vmscan.c 111.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16
#include <linux/mm.h>
17
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
18
#include <linux/module.h>
19
#include <linux/gfp.h>
L
Linus Torvalds 已提交
20 21 22 23 24
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
25
#include <linux/vmpressure.h>
26
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
38
#include <linux/compaction.h>
L
Linus Torvalds 已提交
39 40
#include <linux/notifier.h>
#include <linux/rwsem.h>
41
#include <linux/delay.h>
42
#include <linux/kthread.h>
43
#include <linux/freezer.h>
44
#include <linux/memcontrol.h>
45
#include <linux/delayacct.h>
46
#include <linux/sysctl.h>
47
#include <linux/oom.h>
48
#include <linux/prefetch.h>
49
#include <linux/printk.h>
50
#include <linux/dax.h>
L
Linus Torvalds 已提交
51 52 53 54 55

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
56
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
57

58 59
#include "internal.h"

60 61 62
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
63
struct scan_control {
64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
67
	/* This context's GFP mask */
A
Al Viro 已提交
68
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
69

70
	/* Allocation order */
A
Andy Whitcroft 已提交
71
	int order;
72

73 74 75 76 77
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
78

79 80 81 82 83
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
84

85 86 87
	/* Scan (total_size >> priority) pages at once */
	int priority;

88 89 90
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

91
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 93 94 95 96 97 98 99
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

100 101 102 103 104 105 106
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
107

108 109 110 111 112 113 114 115 116 117
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
152 153 154 155 156
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
157 158 159 160

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
161
#ifdef CONFIG_MEMCG
162 163
static bool global_reclaim(struct scan_control *sc)
{
164
	return !sc->target_mem_cgroup;
165
}
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
187
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 189 190 191
		return true;
#endif
	return false;
}
192
#else
193 194 195 196
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
197 198 199 200 201

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
202 203
#endif

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
222 223 224 225 226 227 228
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229 230

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
231 232 233
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234 235 236 237

	return nr;
}

238 239 240 241 242 243 244
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245
{
246 247 248
	unsigned long lru_size;
	int zid;

249
	if (!mem_cgroup_disabled())
250 251 252
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253

254 255 256
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
257

258 259 260 261 262 263 264 265 266 267 268 269
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
270 271 272

}

L
Linus Torvalds 已提交
273
/*
G
Glauber Costa 已提交
274
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
275
 */
G
Glauber Costa 已提交
276
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
277
{
G
Glauber Costa 已提交
278 279 280 281 282 283 284 285 286
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

287 288 289
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
290
	return 0;
L
Linus Torvalds 已提交
291
}
292
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
293 294 295 296

/*
 * Remove one
 */
297
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
298 299 300 301
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
302
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
303
}
304
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
305 306

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
307

308 309 310 311
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
312 313 314 315
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
316
	long freeable;
G
Glauber Costa 已提交
317 318 319 320 321
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
322
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
323

324 325
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
326 327 328 329 330 331 332 333 334 335
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
336
	delta = (4 * nr_scanned) / shrinker->seeks;
337
	delta *= freeable;
338
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
339 340
	total_scan += delta;
	if (total_scan < 0) {
341
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
342
		       shrinker->scan_objects, total_scan);
343
		total_scan = freeable;
344 345 346
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
347 348 349 350 351 352 353

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
354
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
355 356 357 358 359
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
360 361
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
362 363 364 365 366 367

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
368 369
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
370 371

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 373
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
374

375 376 377 378 379 380 381 382 383 384 385
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
386
	 * than the total number of objects on slab (freeable), we must be
387 388 389 390
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
391
	       total_scan >= freeable) {
D
Dave Chinner 已提交
392
		unsigned long ret;
393
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
394

395
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
396 397 398 399
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
400

401 402
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
403
		scanned += nr_to_scan;
G
Glauber Costa 已提交
404 405 406 407

		cond_resched();
	}

408 409 410 411
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
412 413 414 415 416
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
417 418
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
419 420 421 422
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

423
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
424
	return freed;
425 426
}

427
/**
428
 * shrink_slab - shrink slab caches
429 430
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
431
 * @memcg: memory cgroup whose slab caches to target
432 433
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
434
 *
435
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
436
 *
437 438
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
439
 *
440 441
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 443
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
444
 *
445 446 447 448 449 450 451
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
452
 *
453
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
454
 */
455 456 457 458
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
459 460
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
461
	unsigned long freed = 0;
L
Linus Torvalds 已提交
462

463
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 465
		return 0;

466 467
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
468

469
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
470 471 472 473 474 475 476
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
477 478
		goto out;
	}
L
Linus Torvalds 已提交
479 480

	list_for_each_entry(shrinker, &shrinker_list, list) {
481 482 483
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
484
			.memcg = memcg,
485
		};
486

487 488 489 490 491 492 493
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 495
			continue;

496 497
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
498

499
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
500
	}
501

L
Linus Torvalds 已提交
502
	up_read(&shrinker_rwsem);
503 504
out:
	cond_resched();
D
Dave Chinner 已提交
505
	return freed;
L
Linus Torvalds 已提交
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
531 532
static inline int is_page_cache_freeable(struct page *page)
{
533 534 535 536 537
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
538
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
539 540
}

541
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
542
{
543
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
544
		return 1;
545
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
546
		return 1;
547
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
567
	lock_page(page);
568 569
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
570 571 572
	unlock_page(page);
}

573 574 575 576 577 578 579 580 581 582 583 584
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
585
/*
A
Andrew Morton 已提交
586 587
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
588
 */
589
static pageout_t pageout(struct page *page, struct address_space *mapping,
590
			 struct scan_control *sc)
L
Linus Torvalds 已提交
591 592 593 594 595 596 597 598
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
599
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
615
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
616 617
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
618
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
619 620 621 622 623 624 625
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
626
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
627 628 629 630 631 632 633
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
634 635
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
636 637 638 639 640 641 642
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
643
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
644 645 646
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
647

L
Linus Torvalds 已提交
648 649 650 651
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
652
		trace_mm_vmscan_writepage(page);
653
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
654 655 656 657 658 659
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

660
/*
N
Nick Piggin 已提交
661 662
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
663
 */
664 665
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
666
{
667 668
	unsigned long flags;

669 670
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
671

672
	spin_lock_irqsave(&mapping->tree_lock, flags);
673
	/*
N
Nick Piggin 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
694 695 696
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
697
	 */
698
	if (!page_ref_freeze(page, 2))
699
		goto cannot_free;
N
Nick Piggin 已提交
700 701
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
702
		page_ref_unfreeze(page, 2);
703
		goto cannot_free;
N
Nick Piggin 已提交
704
	}
705 706 707

