tree->lock)
		__acquires(tree->lock)
864 865 866
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
867
	spin_unlock(&tree->lock);
868
	schedule();
869
	spin_lock(&tree->lock);
870 871 872 873 874 875 876 877
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
878
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
879
			    u32 bits)
880 881 882 883
{
	struct extent_state *state;
	struct rb_node *node;

884
	btrfs_debug_check_extent_io_range(tree, start, end);
885

886
	spin_lock(&tree->lock);
887 888 889 890 891 892
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
893
		node = tree_search(tree, start);
894
process_node:
895 896 897 898 899 900 901 902 903 904
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
905
			refcount_inc(&state->refs);
906 907 908 909 910 911 912 913 914
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

915 916 917 918
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
919 920
	}
out:
921
	spin_unlock(&tree->lock);
922 923
}

924
static void set_state_bits(struct extent_io_tree *tree,
925
			   struct extent_state *state,
926
			   u32 *bits, struct extent_changeset *changeset)
927
{
928
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
929
	int ret;
J
Josef Bacik 已提交
930

931 932 933
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

934
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
935 936 937
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
938 939
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
940
	state->state |= bits_to_set;
941 942
}

943 944
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
945
				 unsigned flags)
946 947
{
	if (cached_ptr && !(*cached_ptr)) {
948
		if (!flags || (state->state & flags)) {
949
			*cached_ptr = state;
950
			refcount_inc(&state->refs);
951 952 953 954
		}
	}
}

955 956 957 958
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
959
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
960 961
}

962
/*
963 964
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
965
 *
966 967 968
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
969
 *
970
 * [start, end] is inclusive This takes the tree lock.
971
 */
972 973
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
974 975
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
976 977 978 979
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
980 981
	struct rb_node **p;
	struct rb_node *parent;
982 983 984
	int err = 0;
	u64 last_start;
	u64 last_end;
985

986
	btrfs_debug_check_extent_io_range(tree, start, end);
987
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
988

989 990 991 992
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
993
again:
994
	if (!prealloc && gfpflags_allow_blocking(mask)) {
995 996 997 998 999 1000 1001
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1002 1003 1004
		prealloc = alloc_extent_state(mask);
	}

1005
	spin_lock(&tree->lock);
1006 1007
	if (cached_state && *cached_state) {
		state = *cached_state;
1008
		if (state->start <= start && state->end > start &&
1009
		    extent_state_in_tree(state)) {
1010 1011 1012 1013
			node = &state->rb_node;
			goto hit_next;
		}
	}
1014 1015 1016 1017
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1018
	node = tree_search_for_insert(tree, start, &p, &parent);
1019
	if (!node) {
1020 1021
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1022
		err = insert_state(tree, prealloc, start, end,
1023
				   &p, &parent, &bits, changeset);
1024 1025 1026
		if (err)
			extent_io_tree_panic(tree, err);

1027
		cache_state(prealloc, cached_state);
1028 1029 1030 1031
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1032
hit_next:
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1043
		if (state->state & exclusive_bits) {
1044 1045 1046 1047
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1048

1049
		set_state_bits(tree, state, &bits, changeset);
1050
		cache_state(state, cached_state);
1051
		merge_state(tree, state);
1052 1053 1054
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1055 1056 1057 1058
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1079
		if (state->state & exclusive_bits) {
1080 1081 1082 1083
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1095 1096
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1097
		err = split_state(tree, state, prealloc, start);
1098 1099 1100
		if (err)
			extent_io_tree_panic(tree, err);

1101 1102 1103 1104
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1105
			set_state_bits(tree, state, &bits, changeset);
1106
			cache_state(state, cached_state);
1107
			merge_state(tree, state);
1108 1109 1110
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1111 1112 1113 1114
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1130
			this_end = last_start - 1;
1131 1132 1133

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1134 1135 1136 1137 1138

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1139
		err = insert_state(tree, prealloc, start, this_end,
1140
				   NULL, NULL, &bits, changeset);
1141 1142 1143
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1144 1145
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1156
		if (state->state & exclusive_bits) {
1157 1158 1159 1160
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1161 1162 1163

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1164
		err = split_state(tree, state, prealloc, end + 1);
1165 1166
		if (err)
			extent_io_tree_panic(tree, err);
1167

1168
		set_state_bits(tree, prealloc, &bits, changeset);
1169
		cache_state(prealloc, cached_state);
1170 1171 1172 1173 1174
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1175 1176 1177 1178 1179 1180 1181
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1182 1183

out:
1184
	spin_unlock(&tree->lock);
1185 1186 1187 1188 1189 1190 1191
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1192
/**
L
Liu Bo 已提交
1193 1194
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1195 1196 1197 1198 1199
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1200
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1201 1202 1203 1204 1205 1206
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1207 1208
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1209 1210
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1211
		       u32 bits, u32 clear_bits,
1212
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1213 1214 1215 1216
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1217 1218
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1219 1220 1221
	int err = 0;
	u64 last_start;
	u64 last_end;
1222
	bool first_iteration = true;
J
Josef Bacik 已提交
1223

1224
	btrfs_debug_check_extent_io_range(tree, start, end);
1225 1226
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1227

J
Josef Bacik 已提交
1228
again:
1229
	if (!prealloc) {
1230 1231 1232 1233 1234 1235 1236
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1237
		prealloc = alloc_extent_state(GFP_NOFS);
1238
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1239 1240 1241 1242
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1243 1244 1245
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1246
		    extent_state_in_tree(state)) {
1247 1248 1249 1250 1251
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1252 1253 1254 1255
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1256
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1257 1258
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1259 1260 1261 1262
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1263
		err = insert_state(tree, prealloc, start, end,
1264
				   &p, &parent, &bits, NULL);
1265 1266
		if (err)
			extent_io_tree_panic(tree, err);
1267 1268
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1283
		set_state_bits(tree, state, &bits, NULL);
1284
		cache_state(state, cached_state);
1285
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1286 1287 1288
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1289 1290 1291
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1313 1314 1315 1316
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1317
		err = split_state(tree, state, prealloc, start);
1318 1319
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1320 1321 1322 1323
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1324
			set_state_bits(tree, state, &bits, NULL);
1325
			cache_state(state, cached_state);
1326 1327
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1328 1329 1330
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1331 1332 1333
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1352 1353 1354 1355
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1356 1357 1358 1359 1360 1361

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1362
				   NULL, NULL, &bits, NULL);
1363 1364
		if (err)
			extent_io_tree_panic(tree, err);
1365
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1378 1379 1380 1381
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1382 1383

		err = split_state(tree, state, prealloc, end + 1);
1384 1385
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1386

1387
		set_state_bits(tree, prealloc, &bits, NULL);
1388
		cache_state(prealloc, cached_state);
1389
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1390 1391 1392 1393 1394 1395 1396 1397
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1398
	cond_resched();
1399
	first_iteration = false;
J
Josef Bacik 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1410
/* wrappers around set/clear extent bit */
1411
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412
			   u32 bits, struct extent_changeset *changeset)
1413 1414 1415 1416 1417 1418 1419 1420 1421
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1422 1423
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1424 1425
}

1426
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1427
			   u32 bits)
1428
{
1429 1430
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1431 1432
}

1433
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1434
		     u32 bits, int wake, int delete,
1435
		     struct extent_state **cached)
1436 1437
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1438
				  cached, GFP_NOFS, NULL);
1439 1440 1441
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1442
		u32 bits, struct extent_changeset *changeset)
1443 1444 1445 1446 1447 1448 1449
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1450
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1451 1452 1453
				  changeset);
}

C
Chris Mason 已提交
1454 1455 1456 1457
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1458
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1459
		     struct extent_state **cached_state)
1460 1461 1462
{
	int err;
	u64 failed_start;
1463

1464
	while (1) {
1465 1466 1467
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1468
		if (err == -EEXIST) {
1469 1470
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1471
		} else
1472 1473 1474 1475 1476 1477
			break;
		WARN_ON(start > end);
	}
	return err;
}

1478
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1479 1480 1481 1482
{
	int err;
	u64 failed_start;

1483 1484
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1485 1486 1487
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1488
					 EXTENT_LOCKED, 1, 0, NULL);
1489
		return 0;
Y
Yan Zheng 已提交
1490
	}
1491 1492 1493
	return 1;
}

1494
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1495
{
1496 1497
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1498 1499 1500 1501 1502 1503
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1504
		put_page(page);
1505 1506 1507 1508
		index++;
	}
}

1509
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1510
{
1511 1512
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1513 1514 1515 1516 1517 1518
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1519
		account_page_redirty(page);
1520
		put_page(page);
1521 1522 1523 1524
		index++;
	}
}

C
Chris Mason 已提交
1525 1526 1527 1528
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1529
static struct extent_state *
1530
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1540
	if (!node)
C
Chris Mason 已提交
1541 1542
		goto out;

C
Chris Mason 已提交
1543
	while (1) {
C
Chris Mason 已提交
1544
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1545
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1546
			return state;
C
Chris Mason 已提交
1547

C
Chris Mason 已提交
1548 1549 1550 1551 1552 1553 1554 1555
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1556
/*
1557
 * Find the first offset in the io tree with one or more @bits set.
1558
 *
1559 1560 1561 1562
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1563 1564
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1565
			  u64 *start_ret, u64 *end_ret, u32 bits,
1566
			  struct extent_state **cached_state)
1567 1568 1569 1570 1571
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1572 1573
	if (cached_state && *cached_state) {
		state = *cached_state;
1574
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1575
			while ((state = next_state(state)) != NULL) {
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1587
	state = find_first_extent_bit_state(tree, start, bits);
1588
got_it:
1589
	if (state) {
1590
		cache_state_if_flags(state, cached_state, 0);
1591 1592 1593 1594
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1595
out:
1596 1597 1598 1599
	spin_unlock(&tree->lock);
	return ret;
}

1600
/**
1601 1602 1603 1604 1605 1606 1607
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1608 1609 1610 1611 1612 1613 1614 1615 1616
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1617
			       u64 *start_ret, u64 *end_ret, u32 bits)
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1638
/**
1639 1640
 * Find the first range that has @bits not set. This range could start before
 * @start.
1641
 *
1642 1643 1644 1645 1646
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1647 1648 1649 1650 1651 1652 1653
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1654
				 u64 *start_ret, u64 *end_ret, u32 bits)
1655 1656 1657 1658 1659 1660 1661 1662 1663
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1682 1683
			node = next;
		}
1684 1685 1686 1687
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1688
		state = rb_entry(node, struct extent_state, rb_node);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1711
		} else {
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1755 1756 1757 1758
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1759
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1760
 */
J
Josef Bacik 已提交
1761 1762 1763
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1764 1765 1766 1767
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1768
	bool found = false;
1769 1770
	u64 total_bytes = 0;

1771
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1772

1773 1774 1775 1776
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1777
	node = tree_search(tree, cur_start);
1778
	if (!node) {
1779
		*end = (u64)-1;
1780 1781 1782
		goto out;
	}

