intel_device_info.c 33.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <drm/drm_print.h>
26
#include <drm/i915_pciids.h>
27

28
#include "display/intel_cdclk.h"
29
#include "display/intel_de.h"
30
#include "intel_device_info.h"
31 32
#include "i915_drv.h"

33 34 35 36 37 38 39 40 41 42 43 44
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
	PLATFORM_NAME(I830),
	PLATFORM_NAME(I845G),
	PLATFORM_NAME(I85X),
	PLATFORM_NAME(I865G),
	PLATFORM_NAME(I915G),
	PLATFORM_NAME(I915GM),
	PLATFORM_NAME(I945G),
	PLATFORM_NAME(I945GM),
	PLATFORM_NAME(G33),
	PLATFORM_NAME(PINEVIEW),
45 46
	PLATFORM_NAME(I965G),
	PLATFORM_NAME(I965GM),
47 48
	PLATFORM_NAME(G45),
	PLATFORM_NAME(GM45),
49 50 51 52 53 54 55 56 57 58 59
	PLATFORM_NAME(IRONLAKE),
	PLATFORM_NAME(SANDYBRIDGE),
	PLATFORM_NAME(IVYBRIDGE),
	PLATFORM_NAME(VALLEYVIEW),
	PLATFORM_NAME(HASWELL),
	PLATFORM_NAME(BROADWELL),
	PLATFORM_NAME(CHERRYVIEW),
	PLATFORM_NAME(SKYLAKE),
	PLATFORM_NAME(BROXTON),
	PLATFORM_NAME(KABYLAKE),
	PLATFORM_NAME(GEMINILAKE),
60
	PLATFORM_NAME(COFFEELAKE),
61
	PLATFORM_NAME(COMETLAKE),
62
	PLATFORM_NAME(CANNONLAKE),
63
	PLATFORM_NAME(ICELAKE),
64
	PLATFORM_NAME(ELKHARTLAKE),
65
	PLATFORM_NAME(TIGERLAKE),
66
	PLATFORM_NAME(ROCKETLAKE),
67 68 69 70 71
};
#undef PLATFORM_NAME

const char *intel_platform_name(enum intel_platform platform)
{
72 73
	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);

74 75 76 77 78 79 80
	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
			 platform_names[platform] == NULL))
		return "<unknown>";

	return platform_names[platform];
}

81
static const char *iommu_name(void)
82
{
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	const char *msg = "n/a";

#ifdef CONFIG_INTEL_IOMMU
	msg = enableddisabled(intel_iommu_gfx_mapped);
#endif

	return msg;
}

void intel_device_info_print_static(const struct intel_device_info *info,
				    struct drm_printer *p)
{
	drm_printf(p, "engines: %x\n", info->engine_mask);
	drm_printf(p, "gen: %d\n", info->gen);
	drm_printf(p, "gt: %d\n", info->gt);
	drm_printf(p, "iommu: %s\n", iommu_name());
	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
104
	drm_printf(p, "dma_mask_size: %u\n", info->dma_mask_size);
105

106 107 108
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
109 110 111 112

#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
113 114
}

115 116
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
117 118
	int s;

119 120
	drm_printf(p, "slice total: %u, mask=%04x\n",
		   hweight8(sseu->slice_mask), sseu->slice_mask);
121
	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
122
	for (s = 0; s < sseu->max_slices; s++) {
S
Stuart Summers 已提交
123
		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
124
			   s, intel_sseu_subslices_per_slice(sseu, s),
S
Stuart Summers 已提交
125
			   intel_sseu_get_subslices(sseu, s));
126
	}
127 128 129 130 131 132 133 134 135
	drm_printf(p, "EU total: %u\n", sseu->eu_total);
	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
	drm_printf(p, "has slice power gating: %s\n",
		   yesno(sseu->has_slice_pg));
	drm_printf(p, "has subslice power gating: %s\n",
		   yesno(sseu->has_subslice_pg));
	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}

136 137
void intel_device_info_print_runtime(const struct intel_runtime_info *info,
				     struct drm_printer *p)
138 139 140
{
	sseu_dump(&info->sseu, p);

141
	drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
142 143
	drm_printf(p, "CS timestamp frequency: %u Hz\n",
		   info->cs_timestamp_frequency_hz);
144 145
}

