vmscan.c 113.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16
#include <linux/mm.h>
17
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
18
#include <linux/module.h>
19
#include <linux/gfp.h>
L
Linus Torvalds 已提交
20 21 22 23 24
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
25
#include <linux/vmpressure.h>
26
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
38
#include <linux/compaction.h>
L
Linus Torvalds 已提交
39 40
#include <linux/notifier.h>
#include <linux/rwsem.h>
41
#include <linux/delay.h>
42
#include <linux/kthread.h>
43
#include <linux/freezer.h>
44
#include <linux/memcontrol.h>
45
#include <linux/delayacct.h>
46
#include <linux/sysctl.h>
47
#include <linux/oom.h>
48
#include <linux/prefetch.h>
49
#include <linux/printk.h>
50
#include <linux/dax.h>
L
Linus Torvalds 已提交
51 52 53 54 55

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
56
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
57

58 59
#include "internal.h"

60 61 62
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
63
struct scan_control {
64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
67
	/* This context's GFP mask */
A
Al Viro 已提交
68
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
69

70
	/* Allocation order */
A
Andy Whitcroft 已提交
71
	int order;
72

73 74 75 76 77
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
78

79 80 81 82 83
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
84

85 86 87
	/* Scan (total_size >> priority) pages at once */
	int priority;

88 89 90
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

91
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 93 94 95 96 97 98 99
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

100 101 102 103 104 105 106
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
107

108 109 110 111 112 113 114 115 116 117
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
152 153 154 155 156
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
157 158 159 160

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
161
#ifdef CONFIG_MEMCG
162 163
static bool global_reclaim(struct scan_control *sc)
{
164
	return !sc->target_mem_cgroup;
165
}
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
187
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 189 190 191
		return true;
#endif
	return false;
}
192
#else
193 194 195 196
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
197 198 199 200 201

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
202 203
#endif

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
222 223 224 225 226 227 228
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229 230

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
231 232 233
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234 235 236 237

	return nr;
}

238 239 240 241 242 243 244
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245
{
246 247 248
	unsigned long lru_size;
	int zid;

249
	if (!mem_cgroup_disabled())
250 251 252
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253

254 255 256
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
257

258 259 260 261 262 263 264 265 266 267 268 269
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
270 271 272

}

L
Linus Torvalds 已提交
273
/*
G
Glauber Costa 已提交
274
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
275
 */
G
Glauber Costa 已提交
276
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
277
{
G
Glauber Costa 已提交
278 279 280 281 282 283 284 285 286
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

287 288 289
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
290
	return 0;
L
Linus Torvalds 已提交
291
}
292
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
293 294 295 296

/*
 * Remove one
 */
297
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
298 299 300 301
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
302
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
303
}
304
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
305 306

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
307

308 309 310 311
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
312 313 314 315
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
316
	long freeable;
G
Glauber Costa 已提交
317 318 319 320 321
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
322
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
323

324 325
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
326 327 328 329 330 331 332 333 334 335
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
336
	delta = (4 * nr_scanned) / shrinker->seeks;
337
	delta *= freeable;
338
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
339 340
	total_scan += delta;
	if (total_scan < 0) {
341
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
342
		       shrinker->scan_objects, total_scan);
343
		total_scan = freeable;
344 345 346
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
347 348 349 350 351 352 353

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
354
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
355 356 357 358 359
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
360 361
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
362 363 364 365 366 367

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
368 369
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
370 371

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 373
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
374

375 376 377 378 379 380 381 382 383 384 385
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
386
	 * than the total number of objects on slab (freeable), we must be
387 388 389 390
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
391
	       total_scan >= freeable) {
D
Dave Chinner 已提交
392
		unsigned long ret;
393
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
394

395
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
396 397 398 399
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
400

401 402
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
403
		scanned += nr_to_scan;
G
Glauber Costa 已提交
404 405 406 407

		cond_resched();
	}

408 409 410 411
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
412 413 414 415 416
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
417 418
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
419 420 421 422
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

423
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
424
	return freed;
425 426
}

427
/**
428
 * shrink_slab - shrink slab caches
429 430
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
431
 * @memcg: memory cgroup whose slab caches to target
432 433
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
434
 *
435
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
436
 *
437 438
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
439
 *
440 441
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 443
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
444
 *
445 446 447 448 449 450 451
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
452
 *
453
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
454
 */
455 456 457 458
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
459 460
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
461
	unsigned long freed = 0;
L
Linus Torvalds 已提交
462

463
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 465
		return 0;

466 467
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
468

469
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
470 471 472 473 474 475 476
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
477 478
		goto out;
	}
L
Linus Torvalds 已提交
479 480

	list_for_each_entry(shrinker, &shrinker_list, list) {
481 482 483
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
484
			.memcg = memcg,
485
		};
486

487 488 489 490 491 492 493
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 495
			continue;

496 497
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
498

499
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
500
	}
501

L
Linus Torvalds 已提交
502
	up_read(&shrinker_rwsem);
503 504
out:
	cond_resched();
D
Dave Chinner 已提交
505
	return freed;
L
Linus Torvalds 已提交
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
531 532
static inline int is_page_cache_freeable(struct page *page)
{
533 534 535 536 537
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
538
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
539 540
}

541
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
542
{
543
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
544
		return 1;
545
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
546
		return 1;
547
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
567
	lock_page(page);
568 569
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
570 571 572
	unlock_page(page);
}

573 574 575 576 577 578 579 580 581 582 583 584
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
585
/*
A
Andrew Morton 已提交
586 587
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
588
 */
589
static pageout_t pageout(struct page *page, struct address_space *mapping,
590
			 struct scan_control *sc)
L
Linus Torvalds 已提交
591 592 593 594 595 596 597 598
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
599
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
615
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
616 617
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
618
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
619 620 621 622 623 624 625
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
626
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
627 628 629 630 631 632 633
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
634 635
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
636 637 638 639 640 641 642
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
643
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
644 645 646
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
647

L
Linus Torvalds 已提交
648 649 650 651
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
652
		trace_mm_vmscan_writepage(page);
653
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
654 655 656 657 658 659
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

660
/*
N
Nick Piggin 已提交
661 662
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
663
 */
664 665
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
666
{
667 668
	unsigned long flags;

669 670
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
671

672
	spin_lock_irqsave(&mapping->tree_lock, flags);
673
	/*
N
Nick Piggin 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
694 695 696
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
697
	 */
698
	if (!page_ref_freeze(page, 2))
699
		goto cannot_free;
N
Nick Piggin 已提交
700 701
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
702
		page_ref_unfreeze(page, 2);
703
		goto cannot_free;
N
Nick Piggin 已提交
704
	}
705 706 707