C
Chris Mason 已提交
1783
	while (1) {
1784
		state = rb_entry(node, struct extent_state, rb_node);
1785 1786
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1787 1788 1789 1790 1791 1792 1793
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1794
		if (!found) {
1795
			*start = state->start;
1796
			*cached_state = state;
1797
			refcount_inc(&state->refs);
1798
		}
1799
		found = true;
1800 1801 1802 1803
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1804
		if (total_bytes >= max_bytes)
1805 1806
			break;
		if (!node)
1807 1808 1809
			break;
	}
out:
1810
	spin_unlock(&tree->lock);
1811 1812 1813
	return found;
}

1814 1815 1816 1817 1818 1819 1820 1821
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1822 1823
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1824
			    struct page *page, struct page *locked_page,
1825
			    unsigned long page_ops, u64 start, u64 end)
1826
{
1827 1828 1829 1830 1831
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1832
	if (page_ops & PAGE_SET_ORDERED)
1833
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1834
	if (page_ops & PAGE_SET_ERROR)
1835
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1836
	if (page_ops & PAGE_START_WRITEBACK) {
1837 1838
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1839 1840
	}
	if (page_ops & PAGE_END_WRITEBACK)
1841
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1842 1843 1844 1845

	if (page == locked_page)
		return 1;

1846
	if (page_ops & PAGE_LOCK) {
1847 1848 1849 1850 1851
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1852
		if (!PageDirty(page) || page->mapping != mapping) {
1853
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1854 1855 1856 1857
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1858
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1859 1860 1861
	return 0;
}

1862 1863
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1864
				  u64 start, u64 end, unsigned long page_ops,
1865 1866
				  u64 *processed_end)
{
1867
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1904 1905 1906
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1938

1939 1940 1941
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1942
{
1943 1944
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1945

1946
	ASSERT(locked_page);
C
Chris Mason 已提交
1947
	if (index == locked_page->index && end_index == index)
1948
		return;
C
Chris Mason 已提交
1949

1950
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1951
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1952 1953 1954 1955 1956 1957 1958
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1959 1960
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1961
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1962 1963
	int ret;

1964
	ASSERT(locked_page);
C
Chris Mason 已提交
1965 1966 1967
	if (index == locked_page->index && index == end_index)
		return 0;

1968 1969 1970
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1971
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1972
				      processed_end);
C
Chris Mason 已提交
1973 1974 1975 1976
	return ret;
}

/*
1977 1978
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 * more than @max_bytes.  @Start and @end are used to return the range,
C
Chris Mason 已提交
1979
 *
1980 1981
 * Return: true if we find something
 *         false if nothing was in the tree
C
Chris Mason 已提交
1982
 */
1983
EXPORT_FOR_TESTS
1984
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1985
				    struct page *locked_page, u64 *start,
1986
				    u64 *end)
C
Chris Mason 已提交
1987
{
1988
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1989
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1990 1991
	u64 delalloc_start;
	u64 delalloc_end;
1992
	bool found;
1993
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1994 1995 1996 1997 1998 1999 2000
	int ret;
	int loops = 0;

again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
2001 2002
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
C
Chris Mason 已提交
2003
	if (!found || delalloc_end <= *start) {
C
Chris Mason 已提交
2004 2005
		*start = delalloc_start;
		*end = delalloc_end;
2006
		free_extent_state(cached_state);
2007
		return false;
C
Chris Mason 已提交
2008 2009
	}

C
Chris Mason 已提交
2010 2011 2012 2013 2014
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2015
	if (delalloc_start < *start)
C
Chris Mason 已提交
2016 2017
		delalloc_start = *start;

C
Chris Mason 已提交
2018 2019 2020
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2021 2022
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2023

C
Chris Mason 已提交
2024 2025 2026
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2027
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2028 2029 2030 2031
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2032
		free_extent_state(cached_state);
2033
		cached_state = NULL;
C
Chris Mason 已提交
2034
		if (!loops) {
2035
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2036 2037 2038
			loops = 1;
			goto again;
		} else {
2039
			found = false;
C
Chris Mason 已提交
2040 2041 2042 2043 2044
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2045
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2046 2047 2048

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2049
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2050
	if (!ret) {
2051
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2052
				     &cached_state);
C
Chris Mason 已提交
2053 2054 2055 2056 2057
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2058
	free_extent_state(cached_state);
C
Chris Mason 已提交
2059 2060 2061 2062 2063 2064
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2065
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2066
				  struct page *locked_page,
2067
				  u32 clear_bits, unsigned long page_ops)
2068
{
2069
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2070

2071
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2072
			       start, end, page_ops, NULL);
2073 2074
}

C
Chris Mason 已提交
2075 2076 2077 2078 2079
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2080 2081
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2082
		     u32 bits, int contig)
2083 2084 2085 2086 2087
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2088
	u64 last = 0;
2089 2090
	int found = 0;

2091
	if (WARN_ON(search_end <= cur_start))
2092 2093
		return 0;

2094
	spin_lock(&tree->lock);
2095 2096 2097 2098 2099 2100 2101 2102
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2103
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2104
	if (!node)
2105 2106
		goto out;

C
Chris Mason 已提交
2107
	while (1) {
2108 2109 2110
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2111 2112 2113
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2114 2115 2116 2117 2118
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2119
				*start = max(cur_start, state->start);
2120 2121
				found = 1;
			}
2122 2123 2124
			last = state->end;
		} else if (contig && found) {
			break;
2125 2126 2127 2128 2129 2130
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2131
	spin_unlock(&tree->lock);
2132 2133
	return total_bytes;
}
2134

C
Chris Mason 已提交
2135 2136 2137 2138
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2139 2140
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2141 2142 2143 2144 2145
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2146
	spin_lock(&tree->lock);
2147 2148 2149 2150
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2151
	node = tree_search(tree, start);
2152
	if (!node) {
2153 2154 2155 2156 2157 2158 2159 2160
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2161
	state->failrec = failrec;
2162
out:
2163
	spin_unlock(&tree->lock);
2164 2165 2166
	return ret;
}

2167
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2168 2169 2170
{
	struct rb_node *node;
	struct extent_state *state;
2171
	struct io_failure_record *failrec;
2172

2173
	spin_lock(&tree->lock);
2174 2175 2176 2177
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2178
	node = tree_search(tree, start);
2179
	if (!node) {
2180
		failrec = ERR_PTR(-ENOENT);
2181 2182 2183 2184
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2185
		failrec = ERR_PTR(-ENOENT);
2186 2187
		goto out;
	}
2188 2189

	failrec = state->failrec;
2190
out:
2191
	spin_unlock(&tree->lock);
2192
	return failrec;
2193 2194 2195 2196
}

/*
 * searches a range in the state tree for a given mask.
2197
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2198 2199 2200 2201
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2202
		   u32 bits, int filled, struct extent_state *cached)
2203 2204 2205 2206 2207
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2208
	spin_lock(&tree->lock);
2209
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2210
	    cached->end > start)
2211 2212 2213
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2233 2234 2235 2236

		if (state->end == (u64)-1)
			break;

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2247
	spin_unlock(&tree->lock);
2248 2249 2250
	return bitset;
}

2251 2252 2253
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2254 2255 2256 2257
{
	int ret;
	int err = 0;

2258
	set_state_failrec(failure_tree, rec->start, NULL);
2259 2260
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2261
				EXTENT_LOCKED | EXTENT_DIRTY);
2262 2263 2264
	if (ret)
		err = ret;

2265
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2266
				rec->start + rec->len - 1,
2267
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2268 2269
	if (ret && !err)
		err = ret;
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2280
 * to avoid any synchronization issues, wait for the data after writing, which
2281 2282 2283 2284
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
Q
Qu Wenruo 已提交
2285 2286 2287
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2288 2289 2290 2291 2292
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
2293
	struct btrfs_io_context *bioc = NULL;
2294 2295
	int ret;

2296
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2297 2298
	BUG_ON(!mirror_num);

2299 2300 2301
	if (btrfs_is_zoned(fs_info))
		return btrfs_repair_one_zone(fs_info, logical);

2302
	bio = btrfs_bio_alloc(1);
2303
	bio->bi_iter.bi_size = 0;
2304 2305
	map_length = length;

2306
	/*
2307
	 * Avoid races with device replace and make sure our bioc has devices
2308 2309 2310 2311
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2312
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2313 2314 2315 2316 2317 2318 2319
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2320
				      &map_length, &bioc, 0);
2321 2322 2323 2324 2325
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
2326
		ASSERT(bioc->mirror_num == 1);
2327 2328
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2329
				      &map_length, &bioc, mirror_num);
2330 2331 2332 2333 2334
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
2335
		BUG_ON(mirror_num != bioc->mirror_num);
2336
	}
2337

2338
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
2339
	bio->bi_iter.bi_sector = sector;
2340 2341
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2342 2343
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2344
		btrfs_bio_counter_dec(fs_info);
2345 2346 2347
		bio_put(bio);
		return -EIO;
	}
2348
	bio_set_dev(bio, dev->bdev);
2349
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2350
	bio_add_page(bio, page, length, pg_offset);
2351

2352
	if (btrfsic_submit_bio_wait(bio)) {
2353
		/* try to remap that extent elsewhere? */
2354
		btrfs_bio_counter_dec(fs_info);
2355
		bio_put(bio);
2356
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2357 2358 2359
		return -EIO;
	}

2360 2361
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2362
				  ino, start,
2363
				  rcu_str_deref(dev->name), sector);
2364
	btrfs_bio_counter_dec(fs_info);
2365 2366 2367 2368
	bio_put(bio);
	return 0;
}

2369
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2370
{
2371
	struct btrfs_fs_info *fs_info = eb->fs_info;
2372
	u64 start = eb->start;
2373
	int i, num_pages = num_extent_pages(eb);
2374
	int ret = 0;
2375

2376
	if (sb_rdonly(fs_info->sb))
2377 2378
		return -EROFS;

2379
	for (i = 0; i < num_pages; i++) {
2380
		struct page *p = eb->pages[i];
2381

2382
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2383
					start - page_offset(p), mirror_num);
2384 2385
		if (ret)
			break;
2386
		start += PAGE_SIZE;
2387 2388 2389 2390 2391
	}

	return ret;
}

2392 2393 2394 2395
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2396 2397 2398 2399
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2400 2401 2402 2403 2404 2405 2406 2407
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2408 2409
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2410 2411 2412
	if (!ret)
		return 0;

2413 2414
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2415 2416 2417 2418
		return 0;

	BUG_ON(!failrec->this_mirror);

2419
	if (sb_rdonly(fs_info->sb))
2420
		goto out;
2421

2422 2423
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2424 2425
					    failrec->start,
					    EXTENT_LOCKED);
2426
	spin_unlock(&io_tree->lock);
2427

2428 2429
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2430 2431
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2432
		if (num_copies > 1)  {
2433 2434 2435
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2436 2437 2438 2439
		}
	}

out:
2440
	free_io_failure(failure_tree, io_tree, failrec);
2441

2442
	return 0;
2443 2444
}

2445 2446 2447 2448 2449 2450
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2451
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2452
{
2453
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2470
		failrec = state->failrec;
2471 2472 2473 2474 2475 2476 2477 2478
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2479
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2480
							     u64 start)
2481
{
2482
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2483
	struct io_failure_record *failrec;
2484 2485 2486 2487
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2488
	const u32 sectorsize = fs_info->sectorsize;
2489 2490 2491
	int ret;
	u64 logical;