146 147 148
static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
		       int subslice)
{
149
	int slice_stride = sseu->max_subslices * sseu->eu_stride;
150

151
	return slice * slice_stride + subslice * sseu->eu_stride;
152 153 154 155 156 157 158 159
}

static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
			int subslice)
{
	int i, offset = sseu_eu_idx(sseu, slice, subslice);
	u16 eu_mask = 0;

160
	for (i = 0; i < sseu->eu_stride; i++) {
161 162 163 164 165 166 167 168 169 170 171 172
		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
			(i * BITS_PER_BYTE);
	}

	return eu_mask;
}

static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
			 u16 eu_mask)
{
	int i, offset = sseu_eu_idx(sseu, slice, subslice);

173
	for (i = 0; i < sseu->eu_stride; i++) {
174 175 176 177 178
		sseu->eu_mask[offset + i] =
			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
	}
}

179 180
void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
				      struct drm_printer *p)
181 182 183 184 185 186 187 188 189
{
	int s, ss;

	if (sseu->max_slices == 0) {
		drm_printf(p, "Unavailable\n");
		return;
	}

	for (s = 0; s < sseu->max_slices; s++) {
S
Stuart Summers 已提交
190
		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
191
			   s, intel_sseu_subslices_per_slice(sseu, s),
S
Stuart Summers 已提交
192
			   intel_sseu_get_subslices(sseu, s));
193 194 195 196 197 198 199 200 201 202

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u16 enabled_eus = sseu_get_eus(sseu, s, ss);

			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
				   ss, hweight16(enabled_eus), enabled_eus);
		}
	}
}

203 204 205 206 207 208 209 210 211 212
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
	u16 i, total = 0;

	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
		total += hweight8(sseu->eu_mask[i]);

	return total;
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
				    u8 s_en, u32 ss_en, u16 eu_en)
{
	int s, ss;

	/* ss_en represents entire subslice mask across all slices */
	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
		   sizeof(ss_en) * BITS_PER_BYTE);

	for (s = 0; s < sseu->max_slices; s++) {
		if ((s_en & BIT(s)) == 0)
			continue;

		sseu->slice_mask |= BIT(s);

		intel_sseu_set_subslices(sseu, s, ss_en);

		for (ss = 0; ss < sseu->max_subslices; ss++)
			if (intel_sseu_has_subslice(sseu, s, ss))
				sseu_set_eus(sseu, s, ss, eu_en);
	}
	sseu->eu_per_subslice = hweight16(eu_en);
	sseu->eu_total = compute_eu_total(sseu);
}

static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
241
	struct intel_uncore *uncore = &dev_priv->uncore;
242 243 244 245 246 247 248 249 250 251 252 253 254
	u8 s_en;
	u32 dss_en;
	u16 eu_en = 0;
	u8 eu_en_fuse;
	int eu;

	/*
	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
	 * Instead of splitting these, provide userspace with an array
	 * of DSS to more closely represent the hardware resource.
	 */
	intel_sseu_set_info(sseu, 1, 6, 16);

255 256
	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
	       GEN11_GT_S_ENA_MASK;
257

258
	dss_en = intel_uncore_read(uncore, GEN12_GT_DSS_ENABLE);
259 260

	/* one bit per pair of EUs */
261 262
	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
		       GEN11_EU_DIS_MASK);
263 264 265 266 267 268 269 270 271 272
	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
		if (eu_en_fuse & BIT(eu))
			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);

	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);

	/* TGL only supports slice-level power gating */
	sseu->has_slice_pg = 1;
}

273 274
static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
{
275
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
276
	struct intel_uncore *uncore = &dev_priv->uncore;
277
	u8 s_en;
278
	u32 ss_en;
279 280
	u8 eu_en;

281 282 283 284
	if (IS_ELKHARTLAKE(dev_priv))
		intel_sseu_set_info(sseu, 1, 4, 8);
	else
		intel_sseu_set_info(sseu, 1, 8, 8);
285

286 287 288 289 290 291
	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
	       GEN11_GT_S_ENA_MASK;
	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);

	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
		  GEN11_EU_DIS_MASK);
292

293
	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
294 295 296 297 298 299 300

	/* ICL has no power gating restrictions. */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

301 302
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
303
	struct intel_uncore *uncore = &dev_priv->uncore;
304
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
305
	const u32 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
306 307 308
	int s, ss;
	const int eu_mask = 0xff;
	u32 subslice_mask, eu_en;
309