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
708
		mem_cgroup_swapout(page, swap);
709
		__delete_from_swap_cache(page);
710
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
711
		put_swap_page(page, swap);
N
Nick Piggin 已提交
712
	} else {
713
		void (*freepage)(struct page *);
714
		void *shadow = NULL;
715 716

		freepage = mapping->a_ops->freepage;
717 718 719 720 721 722 723 724 725
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
726 727 728 729 730 731
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
732 733
		 */
		if (reclaimed && page_is_file_cache(page) &&
734
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
735
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
736
		__delete_from_page_cache(page, shadow);
737
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 739 740

		if (freepage != NULL)
			freepage(page);
741 742 743 744 745
	}

	return 1;

cannot_free:
746
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 748 749
	return 0;
}

N
Nick Piggin 已提交
750 751 752 753 754 755 756 757
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
758
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
759 760 761 762 763
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
764
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
765 766 767 768 769
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
770 771 772 773 774 775 776 777 778 779 780
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
781
	bool is_unevictable;
782
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
783

784
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
785 786 787 788

redo:
	ClearPageUnevictable(page);

789
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
790 791 792 793 794 795
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
796
		is_unevictable = false;
797
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
798 799 800 801 802
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
803
		is_unevictable = true;
L
Lee Schermerhorn 已提交
804
		add_page_to_unevictable_list(page);
805
		/*
806 807 808
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
809
		 * isolation/check_move_unevictable_pages,
810
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 812
		 * the page back to the evictable list.
		 *
813
		 * The other side is TestClearPageMlocked() or shmem_lock().
814 815
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
816 817 818 819 820 821 822
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
823
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
824 825 826 827 828 829 830 831 832 833
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

834
	if (was_unevictable && !is_unevictable)
835
		count_vm_event(UNEVICTABLE_PGRESCUED);
836
	else if (!was_unevictable && is_unevictable)
837 838
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
839 840 841
	put_page(page);		/* drop ref from isolate */
}

842 843 844
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
845
	PAGEREF_KEEP,
846 847 848 849 850 851
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
852
	int referenced_ptes, referenced_page;
853 854
	unsigned long vm_flags;

855 856
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
857
	referenced_page = TestClearPageReferenced(page);
858 859 860 861 862 863 864 865

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

866
	if (referenced_ptes) {
867
		if (PageSwapBacked(page))
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

885
		if (referenced_page || referenced_ptes > 1)
886 887
			return PAGEREF_ACTIVATE;

888 889 890 891 892 893
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

894 895
		return PAGEREF_KEEP;
	}
896 897

	/* Reclaim if clean, defer dirty pages to writeback */
898
	if (referenced_page && !PageSwapBacked(page))
899 900 901
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
902 903
}

904 905 906 907
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
908 909
	struct address_space *mapping;

910 911 912 913
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
914 915
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
916 917 918 919 920 921 922 923
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
924 925 926 927 928 929 930 931

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 933
}

934 935 936 937 938 939
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
940 941 942
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
943 944
};

L
Linus Torvalds 已提交
945
/*
A
Andrew Morton 已提交
946
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
947
 */
A
Andrew Morton 已提交
948
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
949
				      struct pglist_data *pgdat,
950
				      struct scan_control *sc,
951
				      enum ttu_flags ttu_flags,
952
				      struct reclaim_stat *stat,
953
				      bool force_reclaim)
L
Linus Torvalds 已提交
954 955
{
	LIST_HEAD(ret_pages);
956
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
957
	int pgactivate = 0;
958 959 960 961 962 963
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
964 965
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
966 967 968 969 970 971 972

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
973
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
974
		bool dirty, writeback;
L
Linus Torvalds 已提交
975 976 977 978 979 980

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
981
		if (!trylock_page(page))
L
Linus Torvalds 已提交
982 983
			goto keep;

984
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
985 986

		sc->nr_scanned++;
987

988
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
989
			goto activate_locked;
L
Lee Schermerhorn 已提交
990

991
		if (!sc->may_unmap && page_mapped(page))
992 993
			goto keep_locked;

L
Linus Torvalds 已提交
994
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
995 996
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
997 998
			sc->nr_scanned++;

999 1000 1001
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1015 1016 1017 1018 1019 1020
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1021
		mapping = page_mapping(page);
1022
		if (((dirty || writeback) && mapping &&
1023
		     inode_write_congested(mapping->host)) ||
1024
		    (writeback && PageReclaim(page)))
1025 1026
			nr_congested++;

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1038 1039
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1040
		 *
1041
		 * 2) Global or new memcg reclaim encounters a page that is
1042 1043 1044
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1045
		 *    reclaim and continue scanning.
1046
		 *
1047 1048
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1049 1050 1051 1052 1053
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1054
		 * 3) Legacy memcg encounters a page that is already marked
1055 1056 1057 1058
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1059 1060 1061 1062 1063 1064 1065 1066 1067
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1068
		 */
1069
		if (PageWriteback(page)) {
1070 1071 1072
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1073
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1074
				nr_immediate++;
1075
				goto activate_locked;
1076 1077

			/* Case 2 above */
1078
			} else if (sane_reclaim(sc) ||
1079
			    !PageReclaim(page) || !may_enter_fs) {
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1092
				nr_writeback++;
1093
				goto activate_locked;
1094 1095 1096

			/* Case 3 above */
			} else {
1097
				unlock_page(page);
1098
				wait_on_page_writeback(page);
1099 1100 1101
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1102
			}
1103
		}
L
Linus Torvalds 已提交
1104

1105 1106 1107
		if (!force_reclaim)
			references = page_check_references(page, sc);

1108 1109
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1110
			goto activate_locked;
1111
		case PAGEREF_KEEP:
1112
			nr_ref_keep++;
1113
			goto keep_locked;
1114 1115 1116 1117
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1118 1119 1120 1121

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1122
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1123
		 */
S
Shaohua Li 已提交
1124 1125
		if (PageAnon(page) && PageSwapBacked(page) &&
		    !PageSwapCache(page)) {
1126 1127
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1128 1129 1130 1131
			/* cannot split THP, skip it */
			if (PageTransHuge(page) &&
			    !can_split_huge_page(page, NULL))
				goto activate_locked;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
			if (!add_to_swap(page)) {
				if (!PageTransHuge(page))
					goto activate_locked;
				/* Split THP and swap individual base pages */
				if (split_huge_page_to_list(page, page_list))
					goto activate_locked;
				if (!add_to_swap(page))
					goto activate_locked;
			}

			/* XXX: We don't support THP writes */
			if (PageTransHuge(page) &&
				  split_huge_page_to_list(page, page_list)) {
				delete_from_swap_cache(page);
L
Linus Torvalds 已提交
1146
				goto activate_locked;
1147 1148
			}