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
708
		mem_cgroup_swapout(page, swap);
709
		__delete_from_swap_cache(page);
710
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
711
		swapcache_free(swap);
N
Nick Piggin 已提交
712
	} else {
713
		void (*freepage)(struct page *);
714
		void *shadow = NULL;
715 716

		freepage = mapping->a_ops->freepage;
717 718 719 720 721 722 723 724 725
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
726 727 728 729 730 731
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
732 733
		 */
		if (reclaimed && page_is_file_cache(page) &&
734
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
735
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
736
		__delete_from_page_cache(page, shadow);
737
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 739 740

		if (freepage != NULL)
			freepage(page);
741 742 743 744 745
	}

	return 1;

cannot_free:
746
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 748 749
	return 0;
}

N
Nick Piggin 已提交
750 751 752 753 754 755 756 757
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
758
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
759 760 761 762 763
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
764
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
765 766 767 768 769
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
770 771 772 773 774 775 776 777 778 779 780
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
781
	bool is_unevictable;
782
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
783

784
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
785 786 787 788

redo:
	ClearPageUnevictable(page);

789
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
790 791 792 793 794 795
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
796
		is_unevictable = false;
797
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
798 799 800 801 802
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
803
		is_unevictable = true;
L
Lee Schermerhorn 已提交
804
		add_page_to_unevictable_list(page);
805
		/*
806 807 808
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
809
		 * isolation/check_move_unevictable_pages,
810
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 812
		 * the page back to the evictable list.
		 *
813
		 * The other side is TestClearPageMlocked() or shmem_lock().
814 815
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
816 817 818 819 820 821 822
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
823
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
824 825 826 827 828 829 830 831 832 833
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

834
	if (was_unevictable && !is_unevictable)
835
		count_vm_event(UNEVICTABLE_PGRESCUED);
836
	else if (!was_unevictable && is_unevictable)
837 838
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
839 840 841
	put_page(page);		/* drop ref from isolate */
}

842 843 844
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
845
	PAGEREF_KEEP,
846 847 848 849 850 851
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
852
	int referenced_ptes, referenced_page;
853 854
	unsigned long vm_flags;

855 856
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
857
	referenced_page = TestClearPageReferenced(page);
858 859 860 861 862 863 864 865

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

866
	if (referenced_ptes) {
867
		if (PageSwapBacked(page))
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

885
		if (referenced_page || referenced_ptes > 1)
886 887
			return PAGEREF_ACTIVATE;

888 889 890 891 892 893
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

894 895
		return PAGEREF_KEEP;
	}
896 897

	/* Reclaim if clean, defer dirty pages to writeback */
898
	if (referenced_page && !PageSwapBacked(page))
899 900 901
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
902 903
}

904 905 906 907
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
908 909
	struct address_space *mapping;

910 911 912 913
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
914 915
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
916 917 918 919 920 921 922 923
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
924 925 926 927 928 929 930 931

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 933
}

934 935 936 937 938 939
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
940 941 942
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
943 944
};

L
Linus Torvalds 已提交
945
/*
A
Andrew Morton 已提交
946
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
947
 */
A
Andrew Morton 已提交
948
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
949
				      struct pglist_data *pgdat,
950
				      struct scan_control *sc,
951
				      enum ttu_flags ttu_flags,
952
				      struct reclaim_stat *stat,
953
				      bool force_reclaim)
L
Linus Torvalds 已提交
954 955
{
	LIST_HEAD(ret_pages);
956
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
957
	int pgactivate = 0;
958 959 960 961 962 963
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
964 965
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
966 967 968 969 970 971 972

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
973
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
974
		bool dirty, writeback;
M
Minchan Kim 已提交
975
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
976 977 978 979 980 981

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
982
		if (!trylock_page(page))
L
Linus Torvalds 已提交
983 984
			goto keep;

985
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
986 987

		sc->nr_scanned++;
988

989
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
990
			goto activate_locked;
L
Lee Schermerhorn 已提交
991

992
		if (!sc->may_unmap && page_mapped(page))
993 994
			goto keep_locked;

L
Linus Torvalds 已提交
995
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
996 997
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
998 999
			sc->nr_scanned++;

1000 1001 1002
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1016 1017 1018 1019 1020 1021
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1022
		mapping = page_mapping(page);
1023
		if (((dirty || writeback) && mapping &&
1024
		     inode_write_congested(mapping->host)) ||
1025
		    (writeback && PageReclaim(page)))
1026 1027
			nr_congested++;

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1039 1040
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1041
		 *
1042
		 * 2) Global or new memcg reclaim encounters a page that is
1043 1044 1045
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1046
		 *    reclaim and continue scanning.
1047
		 *
1048 1049
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1050 1051 1052 1053 1054
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1055
		 * 3) Legacy memcg encounters a page that is already marked
1056 1057 1058 1059
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1060 1061 1062 1063 1064 1065 1066 1067 1068
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1069
		 */
1070
		if (PageWriteback(page)) {
1071 1072 1073
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1074
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1075
				nr_immediate++;
1076
				goto activate_locked;
1077 1078

			/* Case 2 above */
1079
			} else if (sane_reclaim(sc) ||
1080
			    !PageReclaim(page) || !may_enter_fs) {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1093
				nr_writeback++;
1094
				goto activate_locked;
1095 1096 1097

			/* Case 3 above */
			} else {
1098
				unlock_page(page);
1099
				wait_on_page_writeback(page);
1100 1101 1102
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1103
			}
1104
		}
L
Linus Torvalds 已提交
1105

1106 1107 1108
		if (!force_reclaim)
			references = page_check_references(page, sc);

1109 1110
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1111
			goto activate_locked;
1112
		case PAGEREF_KEEP:
1113
			nr_ref_keep++;
1114
			goto keep_locked;
1115 1116 1117 1118
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1119 1120 1121 1122

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1123
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1124
		 */
S
Shaohua Li 已提交
1125 1126
		if (PageAnon(page) && PageSwapBacked(page) &&
		    !PageSwapCache(page)) {
1127 1128
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1129
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1130
				goto activate_locked;
1131
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1132

1133 1134
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1135 1136 1137 1138
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1139
		}
L
Linus Torvalds 已提交
1140

1141 1142
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1143 1144 1145 1146
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1147
		if (page_mapped(page)) {
S
Shaohua Li 已提交
1148 1149
			switch (ret = try_to_unmap(page,
				ttu_flags | TTU_BATCH_FLUSH)) {
L
Linus Torvalds 已提交
1150
			case SWAP_FAIL:
1151
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1152 1153 1154 1155 1156 1157 1158
				goto activate_locked;
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1159
			/*
1160 1161 1162 1163 1164 1165 1166 1167
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1168
			 */
1169
			if (page_is_file_cache(page) &&
1170 1171
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1172 1173 1174 1175 1176 1177
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1178
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1179 1180
				SetPageReclaim(page);