310 311
	intel_sseu_set_info(sseu, 6, 4, 8);

312 313
	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
			    GEN10_F2_S_ENA_SHIFT;
314

315
	/* Slice0 */
316
	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE0);
317 318 319 320
	for (ss = 0; ss < sseu->max_subslices; ss++)
		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
	/* Slice1 */
	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
321
	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE1);
322 323 324 325 326 327
	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
	/* Slice2 */
	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
	/* Slice3 */
	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
328
	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE2);
329 330 331 332 333 334
	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
	/* Slice4 */
	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
	/* Slice5 */
	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
335
	eu_en = ~intel_uncore_read(uncore, GEN10_EU_DISABLE3);
336 337
	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);

338 339 340 341
	subslice_mask = (1 << 4) - 1;
	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
			   GEN10_F2_SS_DIS_SHIFT);

342
	for (s = 0; s < sseu->max_slices; s++) {
343 344
		u32 subslice_mask_with_eus = subslice_mask;

345 346
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			if (sseu_get_eus(sseu, s, ss) == 0)
347
				subslice_mask_with_eus &= ~BIT(ss);
348
		}
349 350 351 352 353

		/*
		 * Slice0 can have up to 3 subslices, but there are only 2 in
		 * slice1/2.
		 */
354 355 356
		intel_sseu_set_subslices(sseu, s, s == 0 ?
						  subslice_mask_with_eus :
						  subslice_mask_with_eus & 0x3);
357 358 359
	}

	sseu->eu_total = compute_eu_total(sseu);
360 361 362 363 364 365 366

	/*
	 * CNL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery.
	 */
367
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
368
				DIV_ROUND_UP(sseu->eu_total,
369 370
					     intel_sseu_subslice_total(sseu)) :
				0;
371 372 373 374 375 376 377

	/* No restrictions on Power Gating */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

378 379
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
380
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
381
	u32 fuse;
382
	u8 subslice_mask = 0;
383

384
	fuse = intel_uncore_read(&dev_priv->uncore, CHV_FUSE_GT);
385

386
	sseu->slice_mask = BIT(0);
387
	intel_sseu_set_info(sseu, 1, 2, 8);
388 389

	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
390 391 392 393 394 395
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);

396
		subslice_mask |= BIT(0);
397
		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
398 399 400
	}

	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
401 402 403 404 405 406
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);

407
		subslice_mask |= BIT(1);
408
		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
409 410
	}

411
	intel_sseu_set_subslices(sseu, 0, subslice_mask);
412

413 414
	sseu->eu_total = compute_eu_total(sseu);

415 416 417 418
	/*
	 * CHV expected to always have a uniform distribution of EU
	 * across subslices.
	*/
419 420 421
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
				sseu->eu_total /
					intel_sseu_subslice_total(sseu) :
422 423 424 425 426 427
				0;
	/*
	 * CHV supports subslice power gating on devices with more than
	 * one subslice, and supports EU power gating on devices with
	 * more than one EU pair per subslice.
	*/
428
	sseu->has_slice_pg = 0;
429
	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
430
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
431 432 433 434 435
}

static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
436
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
437
	struct intel_uncore *uncore = &dev_priv->uncore;
438
	int s, ss;
439 440
	u32 fuse2, eu_disable, subslice_mask;
	const u8 eu_mask = 0xff;
441

442
	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
443
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
444

445
	/* BXT has a single slice and at most 3 subslices. */
446 447
	intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
			    IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
448

449 450 451 452
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	*/
453 454 455
	subslice_mask = (1 << sseu->max_subslices) - 1;
	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
			   GEN9_F2_SS_DIS_SHIFT);
456 457 458 459 460

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	*/
461
	for (s = 0; s < sseu->max_slices; s++) {
462
		if (!(sseu->slice_mask & BIT(s)))
463 464 465
			/* skip disabled slice */
			continue;

466
		intel_sseu_set_subslices(sseu, s, subslice_mask);
467

468
		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
469
		for (ss = 0; ss < sseu->max_subslices; ss++) {
470
			int eu_per_ss;
471
			u8 eu_disabled_mask;
472

473
			if (!intel_sseu_has_subslice(sseu, s, ss))
474 475 476
				/* skip disabled subslice */
				continue;