1149
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1150

1151 1152
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1153 1154 1155 1156
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1157
		}
L
Linus Torvalds 已提交
1158

1159 1160
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1161 1162 1163 1164
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1165
		if (page_mapped(page)) {
M
Minchan Kim 已提交
1166
			if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) {
1167
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1168 1169 1170 1171 1172
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1173
			/*
1174 1175 1176 1177 1178 1179 1180 1181
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1182
			 */
1183
			if (page_is_file_cache(page) &&
1184 1185
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1186 1187 1188 1189 1190 1191
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1192
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1193 1194
				SetPageReclaim(page);

1195
				goto activate_locked;
1196 1197
			}

1198
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1199
				goto keep_locked;
1200
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1201
				goto keep_locked;
1202
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1203 1204
				goto keep_locked;

1205 1206 1207 1208 1209 1210
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1211
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1212 1213 1214 1215 1216
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1217
				if (PageWriteback(page))
1218
					goto keep;
1219
				if (PageDirty(page))
L
Linus Torvalds 已提交
1220
					goto keep;
1221

L
Linus Torvalds 已提交
1222 1223 1224 1225
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1226
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1246
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1257
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1258 1259
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1276 1277
		}

S
Shaohua Li 已提交
1278 1279 1280 1281 1282 1283 1284 1285
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1286

S
Shaohua Li 已提交
1287 1288 1289
			count_vm_event(PGLAZYFREED);
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1290 1291 1292 1293 1294 1295 1296
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1297
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1298
free_it:
1299
		nr_reclaimed++;
1300 1301 1302 1303 1304 1305

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1306 1307 1308
		continue;

activate_locked:
1309
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1310 1311
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1312
			try_to_free_swap(page);
1313
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1314 1315 1316 1317
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
		}
L
Linus Torvalds 已提交
1318 1319 1320 1321
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1322
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1323
	}
1324

1325
	mem_cgroup_uncharge_list(&free_pages);
1326
	try_to_unmap_flush();
1327
	free_hot_cold_page_list(&free_pages, true);
1328

L
Linus Torvalds 已提交
1329
	list_splice(&ret_pages, page_list);
1330
	count_vm_events(PGACTIVATE, pgactivate);
1331

1332 1333 1334 1335 1336 1337
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1338 1339 1340
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1341
	}
1342
	return nr_reclaimed;
L
Linus Torvalds 已提交
1343 1344
}

1345 1346 1347 1348 1349 1350 1351 1352
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1353
	unsigned long ret;
1354 1355 1356 1357
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1358
		if (page_is_file_cache(page) && !PageDirty(page) &&
1359
		    !__PageMovable(page)) {
1360 1361 1362 1363 1364
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1365
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1366
			TTU_IGNORE_ACCESS, NULL, true);
1367
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1368
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1369 1370 1371
	return ret;
}

A
Andy Whitcroft 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1382
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1383 1384 1385 1386 1387 1388 1389
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1390 1391
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1392 1393
		return ret;

A
Andy Whitcroft 已提交
1394
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1395

1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1404
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1422

1423 1424 1425
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1439 1440 1441 1442 1443 1444

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1445
			enum lru_list lru, unsigned long *nr_zone_taken)
1446 1447 1448 1449 1450 1451 1452 1453 1454
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1455
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1456
#endif
1457 1458
	}

1459 1460
}

L
Linus Torvalds 已提交
1461
/*
1462
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1463 1464 1465 1466 1467 1468 1469 1470
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1471
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1472
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1473
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1474
 * @nr_scanned:	The number of pages that were scanned.
1475
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1476
 * @mode:	One of the LRU isolation modes
1477
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1478 1479 1480
 *
 * returns how many pages were moved onto *@dst.
 */
1481
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1482
		struct lruvec *lruvec, struct list_head *dst,
1483
		unsigned long *nr_scanned, struct scan_control *sc,
1484
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1485
{
H
Hugh Dickins 已提交
1486
	struct list_head *src = &lruvec->lists[lru];
1487
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1488
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1489
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1490
	unsigned long skipped = 0;
1491
	unsigned long scan, total_scan, nr_pages;
1492
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1493

1494 1495 1496 1497
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1498 1499
		struct page *page;

L
Linus Torvalds 已提交
1500 1501 1502
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1503
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1504

1505 1506
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1507
			nr_skipped[page_zonenum(page)]++;
1508 1509 1510
			continue;
		}

1511 1512 1513 1514 1515 1516 1517
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1518
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1519
		case 0:
M
Mel Gorman 已提交
1520 1521 1522
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1523 1524 1525 1526 1527 1528 1529
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1530

A
Andy Whitcroft 已提交
1531 1532 1533
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1534 1535
	}

1536 1537 1538 1539 1540 1541 1542
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1543 1544 1545
	if (!list_empty(&pages_skipped)) {
		int zid;

1546
		list_splice(&pages_skipped, src);
1547 1548 1549 1550 1551
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1552
			skipped += nr_skipped[zid];
1553 1554
		}
	}
1555
	*nr_scanned = total_scan;
1556
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1557
				    total_scan, skipped, nr_taken, mode, lru);
1558
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1559 1560 1561
	return nr_taken;
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1573 1574 1575
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1591
	VM_BUG_ON_PAGE(!page_count(page), page);
1592
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1593

1594 1595
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1596
		struct lruvec *lruvec;
1597

1598
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1599
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1600
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1601
			int lru = page_lru(page);
1602
			get_page(page);
1603
			ClearPageLRU(page);
1604 1605
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1606
		}
1607
		spin_unlock_irq(zone_lru_lock(zone));
1608 1609 1610 1611
	}
	return ret;
}

1612
/*
F
Fengguang Wu 已提交
1613 1614 1615 1616 1617
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1618
 */
M
Mel Gorman 已提交
1619
static int too_many_isolated(struct pglist_data *pgdat, int file,
1620 1621 1622 1623 1624 1625 1626
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1627
	if (!sane_reclaim(sc))
1628 1629 1630
		return 0;

	if (file) {
M
Mel Gorman 已提交
1631 1632
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1633
	} else {
M
Mel Gorman 已提交
1634 1635
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1636 1637
	}

1638 1639 1640 1641 1642
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1643
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1644 1645
		inactive >>= 3;

1646 1647 1648
	return isolated > inactive;
}

1649
static noinline_for_stack void
H
Hugh Dickins 已提交
1650
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1651
{
1652
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1653
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1654
	LIST_HEAD(pages_to_free);
1655 1656 1657 1658 1659

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1660
		struct page *page = lru_to_page(page_list);
1661
		int lru;
1662