1181
				goto activate_locked;
1182 1183
			}

1184
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1185
				goto keep_locked;
1186
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1187
				goto keep_locked;
1188
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1189 1190
				goto keep_locked;

1191 1192 1193 1194 1195 1196
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1197
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1198 1199 1200 1201 1202
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1203
				if (PageWriteback(page))
1204
					goto keep;
1205
				if (PageDirty(page))
L
Linus Torvalds 已提交
1206
					goto keep;
1207

L
Linus Torvalds 已提交
1208 1209 1210 1211
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1212
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1232
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1243
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1244 1245
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1262 1263
		}

S
Shaohua Li 已提交
1264 1265 1266 1267 1268 1269 1270 1271
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1272

S
Shaohua Li 已提交
1273 1274 1275
			count_vm_event(PGLAZYFREED);
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1276 1277 1278 1279 1280 1281 1282
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1283
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1284
free_it:
1285
		nr_reclaimed++;
1286 1287 1288 1289 1290 1291

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1292 1293 1294
		continue;

activate_locked:
1295
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1296 1297
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1298
			try_to_free_swap(page);
1299
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1300 1301 1302 1303
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
		}
L
Linus Torvalds 已提交
1304 1305 1306 1307
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1308
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1309
	}
1310

1311
	mem_cgroup_uncharge_list(&free_pages);
1312
	try_to_unmap_flush();
1313
	free_hot_cold_page_list(&free_pages, true);
1314

L
Linus Torvalds 已提交
1315
	list_splice(&ret_pages, page_list);
1316
	count_vm_events(PGACTIVATE, pgactivate);
1317

1318 1319 1320 1321 1322 1323
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1324 1325 1326
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1327
	}
1328
	return nr_reclaimed;
L
Linus Torvalds 已提交
1329 1330
}

1331 1332 1333 1334 1335 1336 1337 1338
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1339
	unsigned long ret;
1340 1341 1342 1343
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1344
		if (page_is_file_cache(page) && !PageDirty(page) &&
1345
		    !__PageMovable(page)) {
1346 1347 1348 1349 1350
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1351
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1352
			TTU_IGNORE_ACCESS, NULL, true);
1353
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1354
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1355 1356 1357
	return ret;
}

A
Andy Whitcroft 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1368
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1369 1370 1371 1372 1373 1374 1375
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1376 1377
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1378 1379
		return ret;

A
Andy Whitcroft 已提交
1380
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1381

1382 1383 1384 1385 1386 1387 1388 1389
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1390
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1408

1409 1410 1411
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1425 1426 1427 1428 1429 1430

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1431
			enum lru_list lru, unsigned long *nr_zone_taken)
1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1441
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1442
#endif
1443 1444
	}

1445 1446
}

L
Linus Torvalds 已提交
1447
/*
1448
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1458
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1459
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1460
 * @nr_scanned:	The number of pages that were scanned.
1461
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1462
 * @mode:	One of the LRU isolation modes
1463
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1464 1465 1466
 *
 * returns how many pages were moved onto *@dst.
 */
1467
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1468
		struct lruvec *lruvec, struct list_head *dst,
1469
		unsigned long *nr_scanned, struct scan_control *sc,
1470
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1471
{
H
Hugh Dickins 已提交
1472
	struct list_head *src = &lruvec->lists[lru];
1473
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1474
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1475
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1476
	unsigned long skipped = 0;
M
Mel Gorman 已提交
1477
	unsigned long scan, nr_pages;
1478
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1479

1480
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1481
					!list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1482 1483
		struct page *page;

L
Linus Torvalds 已提交
1484 1485 1486
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1487
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1488

1489 1490
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1491
			nr_skipped[page_zonenum(page)]++;
1492 1493 1494
			continue;
		}

1495
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1496
		case 0:
M
Mel Gorman 已提交
1497 1498 1499
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1500 1501 1502 1503 1504 1505 1506
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1507

A
Andy Whitcroft 已提交
1508 1509 1510
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1511 1512
	}

1513 1514 1515 1516 1517 1518 1519
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1520 1521 1522
	if (!list_empty(&pages_skipped)) {
		int zid;

1523
		list_splice(&pages_skipped, src);
1524 1525 1526 1527 1528
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1529
			skipped += nr_skipped[zid];
1530 1531
		}
	}
1532
	*nr_scanned = scan;
1533
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1534
				    scan, skipped, nr_taken, mode, lru);
1535
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1536 1537 1538
	return nr_taken;
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1550 1551 1552
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1568
	VM_BUG_ON_PAGE(!page_count(page), page);
1569
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1570

1571 1572
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1573
		struct lruvec *lruvec;
1574

1575
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1576
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1577
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1578
			int lru = page_lru(page);
1579
			get_page(page);
1580
			ClearPageLRU(page);
1581 1582
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1583
		}
1584
		spin_unlock_irq(zone_lru_lock(zone));
1585 1586 1587 1588
	}
	return ret;
}

1589
/*
F
Fengguang Wu 已提交
1590 1591 1592 1593 1594
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1595
 */
M
Mel Gorman 已提交
1596
static int too_many_isolated(struct pglist_data *pgdat, int file,
1597 1598 1599 1600 1601 1602 1603
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1604
	if (!sane_reclaim(sc))
1605 1606 1607
		return 0;

	if (file) {
M
Mel Gorman 已提交
1608 1609
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1610
	} else {
M
Mel Gorman 已提交
1611 1612
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1613 1614
	}

1615 1616 1617 1618 1619
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1620
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1621 1622
		inactive >>= 3;

1623 1624 1625
	return isolated > inactive;
}

1626
static noinline_for_stack void
H
Hugh Dickins 已提交
1627
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1628
{
1629
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1630
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1631
	LIST_HEAD(pages_to_free);
1632 1633 1634 1635 1636

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1637
		struct page *page = lru_to_page(page_list);
1638
		int lru;
1639

1640
		VM_BUG_ON_PAGE(PageLRU(page), page);
1641
		list_del(&page->lru);
1642
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1643
			spin_unlock_irq(&pgdat->lru_lock);
1644
			putback_lru_page(page);
M
Mel Gorman 已提交
1645
			spin_lock_irq(&pgdat->lru_lock);
1646 1647
			continue;
		}
1648