477
			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
478 479 480 481 482

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			eu_per_ss = sseu->max_eus_per_subslice -
				hweight8(eu_disabled_mask);
483 484 485 486 487 488 489

			/*
			 * Record which subslice(s) has(have) 7 EUs. we
			 * can tune the hash used to spread work among
			 * subslices if they are unbalanced.
			 */
			if (eu_per_ss == 7)
490
				sseu->subslice_7eu[s] |= BIT(ss);
491 492 493
		}
	}

494 495
	sseu->eu_total = compute_eu_total(sseu);

496 497 498 499 500 501 502
	/*
	 * SKL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery. BXT is expected to be perfectly uniform in EU
	 * distribution.
	*/
503
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
504
				DIV_ROUND_UP(sseu->eu_total,
505 506
					     intel_sseu_subslice_total(sseu)) :
				0;
507
	/*
508
	 * SKL+ supports slice power gating on devices with more than
509
	 * one slice, and supports EU power gating on devices with
510
	 * more than one EU pair per subslice. BXT+ supports subslice
511 512 513 514
	 * power gating on devices with more than one subslice, and
	 * supports EU power gating on devices with more than one EU
	 * pair per subslice.
	*/
515
	sseu->has_slice_pg =
516
		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
517
	sseu->has_subslice_pg =
518
		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
519
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
520

521
	if (IS_GEN9_LP(dev_priv)) {
522 523
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
524

525
		sseu->min_eu_in_pool = 0;
526
		if (info->has_pooled_eu) {
527
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
528
				sseu->min_eu_in_pool = 3;
529
			else if (IS_SS_DISABLED(1))
530
				sseu->min_eu_in_pool = 6;
531
			else
532
				sseu->min_eu_in_pool = 9;
533 534 535 536 537
		}
#undef IS_SS_DISABLED
	}
}

538
static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
539
{
540
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
541
	struct intel_uncore *uncore = &dev_priv->uncore;
542
	int s, ss;
543
	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
544
	u32 eu_disable0, eu_disable1, eu_disable2;
545

546
	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
547
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
548
	intel_sseu_set_info(sseu, 3, 3, 8);
549

550 551 552 553
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
554 555 556
	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
			   GEN8_F2_SS_DIS_SHIFT);
557 558 559 560 561 562
	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
			((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
563
			 (32 - GEN8_EU_DIS0_S1_SHIFT));
564 565
	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
			((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
566 567 568 569 570 571
			 (32 - GEN8_EU_DIS1_S2_SHIFT));

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
572
	for (s = 0; s < sseu->max_slices; s++) {
573
		if (!(sseu->slice_mask & BIT(s)))
574 575 576
			/* skip disabled slice */
			continue;

577
		intel_sseu_set_subslices(sseu, s, subslice_mask);
578 579 580

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u8 eu_disabled_mask;
581 582
			u32 n_disabled;

583
			if (!intel_sseu_has_subslice(sseu, s, ss))
584 585 586
				/* skip disabled subslice */
				continue;

587
			eu_disabled_mask =
588
				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
589 590 591 592

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			n_disabled = hweight8(eu_disabled_mask);
593 594 595 596

			/*
			 * Record which subslices have 7 EUs.
			 */
597
			if (sseu->max_eus_per_subslice - n_disabled == 7)
598
				sseu->subslice_7eu[s] |= 1 << ss;
599 600 601
		}
	}

602 603
	sseu->eu_total = compute_eu_total(sseu);

604 605 606 607 608
	/*
	 * BDW is expected to always have a uniform distribution of EU across
	 * subslices with the exception that any one EU in any one subslice may
	 * be fused off for die recovery.
	 */
609
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
610
				DIV_ROUND_UP(sseu->eu_total,
611 612
					     intel_sseu_subslice_total(sseu)) :
				0;
613 614 615 616 617

	/*
	 * BDW supports slice power gating on devices with more than
	 * one slice.
	 */
618
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
619 620
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
621 622
}

623
static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
624
{
625
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
626
	u32 fuse1;
627
	u8 subslice_mask = 0;
628
	int s, ss;
629 630 631 632 633