1663
		VM_BUG_ON_PAGE(PageLRU(page), page);
1664
		list_del(&page->lru);
1665
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1666
			spin_unlock_irq(&pgdat->lru_lock);
1667
			putback_lru_page(page);
M
Mel Gorman 已提交
1668
			spin_lock_irq(&pgdat->lru_lock);
1669 1670
			continue;
		}
1671

M
Mel Gorman 已提交
1672
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1673

1674
		SetPageLRU(page);
1675
		lru = page_lru(page);
1676 1677
		add_page_to_lru_list(page, lruvec, lru);

1678 1679
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1680 1681
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1682
		}
1683 1684 1685
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1686
			del_page_from_lru_list(page, lruvec, lru);
1687 1688

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1689
				spin_unlock_irq(&pgdat->lru_lock);
1690
				mem_cgroup_uncharge(page);
1691
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1692
				spin_lock_irq(&pgdat->lru_lock);
1693 1694
			} else
				list_add(&page->lru, &pages_to_free);
1695 1696 1697
		}
	}

1698 1699 1700 1701
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1702 1703
}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1717
/*
1718
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1719
 * of reclaimed pages
L
Linus Torvalds 已提交
1720
 */
1721
static noinline_for_stack unsigned long
1722
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1723
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1724 1725
{
	LIST_HEAD(page_list);
1726
	unsigned long nr_scanned;
1727
	unsigned long nr_reclaimed = 0;
1728
	unsigned long nr_taken;
1729
	struct reclaim_stat stat = {};
1730
	isolate_mode_t isolate_mode = 0;
1731
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1732
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1733
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1734

M
Mel Gorman 已提交
1735
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1736
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1737 1738 1739 1740 1741 1742

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1743
	lru_add_drain();
1744 1745

	if (!sc->may_unmap)
1746
		isolate_mode |= ISOLATE_UNMAPPED;
1747

M
Mel Gorman 已提交
1748
	spin_lock_irq(&pgdat->lru_lock);
1749

1750 1751
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1752

M
Mel Gorman 已提交
1753
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1754
	reclaim_stat->recent_scanned[file] += nr_taken;
1755

1756
	if (global_reclaim(sc)) {
1757
		if (current_is_kswapd())
M
Mel Gorman 已提交
1758
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1759
		else
M
Mel Gorman 已提交
1760
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1761
	}
M
Mel Gorman 已提交
1762
	spin_unlock_irq(&pgdat->lru_lock);
1763

1764
	if (nr_taken == 0)
1765
		return 0;
A
Andy Whitcroft 已提交
1766

S
Shaohua Li 已提交
1767
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1768
				&stat, false);
1769

M
Mel Gorman 已提交
1770
	spin_lock_irq(&pgdat->lru_lock);
1771

Y
Ying Han 已提交
1772 1773
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1774
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1775
		else
M
Mel Gorman 已提交
1776
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1777
	}
N
Nick Piggin 已提交
1778

1779
	putback_inactive_pages(lruvec, &page_list);
1780

M
Mel Gorman 已提交
1781
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1782

M
Mel Gorman 已提交
1783
	spin_unlock_irq(&pgdat->lru_lock);
1784

1785
	mem_cgroup_uncharge_list(&page_list);
1786
	free_hot_cold_page_list(&page_list, true);
1787

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1798 1799 1800
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1801
	 */
1802
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1803
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1804

1805
	/*
1806 1807
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1808
	 */
1809
	if (sane_reclaim(sc)) {
1810 1811 1812 1813
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1814
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1815
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1816

1817 1818
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1819 1820 1821 1822 1823 1824 1825 1826 1827
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1828
		 */
1829 1830
		if (stat.nr_unqueued_dirty == nr_taken) {
			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1831
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1832
		}
1833 1834

		/*
1835 1836 1837
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1838 1839
		 * they are written so also forcibly stall.
		 */
1840
		if (stat.nr_immediate && current_may_throttle())
1841
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1842
	}
1843

1844 1845 1846 1847 1848
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1849 1850
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1851
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1852

M
Mel Gorman 已提交
1853 1854
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1855 1856 1857 1858
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1859
			sc->priority, file);
1860
	return nr_reclaimed;
L
Linus Torvalds 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1870
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1871
 * the pages are mapped, the processing is slow (page_referenced()) so we
1872
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1873 1874 1875 1876
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1877
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1878
 * But we had to alter page->flags anyway.
1879 1880
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1881
 */
1882

1883
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1884
				     struct list_head *list,
1885
				     struct list_head *pages_to_free,
1886 1887
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1888
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1889
	struct page *page;
1890
	int nr_pages;
1891
	int nr_moved = 0;
1892 1893 1894

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1895
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1896

1897
		VM_BUG_ON_PAGE(PageLRU(page), page);
1898 1899
		SetPageLRU(page);

1900
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1901
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1902
		list_move(&page->lru, &lruvec->lists[lru]);
1903

1904 1905 1906
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1907
			del_page_from_lru_list(page, lruvec, lru);
1908 1909

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1910
				spin_unlock_irq(&pgdat->lru_lock);
1911
				mem_cgroup_uncharge(page);
1912
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1913
				spin_lock_irq(&pgdat->lru_lock);
1914 1915
			} else
				list_add(&page->lru, pages_to_free);
1916 1917
		} else {
			nr_moved += nr_pages;
1918 1919
		}
	}
1920

1921
	if (!is_active_lru(lru))
1922
		__count_vm_events(PGDEACTIVATE, nr_moved);
1923 1924

	return nr_moved;
1925
}
1926

H
Hugh Dickins 已提交
1927
static void shrink_active_list(unsigned long nr_to_scan,
1928
			       struct lruvec *lruvec,
1929
			       struct scan_control *sc,
1930
			       enum lru_list lru)
L
Linus Torvalds 已提交
1931
{
1932
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1933
	unsigned long nr_scanned;
1934
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1935
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1936
	LIST_HEAD(l_active);
1937
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1938
	struct page *page;
1939
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1940 1941
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1942
	isolate_mode_t isolate_mode = 0;
1943
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1944
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1945 1946

	lru_add_drain();
1947 1948

	if (!sc->may_unmap)
1949
		isolate_mode |= ISOLATE_UNMAPPED;
1950

M
Mel Gorman 已提交
1951
	spin_lock_irq(&pgdat->lru_lock);
1952

1953 1954
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1955

M
Mel Gorman 已提交
1956
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1957
	reclaim_stat->recent_scanned[file] += nr_taken;
1958

M
Mel Gorman 已提交
1959
	__count_vm_events(PGREFILL, nr_scanned);
1960

M
Mel Gorman 已提交
1961
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1967

1968
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1969 1970 1971 1972
			putback_lru_page(page);
			continue;
		}