M
Mel Gorman 已提交
1649
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1650

1651
		SetPageLRU(page);
1652
		lru = page_lru(page);
1653 1654
		add_page_to_lru_list(page, lruvec, lru);

1655 1656
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1657 1658
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1659
		}
1660 1661 1662
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1663
			del_page_from_lru_list(page, lruvec, lru);
1664 1665

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1666
				spin_unlock_irq(&pgdat->lru_lock);
1667
				mem_cgroup_uncharge(page);
1668
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1669
				spin_lock_irq(&pgdat->lru_lock);
1670 1671
			} else
				list_add(&page->lru, &pages_to_free);
1672 1673 1674
		}
	}

1675 1676 1677 1678
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1679 1680
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1694
/*
1695
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1696
 * of reclaimed pages
L
Linus Torvalds 已提交
1697
 */
1698
static noinline_for_stack unsigned long
1699
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1700
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1701 1702
{
	LIST_HEAD(page_list);
1703
	unsigned long nr_scanned;
1704
	unsigned long nr_reclaimed = 0;
1705
	unsigned long nr_taken;
1706
	struct reclaim_stat stat = {};
1707
	isolate_mode_t isolate_mode = 0;
1708
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1709
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1710
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1711

M
Mel Gorman 已提交
1712
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1713
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1714 1715 1716 1717 1718 1719

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1720
	lru_add_drain();
1721 1722

	if (!sc->may_unmap)
1723
		isolate_mode |= ISOLATE_UNMAPPED;
1724

M
Mel Gorman 已提交
1725
	spin_lock_irq(&pgdat->lru_lock);
1726

1727 1728
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1729

M
Mel Gorman 已提交
1730
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1731
	reclaim_stat->recent_scanned[file] += nr_taken;
1732

1733
	if (global_reclaim(sc)) {
1734
		if (current_is_kswapd())
M
Mel Gorman 已提交
1735
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1736
		else
M
Mel Gorman 已提交
1737
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1738
	}
M
Mel Gorman 已提交
1739
	spin_unlock_irq(&pgdat->lru_lock);
1740

1741
	if (nr_taken == 0)
1742
		return 0;
A
Andy Whitcroft 已提交
1743

S
Shaohua Li 已提交
1744
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1745
				&stat, false);
1746

M
Mel Gorman 已提交
1747
	spin_lock_irq(&pgdat->lru_lock);
1748

Y
Ying Han 已提交
1749 1750
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1751
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1752
		else
M
Mel Gorman 已提交
1753
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1754
	}
N
Nick Piggin 已提交
1755

1756
	putback_inactive_pages(lruvec, &page_list);
1757

M
Mel Gorman 已提交
1758
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1759

M
Mel Gorman 已提交
1760
	spin_unlock_irq(&pgdat->lru_lock);
1761

1762
	mem_cgroup_uncharge_list(&page_list);
1763
	free_hot_cold_page_list(&page_list, true);
1764

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1775 1776 1777
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1778
	 */
1779
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1780
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1781

1782
	/*
1783 1784
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1785
	 */
1786
	if (sane_reclaim(sc)) {
1787 1788 1789 1790
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1791
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1792
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1793

1794 1795
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1796 1797 1798 1799 1800 1801 1802 1803 1804
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1805
		 */
1806 1807
		if (stat.nr_unqueued_dirty == nr_taken) {
			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1808
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1809
		}
1810 1811

		/*
1812 1813 1814
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1815 1816
		 * they are written so also forcibly stall.
		 */
1817
		if (stat.nr_immediate && current_may_throttle())
1818
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1819
	}
1820

1821 1822 1823 1824 1825
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1826 1827
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1828
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1829

M
Mel Gorman 已提交
1830 1831
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1832 1833 1834 1835
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1836
			sc->priority, file);
1837
	return nr_reclaimed;
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1847
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1848
 * the pages are mapped, the processing is slow (page_referenced()) so we
1849
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1850 1851 1852 1853
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1854
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1855
 * But we had to alter page->flags anyway.
1856 1857
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1858
 */
1859

1860
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1861
				     struct list_head *list,
1862
				     struct list_head *pages_to_free,
1863 1864
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1865
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1866
	struct page *page;
1867
	int nr_pages;
1868
	int nr_moved = 0;
1869 1870 1871

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1872
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1873

1874
		VM_BUG_ON_PAGE(PageLRU(page), page);
1875 1876
		SetPageLRU(page);

1877
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1878
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1879
		list_move(&page->lru, &lruvec->lists[lru]);
1880

1881 1882 1883
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1884
			del_page_from_lru_list(page, lruvec, lru);
1885 1886

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1887
				spin_unlock_irq(&pgdat->lru_lock);
1888
				mem_cgroup_uncharge(page);
1889
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1890
				spin_lock_irq(&pgdat->lru_lock);
1891 1892
			} else
				list_add(&page->lru, pages_to_free);
1893 1894
		} else {
			nr_moved += nr_pages;
1895 1896
		}
	}
1897

1898
	if (!is_active_lru(lru))
1899
		__count_vm_events(PGDEACTIVATE, nr_moved);
1900 1901

	return nr_moved;
1902
}
1903

H
Hugh Dickins 已提交
1904
static void shrink_active_list(unsigned long nr_to_scan,
1905
			       struct lruvec *lruvec,
1906
			       struct scan_control *sc,
1907
			       enum lru_list lru)
L
Linus Torvalds 已提交
1908
{
1909
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1910
	unsigned long nr_scanned;
1911
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1912
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1913
	LIST_HEAD(l_active);
1914
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1915
	struct page *page;
1916
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1917 1918
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1919
	isolate_mode_t isolate_mode = 0;
1920
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1921
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1922 1923

	lru_add_drain();
1924 1925

	if (!sc->may_unmap)
1926
		isolate_mode |= ISOLATE_UNMAPPED;
1927

M
Mel Gorman 已提交
1928
	spin_lock_irq(&pgdat->lru_lock);
1929

1930 1931
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1932

M
Mel Gorman 已提交
1933
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1934
	reclaim_stat->recent_scanned[file] += nr_taken;
1935

M
Mel Gorman 已提交
1936
	__count_vm_events(PGREFILL, nr_scanned);
1937

M
Mel Gorman 已提交
1938
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1939 1940 1941 1942 1943

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1944

1945
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1946 1947 1948 1949
			putback_lru_page(page);
			continue;
		}

1950 1951 1952 1953 1954 1955 1956 1957
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1958 1959
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1960
			nr_rotated += hpage_nr_pages(page);
1961 1962 1963 1964 1965 1966 1967 1968 1969
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1970
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1971 1972 1973 1974
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1975

