intel_device_info.c 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "intel_device_info.h"
28 29
#include "i915_drv.h"

30 31 32 33 34 35 36 37 38 39 40 41
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
	PLATFORM_NAME(I830),
	PLATFORM_NAME(I845G),
	PLATFORM_NAME(I85X),
	PLATFORM_NAME(I865G),
	PLATFORM_NAME(I915G),
	PLATFORM_NAME(I915GM),
	PLATFORM_NAME(I945G),
	PLATFORM_NAME(I945GM),
	PLATFORM_NAME(G33),
	PLATFORM_NAME(PINEVIEW),
42 43
	PLATFORM_NAME(I965G),
	PLATFORM_NAME(I965GM),
44 45
	PLATFORM_NAME(G45),
	PLATFORM_NAME(GM45),
46 47 48 49 50 51 52 53 54 55 56
	PLATFORM_NAME(IRONLAKE),
	PLATFORM_NAME(SANDYBRIDGE),
	PLATFORM_NAME(IVYBRIDGE),
	PLATFORM_NAME(VALLEYVIEW),
	PLATFORM_NAME(HASWELL),
	PLATFORM_NAME(BROADWELL),
	PLATFORM_NAME(CHERRYVIEW),
	PLATFORM_NAME(SKYLAKE),
	PLATFORM_NAME(BROXTON),
	PLATFORM_NAME(KABYLAKE),
	PLATFORM_NAME(GEMINILAKE),
57
	PLATFORM_NAME(COFFEELAKE),
58
	PLATFORM_NAME(CANNONLAKE),
59
	PLATFORM_NAME(ICELAKE),
60 61 62 63 64
};
#undef PLATFORM_NAME

const char *intel_platform_name(enum intel_platform platform)
{
65 66
	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);

67 68 69 70 71 72 73
	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
			 platform_names[platform] == NULL))
		return "<unknown>";

	return platform_names[platform];
}

74 75 76 77 78 79 80 81
void intel_device_info_dump_flags(const struct intel_device_info *info,
				  struct drm_printer *p)
{
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
}

82 83
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
84 85
	int s;

86 87 88
	drm_printf(p, "slice mask: %04x\n", sseu->slice_mask);
	drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask));
	drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
89 90 91 92 93
	for (s = 0; s < ARRAY_SIZE(sseu->subslice_mask); s++) {
		drm_printf(p, "slice%d %u subslices mask=%04x\n",
			   s, hweight8(sseu->subslice_mask[s]),
			   sseu->subslice_mask[s]);
	}
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	drm_printf(p, "EU total: %u\n", sseu->eu_total);
	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
	drm_printf(p, "has slice power gating: %s\n",
		   yesno(sseu->has_slice_pg));
	drm_printf(p, "has subslice power gating: %s\n",
		   yesno(sseu->has_subslice_pg));
	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}

void intel_device_info_dump_runtime(const struct intel_device_info *info,
				    struct drm_printer *p)
{
	sseu_dump(&info->sseu, p);

	drm_printf(p, "CS timestamp frequency: %u kHz\n",
		   info->cs_timestamp_frequency_khz);
}

112 113
void intel_device_info_dump(const struct intel_device_info *info,
			    struct drm_printer *p)
114
{
115 116
	struct drm_i915_private *dev_priv =
		container_of(info, struct drm_i915_private, info);
117

118 119 120 121 122
	drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
		   INTEL_DEVID(dev_priv),
		   INTEL_REVID(dev_priv),
		   intel_platform_name(info->platform),
		   info->gen);
123

124
	intel_device_info_dump_flags(info, p);
125 126
}

127 128 129 130 131 132 133 134 135 136
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
	u16 i, total = 0;

	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
		total += hweight8(sseu->eu_mask[i]);

	return total;
}

137 138 139 140
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
	const u32 fuse2 = I915_READ(GEN8_FUSE2);
141 142 143
	int s, ss;
	const int eu_mask = 0xff;
	u32 subslice_mask, eu_en;
144 145 146