	/*
	 * There isn't a register to tell us how many slices/subslices. We
	 * work off the PCI-ids here.
	 */
634
	switch (INTEL_INFO(dev_priv)->gt) {
635
	default:
636
		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
637 638 639
		/* fall through */
	case 1:
		sseu->slice_mask = BIT(0);
640
		subslice_mask = BIT(0);
641 642 643
		break;
	case 2:
		sseu->slice_mask = BIT(0);
644
		subslice_mask = BIT(0) | BIT(1);
645 646 647
		break;
	case 3:
		sseu->slice_mask = BIT(0) | BIT(1);
648
		subslice_mask = BIT(0) | BIT(1);
649 650 651
		break;
	}

652
	fuse1 = intel_uncore_read(&dev_priv->uncore, HSW_PAVP_FUSE1);
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
	default:
		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
			     HSW_F1_EU_DIS_SHIFT);
		/* fall through */
	case HSW_F1_EU_DIS_10EUS:
		sseu->eu_per_subslice = 10;
		break;
	case HSW_F1_EU_DIS_8EUS:
		sseu->eu_per_subslice = 8;
		break;
	case HSW_F1_EU_DIS_6EUS:
		sseu->eu_per_subslice = 6;
		break;
	}
668 669

	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
670
			    hweight8(subslice_mask),
671
			    sseu->eu_per_subslice);
672 673

	for (s = 0; s < sseu->max_slices; s++) {
674
		intel_sseu_set_subslices(sseu, s, subslice_mask);
675

676 677 678 679 680
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			sseu_set_eus(sseu, s, ss,
				     (1UL << sseu->eu_per_subslice) - 1);
		}
	}
681

682
	sseu->eu_total = compute_eu_total(sseu);
683 684 685 686 687 688 689

	/* No powergating for you. */
	sseu->has_slice_pg = 0;
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
}

L
Lionel Landwerlin 已提交
690
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
691
{
692 693
	u32 ts_override = intel_uncore_read(&dev_priv->uncore,
					    GEN9_TIMESTAMP_OVERRIDE);
L
Lionel Landwerlin 已提交
694
	u32 base_freq, frac_freq;
695 696 697

	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
698
	base_freq *= 1000000;
699 700 701 702

	frac_freq = ((ts_override &
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
703
	frac_freq = 1000000 / (frac_freq + 1);
704 705 706 707

	return base_freq + frac_freq;
}

708 709 710
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
711 712
	u32 f19_2_mhz = 19200000;
	u32 f24_mhz = 24000000;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	u32 crystal_clock = (rpm_config_reg &
			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
731 732 733 734
	u32 f19_2_mhz = 19200000;
	u32 f24_mhz = 24000000;
	u32 f25_mhz = 25000000;
	u32 f38_4_mhz = 38400000;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	u32 crystal_clock = (rpm_config_reg &
			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
		return f38_4_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
		return f25_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

L
Lionel Landwerlin 已提交
754
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
755
{
756
	struct intel_uncore *uncore = &dev_priv->uncore;
757 758 759
	u32 f12_5_mhz = 12500000;
	u32 f19_2_mhz = 19200000;
	u32 f24_mhz = 24000000;
760 761 762 763 764 765 766 767

	if (INTEL_GEN(dev_priv) <= 4) {
		/* PRMs say:
		 *
		 *     "The value in this register increments once every 16
		 *      hclks." (through the “Clocking Configuration”
		 *      (“CLKCFG”) MCHBAR register)
		 */
768
		return RUNTIME_INFO(dev_priv)->rawclk_freq * 1000 / 16;
769 770 771 772 773 774 775 776 777
	} else if (INTEL_GEN(dev_priv) <= 8) {
		/* PRMs say:
		 *
		 *     "The PCU TSC counts 10ns increments; this timestamp
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
		 *      rolling over every 1.5 hours).
		 */
		return f12_5_mhz;
	} else if (INTEL_GEN(dev_priv) <= 9) {
778
		u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
L
Lionel Landwerlin 已提交
779
		u32 freq = 0;
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;

			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
				      CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
795
	} else if (INTEL_GEN(dev_priv) <= 12) {
796
		u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
L
Lionel Landwerlin 已提交
797
		u32 freq = 0;
798 799 800 801 802 803 804 805 806

		/* First figure out the reference frequency. There are 2 ways
		 * we can compute the frequency, either through the
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
		 * tells us which one we should use.
		 */
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
807
			u32 rpm_config_reg = intel_uncore_read(uncore, RPM_CONFIG0);
808 809 810 811 812 813 814

			if (INTEL_GEN(dev_priv) <= 10)
				freq = gen10_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
			else
				freq = gen11_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
815