2492
	failrec = get_state_failrec(failure_tree, start);
2493
	if (!IS_ERR(failrec)) {
2494
		btrfs_debug(fs_info,
2495 2496
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2497 2498 2499 2500 2501
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2502 2503

		return failrec;
2504
	}
2505

2506 2507 2508
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2509

2510
	failrec->start = start;
2511
	failrec->len = sectorsize;
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2549
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2550 2551 2552 2553
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2554 2555
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2556 2557 2558 2559 2560 2561
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2562 2563
}

2564
static bool btrfs_check_repairable(struct inode *inode,
2565 2566
				   struct io_failure_record *failrec,
				   int failed_mirror)
2567
{
2568
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2569 2570
	int num_copies;

2571
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2572 2573 2574 2575 2576 2577
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2578 2579 2580
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2581
		return false;
2582 2583
	}

2584 2585 2586
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2587
	/*
2588 2589 2590 2591 2592 2593 2594
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2595
	 */
2596 2597 2598
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2599 2600
		failrec->this_mirror++;

2601
	if (failrec->this_mirror > num_copies) {
2602 2603 2604
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2605
		return false;
2606 2607
	}

2608
	return true;
2609 2610
}

2611 2612 2613 2614 2615
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2616 2617
{
	struct io_failure_record *failrec;
2618
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2619
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2620
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2621
	struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
2622
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2623
	struct bio *repair_bio;
2624
	struct btrfs_bio *repair_bbio;
2625
	blk_status_t status;
2626

2627 2628
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2629

2630
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2631

2632
	failrec = btrfs_get_io_failure_record(inode, start);
2633
	if (IS_ERR(failrec))
2634
		return PTR_ERR(failrec);
2635

2636 2637

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2638
		free_io_failure(failure_tree, tree, failrec);
2639
		return -EIO;
2640 2641
	}

2642 2643
	repair_bio = btrfs_bio_alloc(1);
	repair_bbio = btrfs_bio(repair_bio);
2644 2645 2646 2647
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2648

2649
	if (failed_bbio->csum) {
2650
		const u32 csum_size = fs_info->csum_size;
2651

2652 2653 2654
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2655
	}
2656

2657
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2658 2659
	repair_bbio->logical = failrec->start;
	repair_bbio->iter = repair_bio->bi_iter;
2660

2661
	btrfs_debug(btrfs_sb(inode->i_sb),
2662 2663
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2664

2665 2666
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2667
	if (status) {
2668
		free_io_failure(failure_tree, tree, failrec);
2669
		bio_put(repair_bio);
2670
	}
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	return blk_status_to_errno(status);
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
B
Boris Burkov 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2691 2692 2693 2694 2695 2696 2697
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

	if (fs_info->sectorsize == PAGE_SIZE)
		unlock_page(page);
2698
	else
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

static blk_status_t submit_read_repair(struct inode *inode,
				      struct bio *failed_bio, u32 bio_offset,
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      unsigned int error_bitmap,
				      submit_bio_hook_t *submit_bio_hook)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int error = 0;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		struct extent_state *cached = NULL;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
				failed_mirror, submit_bio_hook);
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
		 * Repair failed, just record the error but still continue.
		 * Or the remaining sectors will not be properly unlocked.
		 */
		if (!error)
			error = ret;
next:
		end_page_read(page, uptodate, start + offset, sectorsize);
		if (uptodate)
			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
					start + offset,
					start + offset + sectorsize - 1,
					&cached, GFP_ATOMIC);
		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
				start + offset,
				start + offset + sectorsize - 1,
				&cached);
	}
	return errno_to_blk_status(error);
2774 2775
}

2776 2777
/* lots and lots of room for performance fixes in the end_bio funcs */

2778
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2779
{
2780
	struct btrfs_inode *inode;
2781
	const bool uptodate = (err == 0);
2782
	int ret = 0;
2783

2784 2785 2786
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2787 2788

	if (!uptodate) {
2789 2790 2791 2792 2793 2794 2795 2796
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2797
		ret = err < 0 ? err : -EIO;
2798
		mapping_set_error(page->mapping, ret);
2799 2800 2801
	}
}

2802 2803 2804 2805 2806 2807 2808 2809 2810
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2811
static void end_bio_extent_writepage(struct bio *bio)
2812
{
2813
	int error = blk_status_to_errno(bio->bi_status);
2814
	struct bio_vec *bvec;
2815 2816
	u64 start;
	u64 end;
2817
	struct bvec_iter_all iter_all;
2818
	bool first_bvec = true;
2819

2820
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2821
	bio_for_each_segment_all(bvec, bio, iter_all) {
2822
		struct page *page = bvec->bv_page;
2823 2824
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2839

2840 2841 2842 2843 2844
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2845
		end_extent_writepage(page, error, start, end);
2846 2847

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2848
	}
2849

2850 2851 2852
	bio_put(bio);
}

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2863
	/* End of the range in @inode */
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2882 2883
{
	struct extent_state *cached = NULL;
2884 2885 2886 2887 2888
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2889

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2924 2925
}

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
	if (fs_info->sectorsize == PAGE_SIZE)
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
/*
 * Find extent buffer for a givne bytenr.
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
	ASSERT(eb);
	return eb;
}

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2976
static void end_bio_extent_readpage(struct bio *bio)
2977
{
2978
	struct bio_vec *bvec;
2979
	struct btrfs_bio *bbio = btrfs_bio(bio);
2980
	struct extent_io_tree *tree, *failure_tree;
2981
	struct processed_extent processed = { 0 };
2982 2983 2984 2985 2986
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2987
	int mirror;
2988
	int ret;
2989
	struct bvec_iter_all iter_all;
2990

2991
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2992
	bio_for_each_segment_all(bvec, bio, iter_all) {
2993
		bool uptodate = !bio->bi_status;
2994
		struct page *page = bvec->bv_page;
2995
		struct inode *inode = page->mapping->host;
2996
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2997
		const u32 sectorsize = fs_info->sectorsize;
2998
		unsigned int error_bitmap = (unsigned int)-1;
2999 3000 3001
		u64 start;
		u64 end;
		u32 len;
3002

3003 3004
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
3005
			bio->bi_iter.bi_sector, bio->bi_status,
3006
			bbio->mirror_num);
3007
		tree = &BTRFS_I(inode)->io_tree;
3008
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3009

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3029
		len = bvec->bv_len;
3030

3031
		mirror = bbio->mirror_num;
3032
		if (likely(uptodate)) {
3033
			if (is_data_inode(inode)) {
3034
				error_bitmap = btrfs_verify_data_csum(bbio,
3035
						bio_offset, page, start, end);
3036 3037
				ret = error_bitmap;
			} else {
3038
				ret = btrfs_validate_metadata_buffer(bbio,
3039
					page, start, end, mirror);
3040
			}
3041
			if (ret)
3042
				uptodate = false;
3043
			else
3044 3045 3046 3047
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
3048
		}
3049

3050 3051 3052
		if (likely(uptodate))
			goto readpage_ok;

3053
		if (is_data_inode(inode)) {
3054
			/*
3055 3056
			 * btrfs_submit_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
3057
			 */
3058 3059 3060 3061 3062 3063 3064 3065
			submit_read_repair(inode, bio, bio_offset, page,
					   start - page_offset(page), start,
					   end, mirror, error_bitmap,
					   btrfs_submit_data_bio);

			ASSERT(bio_offset + len > bio_offset);
			bio_offset += len;
			continue;
3066 3067 3068
		} else {
			struct extent_buffer *eb;

3069
			eb = find_extent_buffer_readpage(fs_info, page, start);
3070 3071 3072 3073 3074 3075
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
3076
		}
3077
readpage_ok:
3078
		if (likely(uptodate)) {
3079
			loff_t i_size = i_size_read(inode);
3080
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3081

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3093
						     offset_in_page(start));
3094 3095 3096 3097

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3098
		}
3099 3100
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3101

3102
		/* Update page status and unlock */
3103
		end_page_read(page, uptodate, start, len);
3104
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
B
Boris Burkov 已提交
3105
					      start, end, PageUptodate(page));
3106
	}
3107 3108
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3109
	btrfs_bio_free_csum(bbio);
3110 3111 3112
	bio_put(bio);
}

3113
/*
3114 3115 3116
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3117
 */
3118
static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3119
{
3120
	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3121
}
3122

3123
/*
Q
Qu Wenruo 已提交
3124 3125 3126
 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
 *
 * The bio allocation is backed by bioset and does not fail.
3127
 */
3128
struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3129 3130 3131
{
	struct bio *bio;

Q
Qu Wenruo 已提交
3132 3133
	ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3134
	btrfs_bio_init(btrfs_bio(bio));
3135 3136 3137
	return bio;
}

3138
struct bio *btrfs_bio_clone(struct bio *bio)
3139
{
3140
	struct btrfs_bio *bbio;
3141
	struct bio *new;
3142

3143
	/* Bio allocation backed by a bioset does not fail */
3144
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3145 3146 3147
	bbio = btrfs_bio(new);
	btrfs_bio_init(bbio);
	bbio->iter = bio->bi_iter;
3148 3149
	return new;
}
3150

3151
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3152 3153
{
	struct bio *bio;
3154
	struct btrfs_bio *bbio;
3155

3156 3157
	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);

3158
	/* this will never fail when it's backed by a bioset */
3159
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3160 3161
	ASSERT(bio);

3162 3163
	bbio = btrfs_bio(bio);
	btrfs_bio_init(bbio);
3164 3165

	bio_trim(bio, offset >> 9, size >> 9);
3166
	bbio->iter = bio->bi_iter;
3167 3168
	return bio;
}
3169

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/**
 * Attempt to add a page to bio
 *
 * @bio:	destination bio
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @pg_offset:	starting offset in the page
 * @size:	portion of page that we want to write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3184 3185 3186
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3187
 */
3188 3189 3190 3191 3192
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
			      unsigned long bio_flags)
3193
{
3194 3195
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3196
	u32 real_size;
3197 3198
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3199
	int ret;
3200

3201 3202 3203 3204
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
	if (bio_ctrl->bio_flags != bio_flags)
3205
		return 0;
3206

3207
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3208 3209 3210 3211
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
3212
		return 0;
3213

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3224

3225
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3226
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3227
	else
3228
		ret = bio_add_page(bio, page, real_size, pg_offset);
3229

3230
	return ret;
3231 3232
}

3233
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3234
			       struct btrfs_inode *inode, u64 file_offset)
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

	if (!btrfs_is_zoned(fs_info) ||
	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3276
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3288 3289 3290 3291 3292
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
			 unsigned int opf,
			 bio_end_io_t end_io_func,
3293
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3294 3295 3296 3297 3298 3299
			 unsigned long bio_flags)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3300
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
3301 3302 3303 3304 3305
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
	if (bio_flags & EXTENT_BIO_COMPRESSED)
Q
Qu Wenruo 已提交
3306
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3307
	else
Q
Qu Wenruo 已提交
3308
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3309 3310 3311 3312 3313 3314
	bio_ctrl->bio = bio;
	bio_ctrl->bio_flags = bio_flags;
	bio->bi_end_io = end_io_func;
	bio->bi_private = &inode->io_tree;
	bio->bi_write_hint = inode->vfs_inode.i_write_hint;
	bio->bi_opf = opf;
3315 3316 3317
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3318 3319 3320
	if (wbc) {
		struct block_device *bdev;