	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
			    GEN10_F2_S_ENA_SHIFT;
147 148 149
	sseu->max_slices = 6;
	sseu->max_subslices = 4;
	sseu->max_eus_per_subslice = 8;
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	subslice_mask = (1 << 4) - 1;
	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
			   GEN10_F2_SS_DIS_SHIFT);

	/*
	 * Slice0 can have up to 3 subslices, but there are only 2 in
	 * slice1/2.
	 */
	sseu->subslice_mask[0] = subslice_mask;
	for (s = 1; s < sseu->max_slices; s++)
		sseu->subslice_mask[s] = subslice_mask & 0x3;

	/* Slice0 */
	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
	for (ss = 0; ss < sseu->max_subslices; ss++)
		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
	/* Slice1 */
	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
	/* Slice2 */
	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
	/* Slice3 */
	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
	/* Slice4 */
	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
	/* Slice5 */
	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);

	/* Do a second pass where we mark the subslices disabled if all their
	 * eus are off.
	 */
	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			if (sseu_get_eus(sseu, s, ss) == 0)
				sseu->subslice_mask[s] &= ~BIT(ss);
		}
	}

	sseu->eu_total = compute_eu_total(sseu);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

	/*
	 * CNL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery.
	 */
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;

	/* No restrictions on Power Gating */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

214 215
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
216
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
217
	u32 fuse;
218 219 220

	fuse = I915_READ(CHV_FUSE_GT);

221
	sseu->slice_mask = BIT(0);
222 223 224
	sseu->max_slices = 1;
	sseu->max_subslices = 2;
	sseu->max_eus_per_subslice = 8;
225 226

	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
227 228 229 230 231 232 233 234
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);

		sseu->subslice_mask[0] |= BIT(0);
		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
235 236 237
	}

	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
238 239 240 241 242 243 244 245
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);

		sseu->subslice_mask[0] |= BIT(1);
		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
246 247
	}

248 249
	sseu->eu_total = compute_eu_total(sseu);

250 251 252 253
	/*
	 * CHV expected to always have a uniform distribution of EU
	 * across subslices.
	*/
254 255
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				sseu->eu_total / sseu_subslice_total(sseu) :
256 257 258 259 260 261
				0;
	/*
	 * CHV supports subslice power gating on devices with more than
	 * one subslice, and supports EU power gating on devices with
	 * more than one EU pair per subslice.
	*/
262
	sseu->has_slice_pg = 0;
263
	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
264
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
265 266 267 268 269
}

static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
270
	struct sseu_dev_info *sseu = &info->sseu;
271
	int s, ss;
272 273
	u32 fuse2, eu_disable, subslice_mask;
	const u8 eu_mask = 0xff;
274 275

	fuse2 = I915_READ(GEN8_FUSE2);
276
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
277

278 279 280 281 282
	/* BXT has a single slice and at most 3 subslices. */
	sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
	sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
	sseu->max_eus_per_subslice = 8;

283 284 285 286
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	*/
287 288 289
	subslice_mask = (1 << sseu->max_subslices) - 1;
	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
			   GEN9_F2_SS_DIS_SHIFT);
290 291 292 293 294

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	*/
295
	for (s = 0; s < sseu->max_slices; s++) {
296
		if (!(sseu->slice_mask & BIT(s)))
297 298 299
			/* skip disabled slice */
			continue;

300 301
		sseu->subslice_mask[s] = subslice_mask;

302
		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
303
		for (ss = 0; ss < sseu->max_subslices; ss++) {
304
			int eu_per_ss;
305
			u8 eu_disabled_mask;
306

307
			if (!(sseu->subslice_mask[s] & BIT(ss)))
308 309 310
				/* skip disabled subslice */
				continue;

311 312 313 314 315 316
			eu_disabled_mask = (eu_disable >> (ss*8)) & eu_mask;

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			eu_per_ss = sseu->max_eus_per_subslice -
				hweight8(eu_disabled_mask);
317 318 319 320 321 322 323

			/*
			 * Record which subslice(s) has(have) 7 EUs. we
			 * can tune the hash used to spread work among
			 * subslices if they are unbalanced.
			 */
			if (eu_per_ss == 7)
324
				sseu->subslice_7eu[s] |= BIT(ss);
325 326 327
		}
	}