1976
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1977 1978 1979
		list_add(&page->lru, &l_inactive);
	}

1980
	/*
1981
	 * Move pages back to the lru list.
1982
	 */
M
Mel Gorman 已提交
1983
	spin_lock_irq(&pgdat->lru_lock);
1984
	/*
1985 1986 1987
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1988
	 * get_scan_count.
1989
	 */
1990
	reclaim_stat->recent_rotated[file] += nr_rotated;
1991

1992 1993
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
1994 1995
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
1996

1997
	mem_cgroup_uncharge_list(&l_hold);
1998
	free_hot_cold_page_list(&l_hold, true);
1999 2000
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2001 2002
}

2003 2004 2005
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2006
 *
2007 2008 2009
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2010
 *
2011 2012
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2013
 *
2014 2015 2016
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2017
 *
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2028
 */
2029
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2030
						struct scan_control *sc, bool trace)
2031
{
2032
	unsigned long inactive_ratio;
2033 2034 2035
	unsigned long inactive, active;
	enum lru_list inactive_lru = file * LRU_FILE;
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2036
	unsigned long gb;
2037

2038 2039 2040 2041 2042 2043
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2044

2045 2046
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2047

2048 2049 2050
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2051
	else
2052 2053
		inactive_ratio = 1;

2054
	if (trace)
2055
		trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2056
				sc->reclaim_idx,
2057 2058 2059 2060
				lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
				lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
				inactive_ratio, file);

2061
	return inactive * inactive_ratio < active;
2062 2063
}

2064
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2065
				 struct lruvec *lruvec, struct scan_control *sc)
2066
{
2067
	if (is_active_lru(lru)) {
2068
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2069
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2070 2071 2072
		return 0;
	}

2073
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2074 2075
}

2076 2077 2078 2079 2080 2081 2082
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2083 2084 2085 2086 2087 2088
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2089 2090
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2091
 */
2092
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2093 2094
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2095
{
2096
	int swappiness = mem_cgroup_swappiness(memcg);
2097 2098 2099
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2100
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2101
	unsigned long anon_prio, file_prio;
2102
	enum scan_balance scan_balance;
2103
	unsigned long anon, file;
2104
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2105
	enum lru_list lru;
2106 2107

	/* If we have no swap space, do not bother scanning anon pages. */
2108
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2109
		scan_balance = SCAN_FILE;
2110 2111
		goto out;
	}
2112

2113 2114 2115 2116 2117 2118 2119
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2120
	if (!global_reclaim(sc) && !swappiness) {
2121
		scan_balance = SCAN_FILE;
2122 2123 2124 2125 2126 2127 2128 2129
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2130
	if (!sc->priority && swappiness) {
2131
		scan_balance = SCAN_EQUAL;
2132 2133 2134
		goto out;
	}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2145 2146 2147 2148
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2149

M
Mel Gorman 已提交
2150 2151 2152 2153 2154 2155
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2156
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2157 2158 2159 2160
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2161

M
Mel Gorman 已提交
2162
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2163 2164 2165 2166 2167
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2168
	/*
2169 2170 2171 2172 2173 2174 2175
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2176
	 */
2177
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2178
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2179
		scan_balance = SCAN_FILE;
2180 2181 2182
		goto out;
	}

2183 2184
	scan_balance = SCAN_FRACT;

2185 2186 2187 2188
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2189
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2190
	file_prio = 200 - anon_prio;
2191

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2203

2204 2205 2206 2207
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2208

M
Mel Gorman 已提交
2209
	spin_lock_irq(&pgdat->lru_lock);
2210 2211 2212
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2213 2214
	}

2215 2216 2217
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2218 2219 2220
	}

	/*
2221 2222 2223
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2224
	 */
2225
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2226
	ap /= reclaim_stat->recent_rotated[0] + 1;
2227

2228
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2229
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2230
	spin_unlock_irq(&pgdat->lru_lock);
2231

2232 2233 2234 2235
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2236 2237 2238 2239 2240
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2241

2242 2243 2244 2245 2246 2247 2248 2249
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2250

2251 2252 2253 2254 2255
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2256
			/*
2257 2258
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2259
			 */
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2274
		}
2275 2276 2277

		*lru_pages += size;
		nr[lru] = scan;
2278
	}
2279
}
2280

2281
/*
2282
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2283
 */
2284
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2285
			      struct scan_control *sc, unsigned long *lru_pages)
2286
{
2287
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2288
	unsigned long nr[NR_LRU_LISTS];
2289
	unsigned long targets[NR_LRU_LISTS];
2290 2291 2292 2293 2294
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2295
	bool scan_adjusted;
2296

2297
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2298

2299 2300 2301
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2316 2317 2318
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2319 2320 2321
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2322 2323 2324 2325 2326 2327 2328 2329 2330
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2331

2332 2333
		cond_resched();

2334 2335 2336 2337 2338
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2339
		 * requested. Ensure that the anon and file LRUs are scanned
2340 2341 2342 2343 2344 2345 2346
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2347 2348 2349 2350 2351 2352 2353 2354 2355
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2387 2388 2389 2390 2391 2392 2393 2394
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2395
	if (inactive_list_is_low(lruvec, false, sc, true))
2396 2397 2398 2399
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2400
/* Use reclaim/compaction for costly allocs or under memory pressure */
2401
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2402
{
2403
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2404
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2405
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2406 2407 2408 2409 2410
		return true;

	return false;
}

2411
/*
M
Mel Gorman 已提交
2412 2413 2414 2415 2416
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2417
 */
2418
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2419 2420 2421 2422 2423 2424
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2425
	int z;
2426 2427

	/* If not in reclaim/compaction mode, stop */
2428
	if (!in_reclaim_compaction(sc))
2429 2430
		return false;

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2453 2454 2455 2456 2457

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2458
	pages_for_compaction = compact_gap(sc->order);
2459
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2460
	if (get_nr_swap_pages() > 0)
2461
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2462 2463 2464 2465 2466
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2467 2468
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2469
		if (!managed_zone(zone))
2470 2471 2472
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2473
		case COMPACT_SUCCESS:
2474 2475 2476 2477 2478 2479
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2480
	}
2481
	return true;
2482 2483
}

2484
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2485
{
2486
	struct reclaim_state *reclaim_state = current->reclaim_state;
2487
	unsigned long nr_reclaimed, nr_scanned;
2488
	bool reclaimable = false;
L
Linus Torvalds 已提交
2489

2490 2491 2492
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2493
			.pgdat = pgdat,
2494 2495
			.priority = sc->priority,
		};
2496
		unsigned long node_lru_pages = 0;
2497
		struct mem_cgroup *memcg;
2498