3321
		bdev = fs_info->fs_devices->latest_dev->bdev;
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
		bio_set_dev(bio, bdev);
		wbc_init_bio(wbc, bio);
	}
	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
		struct btrfs_device *device;

		device = btrfs_zoned_get_device(fs_info, disk_bytenr,
						fs_info->sectorsize);
		if (IS_ERR(device)) {
			ret = PTR_ERR(device);
			goto error;
		}

3335
		btrfs_bio(bio)->device = device;
3336 3337 3338 3339 3340 3341 3342 3343 3344
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
	return ret;
}

3345 3346
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3347 3348
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3349 3350
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3351 3352
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3353
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3354 3355 3356 3357
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3358
 */
3359
static int submit_extent_page(unsigned int opf,
3360
			      struct writeback_control *wbc,
3361
			      struct btrfs_bio_ctrl *bio_ctrl,
3362
			      struct page *page, u64 disk_bytenr,
3363
			      size_t size, unsigned long pg_offset,
3364
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3365
			      int mirror_num,
3366 3367
			      unsigned long bio_flags,
			      bool force_bio_submit)
3368 3369
{
	int ret = 0;
3370
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3371
	unsigned int cur = pg_offset;
3372

3373
	ASSERT(bio_ctrl);
3374

3375 3376
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	if (force_bio_submit && bio_ctrl->bio) {
		ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
		bio_ctrl->bio = NULL;
		if (ret < 0)
			return ret;
	}

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3392
					    page_offset(page) + cur,
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
					    bio_flags);
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
		if (bio_flags & EXTENT_BIO_COMPRESSED)
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
					bio_flags);
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
					pg_offset + offset, bio_flags);

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
			ret = submit_one_bio(bio_ctrl->bio, mirror_num,
					bio_ctrl->bio_flags);
3424 3425
			bio_ctrl->bio = NULL;
			if (ret < 0)
3426
				return ret;
3427
		}
3428
		cur += added;
3429
	}
3430
	return 0;
3431 3432
}

3433 3434 3435
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3436
{
3437 3438 3439
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3440 3441 3442 3443 3444 3445 3446 3447 3448
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3466
	else
3467 3468 3469 3470
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3471 3472
}

3473
int set_page_extent_mapped(struct page *page)
3474
{
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3497
	if (!PagePrivate(page))
3498 3499 3500 3501 3502 3503 3504
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3505 3506
}

3507 3508
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3509
		 u64 start, u64 len, struct extent_map **em_cached)
3510 3511 3512 3513 3514
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3515
		if (extent_map_in_tree(em) && start >= em->start &&
3516
		    start < extent_map_end(em)) {
3517
			refcount_inc(&em->refs);
3518 3519 3520 3521 3522 3523 3524
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3525
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3526 3527
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3528
		refcount_inc(&em->refs);
3529 3530 3531 3532
		*em_cached = em;
	}
	return em;
}
3533 3534 3535 3536
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3537
 * XXX JDM: This needs looking at to ensure proper page locking
3538
 * return 0 on success, otherwise return error
3539
 */
3540
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3541
		      struct btrfs_bio_ctrl *bio_ctrl,
3542
		      unsigned int read_flags, u64 *prev_em_start)
3543 3544
{
	struct inode *inode = page->mapping->host;
3545
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3546
	u64 start = page_offset(page);
3547
	const u64 end = start + PAGE_SIZE - 1;
3548 3549 3550 3551 3552 3553
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3554
	int ret = 0;
3555
	int nr = 0;
3556
	size_t pg_offset = 0;
3557 3558
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3559
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3560

3561 3562 3563
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3564 3565
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3566 3567
		goto out;
	}
3568

D
Dan Magenheimer 已提交
3569 3570 3571
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3572
			unlock_extent(tree, start, end);
3573
			unlock_page(page);
D
Dan Magenheimer 已提交
3574 3575 3576 3577
			goto out;
		}
	}

3578
	if (page->index == last_byte >> PAGE_SHIFT) {
3579
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3580 3581

		if (zero_offset) {
3582
			iosize = PAGE_SIZE - zero_offset;
3583
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3584 3585 3586
			flush_dcache_page(page);
		}
	}
3587
	begin_page_read(fs_info, page);
3588
	while (cur <= end) {
3589
		unsigned long this_bio_flag = 0;
3590
		bool force_bio_submit = false;
3591
		u64 disk_bytenr;
3592

3593
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3594
		if (cur >= last_byte) {
3595 3596
			struct extent_state *cached = NULL;

3597
			iosize = PAGE_SIZE - pg_offset;
3598
			memzero_page(page, pg_offset, iosize);
3599 3600
			flush_dcache_page(page);
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3601
					    &cached, GFP_NOFS);
3602
			unlock_extent_cached(tree, cur,
3603
					     cur + iosize - 1, &cached);
3604
			end_page_read(page, true, cur, iosize);
3605 3606
			break;
		}
3607
		em = __get_extent_map(inode, page, pg_offset, cur,
3608
				      end - cur + 1, em_cached);
3609
		if (IS_ERR_OR_NULL(em)) {
3610
			unlock_extent(tree, cur, end);
3611
			end_page_read(page, false, cur, end + 1 - cur);
3612 3613 3614 3615 3616 3617
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3618
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3619
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3620 3621 3622
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3623

3624 3625
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3626
		iosize = ALIGN(iosize, blocksize);
3627
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3628
			disk_bytenr = em->block_start;
3629
		else
3630
			disk_bytenr = em->block_start + extent_offset;
3631
		block_start = em->block_start;
Y
Yan Zheng 已提交
3632 3633
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3634 3635 3636

		/*
		 * If we have a file range that points to a compressed extent
3637
		 * and it's followed by a consecutive file range that points
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3671
		    *prev_em_start != em->start)
3672 3673 3674
			force_bio_submit = true;

		if (prev_em_start)
3675
			*prev_em_start = em->start;
3676

3677 3678 3679 3680 3681
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3682 3683
			struct extent_state *cached = NULL;

3684
			memzero_page(page, pg_offset, iosize);
3685 3686 3687
			flush_dcache_page(page);

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3688
					    &cached, GFP_NOFS);
3689
			unlock_extent_cached(tree, cur,
3690
					     cur + iosize - 1, &cached);
3691
			end_page_read(page, true, cur, iosize);
3692
			cur = cur + iosize;
3693
			pg_offset += iosize;
3694 3695 3696
			continue;
		}
		/* the get_extent function already copied into the page */
3697 3698
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3699
			unlock_extent(tree, cur, cur + iosize - 1);
3700
			end_page_read(page, true, cur, iosize);
3701
			cur = cur + iosize;
3702
			pg_offset += iosize;
3703 3704
			continue;
		}
3705 3706 3707 3708
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3709
			unlock_extent(tree, cur, cur + iosize - 1);
3710
			end_page_read(page, false, cur, iosize);
3711
			cur = cur + iosize;
3712
			pg_offset += iosize;
3713 3714
			continue;
		}
3715

3716
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3717 3718
					 bio_ctrl, page, disk_bytenr, iosize,
					 pg_offset,
3719
					 end_bio_extent_readpage, 0,
3720 3721
					 this_bio_flag,
					 force_bio_submit);
3722 3723 3724
		if (!ret) {
			nr++;
		} else {
3725
			unlock_extent(tree, cur, cur + iosize - 1);
3726
			end_page_read(page, false, cur, iosize);
3727
			goto out;
3728
		}
3729
		cur = cur + iosize;
3730
		pg_offset += iosize;
3731
	}
D
Dan Magenheimer 已提交
3732
out:
3733
	return ret;
3734 3735
}

3736
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3737 3738 3739 3740
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3741
{
3742
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3743 3744
	int index;

3745
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3746 3747

	for (index = 0; index < nr_pages; index++) {
3748
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3749
				  REQ_RAHEAD, prev_em_start);
3750
		put_page(pages[index]);
3751 3752 3753
	}
}

3754
static void update_nr_written(struct writeback_control *wbc,
3755
			      unsigned long nr_written)
3756 3757 3758 3759
{
	wbc->nr_to_write -= nr_written;
}

3760
/*
3761 3762
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3763
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3764 3765 3766 3767 3768
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3769
 */
3770
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3771
		struct page *page, struct writeback_control *wbc,
3772
		unsigned long *nr_written)
3773
{
3774
	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3775
	bool found;
3776
	u64 delalloc_start = page_offset(page);
3777 3778 3779 3780 3781 3782 3783
	u64 delalloc_to_write = 0;
	u64 delalloc_end = 0;
	int ret;
	int page_started = 0;


	while (delalloc_end < page_end) {
3784
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3785
					       &delalloc_start,
3786
					       &delalloc_end);
3787
		if (!found) {
3788 3789 3790
			delalloc_start = delalloc_end + 1;
			continue;
		}
3791
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3792
				delalloc_end, &page_started, nr_written, wbc);
3793
		if (ret) {
3794 3795
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3796
			return ret;
3797 3798
		}
		/*
3799 3800
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3801 3802
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3803
				      PAGE_SIZE) >> PAGE_SHIFT;
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

	/* did the fill delalloc function already unlock and start
	 * the IO?
	 */
	if (page_started) {
		/*
		 * we've unlocked the page, so we can't update
		 * the mapping's writeback index, just update
		 * nr_to_write.
		 */
		wbc->nr_to_write -= *nr_written;
		return 1;
	}

3828
	return 0;
3829 3830
}

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3850
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3851 3852 3853
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3854
	int range_start_bit;
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3867 3868 3869
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3870 3871
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3872 3873
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3874 3875
	spin_unlock_irqrestore(&subpage->lock, flags);

3876 3877 3878
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3879 3880 3881 3882
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3883 3884 3885 3886 3887 3888 3889 3890
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3891
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3892 3893 3894 3895 3896
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
				 unsigned long nr_written,
3897
				 int *nr_ret)
3898
{
3899
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3900 3901
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3902 3903 3904
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3905 3906
	int ret = 0;
	int nr = 0;
3907
	u32 opf = REQ_OP_WRITE;
3908
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3909
	bool compressed;
C
Chris Mason 已提交
3910

3911
	ret = btrfs_writepage_cow_fixup(page);
3912 3913
	if (ret) {
		/* Fixup worker will requeue */
3914
		redirty_page_for_writepage(wbc, page);
3915 3916 3917
		update_nr_written(wbc, nr_written);
		unlock_page(page);
		return 1;
3918 3919
	}

3920 3921 3922 3923
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3924
	update_nr_written(wbc, nr_written + 1);
3925

3926
	while (cur <= end) {
3927
		u64 disk_bytenr;
3928
		u64 em_end;
3929 3930
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3931
		u32 iosize;
3932

3933
		if (cur >= i_size) {
3934
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3935
							     end, true);
3936 3937 3938 3939 3940 3941 3942 3943 3944
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3945 3946
			break;
		}
3947 3948 3949 3950 3951 3952 3953 3954

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

3955
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3956
		if (IS_ERR_OR_NULL(em)) {
3957
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3958
			ret = PTR_ERR_OR_ZERO(em);
3959 3960 3961 3962
			break;
		}

		extent_offset = cur - em->start;
3963
		em_end = extent_map_end(em);
3964 3965 3966 3967
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3968
		block_start = em->block_start;
C
Chris Mason 已提交
3969
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3970 3971
		disk_bytenr = em->block_start + extent_offset;