328 329
	sseu->eu_total = compute_eu_total(sseu);

330 331 332 333 334 335 336
	/*
	 * SKL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery. BXT is expected to be perfectly uniform in EU
	 * distribution.
	*/
337
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
338
				DIV_ROUND_UP(sseu->eu_total,
339
					     sseu_subslice_total(sseu)) : 0;
340
	/*
341
	 * SKL+ supports slice power gating on devices with more than
342
	 * one slice, and supports EU power gating on devices with
343
	 * more than one EU pair per subslice. BXT+ supports subslice
344 345 346 347
	 * power gating on devices with more than one subslice, and
	 * supports EU power gating on devices with more than one EU
	 * pair per subslice.
	*/
348
	sseu->has_slice_pg =
349
		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
350
	sseu->has_subslice_pg =
351
		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
352
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
353

354
	if (IS_GEN9_LP(dev_priv)) {
355 356
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
357

358
		sseu->min_eu_in_pool = 0;
359
		if (info->has_pooled_eu) {
360
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
361
				sseu->min_eu_in_pool = 3;
362
			else if (IS_SS_DISABLED(1))
363
				sseu->min_eu_in_pool = 6;
364
			else
365
				sseu->min_eu_in_pool = 9;
366 367 368 369 370 371 372
		}
#undef IS_SS_DISABLED
	}
}

static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
{
373
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
374
	int s, ss;
375
	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
376 377

	fuse2 = I915_READ(GEN8_FUSE2);
378
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
379 380 381 382
	sseu->max_slices = 3;
	sseu->max_subslices = 3;
	sseu->max_eus_per_subslice = 8;

383 384 385 386
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
387 388 389
	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
			   GEN8_F2_SS_DIS_SHIFT);
390 391 392 393 394 395 396 397 398 399 400 401 402

	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
			 (32 - GEN8_EU_DIS0_S1_SHIFT));
	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
			 (32 - GEN8_EU_DIS1_S2_SHIFT));

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
403
	for (s = 0; s < sseu->max_slices; s++) {
404
		if (!(sseu->slice_mask & BIT(s)))
405 406 407
			/* skip disabled slice */
			continue;

408 409 410 411
		sseu->subslice_mask[s] = subslice_mask;

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u8 eu_disabled_mask;
412 413
			u32 n_disabled;

414
			if (!(sseu->subslice_mask[ss] & BIT(ss)))
415 416 417
				/* skip disabled subslice */
				continue;

418 419 420 421 422 423
			eu_disabled_mask =
				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			n_disabled = hweight8(eu_disabled_mask);
424 425 426 427

			/*
			 * Record which subslices have 7 EUs.
			 */
428
			if (sseu->max_eus_per_subslice - n_disabled == 7)
429
				sseu->subslice_7eu[s] |= 1 << ss;
430 431 432
		}
	}

433 434
	sseu->eu_total = compute_eu_total(sseu);

435 436 437 438 439
	/*
	 * BDW is expected to always have a uniform distribution of EU across
	 * subslices with the exception that any one EU in any one subslice may
	 * be fused off for die recovery.
	 */
440 441 442
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;
443 444 445 446 447

	/*
	 * BDW supports slice power gating on devices with more than
	 * one slice.
	 */
448
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
449 450
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
451 452
}

453 454 455 456 457
static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
	struct sseu_dev_info *sseu = &info->sseu;
	u32 fuse1;
458
	int s, ss;
459 460 461 462 463 464 465 466 467 468 469

	/*
	 * There isn't a register to tell us how many slices/subslices. We
	 * work off the PCI-ids here.
	 */
	switch (info->gt) {
	default:
		MISSING_CASE(info->gt);
		/* fall through */
	case 1:
		sseu->slice_mask = BIT(0);
470
		sseu->subslice_mask[0] = BIT(0);
471 472 473
		break;
	case 2:
		sseu->slice_mask = BIT(0);
474
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
475 476 477
		break;
	case 3:
		sseu->slice_mask = BIT(0) | BIT(1);
478 479
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
		sseu->subslice_mask[1] = BIT(0) | BIT(1);
480 481 482
		break;
	}