2499 2500
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2501

2502 2503
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2504
			unsigned long lru_pages;
2505
			unsigned long reclaimed;
2506
			unsigned long scanned;
2507

2508
			if (mem_cgroup_low(root, memcg)) {
2509 2510
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2511
					continue;
2512
				}
2513 2514 2515
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2516
			reclaimed = sc->nr_reclaimed;
2517
			scanned = sc->nr_scanned;
2518

2519 2520
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2521

2522
			if (memcg)
2523
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2524 2525 2526
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2527 2528 2529 2530 2531
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2532
			/*
2533 2534
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2535
			 * node.
2536 2537 2538 2539 2540
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2541
			 */
2542 2543
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2544 2545 2546
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2547
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2548

2549 2550 2551 2552
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2553
		if (global_reclaim(sc))
2554
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2555
				    sc->nr_scanned - nr_scanned,
2556
				    node_lru_pages);
2557 2558 2559 2560

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2561 2562
		}

2563 2564
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2565 2566 2567
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2568 2569 2570
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2571
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2572
					 sc->nr_scanned - nr_scanned, sc));
2573

2574 2575 2576 2577 2578 2579 2580 2581 2582
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2583
	return reclaimable;
2584 2585
}

2586
/*
2587 2588 2589
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2590
 */
2591
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2592
{
M
Mel Gorman 已提交
2593
	unsigned long watermark;
2594
	enum compact_result suitable;
2595

2596 2597 2598 2599 2600 2601 2602
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2603

2604
	/*
2605 2606 2607 2608 2609 2610 2611
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2612
	 */
2613
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2614

2615
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2616 2617
}

L
Linus Torvalds 已提交
2618 2619 2620 2621 2622 2623 2624 2625
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2626
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2627
{
2628
	struct zoneref *z;
2629
	struct zone *zone;
2630 2631
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2632
	gfp_t orig_mask;
2633
	pg_data_t *last_pgdat = NULL;
2634

2635 2636 2637 2638 2639
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2640
	orig_mask = sc->gfp_mask;
2641
	if (buffer_heads_over_limit) {
2642
		sc->gfp_mask |= __GFP_HIGHMEM;
2643
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2644
	}
2645

2646
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2647
					sc->reclaim_idx, sc->nodemask) {
2648 2649 2650 2651
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2652
		if (global_reclaim(sc)) {
2653 2654
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2655
				continue;
2656

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2668
			    compaction_ready(zone, sc)) {
2669 2670
				sc->compaction_ready = true;
				continue;
2671
			}
2672

2673 2674 2675 2676 2677 2678 2679 2680 2681
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2682 2683 2684 2685 2686 2687 2688
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2689
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2690 2691 2692 2693
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2694
			/* need some check for avoid more shrink_zone() */
2695
		}
2696

2697 2698 2699 2700
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2701
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2702
	}
2703

2704 2705 2706 2707 2708
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2709
}
2710

L
Linus Torvalds 已提交
2711 2712 2713 2714 2715 2716 2717 2718
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2719 2720 2721 2722
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2723 2724 2725
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2726
 */
2727
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2728
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2729
{
2730 2731
	int initial_priority = sc->priority;
retry:
2732 2733
	delayacct_freepages_start();

2734
	if (global_reclaim(sc))
2735
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2736

2737
	do {
2738 2739
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2740
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2741
		shrink_zones(zonelist, sc);
2742

2743
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2744 2745 2746 2747
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2748

2749 2750 2751 2752 2753 2754
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2755
	} while (--sc->priority >= 0);
2756

2757 2758
	delayacct_freepages_end();

2759 2760 2761
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2762
	/* Aborted reclaim to try compaction? don't OOM, then */
2763
	if (sc->compaction_ready)
2764 2765
		return 1;

2766
	/* Untapped cgroup reserves?  Don't OOM, retry. */
2767
	if (sc->memcg_low_skipped) {
2768
		sc->priority = initial_priority;
2769 2770
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
2771 2772 2773
		goto retry;
	}

2774
	return 0;
L
Linus Torvalds 已提交
2775 2776
}

2777
static bool allow_direct_reclaim(pg_data_t *pgdat)
2778 2779 2780 2781 2782 2783 2784
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2785 2786 2787
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2788 2789
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2790 2791 2792 2793
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2794 2795
			continue;

2796 2797 2798 2799
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2800 2801 2802 2803
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2804 2805 2806 2807
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2808
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2820 2821 2822 2823
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2824
 */
2825
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2826 2827
					nodemask_t *nodemask)
{
2828
	struct zoneref *z;
2829
	struct zone *zone;
2830
	pg_data_t *pgdat = NULL;
2831 2832 2833 2834 2835 2836 2837 2838 2839

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2840 2841 2842 2843 2844 2845 2846 2847
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2848

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2864
					gfp_zone(gfp_mask), nodemask) {
2865 2866 2867 2868 2869
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
2870
		if (allow_direct_reclaim(pgdat))
2871 2872 2873 2874 2875 2876
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2877
		goto out;
2878

2879 2880 2881
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2892
			allow_direct_reclaim(pgdat), HZ);
2893 2894

		goto check_pending;
2895 2896 2897 2898
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2899
		allow_direct_reclaim(pgdat));
2900 2901 2902 2903 2904 2905 2906

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2907 2908
}

2909
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2910
				gfp_t gfp_mask, nodemask_t *nodemask)
2911
{
2912
	unsigned long nr_reclaimed;
2913
	struct scan_control sc = {
2914
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2915
		.gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
2916
		.reclaim_idx = gfp_zone(gfp_mask),
2917 2918 2919
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2920
		.may_writepage = !laptop_mode,
2921
		.may_unmap = 1,
2922
		.may_swap = 1,
2923 2924
	};

2925
	/*
2926 2927 2928
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2929
	 */
2930
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2931 2932
		return 1;

2933 2934
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2935 2936
				gfp_mask,
				sc.reclaim_idx);
2937

2938
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2939 2940 2941 2942

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2943 2944
}

A
Andrew Morton 已提交
2945
#ifdef CONFIG_MEMCG
2946

2947
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2948
						gfp_t gfp_mask, bool noswap,
2949
						pg_data_t *pgdat,
2950
						unsigned long *nr_scanned)
2951 2952
{
	struct scan_control sc = {
2953
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2954
		.target_mem_cgroup = memcg,
2955 2956
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2957
		.reclaim_idx = MAX_NR_ZONES - 1,
2958 2959
		.may_swap = !noswap,
	};
2960
	unsigned long lru_pages;
2961