3972 3973 3974 3975 3976
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3977

3978
		if (btrfs_use_zone_append(inode, em->block_start))
3979 3980
			opf = REQ_OP_ZONE_APPEND;

3981 3982 3983
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3984 3985 3986 3987 3988
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3989
		    block_start == EXTENT_MAP_INLINE) {
3990
			if (compressed)
C
Chris Mason 已提交
3991
				nr++;
3992
			else
3993
				btrfs_writepage_endio_finish_ordered(inode,
3994
						page, cur, cur + iosize - 1, true);
3995
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
3996
			cur += iosize;
3997 3998
			continue;
		}
C
Chris Mason 已提交
3999

4000
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4001
		if (!PageWriteback(page)) {
4002
			btrfs_err(inode->root->fs_info,
4003 4004
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
4005
		}
4006

4007 4008 4009 4010 4011 4012 4013 4014
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

4015 4016
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
4017
					 disk_bytenr, iosize,
4018
					 cur - page_offset(page),
4019
					 end_bio_extent_writepage,
4020
					 0, 0, false);
4021
		if (ret) {
4022
			btrfs_page_set_error(fs_info, page, cur, iosize);
4023
			if (PageWriteback(page))
4024 4025
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4026
		}
4027

4028
		cur += iosize;
4029 4030
		nr++;
	}
4031 4032 4033 4034 4035 4036
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
	if (!ret)
		btrfs_page_assert_not_dirty(fs_info, page);
4037 4038 4039 4040 4041 4042 4043 4044 4045
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4046 4047 4048
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4049 4050
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4051
			      struct extent_page_data *epd)
4052 4053
{
	struct inode *inode = page->mapping->host;
4054 4055
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
4056 4057
	int ret;
	int nr = 0;
4058
	size_t pg_offset;
4059
	loff_t i_size = i_size_read(inode);
4060
	unsigned long end_index = i_size >> PAGE_SHIFT;
4061 4062 4063 4064 4065 4066
	unsigned long nr_written = 0;

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4067 4068
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4069

4070
	pg_offset = offset_in_page(i_size);
4071 4072
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4073
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
4074 4075 4076 4077 4078
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
4079
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4080 4081 4082
		flush_dcache_page(page);
	}

4083 4084 4085 4086 4087
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4088

4089
	if (!epd->extent_locked) {
4090
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, &nr_written);
4091
		if (ret == 1)
4092
			return 0;
4093 4094 4095
		if (ret)
			goto done;
	}
4096

4097 4098
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
				    nr_written, &nr);
4099
	if (ret == 1)
4100
		return 0;
4101

4102 4103 4104 4105 4106 4107
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4140
		end_extent_writepage(page, ret, page_start, page_end);
4141
	unlock_page(page);
4142
	ASSERT(ret <= 0);
4143
	return ret;
4144 4145
}

4146
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4147
{
4148 4149
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4150 4151
}

4152 4153
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
4154 4155 4156
	if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags))
		btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len);

4157 4158 4159 4160 4161
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4162
/*
4163
 * Lock extent buffer status and pages for writeback.
4164
 *
4165 4166 4167 4168 4169 4170
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4171
 */
4172
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4173
			  struct extent_page_data *epd)
4174
{
4175
	struct btrfs_fs_info *fs_info = eb->fs_info;
4176
	int i, num_pages, failed_page_nr;
4177 4178 4179 4180
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4181
		ret = flush_write_bio(epd);
4182 4183 4184
		if (ret < 0)
			return ret;
		flush = 1;
4185 4186 4187 4188 4189 4190 4191 4192
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4193
			ret = flush_write_bio(epd);
4194 4195
			if (ret < 0)
				return ret;
4196 4197
			flush = 1;
		}
C
Chris Mason 已提交
4198 4199 4200 4201 4202
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4203 4204 4205 4206
			btrfs_tree_unlock(eb);
		}
	}

4207 4208 4209 4210 4211 4212
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4213 4214
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4215
		spin_unlock(&eb->refs_lock);
4216
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4217 4218 4219
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4220
		ret = 1;
4221 4222
	} else {
		spin_unlock(&eb->refs_lock);
4223 4224 4225 4226
	}

	btrfs_tree_unlock(eb);

4227 4228 4229 4230 4231 4232 4233
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4234 4235
		return ret;

4236
	num_pages = num_extent_pages(eb);
4237
	for (i = 0; i < num_pages; i++) {
4238
		struct page *p = eb->pages[i];
4239 4240 4241

		if (!trylock_page(p)) {
			if (!flush) {
4242 4243 4244 4245 4246
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
4247 4248 4249
					failed_page_nr = i;
					goto err_unlock;
				}
4250 4251 4252 4253 4254 4255 4256
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
4257 4258 4259 4260
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
4275
	return ret;
4276 4277
}

4278
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4279
{
4280
	struct btrfs_fs_info *fs_info = eb->fs_info;
4281

4282
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4283 4284 4285
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4286 4287 4288 4289 4290 4291 4292
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4333
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4334 4335
		break;
	case 0:
4336
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4337 4338
		break;
	case 1:
4339
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4340 4341 4342 4343 4344 4345
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4372
static void end_bio_subpage_eb_writepage(struct bio *bio)
4373
{
4374
	struct btrfs_fs_info *fs_info;
4375 4376 4377
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4378 4379 4380
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
	ASSERT(fs_info->sectorsize < PAGE_SIZE);

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4429
static void end_bio_extent_buffer_writepage(struct bio *bio)
4430
{
4431
	struct bio_vec *bvec;
4432
	struct extent_buffer *eb;
4433
	int done;
4434
	struct bvec_iter_all iter_all;
4435

4436
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4437
	bio_for_each_segment_all(bvec, bio, iter_all) {
4438 4439 4440 4441 4442 4443
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4444
		if (bio->bi_status ||
4445
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4446
			ClearPageUptodate(page);
4447
			set_btree_ioerr(page, eb);
4448 4449 4450 4451 4452 4453 4454 4455
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4456
	}
4457 4458 4459 4460

	bio_put(bio);
}

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
	bool no_dirty_ebs = false;
	int ret;

4500 4501
	prepare_eb_write(eb);

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4512 4513 4514
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4515
			end_bio_subpage_eb_writepage, 0, 0, false);
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
		update_nr_written(wbc, 1);
	return ret;
}

4535
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4536 4537 4538
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4539
	u64 disk_bytenr = eb->start;
4540
	int i, num_pages;
4541
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4542
	int ret = 0;
4543

4544
	prepare_eb_write(eb);
4545

4546
	num_pages = num_extent_pages(eb);
4547
	for (i = 0; i < num_pages; i++) {
4548
		struct page *p = eb->pages[i];
4549 4550 4551

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4552
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4553 4554
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4555
					 end_bio_extent_buffer_writepage,
4556
					 0, 0, false);
4557
		if (ret) {
4558
			set_btree_ioerr(p, eb);
4559 4560
			if (PageWriteback(p))
				end_page_writeback(p);
4561 4562 4563 4564 4565
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4566
		disk_bytenr += PAGE_SIZE;
4567
		update_nr_written(wbc, 1);
4568 4569 4570 4571 4572
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4573
			struct page *p = eb->pages[i];
4574
			clear_page_dirty_for_io(p);
4575 4576 4577 4578 4579 4580 4581
			unlock_page(p);
		}
	}

	return ret;
}

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4608
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4624 4625
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4660
		ret = write_one_subpage_eb(eb, wbc, epd);
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
	end_write_bio(epd, ret);
	return ret;
}

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4699
	struct btrfs_block_group *cache = NULL;
4700 4701 4702 4703 4704 4705
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4706 4707 4708
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return submit_eb_subpage(page, wbc, epd);

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4748 4749 4750 4751
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4752 4753 4754
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4755 4756 4757
		free_extent_buffer(eb);
		return ret;
	}
4758 4759
	if (cache) {
		/* Impiles write in zoned mode */
4760
		btrfs_put_block_group(cache);
4761 4762 4763 4764
		/* Mark the last eb in a block group */
		if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity)
			set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags);
	}
4765 4766 4767 4768 4769 4770 4771
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4772 4773 4774
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4775
	struct extent_buffer *eb_context = NULL;
4776
	struct extent_page_data epd = {
4777
		.bio_ctrl = { 0 },
4778 4779 4780
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4781
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4782 4783 4784 4785 4786 4787 4788 4789
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4790
	xa_mark_t tag;
4791

4792
	pagevec_init(&pvec);
4793 4794 4795
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4796 4797 4798 4799 4800
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4801
	} else {
4802 4803
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4804 4805 4806 4807 4808 4809
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4810
	btrfs_zoned_meta_io_lock(fs_info);
4811 4812 4813 4814
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4815
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4816
			tag))) {
4817 4818 4819 4820 4821
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4822 4823
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4824
				continue;
4825
			if (ret < 0) {
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4849 4850
	if (ret < 0) {
		end_write_bio(&epd, ret);
4851
		goto out;
4852
	}
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = flush_write_bio(&epd);
	} else {
4883
		ret = -EROFS;
4884 4885
		end_write_bio(&epd, ret);
	}
4886 4887
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4888 4889 4890
	return ret;
}

4891
/**
4892 4893
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4894
 * @mapping: address space structure to write
4895 4896
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4897 4898 4899 4900 4901 4902 4903 4904 4905
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4906
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4907
			     struct writeback_control *wbc,
4908
			     struct extent_page_data *epd)
4909
{
4910
	struct inode *inode = mapping->host;
4911 4912
	int ret = 0;
	int done = 0;
4913
	int nr_to_write_done = 0;
4914 4915 4916 4917
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4918 4919
	pgoff_t done_index;
	int range_whole = 0;
4920
	int scanned = 0;
M
Matthew Wilcox 已提交
4921
	xa_mark_t tag;
4922

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4935
	pagevec_init(&pvec);
4936 4937 4938
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4939 4940 4941 4942 4943
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4944
	} else {
4945 4946
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4947 4948
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4949 4950
		scanned = 1;
	}
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4965 4966 4967
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4968
retry:
4969
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4970
		tag_pages_for_writeback(mapping, index, end);
4971
	done_index = index;
4972
	while (!done && !nr_to_write_done && (index <= end) &&
4973 4974
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4975 4976 4977 4978 4979
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4980
			done_index = page->index + 1;
4981
			/*
M
Matthew Wilcox 已提交
4982 4983 4984 4985 4986
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4987
			 */
4988
			if (!trylock_page(page)) {
4989 4990
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
4991
				lock_page(page);
4992
			}
4993 4994 4995 4996 4997 4998

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4999
			if (wbc->sync_mode != WB_SYNC_NONE) {
5000 5001 5002 5003
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
5004
				wait_on_page_writeback(page);
C
Chris Mason 已提交
5005
			}
5006 5007 5008 5009 5010 5011 5012

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

5013
			ret = __extent_writepage(page, wbc, epd);
5014 5015 5016 5017
			if (ret < 0) {
				done = 1;
				break;
			}
5018 5019 5020 5021 5022 5023 5024

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
5025 5026 5027 5028
		}
		pagevec_release(&pvec);
		cond_resched();
	}
5029
	if (!scanned && !done) {
5030 5031 5032 5033 5034 5035
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
5046
	}
5047 5048 5049 5050