483 484 485
	sseu->max_slices = hweight8(sseu->slice_mask);
	sseu->max_subslices = hweight8(sseu->subslice_mask[0]);

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	fuse1 = I915_READ(HSW_PAVP_FUSE1);
	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
	default:
		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
			     HSW_F1_EU_DIS_SHIFT);
		/* fall through */
	case HSW_F1_EU_DIS_10EUS:
		sseu->eu_per_subslice = 10;
		break;
	case HSW_F1_EU_DIS_8EUS:
		sseu->eu_per_subslice = 8;
		break;
	case HSW_F1_EU_DIS_6EUS:
		sseu->eu_per_subslice = 6;
		break;
	}
502 503 504 505 506 507 508 509
	sseu->max_eus_per_subslice = sseu->eu_per_subslice;

	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			sseu_set_eus(sseu, s, ss,
				     (1UL << sseu->eu_per_subslice) - 1);
		}
	}
510

511
	sseu->eu_total = compute_eu_total(sseu);
512 513 514 515 516 517 518

	/* No powergating for you. */
	sseu->has_slice_pg = 0;
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
}

L
Lionel Landwerlin 已提交
519
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
520 521
{
	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
L
Lionel Landwerlin 已提交
522
	u32 base_freq, frac_freq;
523 524 525

	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
L
Lionel Landwerlin 已提交
526
	base_freq *= 1000;
527 528 529 530

	frac_freq = ((ts_override &
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
L
Lionel Landwerlin 已提交
531
	frac_freq = 1000 / (frac_freq + 1);
532 533 534 535

	return base_freq + frac_freq;
}

L
Lionel Landwerlin 已提交
536
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
537
{
L
Lionel Landwerlin 已提交
538 539 540
	u32 f12_5_mhz = 12500;
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
541 542 543 544 545 546 547 548

	if (INTEL_GEN(dev_priv) <= 4) {
		/* PRMs say:
		 *
		 *     "The value in this register increments once every 16
		 *      hclks." (through the “Clocking Configuration”
		 *      (“CLKCFG”) MCHBAR register)
		 */
L
Lionel Landwerlin 已提交
549
		return dev_priv->rawclk_freq / 16;
550 551 552 553 554 555 556 557 558 559
	} else if (INTEL_GEN(dev_priv) <= 8) {
		/* PRMs say:
		 *
		 *     "The PCU TSC counts 10ns increments; this timestamp
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
		 *      rolling over every 1.5 hours).
		 */
		return f12_5_mhz;
	} else if (INTEL_GEN(dev_priv) <= 9) {
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
560
		u32 freq = 0;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;

			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
				      CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
	} else if (INTEL_GEN(dev_priv) <= 10) {
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
578
		u32 freq = 0;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		u32 rpm_config_reg = 0;

		/* First figure out the reference frequency. There are 2 ways
		 * we can compute the frequency, either through the
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
		 * tells us which one we should use.
		 */
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			u32 crystal_clock;

			rpm_config_reg = I915_READ(RPM_CONFIG0);
			crystal_clock = (rpm_config_reg &
					 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
				GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
			switch (crystal_clock) {
			case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
				freq = f19_2_mhz;
				break;
			case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
				freq = f24_mhz;
				break;
			}

604 605 606 607 608 609 610 611
			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((rpm_config_reg &
				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
		}
612 613 614 615

		return freq;
	}

616
	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
617 618 619
	return 0;
}

620 621 622 623
/**
 * intel_device_info_runtime_init - initialize runtime info
 * @info: intel device info struct
 *
624 625 626 627 628 629 630 631 632 633 634 635
 * Determine various intel_device_info fields at runtime.
 *
 * Use it when either:
 *   - it's judged too laborious to fill n static structures with the limit
 *     when a simple if statement does the job,
 *   - run-time checks (eg read fuse/strap registers) are needed.
 *
 * This function needs to be called:
 *   - after the MMIO has been setup as we are reading registers,
 *   - after the PCH has been detected,
 *   - before the first usage of the fields it can tweak.
 */
636
void intel_device_info_runtime_init(struct intel_device_info *info)
637
{
638 639
	struct drm_i915_private *dev_priv =
		container_of(info, struct drm_i915_private, info);
640 641
	enum pipe pipe;