1973 1974 1975 1976 1977 1978 1979 1980
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1981 1982
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1983
			nr_rotated += hpage_nr_pages(page);
1984 1985 1986 1987 1988 1989 1990 1991 1992
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1993
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1994 1995 1996 1997
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1998

1999
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
2000 2001 2002
		list_add(&page->lru, &l_inactive);
	}

2003
	/*
2004
	 * Move pages back to the lru list.
2005
	 */
M
Mel Gorman 已提交
2006
	spin_lock_irq(&pgdat->lru_lock);
2007
	/*
2008 2009 2010
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2011
	 * get_scan_count.
2012
	 */
2013
	reclaim_stat->recent_rotated[file] += nr_rotated;
2014

2015 2016
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2017 2018
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2019

2020
	mem_cgroup_uncharge_list(&l_hold);
2021
	free_hot_cold_page_list(&l_hold, true);
2022 2023
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2024 2025
}

2026 2027 2028
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2029
 *
2030 2031 2032
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2033
 *
2034 2035
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2036
 *
2037 2038
 * If that fails and refaulting is observed, the inactive list grows.
 *
2039 2040 2041
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2042
 *
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2053
 */
2054
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2055 2056
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2057
{
2058
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2059 2060 2061 2062 2063
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2064
	unsigned long gb;
2065

2066 2067 2068 2069 2070 2071
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2072

2073 2074
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2075

2076
	if (memcg)
2077
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2078
	else
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2095

2096 2097 2098 2099 2100
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2101

2102
	return inactive * inactive_ratio < active;
2103 2104
}

2105
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2106 2107
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2108
{
2109
	if (is_active_lru(lru)) {
2110 2111
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2112
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2113 2114 2115
		return 0;
	}

2116
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2117 2118
}

2119 2120 2121 2122 2123 2124 2125
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2126 2127 2128 2129 2130 2131
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2132 2133
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2134
 */
2135
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2136 2137
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2138
{
2139
	int swappiness = mem_cgroup_swappiness(memcg);
2140 2141 2142
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2143
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2144
	unsigned long anon_prio, file_prio;
2145
	enum scan_balance scan_balance;
2146
	unsigned long anon, file;
2147
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2148
	enum lru_list lru;
2149 2150

	/* If we have no swap space, do not bother scanning anon pages. */
2151
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2152
		scan_balance = SCAN_FILE;
2153 2154
		goto out;
	}
2155

2156 2157 2158 2159 2160 2161 2162
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2163
	if (!global_reclaim(sc) && !swappiness) {
2164
		scan_balance = SCAN_FILE;
2165 2166 2167 2168 2169 2170 2171 2172
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2173
	if (!sc->priority && swappiness) {
2174
		scan_balance = SCAN_EQUAL;
2175 2176 2177
		goto out;
	}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2188 2189 2190 2191
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2192

M
Mel Gorman 已提交
2193 2194 2195 2196 2197 2198
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2199
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2200 2201 2202 2203
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2204

M
Mel Gorman 已提交
2205
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2206 2207 2208 2209 2210
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2211
	/*
2212 2213 2214 2215 2216 2217 2218
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2219
	 */
2220
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2221
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2222
		scan_balance = SCAN_FILE;
2223 2224 2225
		goto out;
	}

2226 2227
	scan_balance = SCAN_FRACT;

2228 2229 2230 2231
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2232
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2233
	file_prio = 200 - anon_prio;
2234

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2246

2247 2248 2249 2250
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2251

M
Mel Gorman 已提交
2252
	spin_lock_irq(&pgdat->lru_lock);
2253 2254 2255
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2256 2257
	}

2258 2259 2260
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2261 2262 2263
	}

	/*
2264 2265 2266
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2267
	 */
2268
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2269
	ap /= reclaim_stat->recent_rotated[0] + 1;
2270

2271
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2272
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2273
	spin_unlock_irq(&pgdat->lru_lock);
2274

2275 2276 2277 2278
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2279 2280 2281 2282 2283
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2284

2285 2286 2287 2288 2289 2290 2291 2292
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2293

2294 2295 2296 2297 2298
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2299
			/*
2300 2301
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2302
			 */
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2317
		}
2318 2319 2320

		*lru_pages += size;
		nr[lru] = scan;
2321
	}
2322
}
2323

2324
/*
2325
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2326
 */
2327
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2328
			      struct scan_control *sc, unsigned long *lru_pages)
2329
{
2330
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2331
	unsigned long nr[NR_LRU_LISTS];
2332
	unsigned long targets[NR_LRU_LISTS];
2333 2334 2335 2336 2337
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2338
	bool scan_adjusted;
2339

2340
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2341

2342 2343 2344
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2359 2360 2361
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2362 2363 2364
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2365 2366 2367 2368 2369 2370
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2371
							    lruvec, memcg, sc);
2372 2373
			}
		}
2374

2375 2376
		cond_resched();

2377 2378 2379 2380 2381
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2382
		 * requested. Ensure that the anon and file LRUs are scanned
2383 2384 2385 2386 2387 2388 2389
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2390 2391 2392 2393 2394 2395 2396 2397 2398
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2430 2431 2432 2433 2434 2435 2436 2437
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2438
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2439 2440 2441 2442
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2443
/* Use reclaim/compaction for costly allocs or under memory pressure */
2444
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2445
{
2446
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2447
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2448
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2449 2450 2451 2452 2453
		return true;

	return false;
}

2454
/*
M
Mel Gorman 已提交
2455 2456 2457 2458 2459
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2460
 */
2461
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2462 2463 2464 2465 2466 2467
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2468
	int z;
2469 2470

	/* If not in reclaim/compaction mode, stop */
2471
	if (!in_reclaim_compaction(sc))
2472 2473
		return false;

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2496 2497 2498 2499 2500

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2501
	pages_for_compaction = compact_gap(sc->order);
2502
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2503
	if (get_nr_swap_pages() > 0)
2504
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2505 2506 2507 2508 2509
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2510 2511
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2512
		if (!managed_zone(zone))
2513 2514 2515
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2516
		case COMPACT_SUCCESS:
2517 2518 2519 2520 2521 2522
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2523
	}
2524
	return true;
2525 2526
}

2527
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2528
{
2529
	struct reclaim_state *reclaim_state = current->reclaim_state;
2530
	unsigned long nr_reclaimed, nr_scanned;
2531
	bool reclaimable = false;
L
Linus Torvalds 已提交
2532

2533 2534 2535
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2536
			.pgdat = pgdat,
2537 2538
			.priority = sc->priority,
		};
2539
		unsigned long node_lru_pages = 0;
2540
		struct mem_cgroup *memcg;
2541

2542 2543
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2544

2545 2546
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2547
			unsigned long lru_pages;
2548
			unsigned long reclaimed;
2549
			unsigned long scanned;
2550