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5051
	btrfs_add_delayed_iput(inode);
5052
	return ret;
5053 5054
}

5055
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5056 5057 5058
{
	int ret;
	struct extent_page_data epd = {
5059
		.bio_ctrl = { 0 },
5060
		.extent_locked = 0,
5061
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5062 5063 5064
	};

	ret = __extent_writepage(page, wbc, &epd);
5065 5066 5067 5068 5069
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
5070

5071 5072
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
5073 5074 5075
	return ret;
}

5076 5077 5078 5079 5080 5081
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5082
{
5083 5084
	bool found_error = false;
	int first_error = 0;
5085 5086 5087
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5088
	u64 cur = start;
5089 5090
	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
		PAGE_SHIFT;
5091
	struct extent_page_data epd = {
5092
		.bio_ctrl = { 0 },
5093
		.extent_locked = 1,
5094
		.sync_io = 1,
5095 5096 5097
	};
	struct writeback_control wbc_writepages = {
		.nr_to_write	= nr_pages * 2,
5098
		.sync_mode	= WB_SYNC_ALL,
5099 5100
		.range_start	= start,
		.range_end	= end + 1,
5101 5102 5103
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5104 5105
	};

5106
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
	while (cur <= end) {
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
5121
		}
5122
		put_page(page);
5123
		cur += PAGE_SIZE;
5124 5125
	}

5126
	if (!found_error)
5127 5128
		ret = flush_write_bio(&epd);
	else
5129
		end_write_bio(&epd, ret);
5130 5131

	wbc_detach_inode(&wbc_writepages);
5132 5133
	if (found_error)
		return first_error;
5134 5135
	return ret;
}
5136

5137
int extent_writepages(struct address_space *mapping,
5138 5139
		      struct writeback_control *wbc)
{
5140 5141 5142
	struct inode *inode = mapping->host;
	const bool data_reloc = btrfs_is_data_reloc_root(BTRFS_I(inode)->root);
	const bool zoned = btrfs_is_zoned(BTRFS_I(inode)->root->fs_info);
5143 5144
	int ret = 0;
	struct extent_page_data epd = {
5145
		.bio_ctrl = { 0 },
5146
		.extent_locked = 0,
5147
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5148 5149
	};

5150 5151 5152 5153 5154 5155
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
	if (data_reloc && zoned)
		btrfs_inode_lock(inode, 0);
5156
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5157 5158
	if (data_reloc && zoned)
		btrfs_inode_unlock(inode, 0);
5159 5160 5161 5162 5163 5164
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
5165 5166 5167
	return ret;
}

5168
void extent_readahead(struct readahead_control *rac)
5169
{
5170
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5171
	struct page *pagepool[16];
5172
	struct extent_map *em_cached = NULL;
5173
	u64 prev_em_start = (u64)-1;
5174
	int nr;
5175

5176
	while ((nr = readahead_page_batch(rac, pagepool))) {
5177 5178
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5179

5180
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5181
				&em_cached, &bio_ctrl, &prev_em_start);
5182
	}
L
Liu Bo 已提交
5183

5184 5185 5186
	if (em_cached)
		free_extent_map(em_cached);

5187 5188
	if (bio_ctrl.bio) {
		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5189 5190
			return;
	}
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
5201
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
5202
	u64 start = page_offset(page);
5203
	u64 end = start + PAGE_SIZE - 1;
5204 5205
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

5206 5207 5208
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5209
	start += ALIGN(offset, blocksize);
5210 5211 5212
	if (start > end)
		return 0;

5213
	lock_extent_bits(tree, start, end, &cached_state);
5214
	wait_on_page_writeback(page);
5215 5216 5217 5218 5219 5220 5221

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5222 5223 5224
	return 0;
}

5225 5226 5227 5228 5229
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5230
static int try_release_extent_state(struct extent_io_tree *tree,
5231
				    struct page *page, gfp_t mask)
5232
{
M
Miao Xie 已提交
5233
	u64 start = page_offset(page);
5234
	u64 end = start + PAGE_SIZE - 1;
5235 5236
	int ret = 1;

N
Nikolay Borisov 已提交
5237
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5238
		ret = 0;
N
Nikolay Borisov 已提交
5239
	} else {
5240
		/*
5241 5242 5243 5244
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5245
		 */
5246
		ret = __clear_extent_bit(tree, start, end,
5247 5248
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5249 5250 5251 5252 5253 5254 5255 5256

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5257 5258 5259 5260
	}
	return ret;
}

5261 5262 5263 5264 5265
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5266
int try_release_extent_mapping(struct page *page, gfp_t mask)
5267 5268
{
	struct extent_map *em;
M
Miao Xie 已提交
5269
	u64 start = page_offset(page);
5270
	u64 end = start + PAGE_SIZE - 1;
5271 5272 5273
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5274

5275
	if (gfpflags_allow_blocking(mask) &&
5276
	    page->mapping->host->i_size > SZ_16M) {
5277
		u64 len;
5278
		while (start <= end) {
5279 5280 5281
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5282
			len = end - start + 1;
5283
			write_lock(&map->lock);
5284
			em = lookup_extent_mapping(map, start, len);
5285
			if (!em) {
5286
				write_unlock(&map->lock);
5287 5288
				break;
			}
5289 5290
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5291
				write_unlock(&map->lock);
5292 5293 5294
				free_extent_map(em);
				break;
			}
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5322 5323 5324 5325 5326 5327 5328 5329
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5330 5331 5332
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5333
next:
5334
			start = extent_map_end(em);
5335
			write_unlock(&map->lock);
5336 5337

			/* once for us */
5338
			free_extent_map(em);
5339 5340

			cond_resched(); /* Allow large-extent preemption. */
5341 5342
		}
	}
5343
	return try_release_extent_state(tree, page, mask);
5344 5345
}

5346 5347 5348 5349
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5350
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5351
						u64 offset, u64 last)
5352
{
5353
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5354 5355 5356 5357 5358 5359
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5360
	while (1) {
5361 5362 5363
		len = last - offset;
		if (len == 0)
			break;
5364
		len = ALIGN(len, sectorsize);
5365
		em = btrfs_get_extent_fiemap(inode, offset, len);
5366
		if (IS_ERR_OR_NULL(em))
5367 5368 5369
			return em;

		/* if this isn't a hole return it */
5370
		if (em->block_start != EXTENT_MAP_HOLE)
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5416
	 * fiemap extent won't overlap with cached one.
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5468
 * Emit last fiemap cache
5469
 *
5470 5471 5472 5473 5474 5475 5476
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5477
 */
5478
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5479
				  struct fiemap_cache *cache)
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5494
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5495
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5496
{
J
Josef Bacik 已提交
5497
	int ret = 0;
5498
	u64 off;
Y
Yehuda Sadeh 已提交
5499 5500
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5501 5502
	u32 found_type;
	u64 last;
5503
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5504
	u64 disko = 0;
5505
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5506
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5507
	struct extent_map *em = NULL;
5508
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5509
	struct btrfs_path *path;
5510
	struct btrfs_root *root = inode->root;
5511
	struct fiemap_cache cache = { 0 };
5512 5513
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5514
	int end = 0;
5515 5516 5517
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5518 5519 5520 5521

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5522 5523 5524 5525
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5526 5527 5528 5529 5530 5531 5532
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5533 5534 5535 5536 5537
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5538 5539
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5540

5541 5542 5543 5544
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5545 5546
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5547
	if (ret < 0) {
5548
		goto out_free_ulist;
5549 5550 5551 5552
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5553
	}
5554

J
Josef Bacik 已提交
5555 5556
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5557
	found_type = found_key.type;
J
Josef Bacik 已提交
5558

5559
	/* No extents, but there might be delalloc bits */
5560
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5561
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5573
	}
5574
	btrfs_release_path(path);
J
Josef Bacik 已提交
5575

5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5586
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5587
			 &cached_state);
5588

5589
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5590 5591 5592 5593 5594 5595
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5596

Y
Yehuda Sadeh 已提交
5597
	while (!end) {
5598
		u64 offset_in_extent = 0;
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5611

5612 5613
		/*
		 * record the offset from the start of the extent
5614 5615 5616
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5617
		 */
5618 5619
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5620
		em_end = extent_map_end(em);
5621
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5622
		flags = 0;
5623 5624 5625 5626
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5627

5628 5629 5630 5631 5632 5633 5634
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5635
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5636 5637
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5638
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5639 5640
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5641
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5642 5643
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5644 5645 5646
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5647 5648 5649 5650

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5651 5652 5653
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5654
			 */
5655
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5656
						 bytenr, roots, tmp_ulist);
5657
			if (ret < 0)
5658
				goto out_free;
5659
			if (ret)
5660
				flags |= FIEMAP_EXTENT_SHARED;
5661
			ret = 0;
Y
Yehuda Sadeh 已提交
5662 5663 5664
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5665 5666
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5667 5668 5669

		free_extent_map(em);
		em = NULL;
5670 5671
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5672 5673 5674 5675
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5676
		/* now scan forward to see if this is really the last extent. */
5677
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5678 5679 5680 5681 5682
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5683 5684 5685
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5686 5687
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5688 5689 5690
		if (ret) {
			if (ret == 1)
				ret = 0;
5691
			goto out_free;
5692
		}
Y
Yehuda Sadeh 已提交
5693 5694
	}
out_free:
5695
	if (!ret)
5696
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5697 5698
	free_extent_map(em);
out:
5699
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5700
			     &cached_state);
5701 5702

out_free_ulist:
5703
	btrfs_free_path(path);
5704 5705
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5706 5707 5708
	return ret;
}

5709 5710 5711 5712 5713
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5714
int extent_buffer_under_io(const struct extent_buffer *eb)
5715 5716 5717 5718 5719 5720
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5721
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5722
{
5723
	struct btrfs_subpage *subpage;
5724

5725
	lockdep_assert_held(&page->mapping->private_lock);
5726

5727 5728 5729 5730
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5731 5732 5733 5734 5735 5736
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5737 5738 5739
	}
	return false;
}
5740

5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5754
		if (mapped)
5755 5756 5757 5758 5759
			spin_unlock(&page->mapping->private_lock);
		return;
	}

	if (fs_info->sectorsize == PAGE_SIZE) {
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5772
			/*
5773 5774
			 * We need to make sure we haven't be attached
			 * to a new eb.
5775
			 */
5776
			detach_page_private(page);
5777
		}
5778 5779
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5797
	 * page range and no unfinished IO.
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5821

5822
		/* One for when we allocated the page */
5823
		put_page(page);
5824
	}
5825 5826 5827 5828 5829 5830 5831
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5832
	btrfs_release_extent_buffer_pages(eb);
5833
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5834 5835 5836
	__free_extent_buffer(eb);
}

5837 5838
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5839
		      unsigned long len)
5840 5841 5842
{
	struct extent_buffer *eb = NULL;

5843
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5844 5845
	eb->start = start;
	eb->len = len;
5846
	eb->fs_info = fs_info;
5847
	eb->bflags = 0;
5848
	init_rwsem(&eb->lock);
5849

5850 5851
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5852
	INIT_LIST_HEAD(&eb->release_list);
5853

5854
	spin_lock_init(&eb->refs_lock);
5855
	atomic_set(&eb->refs, 1);
5856
	atomic_set(&eb->io_pages, 0);
5857