642 643 644 645
	if (INTEL_GEN(dev_priv) >= 10) {
		for_each_pipe(dev_priv, pipe)
			info->num_scalers[pipe] = 2;
	} else if (INTEL_GEN(dev_priv) == 9) {
646 647 648 649 650
		info->num_scalers[PIPE_A] = 2;
		info->num_scalers[PIPE_B] = 2;
		info->num_scalers[PIPE_C] = 1;
	}

651 652 653
	BUILD_BUG_ON(I915_NUM_ENGINES >
		     sizeof(intel_ring_mask_t) * BITS_PER_BYTE);

654 655 656 657 658 659 660 661
	/*
	 * Skylake and Broxton currently don't expose the topmost plane as its
	 * use is exclusive with the legacy cursor and we only want to expose
	 * one of those, not both. Until we can safely expose the topmost plane
	 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
	 * we don't expose the topmost plane at all to prevent ABI breakage
	 * down the line.
	 */
662
	if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
663 664 665
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 3;
	else if (IS_BROXTON(dev_priv)) {
666 667 668
		info->num_sprites[PIPE_A] = 2;
		info->num_sprites[PIPE_B] = 2;
		info->num_sprites[PIPE_C] = 1;
669
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
670 671
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 2;
672
	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
673 674
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 1;
675
	}
676

677
	if (i915_modparams.disable_display) {
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		DRM_INFO("Display disabled (module parameter)\n");
		info->num_pipes = 0;
	} else if (info->num_pipes > 0 &&
		   (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
		   HAS_PCH_SPLIT(dev_priv)) {
		u32 fuse_strap = I915_READ(FUSE_STRAP);
		u32 sfuse_strap = I915_READ(SFUSE_STRAP);

		/*
		 * SFUSE_STRAP is supposed to have a bit signalling the display
		 * is fused off. Unfortunately it seems that, at least in
		 * certain cases, fused off display means that PCH display
		 * reads don't land anywhere. In that case, we read 0s.
		 *
		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
		 * should be set when taking over after the firmware.
		 */
		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
697
		    (HAS_PCH_CPT(dev_priv) &&
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
			DRM_INFO("Display fused off, disabling\n");
			info->num_pipes = 0;
		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
			DRM_INFO("PipeC fused off\n");
			info->num_pipes -= 1;
		}
	} else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
		u32 dfsm = I915_READ(SKL_DFSM);
		u8 disabled_mask = 0;
		bool invalid;
		int num_bits;

		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
			disabled_mask |= BIT(PIPE_A);
		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
			disabled_mask |= BIT(PIPE_B);
		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
			disabled_mask |= BIT(PIPE_C);

		num_bits = hweight8(disabled_mask);

		switch (disabled_mask) {
		case BIT(PIPE_A):
		case BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_C):
			invalid = true;
			break;
		default:
			invalid = false;
		}

		if (num_bits > info->num_pipes || invalid)
			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
				  disabled_mask);
		else
			info->num_pipes -= num_bits;
	}

	/* Initialize slice/subslice/EU info */
739 740 741
	if (IS_HASWELL(dev_priv))
		haswell_sseu_info_init(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
742 743 744
		cherryview_sseu_info_init(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		broadwell_sseu_info_init(dev_priv);
745
	else if (INTEL_GEN(dev_priv) == 9)
746
		gen9_sseu_info_init(dev_priv);
747 748
	else if (INTEL_GEN(dev_priv) >= 10)
		gen10_sseu_info_init(dev_priv);
749

750
	/* Initialize command stream timestamp frequency */
L
Lionel Landwerlin 已提交
751
	info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
752
}
753 754 755 756 757 758

void intel_driver_caps_print(const struct intel_driver_caps *caps,
			     struct drm_printer *p)
{
	drm_printf(p, "scheduler: %x\n", caps->scheduler);
}