2551
			if (mem_cgroup_low(root, memcg)) {
2552 2553
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2554
					continue;
2555
				}
2556
				mem_cgroup_event(memcg, MEMCG_LOW);
2557 2558
			}

2559
			reclaimed = sc->nr_reclaimed;
2560
			scanned = sc->nr_scanned;
2561

2562 2563
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2564

2565
			if (memcg)
2566
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2567 2568 2569
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2570 2571 2572 2573 2574
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2575
			/*
2576 2577
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2578
			 * node.
2579 2580 2581 2582 2583
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2584
			 */
2585 2586
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2587 2588 2589
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2590
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2591

2592 2593 2594 2595
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2596
		if (global_reclaim(sc))
2597
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2598
				    sc->nr_scanned - nr_scanned,
2599
				    node_lru_pages);
2600 2601 2602 2603

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2604 2605
		}

2606 2607
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2608 2609 2610
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2611 2612 2613
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2614
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2615
					 sc->nr_scanned - nr_scanned, sc));
2616

2617 2618 2619 2620 2621 2622 2623 2624 2625
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2626
	return reclaimable;
2627 2628
}

2629
/*
2630 2631 2632
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2633
 */
2634
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2635
{
M
Mel Gorman 已提交
2636
	unsigned long watermark;
2637
	enum compact_result suitable;
2638

2639 2640 2641 2642 2643 2644 2645
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2646

2647
	/*
2648 2649 2650 2651 2652 2653 2654
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2655
	 */
2656
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2657

2658
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2659 2660
}

L
Linus Torvalds 已提交
2661 2662 2663 2664 2665 2666 2667 2668
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2669
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2670
{
2671
	struct zoneref *z;
2672
	struct zone *zone;
2673 2674
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2675
	gfp_t orig_mask;
2676
	pg_data_t *last_pgdat = NULL;
2677

2678 2679 2680 2681 2682
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2683
	orig_mask = sc->gfp_mask;
2684
	if (buffer_heads_over_limit) {
2685
		sc->gfp_mask |= __GFP_HIGHMEM;
2686
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2687
	}
2688

2689
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2690
					sc->reclaim_idx, sc->nodemask) {
2691 2692 2693 2694
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2695
		if (global_reclaim(sc)) {
2696 2697
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2698
				continue;
2699

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2711
			    compaction_ready(zone, sc)) {
2712 2713
				sc->compaction_ready = true;
				continue;
2714
			}
2715

2716 2717 2718 2719 2720 2721 2722 2723 2724
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2725 2726 2727 2728 2729 2730 2731
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2732
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2733 2734 2735 2736
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2737
			/* need some check for avoid more shrink_zone() */
2738
		}
2739

2740 2741 2742 2743
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2744
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2745
	}
2746

2747 2748 2749 2750 2751
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2752
}
2753

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2764
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2765 2766 2767 2768 2769 2770 2771 2772
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2773 2774 2775 2776 2777 2778 2779 2780
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2781 2782 2783 2784
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2785 2786 2787
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2788
 */
2789
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2790
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2791
{
2792
	int initial_priority = sc->priority;
2793 2794 2795
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2796
retry:
2797 2798
	delayacct_freepages_start();

2799
	if (global_reclaim(sc))
2800
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2801

2802
	do {
2803 2804
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2805
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2806
		shrink_zones(zonelist, sc);
2807

2808
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2809 2810 2811 2812
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2813

2814 2815 2816 2817 2818 2819
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2820
	} while (--sc->priority >= 0);
2821

2822 2823 2824 2825 2826 2827 2828 2829 2830
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
	}

2831 2832
	delayacct_freepages_end();

2833 2834 2835
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2836
	/* Aborted reclaim to try compaction? don't OOM, then */
2837
	if (sc->compaction_ready)
2838 2839
		return 1;

2840
	/* Untapped cgroup reserves?  Don't OOM, retry. */
2841
	if (sc->memcg_low_skipped) {
2842
		sc->priority = initial_priority;
2843 2844
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
2845 2846 2847
		goto retry;
	}

2848
	return 0;
L
Linus Torvalds 已提交
2849 2850
}

2851
static bool allow_direct_reclaim(pg_data_t *pgdat)
2852 2853 2854 2855 2856 2857 2858
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2859 2860 2861
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2862 2863
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2864 2865 2866 2867
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2868 2869
			continue;

2870 2871 2872 2873
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2874 2875 2876 2877
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2878 2879 2880 2881
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2882
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2894 2895 2896 2897
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2898
 */
2899
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2900 2901
					nodemask_t *nodemask)
{
2902
	struct zoneref *z;
2903
	struct zone *zone;
2904
	pg_data_t *pgdat = NULL;
2905 2906 2907 2908 2909 2910 2911 2912 2913

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2914 2915 2916 2917 2918 2919 2920 2921
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2938
					gfp_zone(gfp_mask), nodemask) {
2939 2940 2941 2942 2943
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
2944
		if (allow_direct_reclaim(pgdat))
2945 2946 2947 2948 2949 2950
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2951
		goto out;
2952

2953 2954 2955
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2966
			allow_direct_reclaim(pgdat), HZ);
2967 2968

		goto check_pending;
2969 2970 2971 2972
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2973
		allow_direct_reclaim(pgdat));
2974 2975 2976 2977 2978 2979 2980

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2981 2982
}

2983
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2984
				gfp_t gfp_mask, nodemask_t *nodemask)
2985
{
2986
	unsigned long nr_reclaimed;
2987
	struct scan_control sc = {
2988
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2989
		.gfp_mask = current_gfp_context(gfp_mask),
2990
		.reclaim_idx = gfp_zone(gfp_mask),
2991 2992 2993
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2994
		.may_writepage = !laptop_mode,
2995
		.may_unmap = 1,
2996
		.may_swap = 1,
2997 2998
	};

2999
	/*
3000 3001 3002
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3003
	 */
3004
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3005 3006
		return 1;

3007 3008
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3009
				sc.gfp_mask,
3010
				sc.reclaim_idx);
3011

3012
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3013 3014 3015 3016

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3017 3018
}

A
Andrew Morton 已提交
3019
#ifdef CONFIG_MEMCG
3020

3021
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3022
						gfp_t gfp_mask, bool noswap,
3023
						pg_data_t *pgdat,
3024
						unsigned long *nr_scanned)
3025 3026
{
	struct scan_control sc = {
3027
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3028
		.target_mem_cgroup = memcg,
3029 3030
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3031
		.reclaim_idx = MAX_NR_ZONES - 1,
3032 3033
		.may_swap = !noswap,
	};
3034
	unsigned long lru_pages;
3035

3036 3037
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3038

3039
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3040
						      sc.may_writepage,
3041 3042
						      sc.gfp_mask,
						      sc.reclaim_idx);
3043