816 817 818 819 820 821 822 823
			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((rpm_config_reg &
				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
		}
824 825 826 827

		return freq;
	}

828
	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
829 830 831
	return 0;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
#undef INTEL_VGA_DEVICE
#define INTEL_VGA_DEVICE(id, info) (id)

static const u16 subplatform_ult_ids[] = {
	INTEL_HSW_ULT_GT1_IDS(0),
	INTEL_HSW_ULT_GT2_IDS(0),
	INTEL_HSW_ULT_GT3_IDS(0),
	INTEL_BDW_ULT_GT1_IDS(0),
	INTEL_BDW_ULT_GT2_IDS(0),
	INTEL_BDW_ULT_GT3_IDS(0),
	INTEL_BDW_ULT_RSVD_IDS(0),
	INTEL_SKL_ULT_GT1_IDS(0),
	INTEL_SKL_ULT_GT2_IDS(0),
	INTEL_SKL_ULT_GT3_IDS(0),
	INTEL_KBL_ULT_GT1_IDS(0),
	INTEL_KBL_ULT_GT2_IDS(0),
	INTEL_KBL_ULT_GT3_IDS(0),
	INTEL_CFL_U_GT2_IDS(0),
	INTEL_CFL_U_GT3_IDS(0),
	INTEL_WHL_U_GT1_IDS(0),
	INTEL_WHL_U_GT2_IDS(0),
853
	INTEL_WHL_U_GT3_IDS(0),
854 855
	INTEL_CML_U_GT1_IDS(0),
	INTEL_CML_U_GT2_IDS(0),
856 857 858 859 860 861 862 863 864 865 866 867
};

static const u16 subplatform_ulx_ids[] = {
	INTEL_HSW_ULX_GT1_IDS(0),
	INTEL_HSW_ULX_GT2_IDS(0),
	INTEL_BDW_ULX_GT1_IDS(0),
	INTEL_BDW_ULX_GT2_IDS(0),
	INTEL_BDW_ULX_GT3_IDS(0),
	INTEL_BDW_ULX_RSVD_IDS(0),
	INTEL_SKL_ULX_GT1_IDS(0),
	INTEL_SKL_ULX_GT2_IDS(0),
	INTEL_KBL_ULX_GT1_IDS(0),
868
	INTEL_KBL_ULX_GT2_IDS(0),
869
	INTEL_AML_KBL_GT2_IDS(0),
870
	INTEL_AML_CFL_GT2_IDS(0),
871 872 873 874
};

static const u16 subplatform_portf_ids[] = {
	INTEL_CNL_PORT_F_IDS(0),
875
	INTEL_ICL_PORT_F_IDS(0),
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
};

static bool find_devid(u16 id, const u16 *p, unsigned int num)
{
	for (; num; num--, p++) {
		if (*p == id)
			return true;
	}

	return false;
}

void intel_device_info_subplatform_init(struct drm_i915_private *i915)
{
	const struct intel_device_info *info = INTEL_INFO(i915);
	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
	u16 devid = INTEL_DEVID(i915);
895
	u32 mask = 0;
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

	/* Make sure IS_<platform> checks are working. */
	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);

	/* Find and mark subplatform bits based on the PCI device id. */
	if (find_devid(devid, subplatform_ult_ids,
		       ARRAY_SIZE(subplatform_ult_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_ULT);
	} else if (find_devid(devid, subplatform_ulx_ids,
			      ARRAY_SIZE(subplatform_ulx_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_ULX);
		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
			/* ULX machines are also considered ULT. */
			mask |= BIT(INTEL_SUBPLATFORM_ULT);
		}
	} else if (find_devid(devid, subplatform_portf_ids,
			      ARRAY_SIZE(subplatform_portf_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_PORTF);
	}

	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);

	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
}

921 922
/**
 * intel_device_info_runtime_init - initialize runtime info
923
 * @dev_priv: the i915 device
924
 *
925 926 927 928 929 930 931 932 933 934 935 936
 * Determine various intel_device_info fields at runtime.
 *
 * Use it when either:
 *   - it's judged too laborious to fill n static structures with the limit
 *     when a simple if statement does the job,
 *   - run-time checks (eg read fuse/strap registers) are needed.
 *
 * This function needs to be called:
 *   - after the MMIO has been setup as we are reading registers,
 *   - after the PCH has been detected,
 *   - before the first usage of the fields it can tweak.
 */
937
void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
938
{
939
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
940
	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
941 942
	enum pipe pipe;