2962 2963
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2964

2965
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2966
						      sc.may_writepage,
2967 2968
						      sc.gfp_mask,
						      sc.reclaim_idx);
2969

2970 2971 2972
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
2973
	 * if we don't reclaim here, the shrink_node from balance_pgdat
2974 2975 2976
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2977
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2978 2979 2980

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2981
	*nr_scanned = sc.nr_scanned;
2982 2983 2984
	return sc.nr_reclaimed;
}

2985
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2986
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2987
					   gfp_t gfp_mask,
2988
					   bool may_swap)
2989
{
2990
	struct zonelist *zonelist;
2991
	unsigned long nr_reclaimed;
2992
	int nid;
2993
	struct scan_control sc = {
2994
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2995
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
2996
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2997
		.reclaim_idx = MAX_NR_ZONES - 1,
2998 2999 3000 3001
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3002
		.may_swap = may_swap,
3003
	};
3004

3005 3006 3007 3008 3009
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3010
	nid = mem_cgroup_select_victim_node(memcg);
3011

3012
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3013 3014 3015

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3016 3017
					    sc.gfp_mask,
					    sc.reclaim_idx);
3018

3019
	current->flags |= PF_MEMALLOC;
3020
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3021
	current->flags &= ~PF_MEMALLOC;
3022 3023 3024 3025

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3026 3027 3028
}
#endif

3029
static void age_active_anon(struct pglist_data *pgdat,
3030
				struct scan_control *sc)
3031
{
3032
	struct mem_cgroup *memcg;
3033

3034 3035 3036 3037 3038
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3039
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3040

3041
		if (inactive_list_is_low(lruvec, false, sc, true))
3042
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3043
					   sc, LRU_ACTIVE_ANON);
3044 3045 3046

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3047 3048
}

3049 3050 3051 3052 3053
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3054
{
3055 3056 3057
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3058

3059 3060
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3061

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3079 3080
}

3081 3082 3083 3084 3085 3086 3087 3088
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3089 3090 3091 3092 3093 3094
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3095
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3096
{
3097
	/*
3098
	 * The throttled processes are normally woken up in balance_pgdat() as
3099
	 * soon as allow_direct_reclaim() is true. But there is a potential
3100 3101 3102 3103 3104 3105 3106 3107 3108
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3109
	 */
3110 3111
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3112

3113 3114 3115 3116
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3117 3118 3119
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3120 3121
	}

3122
	return false;
3123 3124
}

3125
/*
3126 3127
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3128 3129
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3130 3131
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3132
 */
3133
static bool kswapd_shrink_node(pg_data_t *pgdat,
3134
			       struct scan_control *sc)
3135
{
3136 3137
	struct zone *zone;
	int z;
3138

3139 3140
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3141
	for (z = 0; z <= sc->reclaim_idx; z++) {
3142
		zone = pgdat->node_zones + z;
3143
		if (!managed_zone(zone))
3144
			continue;
3145

3146 3147
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3148 3149

	/*
3150 3151
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3152
	 */
3153
	shrink_node(pgdat, sc);
3154

3155
	/*
3156 3157 3158 3159 3160
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3161
	 */
3162
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3163
		sc->order = 0;
3164

3165
	return sc->nr_scanned >= sc->nr_to_reclaim;
3166 3167
}

L
Linus Torvalds 已提交
3168
/*
3169 3170 3171
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3172
 *
3173
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3174 3175
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3176
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3177 3178 3179
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3180
 */
3181
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3182 3183
{
	int i;
3184 3185
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3186
	struct zone *zone;
3187 3188
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3189
		.order = order,
3190
		.priority = DEF_PRIORITY,
3191
		.may_writepage = !laptop_mode,
3192
		.may_unmap = 1,
3193
		.may_swap = 1,
3194
	};
3195
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3196

3197
	do {
3198
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3199 3200
		bool raise_priority = true;

3201
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3202

3203
		/*
3204 3205 3206 3207 3208 3209 3210 3211
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3212 3213 3214 3215
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3216
				if (!managed_zone(zone))
3217
					continue;
3218

3219
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3220
				break;
L
Linus Torvalds 已提交
3221 3222
			}
		}
3223

3224
		/*
3225 3226 3227
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3228
		 */
3229 3230
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3231

3232 3233 3234 3235 3236 3237
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3238
		age_active_anon(pgdat, &sc);
3239

3240 3241 3242 3243
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3244
		if (sc.priority < DEF_PRIORITY - 2)
3245 3246
			sc.may_writepage = 1;

3247 3248 3249
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3250
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3251 3252 3253
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3254
		/*
3255 3256 3257
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3258
		 */
3259
		if (kswapd_shrink_node(pgdat, &sc))
3260
			raise_priority = false;
3261 3262 3263 3264 3265 3266 3267

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3268
				allow_direct_reclaim(pgdat))
3269
			wake_up_all(&pgdat->pfmemalloc_wait);
3270

3271 3272 3273
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3274

3275
		/*
3276 3277
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3278
		 */
3279 3280
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3281
			sc.priority--;
3282
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3283

3284 3285 3286
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3287
out:
3288
	/*
3289 3290 3291 3292
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3293
	 */
3294
	return sc.order;
L
Linus Torvalds 已提交
3295 3296
}

3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3313 3314
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3315 3316 3317 3318 3319 3320 3321 3322 3323
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3324 3325 3326 3327 3328 3329 3330
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3331
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3344
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3345

3346
		remaining = schedule_timeout(HZ/10);
3347 3348 3349 3350 3351 3352 3353

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3354
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3355 3356 3357
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3358 3359 3360 3361 3362 3363 3364 3365
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3366 3367
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3379 3380 3381 3382

		if (!kthread_should_stop())
			schedule();

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3393 3394
/*
 * The background pageout daemon, started as a kernel thread
3395
 * from the init process.
L
Linus Torvalds 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3408 3409
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3410 3411
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3412

L
Linus Torvalds 已提交
3413 3414 3415
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3416
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3417

3418 3419
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3420
	if (!cpumask_empty(cpumask))
3421
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3436
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3437
	set_freezable();
L
Linus Torvalds 已提交
3438

3439 3440
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3441
	for ( ; ; ) {
3442
		bool ret;
3443

3444 3445 3446
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3447 3448 3449
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3450

3451 3452
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3453
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3454
		pgdat->kswapd_order = 0;
3455
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3456

3457 3458 3459 3460 3461 3462 3463 3464
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3476 3477
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3478 3479 3480
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3481
	}
3482

3483
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3484
	current->reclaim_state = NULL;
3485 3486
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3487 3488 3489 3490 3491 3492
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3493
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3494 3495 3496
{
	pg_data_t *pgdat;