5858
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5859 5860 5861 5862

	return eb;
}

5863
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5864
{
5865
	int i;
5866 5867
	struct page *p;
	struct extent_buffer *new;
5868
	int num_pages = num_extent_pages(src);
5869

5870
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5871 5872 5873
	if (new == NULL)
		return NULL;

5874 5875 5876 5877 5878 5879 5880
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5881
	for (i = 0; i < num_pages; i++) {
5882 5883
		int ret;

5884
		p = alloc_page(GFP_NOFS);
5885 5886 5887 5888
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5889 5890 5891 5892 5893 5894
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5895 5896
		WARN_ON(PageDirty(p));
		new->pages[i] = p;
5897
		copy_page(page_address(p), page_address(src->pages[i]));
5898
	}
5899
	set_extent_buffer_uptodate(new);
5900 5901 5902 5903

	return new;
}

5904 5905
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5906 5907
{
	struct extent_buffer *eb;
5908 5909
	int num_pages;
	int i;
5910

5911
	eb = __alloc_extent_buffer(fs_info, start, len);
5912 5913 5914
	if (!eb)
		return NULL;

5915
	num_pages = num_extent_pages(eb);
5916
	for (i = 0; i < num_pages; i++) {
5917 5918
		int ret;

5919
		eb->pages[i] = alloc_page(GFP_NOFS);
5920 5921
		if (!eb->pages[i])
			goto err;
5922 5923 5924
		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
		if (ret < 0)
			goto err;
5925 5926 5927
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5928
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5929 5930 5931

	return eb;
err:
5932 5933
	for (; i > 0; i--) {
		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5934
		__free_page(eb->pages[i - 1]);
5935
	}
5936 5937 5938 5939
	__free_extent_buffer(eb);
	return NULL;
}

5940
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5941
						u64 start)
5942
{
5943
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5944 5945
}

5946 5947
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5948
	int refs;
5949 5950 5951 5952
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5953
	 *
5954 5955 5956
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5957
	 *
5958 5959 5960 5961 5962
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5963
	 *
5964 5965 5966 5967 5968 5969 5970
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5971
	 */
5972 5973 5974 5975
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5976 5977
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5978
		atomic_inc(&eb->refs);
5979
	spin_unlock(&eb->refs_lock);
5980 5981
}

5982 5983
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5984
{
5985
	int num_pages, i;
5986

5987 5988
	check_buffer_tree_ref(eb);

5989
	num_pages = num_extent_pages(eb);
5990
	for (i = 0; i < num_pages; i++) {
5991 5992
		struct page *p = eb->pages[i];

5993 5994
		if (p != accessed)
			mark_page_accessed(p);
5995 5996 5997
	}
}

5998 5999
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
6000 6001 6002
{
	struct extent_buffer *eb;

6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
6022
	}
6023 6024
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6025 6026
}

6027 6028
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6029
					u64 start)
6030 6031 6032 6033 6034 6035 6036
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6037
	eb = alloc_dummy_extent_buffer(fs_info, start);
6038
	if (!eb)
6039
		return ERR_PTR(-ENOMEM);
6040 6041
	eb->fs_info = fs_info;
again:
6042
	ret = radix_tree_preload(GFP_NOFS);
6043 6044
	if (ret) {
		exists = ERR_PTR(ret);
6045
		goto free_eb;
6046
	}
6047 6048
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
6049
				start >> fs_info->sectorsize_bits, eb);
6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6069 6070
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6071 6072 6073
{
	struct extent_buffer *exists;

6074 6075 6076 6077 6078 6079 6080 6081
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6101
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6102
					  u64 start, u64 owner_root, int level)
6103
{
6104
	unsigned long len = fs_info->nodesize;
6105 6106
	int num_pages;
	int i;
6107
	unsigned long index = start >> PAGE_SHIFT;
6108
	struct extent_buffer *eb;
6109
	struct extent_buffer *exists = NULL;
6110
	struct page *p;
6111
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6112
	int uptodate = 1;
6113
	int ret;
6114

6115
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6116 6117 6118 6119
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6131 6132 6133 6134 6135 6136 6137 6138
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

6139
	eb = find_extent_buffer(fs_info, start);
6140
	if (eb)
6141 6142
		return eb;

6143
	eb = __alloc_extent_buffer(fs_info, start, len);
6144
	if (!eb)
6145
		return ERR_PTR(-ENOMEM);
6146
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6147

6148
	num_pages = num_extent_pages(eb);
6149
	for (i = 0; i < num_pages; i++, index++) {
6150 6151
		struct btrfs_subpage *prealloc = NULL;

6152
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6153 6154
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6155
			goto free_eb;
6156
		}
J
Josef Bacik 已提交
6157

6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6168
		if (fs_info->sectorsize < PAGE_SIZE) {
6169 6170 6171
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6172 6173 6174 6175 6176
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6177 6178
		}

J
Josef Bacik 已提交
6179
		spin_lock(&mapping->private_lock);
6180
		exists = grab_extent_buffer(fs_info, p);
6181 6182 6183 6184 6185
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6186
			btrfs_free_subpage(prealloc);
6187
			goto free_eb;
6188
		}
6189 6190 6191
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6202
		spin_unlock(&mapping->private_lock);
6203

6204
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6205
		eb->pages[i] = p;
6206 6207
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6208 6209

		/*
6210 6211 6212 6213 6214
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6215
		 */
6216 6217
	}
	if (uptodate)
6218
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6219
again:
6220
	ret = radix_tree_preload(GFP_NOFS);
6221 6222
	if (ret) {
		exists = ERR_PTR(ret);
6223
		goto free_eb;
6224
	}
6225

6226 6227
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
6228
				start >> fs_info->sectorsize_bits, eb);
6229
	spin_unlock(&fs_info->buffer_lock);
6230
	radix_tree_preload_end();
6231
	if (ret == -EEXIST) {
6232
		exists = find_extent_buffer(fs_info, start);
6233 6234 6235
		if (exists)
			goto free_eb;
		else
6236
			goto again;
6237 6238
	}
	/* add one reference for the tree */
6239
	check_buffer_tree_ref(eb);
6240
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6241 6242

	/*
6243 6244 6245
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6246
	 */
6247 6248
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6249 6250
	return eb;

6251
free_eb:
6252
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6253 6254 6255 6256
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6257

6258
	btrfs_release_extent_buffer(eb);
6259
	return exists;
6260 6261
}

6262 6263 6264 6265 6266 6267 6268 6269
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6270
static int release_extent_buffer(struct extent_buffer *eb)
6271
	__releases(&eb->refs_lock)
6272
{
6273 6274
	lockdep_assert_held(&eb->refs_lock);

6275 6276
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6277
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6278
			struct btrfs_fs_info *fs_info = eb->fs_info;
6279

6280
			spin_unlock(&eb->refs_lock);
6281

6282 6283
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
6284
					  eb->start >> fs_info->sectorsize_bits);
6285
			spin_unlock(&fs_info->buffer_lock);
6286 6287
		} else {
			spin_unlock(&eb->refs_lock);
6288
		}
6289

6290
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6291
		/* Should be safe to release our pages at this point */
6292
		btrfs_release_extent_buffer_pages(eb);
6293
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6294
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6295 6296 6297 6298
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6299
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6300
		return 1;
6301 6302
	}
	spin_unlock(&eb->refs_lock);
6303 6304

	return 0;
6305 6306
}

6307 6308
void free_extent_buffer(struct extent_buffer *eb)
{
6309 6310
	int refs;
	int old;
6311 6312 6313
	if (!eb)
		return;

6314 6315
	while (1) {
		refs = atomic_read(&eb->refs);
6316 6317 6318
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6319 6320 6321 6322 6323 6324
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6325 6326 6327
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6328
	    !extent_buffer_under_io(eb) &&
6329 6330 6331 6332 6333 6334 6335
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6336
	release_extent_buffer(eb);
6337 6338 6339 6340 6341
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6342 6343
		return;

6344 6345 6346
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6347
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6348 6349
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6350
	release_extent_buffer(eb);
6351 6352
}

6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6381
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6382
{
6383 6384
	int i;
	int num_pages;
6385 6386
	struct page *page;

6387 6388 6389
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return clear_subpage_extent_buffer_dirty(eb);

6390
	num_pages = num_extent_pages(eb);
6391 6392

	for (i = 0; i < num_pages; i++) {
6393
		page = eb->pages[i];
6394
		if (!PageDirty(page))
C
Chris Mason 已提交
6395
			continue;
6396
		lock_page(page);
6397
		btree_clear_page_dirty(page);
6398
		ClearPageError(page);
6399
		unlock_page(page);
6400
	}
6401
	WARN_ON(atomic_read(&eb->refs) == 0);
6402 6403
}

6404
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6405
{
6406 6407
	int i;
	int num_pages;
6408
	bool was_dirty;
6409

6410 6411
	check_buffer_tree_ref(eb);

6412
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6413

6414
	num_pages = num_extent_pages(eb);
6415
	WARN_ON(atomic_read(&eb->refs) == 0);
6416 6417
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6418 6419
	if (!was_dirty) {
		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6420

6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6440 6441 6442 6443 6444
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6445
	return was_dirty;
6446 6447
}

6448
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6449
{
6450
	struct btrfs_fs_info *fs_info = eb->fs_info;
6451
	struct page *page;
6452
	int num_pages;
6453
	int i;
6454

6455
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6456
	num_pages = num_extent_pages(eb);
6457
	for (i = 0; i < num_pages; i++) {
6458
		page = eb->pages[i];
C
Chris Mason 已提交
6459
		if (page)
6460 6461
			btrfs_page_clear_uptodate(fs_info, page,
						  eb->start, eb->len);
6462 6463 6464
	}
}

6465
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6466
{
6467
	struct btrfs_fs_info *fs_info = eb->fs_info;
6468
	struct page *page;
6469
	int num_pages;
6470
	int i;
6471

6472
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6473
	num_pages = num_extent_pages(eb);
6474
	for (i = 0; i < num_pages; i++) {
6475
		page = eb->pages[i];
6476
		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6477 6478 6479
	}
}

6480 6481 6482 6483 6484 6485
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6486
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6487 6488 6489 6490 6491 6492 6493
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6494 6495
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6517
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6518 6519 6520 6521
	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
				 end_bio_extent_readpage, mirror_num, 0,
6522 6523 6524 6525 6526 6527 6528 6529 6530
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6531
	if (bio_ctrl.bio) {
6532 6533
		int tmp;

6534 6535
		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
		bio_ctrl.bio = NULL;
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
		if (tmp < 0)
			return tmp;
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6548
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6549
{
6550
	int i;
6551 6552 6553
	struct page *page;
	int err;
	int ret = 0;
6554 6555
	int locked_pages = 0;
	int all_uptodate = 1;
6556
	int num_pages;
6557
	unsigned long num_reads = 0;
6558
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6559

6560
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6561 6562
		return 0;