943 944
	if (INTEL_GEN(dev_priv) >= 10) {
		for_each_pipe(dev_priv, pipe)
945
			runtime->num_scalers[pipe] = 2;
946
	} else if (IS_GEN(dev_priv, 9)) {
947 948 949
		runtime->num_scalers[PIPE_A] = 2;
		runtime->num_scalers[PIPE_B] = 2;
		runtime->num_scalers[PIPE_C] = 1;
950 951
	}

952
	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
953

954 955 956 957
	if (IS_ROCKETLAKE(dev_priv))
		for_each_pipe(dev_priv, pipe)
			runtime->num_sprites[pipe] = 4;
	else if (INTEL_GEN(dev_priv) >= 11)
958
		for_each_pipe(dev_priv, pipe)
959
			runtime->num_sprites[pipe] = 6;
960
	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
961
		for_each_pipe(dev_priv, pipe)
962
			runtime->num_sprites[pipe] = 3;
963
	else if (IS_BROXTON(dev_priv)) {
964 965 966 967 968 969 970 971 972
		/*
		 * Skylake and Broxton currently don't expose the topmost plane as its
		 * use is exclusive with the legacy cursor and we only want to expose
		 * one of those, not both. Until we can safely expose the topmost plane
		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
		 * we don't expose the topmost plane at all to prevent ABI breakage
		 * down the line.
		 */

973 974 975
		runtime->num_sprites[PIPE_A] = 2;
		runtime->num_sprites[PIPE_B] = 2;
		runtime->num_sprites[PIPE_C] = 1;
976
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
977
		for_each_pipe(dev_priv, pipe)
978
			runtime->num_sprites[pipe] = 2;
979
	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
980
		for_each_pipe(dev_priv, pipe)
981
			runtime->num_sprites[pipe] = 1;
982
	}
983

984 985
	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
	    HAS_PCH_SPLIT(dev_priv)) {
986 987
		u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
		u32 sfuse_strap = intel_de_read(dev_priv, SFUSE_STRAP);
988 989 990 991 992 993 994 995 996 997 998 999

		/*
		 * SFUSE_STRAP is supposed to have a bit signalling the display
		 * is fused off. Unfortunately it seems that, at least in
		 * certain cases, fused off display means that PCH display
		 * reads don't land anywhere. In that case, we read 0s.
		 *
		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
		 * should be set when taking over after the firmware.
		 */
		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
1000
		    (HAS_PCH_CPT(dev_priv) &&
1001
		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
1002 1003
			drm_info(&dev_priv->drm,
				 "Display fused off, disabling\n");
1004
			info->pipe_mask = 0;
1005
			info->cpu_transcoder_mask = 0;
1006
		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
1007
			drm_info(&dev_priv->drm, "PipeC fused off\n");
1008
			info->pipe_mask &= ~BIT(PIPE_C);
1009
			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
1010
		}
1011
	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
1012
		u32 dfsm = intel_de_read(dev_priv, SKL_DFSM);
1013

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		if (dfsm & SKL_DFSM_PIPE_A_DISABLE) {
			info->pipe_mask &= ~BIT(PIPE_A);
			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_A);
		}
		if (dfsm & SKL_DFSM_PIPE_B_DISABLE) {
			info->pipe_mask &= ~BIT(PIPE_B);
			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_B);
		}
		if (dfsm & SKL_DFSM_PIPE_C_DISABLE) {
			info->pipe_mask &= ~BIT(PIPE_C);
			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
		}
		if (INTEL_GEN(dev_priv) >= 12 &&
		    (dfsm & TGL_DFSM_PIPE_D_DISABLE)) {
			info->pipe_mask &= ~BIT(PIPE_D);
			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_D);
		}
1031 1032 1033

		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
			info->display.has_hdcp = 0;
1034 1035 1036

		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
			info->display.has_fbc = 0;
1037 1038 1039

		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
			info->display.has_csr = 0;
1040 1041 1042 1043

		if (INTEL_GEN(dev_priv) >= 10 &&
		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
			info->display.has_dsc = 0;
1044 1045 1046
	}