3044 3045 3046
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3047
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3048 3049 3050
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3051
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3052 3053 3054

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3055
	*nr_scanned = sc.nr_scanned;
3056 3057 3058
	return sc.nr_reclaimed;
}

3059
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3060
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3061
					   gfp_t gfp_mask,
3062
					   bool may_swap)
3063
{
3064
	struct zonelist *zonelist;
3065
	unsigned long nr_reclaimed;
3066
	int nid;
3067
	unsigned int noreclaim_flag;
3068
	struct scan_control sc = {
3069
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3070
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3071
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3072
		.reclaim_idx = MAX_NR_ZONES - 1,
3073 3074 3075 3076
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3077
		.may_swap = may_swap,
3078
	};
3079

3080 3081 3082 3083 3084
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3085
	nid = mem_cgroup_select_victim_node(memcg);
3086

3087
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3088 3089 3090

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3091 3092
					    sc.gfp_mask,
					    sc.reclaim_idx);
3093

3094
	noreclaim_flag = memalloc_noreclaim_save();
3095
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3096
	memalloc_noreclaim_restore(noreclaim_flag);
3097 3098 3099 3100

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3101 3102 3103
}
#endif

3104
static void age_active_anon(struct pglist_data *pgdat,
3105
				struct scan_control *sc)
3106
{
3107
	struct mem_cgroup *memcg;
3108

3109 3110 3111 3112 3113
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3114
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3115

3116
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3117
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3118
					   sc, LRU_ACTIVE_ANON);
3119 3120 3121

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3122 3123
}

3124 3125 3126 3127 3128
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3129
{
3130 3131 3132
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3133

3134 3135
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3136

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3154 3155
}

3156 3157 3158 3159 3160 3161 3162 3163
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3164 3165 3166 3167 3168 3169
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3170
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3171
{
3172
	/*
3173
	 * The throttled processes are normally woken up in balance_pgdat() as
3174
	 * soon as allow_direct_reclaim() is true. But there is a potential
3175 3176 3177 3178 3179 3180 3181 3182 3183
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3184
	 */
3185 3186
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3187

3188 3189 3190 3191
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3192 3193 3194
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3195 3196
	}

3197
	return false;
3198 3199
}

3200
/*
3201 3202
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3203 3204
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3205 3206
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3207
 */
3208
static bool kswapd_shrink_node(pg_data_t *pgdat,
3209
			       struct scan_control *sc)
3210
{
3211 3212
	struct zone *zone;
	int z;
3213

3214 3215
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3216
	for (z = 0; z <= sc->reclaim_idx; z++) {
3217
		zone = pgdat->node_zones + z;
3218
		if (!managed_zone(zone))
3219
			continue;
3220

3221 3222
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3223 3224

	/*
3225 3226
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3227
	 */
3228
	shrink_node(pgdat, sc);
3229

3230
	/*
3231 3232 3233 3234 3235
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3236
	 */
3237
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3238
		sc->order = 0;
3239

3240
	return sc->nr_scanned >= sc->nr_to_reclaim;
3241 3242
}

L
Linus Torvalds 已提交
3243
/*
3244 3245 3246
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3247
 *
3248
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3249 3250
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3251
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3252 3253 3254
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3255
 */
3256
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3257 3258
{
	int i;
3259 3260
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3261
	struct zone *zone;
3262 3263
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3264
		.order = order,
3265
		.priority = DEF_PRIORITY,
3266
		.may_writepage = !laptop_mode,
3267
		.may_unmap = 1,
3268
		.may_swap = 1,
3269
	};
3270
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3271

3272
	do {
3273
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3274 3275
		bool raise_priority = true;

3276
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3277

3278
		/*
3279 3280 3281 3282 3283 3284 3285 3286
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3287 3288 3289 3290
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3291
				if (!managed_zone(zone))
3292
					continue;
3293

3294
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3295
				break;
L
Linus Torvalds 已提交
3296 3297
			}
		}
3298

3299
		/*
3300 3301 3302
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3303
		 */
3304 3305
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3306

3307 3308 3309 3310 3311 3312
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3313
		age_active_anon(pgdat, &sc);
3314

3315 3316 3317 3318
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3319
		if (sc.priority < DEF_PRIORITY - 2)
3320 3321
			sc.may_writepage = 1;

3322 3323 3324
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3325
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3326 3327 3328
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3329
		/*
3330 3331 3332
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3333
		 */
3334
		if (kswapd_shrink_node(pgdat, &sc))
3335
			raise_priority = false;
3336 3337 3338 3339 3340 3341 3342

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3343
				allow_direct_reclaim(pgdat))
3344
			wake_up_all(&pgdat->pfmemalloc_wait);
3345

3346 3347 3348
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3349

3350
		/*
3351 3352
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3353
		 */
3354 3355
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3356
			sc.priority--;
3357
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3358

3359 3360 3361
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3362
out:
3363
	snapshot_refaults(NULL, pgdat);
3364
	/*
3365 3366 3367 3368
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3369
	 */
3370
	return sc.order;
L
Linus Torvalds 已提交
3371 3372
}

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3389 3390
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3391 3392 3393 3394 3395 3396 3397 3398 3399
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3400 3401 3402 3403 3404 3405 3406
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3407
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3420
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3421

3422
		remaining = schedule_timeout(HZ/10);
3423 3424 3425 3426 3427 3428 3429

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3430
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3431 3432 3433
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3434 3435 3436 3437 3438 3439 3440 3441
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3442 3443
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3455 3456 3457 3458

		if (!kthread_should_stop())
			schedule();

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3469 3470
/*
 * The background pageout daemon, started as a kernel thread
3471
 * from the init process.
L
Linus Torvalds 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3484 3485
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3486 3487
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3488

L
Linus Torvalds 已提交
3489 3490 3491
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3492
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3493

3494 3495
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3496
	if (!cpumask_empty(cpumask))
3497
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3512
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3513
	set_freezable();
L
Linus Torvalds 已提交
3514

3515 3516
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3517
	for ( ; ; ) {
3518
		bool ret;
3519

3520 3521 3522
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3523 3524 3525
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3526

3527 3528
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3529
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3530
		pgdat->kswapd_order = 0;
3531
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3532

3533 3534 3535 3536 3537 3538 3539 3540
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3552 3553
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3554 3555 3556
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3557
	}
3558

3559
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3560
	current->reclaim_state = NULL;
3561 3562
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3563 3564 3565 3566 3567 3568
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3569
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3570 3571 3572
{
	pg_data_t *pgdat;

3573
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3574 3575
		return;

3576
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3577
		return;
3578
	pgdat = zone->zone_pgdat;
3579 3580
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3581
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3582
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3583
		return;
3584