6563 6564 6565
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6566
	num_pages = num_extent_pages(eb);
6567
	for (i = 0; i < num_pages; i++) {
6568
		page = eb->pages[i];
6569
		if (wait == WAIT_NONE) {
6570 6571 6572 6573 6574 6575 6576
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6577
			if (!trylock_page(page))
6578
				goto unlock_exit;
6579 6580 6581
		} else {
			lock_page(page);
		}
6582
		locked_pages++;
6583 6584 6585 6586 6587 6588
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6589
	for (i = 0; i < num_pages; i++) {
6590
		page = eb->pages[i];
6591 6592
		if (!PageUptodate(page)) {
			num_reads++;
6593
			all_uptodate = 0;
6594
		}
6595
	}
6596

6597
	if (all_uptodate) {
6598
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6599 6600 6601
		goto unlock_exit;
	}

6602
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6603
	eb->read_mirror = 0;
6604
	atomic_set(&eb->io_pages, num_reads);
6605 6606 6607 6608 6609
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6610
	for (i = 0; i < num_pages; i++) {
6611
		page = eb->pages[i];
6612

6613
		if (!PageUptodate(page)) {
6614 6615 6616 6617 6618 6619
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6620
			ClearPageError(page);
6621
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6622 6623 6624
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
					 mirror_num, 0, false);
6625 6626
			if (err) {
				/*
6627 6628 6629
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6630
				 */
6631 6632 6633
				ret = err;
				SetPageError(page);
				unlock_page(page);
6634 6635
				atomic_dec(&eb->io_pages);
			}
6636 6637 6638 6639 6640
		} else {
			unlock_page(page);
		}
	}

6641 6642 6643
	if (bio_ctrl.bio) {
		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
		bio_ctrl.bio = NULL;
6644 6645
		if (err)
			return err;
6646
	}
6647

6648
	if (ret || wait != WAIT_COMPLETE)
6649
		return ret;
C
Chris Mason 已提交
6650

6651
	for (i = 0; i < num_pages; i++) {
6652
		page = eb->pages[i];
6653
		wait_on_page_locked(page);
C
Chris Mason 已提交
6654
		if (!PageUptodate(page))
6655 6656
			ret = -EIO;
	}
C
Chris Mason 已提交
6657

6658
	return ret;
6659 6660

unlock_exit:
C
Chris Mason 已提交
6661
	while (locked_pages > 0) {
6662
		locked_pages--;
6663 6664
		page = eb->pages[locked_pages];
		unlock_page(page);
6665 6666
	}
	return ret;
6667 6668
}

6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6699 6700
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6701 6702 6703 6704 6705 6706
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6707
	unsigned long i = get_eb_page_index(start);
6708

6709
	if (check_eb_range(eb, start, len))
6710
		return;
6711

6712
	offset = get_eb_offset_in_page(eb, start);
6713

C
Chris Mason 已提交
6714
	while (len > 0) {
6715
		page = eb->pages[i];
6716

6717
		cur = min(len, (PAGE_SIZE - offset));
6718
		kaddr = page_address(page);
6719 6720 6721 6722 6723 6724 6725 6726 6727
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6728 6729 6730
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6731 6732 6733 6734 6735 6736
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6737
	unsigned long i = get_eb_page_index(start);
6738 6739 6740 6741 6742
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6743
	offset = get_eb_offset_in_page(eb, start);
6744 6745

	while (len > 0) {
6746
		page = eb->pages[i];
6747

6748
		cur = min(len, (PAGE_SIZE - offset));
6749
		kaddr = page_address(page);
6750
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6764 6765
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6766 6767 6768 6769 6770 6771
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6772
	unsigned long i = get_eb_page_index(start);
6773 6774
	int ret = 0;

6775 6776
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6777

6778
	offset = get_eb_offset_in_page(eb, start);
6779

C
Chris Mason 已提交
6780
	while (len > 0) {
6781
		page = eb->pages[i];
6782

6783
		cur = min(len, (PAGE_SIZE - offset));
6784

6785
		kaddr = page_address(page);
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

	if (fs_info->sectorsize < PAGE_SIZE) {
		bool uptodate;

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
		WARN_ON(!uptodate);
	} else {
		WARN_ON(!PageUptodate(page));
	}
}

6820
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6821 6822 6823 6824
		const void *srcv)
{
	char *kaddr;

6825
	assert_eb_page_uptodate(eb, eb->pages[0]);
6826 6827 6828 6829
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6830 6831
}

6832
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6833 6834 6835
{
	char *kaddr;

6836
	assert_eb_page_uptodate(eb, eb->pages[0]);
6837 6838 6839
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6840 6841
}

6842
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6843 6844 6845 6846 6847 6848 6849
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6850
	unsigned long i = get_eb_page_index(start);
6851

6852 6853
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6854 6855
	if (check_eb_range(eb, start, len))
		return;
6856

6857
	offset = get_eb_offset_in_page(eb, start);
6858

C
Chris Mason 已提交
6859
	while (len > 0) {
6860
		page = eb->pages[i];
6861
		assert_eb_page_uptodate(eb, page);
6862

6863
		cur = min(len, PAGE_SIZE - offset);
6864
		kaddr = page_address(page);
6865 6866 6867 6868 6869 6870 6871 6872 6873
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6874
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6875
		unsigned long len)
6876 6877 6878 6879 6880
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6881
	unsigned long i = get_eb_page_index(start);
6882

6883 6884
	if (check_eb_range(eb, start, len))
		return;
6885

6886
	offset = get_eb_offset_in_page(eb, start);
6887

C
Chris Mason 已提交
6888
	while (len > 0) {
6889
		page = eb->pages[i];
6890
		assert_eb_page_uptodate(eb, page);
6891

6892
		cur = min(len, PAGE_SIZE - offset);
6893
		kaddr = page_address(page);
6894
		memset(kaddr + offset, 0, cur);
6895 6896 6897 6898 6899 6900 6901

		len -= cur;
		offset = 0;
		i++;
	}
}

6902 6903
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6904 6905
{
	int i;
6906
	int num_pages;
6907 6908 6909

	ASSERT(dst->len == src->len);

6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6924 6925
}

6926 6927
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6928 6929 6930 6931 6932 6933 6934 6935
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6936
	unsigned long i = get_eb_page_index(dst_offset);
6937

6938 6939 6940 6941
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

6942 6943
	WARN_ON(src->len != dst_len);

6944
	offset = get_eb_offset_in_page(dst, dst_offset);
6945

C
Chris Mason 已提交
6946
	while (len > 0) {
6947
		page = dst->pages[i];
6948
		assert_eb_page_uptodate(dst, page);
6949

6950
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6951

6952
		kaddr = page_address(page);
6953 6954 6955 6956 6957 6958 6959 6960 6961
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
6975
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
6988
	offset = start + offset_in_page(eb->start) + byte_offset;
6989

6990
	*page_index = offset >> PAGE_SHIFT;
6991
	*page_offset = offset_in_page(offset);
6992 6993 6994 6995 6996 6997 6998 6999
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
7000
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7001 7002
			   unsigned long nr)
{
7003
	u8 *kaddr;
7004 7005 7006 7007 7008 7009
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
7010
	assert_eb_page_uptodate(eb, page);
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7022
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7023 7024
			      unsigned long pos, unsigned long len)
{
7025
	u8 *kaddr;
7026 7027 7028 7029 7030
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7031
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7032 7033 7034

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7035
	assert_eb_page_uptodate(eb, page);
7036 7037 7038 7039 7040 7041
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7042
		mask_to_set = ~0;
7043
		if (++offset >= PAGE_SIZE && len > 0) {
7044 7045
			offset = 0;
			page = eb->pages[++i];
7046
			assert_eb_page_uptodate(eb, page);
7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7064 7065 7066
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7067
{
7068
	u8 *kaddr;
7069 7070 7071 7072 7073
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7074
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7075 7076 7077

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7078
	assert_eb_page_uptodate(eb, page);
7079 7080 7081 7082 7083 7084
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7085
		mask_to_clear = ~0;
7086
		if (++offset >= PAGE_SIZE && len > 0) {
7087 7088
			offset = 0;
			page = eb->pages[++i];
7089
			assert_eb_page_uptodate(eb, page);
7090 7091 7092 7093 7094 7095 7096 7097 7098
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7099 7100 7101 7102 7103 7104
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7105 7106 7107 7108
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7109
	char *dst_kaddr = page_address(dst_page);
7110
	char *src_kaddr;
7111
	int must_memmove = 0;
7112

7113
	if (dst_page != src_page) {
7114
		src_kaddr = page_address(src_page);
7115
	} else {
7116
		src_kaddr = dst_kaddr;
7117 7118
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7119
	}
7120

7121 7122 7123 7124
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7125 7126
}

7127 7128 7129
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7130 7131 7132 7133 7134 7135 7136
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7137 7138 7139
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7140

C
Chris Mason 已提交
7141
	while (len > 0) {
7142 7143
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7144

7145 7146
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7147

7148
		cur = min(len, (unsigned long)(PAGE_SIZE -
7149 7150
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7151
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7152

7153
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7154 7155 7156 7157 7158 7159 7160 7161
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7162 7163 7164
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7165 7166 7167 7168 7169 7170 7171 7172 7173
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7174 7175 7176
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7177
	if (dst_offset < src_offset) {
7178 7179 7180
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7181
	while (len > 0) {
7182 7183
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7184

7185 7186
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7187 7188 7189

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7190
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7191 7192 7193 7194 7195 7196 7197 7198
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7199

7200
#define GANG_LOOKUP_SIZE	16
7201 7202 7203
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7204
	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
7205 7206
	struct extent_buffer *found = NULL;
	u64 page_start = page_offset(page);
7207
	u64 cur = page_start;
7208 7209 7210 7211

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
	while (cur < page_start + PAGE_SIZE) {
		int ret;
		int i;

		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
				(void **)gang, cur >> fs_info->sectorsize_bits,
				min_t(unsigned int, GANG_LOOKUP_SIZE,
				      PAGE_SIZE / fs_info->nodesize));
		if (ret == 0)
			goto out;
		for (i = 0; i < ret; i++) {
			/* Already beyond page end */
			if (gang[i]->start >= page_start + PAGE_SIZE)
				goto out;
			/* Found one */
			if (gang[i]->start >= bytenr) {
				found = gang[i];
				goto out;
			}
7231
		}
7232
		cur = gang[ret - 1]->start + gang[ret - 1]->len;
7233
	}
7234
out:
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
	return found;
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7308
int try_release_extent_buffer(struct page *page)
7309
{
7310 7311
	struct extent_buffer *eb;

7312 7313 7314
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return try_release_subpage_extent_buffer(page);

7315
	/*
7316 7317
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7318 7319 7320 7321
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7322
		return 1;
7323
	}
7324

7325 7326
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7327 7328

	/*
7329 7330 7331
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7332
	 */
7333
	spin_lock(&eb->refs_lock);
7334
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7335 7336 7337
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7338
	}
7339
	spin_unlock(&page->mapping->private_lock);
7340

7341
	/*
7342 7343
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7344
	 */
7345 7346 7347
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7348
	}
7349

7350
	return release_extent_buffer(eb);
7351
}
7352 7353 7354 7355 7356

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7357
 * @owner_root: objectid of the root that owns this eb
7358
 * @gen:	generation for the uptodate check, can be 0
7359
 * @level:	level for the eb
7360 7361 7362 7363 7364 7365
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7366
				u64 bytenr, u64 owner_root, u64 gen, int level)
7367 7368 7369 7370
{
	struct extent_buffer *eb;
	int ret;

7371
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7399 7400 7401
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7402
}