	/* Initialize slice/subslice/EU info */
1047
	if (IS_HASWELL(dev_priv))
1048
		hsw_sseu_info_init(dev_priv);
1049
	else if (IS_CHERRYVIEW(dev_priv))
1050 1051
		cherryview_sseu_info_init(dev_priv);
	else if (IS_BROADWELL(dev_priv))
1052
		bdw_sseu_info_init(dev_priv);
1053
	else if (IS_GEN(dev_priv, 9))
1054
		gen9_sseu_info_init(dev_priv);
1055
	else if (IS_GEN(dev_priv, 10))
1056
		gen10_sseu_info_init(dev_priv);
1057
	else if (IS_GEN(dev_priv, 11))
1058
		gen11_sseu_info_init(dev_priv);
1059 1060
	else if (INTEL_GEN(dev_priv) >= 12)
		gen12_sseu_info_init(dev_priv);
1061

1062
	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
1063 1064
		drm_info(&dev_priv->drm,
			 "Disabling ppGTT for VT-d support\n");
1065
		info->ppgtt_type = INTEL_PPGTT_NONE;
1066 1067
	}

1068 1069 1070
	runtime->rawclk_freq = intel_read_rawclk(dev_priv);
	drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);

1071
	/* Initialize command stream timestamp frequency */
1072
	runtime->cs_timestamp_frequency_hz =
1073
		read_timestamp_frequency(dev_priv);
1074
	if (runtime->cs_timestamp_frequency_hz) {
1075
		runtime->cs_timestamp_period_ns =
1076
			i915_cs_timestamp_ticks_to_ns(dev_priv, 1);
1077 1078 1079 1080 1081 1082
		drm_dbg(&dev_priv->drm,
			"CS timestamp wraparound in %lldms\n",
			div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
					    S32_MAX),
				USEC_PER_SEC));
	}
1083
}
1084 1085 1086 1087

void intel_driver_caps_print(const struct intel_driver_caps *caps,
			     struct drm_printer *p)
{
1088 1089
	drm_printf(p, "Has logical contexts? %s\n",
		   yesno(caps->has_logical_contexts));
1090 1091
	drm_printf(p, "scheduler: %x\n", caps->scheduler);
}
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

/*
 * Determine which engines are fused off in our particular hardware. Since the
 * fuse register is in the blitter powerwell, we need forcewake to be ready at
 * this point (but later we need to prune the forcewake domains for engines that
 * are indeed fused off).
 */
void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
1102
	struct intel_uncore *uncore = &dev_priv->uncore;
1103
	struct intel_gt *gt = &dev_priv->gt;
1104
	unsigned int logical_vdbox = 0;
1105
	unsigned int i;
1106
	u32 media_fuse;
1107 1108
	u16 vdbox_mask;
	u16 vebox_mask;
1109 1110 1111 1112

	if (INTEL_GEN(dev_priv) < 11)
		return;

1113
	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
1114

1115 1116 1117
	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;
1118 1119

	for (i = 0; i < I915_MAX_VCS; i++) {
1120
		if (!HAS_ENGINE(gt, _VCS(i))) {
1121
			vdbox_mask &= ~BIT(i);
1122
			continue;
1123
		}
1124

1125
		if (!(BIT(i) & vdbox_mask)) {
1126
			info->engine_mask &= ~BIT(_VCS(i));
1127
			drm_dbg(&dev_priv->drm, "vcs%u fused off\n", i);
1128
			continue;
1129
		}
1130 1131 1132 1133

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
1134
		 * In TGL each VDBOX has access to an SFC.
1135
		 */
1136
		if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
1137
			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1138
	}
1139
	drm_dbg(&dev_priv->drm, "vdbox enable: %04x, instances: %04lx\n",
1140 1141
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
1142 1143

	for (i = 0; i < I915_MAX_VECS; i++) {
1144
		if (!HAS_ENGINE(gt, _VECS(i))) {
1145
			vebox_mask &= ~BIT(i);
1146
			continue;
1147
		}
1148

1149
		if (!(BIT(i) & vebox_mask)) {
1150
			info->engine_mask &= ~BIT(_VECS(i));
1151
			drm_dbg(&dev_priv->drm, "vecs%u fused off\n", i);
1152
		}
1153
	}
1154
	drm_dbg(&dev_priv->drm, "vebox enable: %04x, instances: %04lx\n",
1155 1156
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
1157
}