3585 3586 3587 3588
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return;

3589 3590
	if (pgdat_balanced(pgdat, order, classzone_idx))
		return;
3591

3592
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3593
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3594 3595
}

3596
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3597
/*
3598
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3599 3600 3601 3602 3603
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3604
 */
3605
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3606
{
3607 3608
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3609
		.nr_to_reclaim = nr_to_reclaim,
3610
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3611
		.reclaim_idx = MAX_NR_ZONES - 1,
3612
		.priority = DEF_PRIORITY,
3613
		.may_writepage = 1,
3614 3615
		.may_unmap = 1,
		.may_swap = 1,
3616
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3617
	};
3618
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3619 3620
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3621
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3622

3623
	noreclaim_flag = memalloc_noreclaim_save();
3624 3625 3626
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3627

3628
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3629

3630 3631
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
3632
	memalloc_noreclaim_restore(noreclaim_flag);
3633

3634
	return nr_reclaimed;
L
Linus Torvalds 已提交
3635
}
3636
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3642
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3643
{
3644
	int nid;
L
Linus Torvalds 已提交
3645

3646 3647 3648
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3649

3650
		mask = cpumask_of_node(pgdat->node_id);
3651

3652 3653 3654
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3655
	}
3656
	return 0;
L
Linus Torvalds 已提交
3657 3658
}

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3674
		BUG_ON(system_state < SYSTEM_RUNNING);
3675 3676
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3677
		pgdat->kswapd = NULL;
3678 3679 3680 3681
	}
	return ret;
}

3682
/*
3683
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3684
 * hold mem_hotplug_begin/end().
3685 3686 3687 3688 3689
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3690
	if (kswapd) {
3691
		kthread_stop(kswapd);
3692 3693
		NODE_DATA(nid)->kswapd = NULL;
	}
3694 3695
}

L
Linus Torvalds 已提交
3696 3697
static int __init kswapd_init(void)
{
3698
	int nid, ret;
3699

L
Linus Torvalds 已提交
3700
	swap_setup();
3701
	for_each_node_state(nid, N_MEMORY)
3702
 		kswapd_run(nid);
3703 3704 3705 3706
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3707 3708 3709 3710
	return 0;
}

module_init(kswapd_init)
3711 3712 3713

#ifdef CONFIG_NUMA
/*
3714
 * Node reclaim mode
3715
 *
3716
 * If non-zero call node_reclaim when the number of free pages falls below
3717 3718
 * the watermarks.
 */
3719
int node_reclaim_mode __read_mostly;
3720

3721
#define RECLAIM_OFF 0
3722
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3723
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3724
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3725

3726
/*
3727
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3728 3729 3730
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3731
#define NODE_RECLAIM_PRIORITY 4
3732

3733
/*
3734
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3735 3736 3737 3738
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3739 3740 3741 3742 3743 3744
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3745
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3746
{
3747 3748 3749
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3760
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3761
{
3762 3763
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3764 3765

	/*
3766
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3767
	 * potentially reclaimable. Otherwise, we have to worry about
3768
	 * pages like swapcache and node_unmapped_file_pages() provides
3769 3770
	 * a better estimate
	 */
3771 3772
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3773
	else
3774
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3775 3776

	/* If we can't clean pages, remove dirty pages from consideration */
3777 3778
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3779 3780 3781 3782 3783 3784 3785 3786

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3787
/*
3788
 * Try to free up some pages from this node through reclaim.
3789
 */
3790
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3791
{
3792
	/* Minimum pages needed in order to stay on node */
3793
	const unsigned long nr_pages = 1 << order;
3794 3795
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3796
	unsigned int noreclaim_flag;
3797
	struct scan_control sc = {
3798
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3799
		.gfp_mask = current_gfp_context(gfp_mask),
3800
		.order = order,
3801 3802 3803
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3804
		.may_swap = 1,
3805
		.reclaim_idx = gfp_zone(gfp_mask),
3806
	};
3807 3808

	cond_resched();
3809
	/*
3810
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3811
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3812
	 * and RECLAIM_UNMAP.
3813
	 */
3814 3815
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
3816
	lockdep_set_current_reclaim_state(sc.gfp_mask);
3817 3818
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3819

3820
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3821 3822 3823 3824 3825
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3826
			shrink_node(pgdat, &sc);
3827
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3828
	}
3829

3830
	p->reclaim_state = NULL;
3831 3832
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
3833
	lockdep_clear_current_reclaim_state();
3834
	return sc.nr_reclaimed >= nr_pages;
3835
}
3836

3837
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3838
{
3839
	int ret;
3840 3841

	/*
3842
	 * Node reclaim reclaims unmapped file backed pages and
3843
	 * slab pages if we are over the defined limits.
3844
	 *
3845 3846
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3847 3848
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3849
	 * unmapped file backed pages.
3850
	 */
3851 3852 3853
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3854 3855

	/*
3856
	 * Do not scan if the allocation should not be delayed.
3857
	 */
3858
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3859
		return NODE_RECLAIM_NOSCAN;
3860 3861

	/*
3862
	 * Only run node reclaim on the local node or on nodes that do not
3863 3864 3865 3866
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3867 3868
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3869

3870 3871
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3872

3873 3874
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3875

3876 3877 3878
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3879
	return ret;
3880
}
3881
#endif
L
Lee Schermerhorn 已提交
3882 3883 3884 3885 3886 3887

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3888
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3889 3890
 *
 * Reasons page might not be evictable:
3891
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3892
 * (2) page is part of an mlocked VMA
3893
 *
L
Lee Schermerhorn 已提交
3894
 */
3895
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3896
{
3897
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3898
}
3899

3900
#ifdef CONFIG_SHMEM
3901
/**
3902 3903 3904
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3905
 *
3906
 * Checks pages for evictability and moves them to the appropriate lru list.
3907 3908
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3909
 */
3910
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3911
{
3912
	struct lruvec *lruvec;
3913
	struct pglist_data *pgdat = NULL;
3914 3915 3916
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3917

3918 3919
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3920
		struct pglist_data *pagepgdat = page_pgdat(page);
3921

3922
		pgscanned++;
3923 3924 3925 3926 3927
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3928
		}
3929
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3930

3931 3932
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3933

3934
		if (page_evictable(page)) {
3935 3936
			enum lru_list lru = page_lru_base_type(page);

3937
			VM_BUG_ON_PAGE(PageActive(page), page);
3938
			ClearPageUnevictable(page);
3939 3940
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3941
			pgrescued++;
3942
		}
3943
	}
3944

3945
	if (pgdat) {
3946 3947
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3948
		spin_unlock_irq(&pgdat->lru_lock);
3949 3950
	}
}
3951
#endif /* CONFIG_SHMEM */