3497
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3498 3499
		return;

3500
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3501
		return;
3502
	pgdat = zone->zone_pgdat;
3503 3504
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3505
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3506
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3507
		return;
3508

3509 3510 3511 3512
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return;

3513 3514
	if (pgdat_balanced(pgdat, order, classzone_idx))
		return;
3515

3516
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3517
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3518 3519
}

3520
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3521
/*
3522
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3523 3524 3525 3526 3527
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3528
 */
3529
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3530
{
3531 3532
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3533
		.nr_to_reclaim = nr_to_reclaim,
3534
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3535
		.reclaim_idx = MAX_NR_ZONES - 1,
3536
		.priority = DEF_PRIORITY,
3537
		.may_writepage = 1,
3538 3539
		.may_unmap = 1,
		.may_swap = 1,
3540
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3541
	};
3542
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3543 3544
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3545

3546 3547 3548 3549
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3550

3551
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3552

3553 3554 3555
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3556

3557
	return nr_reclaimed;
L
Linus Torvalds 已提交
3558
}
3559
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3565
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3566
{
3567
	int nid;
L
Linus Torvalds 已提交
3568

3569 3570 3571
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3572

3573
		mask = cpumask_of_node(pgdat->node_id);
3574

3575 3576 3577
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3578
	}
3579
	return 0;
L
Linus Torvalds 已提交
3580 3581
}

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3598 3599
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3600
		pgdat->kswapd = NULL;
3601 3602 3603 3604
	}
	return ret;
}

3605
/*
3606
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3607
 * hold mem_hotplug_begin/end().
3608 3609 3610 3611 3612
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3613
	if (kswapd) {
3614
		kthread_stop(kswapd);
3615 3616
		NODE_DATA(nid)->kswapd = NULL;
	}
3617 3618
}

L
Linus Torvalds 已提交
3619 3620
static int __init kswapd_init(void)
{
3621
	int nid, ret;
3622

L
Linus Torvalds 已提交
3623
	swap_setup();
3624
	for_each_node_state(nid, N_MEMORY)
3625
 		kswapd_run(nid);
3626 3627 3628 3629
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3630 3631 3632 3633
	return 0;
}

module_init(kswapd_init)
3634 3635 3636

#ifdef CONFIG_NUMA
/*
3637
 * Node reclaim mode
3638
 *
3639
 * If non-zero call node_reclaim when the number of free pages falls below
3640 3641
 * the watermarks.
 */
3642
int node_reclaim_mode __read_mostly;
3643

3644
#define RECLAIM_OFF 0
3645
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3646
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3647
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3648

3649
/*
3650
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3651 3652 3653
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3654
#define NODE_RECLAIM_PRIORITY 4
3655

3656
/*
3657
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3658 3659 3660 3661
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3662 3663 3664 3665 3666 3667
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3668
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3669
{
3670 3671 3672
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3683
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3684
{
3685 3686
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3687 3688

	/*
3689
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3690
	 * potentially reclaimable. Otherwise, we have to worry about
3691
	 * pages like swapcache and node_unmapped_file_pages() provides
3692 3693
	 * a better estimate
	 */
3694 3695
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3696
	else
3697
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3698 3699

	/* If we can't clean pages, remove dirty pages from consideration */
3700 3701
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3702 3703 3704 3705 3706 3707 3708 3709

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3710
/*
3711
 * Try to free up some pages from this node through reclaim.
3712
 */
3713
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3714
{
3715
	/* Minimum pages needed in order to stay on node */
3716
	const unsigned long nr_pages = 1 << order;
3717 3718
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3719
	int classzone_idx = gfp_zone(gfp_mask);
3720
	struct scan_control sc = {
3721
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3722
		.gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
3723
		.order = order,
3724 3725 3726
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3727
		.may_swap = 1,
3728
		.reclaim_idx = classzone_idx,
3729
	};
3730 3731

	cond_resched();
3732
	/*
3733
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3734
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3735
	 * and RECLAIM_UNMAP.
3736 3737
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3738
	lockdep_set_current_reclaim_state(gfp_mask);
3739 3740
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3741

3742
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3743 3744 3745 3746 3747
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3748
			shrink_node(pgdat, &sc);
3749
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3750
	}
3751

3752
	p->reclaim_state = NULL;
3753
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3754
	lockdep_clear_current_reclaim_state();
3755
	return sc.nr_reclaimed >= nr_pages;
3756
}
3757

3758
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3759
{
3760
	int ret;
3761 3762

	/*
3763
	 * Node reclaim reclaims unmapped file backed pages and
3764
	 * slab pages if we are over the defined limits.
3765
	 *
3766 3767
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3768 3769
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3770
	 * unmapped file backed pages.
3771
	 */
3772 3773 3774
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3775 3776

	/*
3777
	 * Do not scan if the allocation should not be delayed.
3778
	 */
3779
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3780
		return NODE_RECLAIM_NOSCAN;
3781 3782

	/*
3783
	 * Only run node reclaim on the local node or on nodes that do not
3784 3785 3786 3787
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3788 3789
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3790

3791 3792
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3793

3794 3795
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3796

3797 3798 3799
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3800
	return ret;
3801
}
3802
#endif
L
Lee Schermerhorn 已提交
3803 3804 3805 3806 3807 3808

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3809
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3810 3811
 *
 * Reasons page might not be evictable:
3812
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3813
 * (2) page is part of an mlocked VMA
3814
 *
L
Lee Schermerhorn 已提交
3815
 */
3816
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3817
{
3818
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3819
}
3820

3821
#ifdef CONFIG_SHMEM
3822
/**
3823 3824 3825
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3826
 *
3827
 * Checks pages for evictability and moves them to the appropriate lru list.
3828 3829
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3830
 */
3831
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3832
{
3833
	struct lruvec *lruvec;
3834
	struct pglist_data *pgdat = NULL;
3835 3836 3837
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3838

3839 3840
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3841
		struct pglist_data *pagepgdat = page_pgdat(page);
3842

3843
		pgscanned++;
3844 3845 3846 3847 3848
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3849
		}
3850
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3851

3852 3853
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3854

3855
		if (page_evictable(page)) {
3856 3857
			enum lru_list lru = page_lru_base_type(page);

3858
			VM_BUG_ON_PAGE(PageActive(page), page);
3859
			ClearPageUnevictable(page);
3860 3861
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3862
			pgrescued++;
3863
		}
3864
	}
3865

3866
	if (pgdat) {
3867 3868
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3869
		spin_unlock_irq(&pgdat->lru_lock);
3870 3871
	}
}
3872
#endif /* CONFIG_SHMEM */