intel_device_info.c 30.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "intel_device_info.h"
28 29
#include "i915_drv.h"

30 31 32 33 34 35 36 37 38 39 40 41
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
	PLATFORM_NAME(I830),
	PLATFORM_NAME(I845G),
	PLATFORM_NAME(I85X),
	PLATFORM_NAME(I865G),
	PLATFORM_NAME(I915G),
	PLATFORM_NAME(I915GM),
	PLATFORM_NAME(I945G),
	PLATFORM_NAME(I945GM),
	PLATFORM_NAME(G33),
	PLATFORM_NAME(PINEVIEW),
42 43
	PLATFORM_NAME(I965G),
	PLATFORM_NAME(I965GM),
44 45
	PLATFORM_NAME(G45),
	PLATFORM_NAME(GM45),
46 47 48 49 50 51 52 53 54 55 56
	PLATFORM_NAME(IRONLAKE),
	PLATFORM_NAME(SANDYBRIDGE),
	PLATFORM_NAME(IVYBRIDGE),
	PLATFORM_NAME(VALLEYVIEW),
	PLATFORM_NAME(HASWELL),
	PLATFORM_NAME(BROADWELL),
	PLATFORM_NAME(CHERRYVIEW),
	PLATFORM_NAME(SKYLAKE),
	PLATFORM_NAME(BROXTON),
	PLATFORM_NAME(KABYLAKE),
	PLATFORM_NAME(GEMINILAKE),
57
	PLATFORM_NAME(COFFEELAKE),
58
	PLATFORM_NAME(CANNONLAKE),
59
	PLATFORM_NAME(ICELAKE),
60
	PLATFORM_NAME(ELKHARTLAKE),
61
	PLATFORM_NAME(TIGERLAKE),
62 63 64 65 66
};
#undef PLATFORM_NAME

const char *intel_platform_name(enum intel_platform platform)
{
67 68
	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);

69 70 71 72 73 74 75
	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
			 platform_names[platform] == NULL))
		return "<unknown>";

	return platform_names[platform];
}

76 77 78 79 80 81
void intel_device_info_dump_flags(const struct intel_device_info *info,
				  struct drm_printer *p)
{
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
82 83 84 85

#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
86 87
}

88 89
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
90 91
	int s;

92 93
	drm_printf(p, "slice total: %u, mask=%04x\n",
		   hweight8(sseu->slice_mask), sseu->slice_mask);
94
	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
95
	for (s = 0; s < sseu->max_slices; s++) {
96
		drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
97
			   s, intel_sseu_subslices_per_slice(sseu, s),
98
			   sseu->subslice_mask[s]);
99
	}
100 101 102 103 104 105 106 107 108
	drm_printf(p, "EU total: %u\n", sseu->eu_total);
	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
	drm_printf(p, "has slice power gating: %s\n",
		   yesno(sseu->has_slice_pg));
	drm_printf(p, "has subslice power gating: %s\n",
		   yesno(sseu->has_subslice_pg));
	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}

109
void intel_device_info_dump_runtime(const struct intel_runtime_info *info,
110 111 112 113 114 115 116 117
				    struct drm_printer *p)
{
	sseu_dump(&info->sseu, p);

	drm_printf(p, "CS timestamp frequency: %u kHz\n",
		   info->cs_timestamp_frequency_khz);
}

118 119 120
static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
		       int subslice)
{
121 122
	int subslice_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
	int slice_stride = sseu->max_subslices * subslice_stride;
123

124
	return slice * slice_stride + subslice * subslice_stride;
125 126 127 128 129 130 131 132
}

static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
			int subslice)
{
	int i, offset = sseu_eu_idx(sseu, slice, subslice);
	u16 eu_mask = 0;

133
	for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) {
134 135 136 137 138 139 140 141 142 143 144 145
		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
			(i * BITS_PER_BYTE);
	}

	return eu_mask;
}

static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
			 u16 eu_mask)
{
	int i, offset = sseu_eu_idx(sseu, slice, subslice);

146
	for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) {
147 148 149 150 151
		sseu->eu_mask[offset + i] =
			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
	}
}

152 153 154 155 156 157 158 159 160 161 162
void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
				     struct drm_printer *p)
{
	int s, ss;

	if (sseu->max_slices == 0) {
		drm_printf(p, "Unavailable\n");
		return;
	}

	for (s = 0; s < sseu->max_slices; s++) {
163
		drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
164
			   s, intel_sseu_subslices_per_slice(sseu, s),
165
			   sseu->subslice_mask[s]);
166 167 168 169 170 171 172 173 174 175

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u16 enabled_eus = sseu_get_eus(sseu, s, ss);

			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
				   ss, hweight16(enabled_eus), enabled_eus);
		}
	}
}

176 177 178 179 180 181 182 183 184 185
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
	u16 i, total = 0;

	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
		total += hweight8(sseu->eu_mask[i]);

	return total;
}

186 187
static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
{
188
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
189 190 191 192 193
	u8 s_en;
	u32 ss_en, ss_en_mask;
	u8 eu_en;
	int s;

194 195 196 197 198 199 200 201 202
	if (IS_ELKHARTLAKE(dev_priv)) {
		sseu->max_slices = 1;
		sseu->max_subslices = 4;
		sseu->max_eus_per_subslice = 8;
	} else {
		sseu->max_slices = 1;
		sseu->max_subslices = 8;
		sseu->max_eus_per_subslice = 8;
	}
203 204 205 206 207 208 209 210

	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
	ss_en_mask = BIT(sseu->max_subslices) - 1;
	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);

	for (s = 0; s < sseu->max_slices; s++) {
		if (s_en & BIT(s)) {
211
			int ss_idx = sseu->max_subslices * s;
212 213 214
			int ss;

			sseu->slice_mask |= BIT(s);
215 216 217
			sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
			for (ss = 0; ss < sseu->max_subslices; ss++) {
				if (sseu->subslice_mask[s] & BIT(ss))
218
					sseu_set_eus(sseu, s, ss, eu_en);
219
			}
220 221 222 223 224 225 226 227 228 229 230
		}
	}
	sseu->eu_per_subslice = hweight8(eu_en);
	sseu->eu_total = compute_eu_total(sseu);

	/* ICL has no power gating restrictions. */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

231 232
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
233
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
234
	const u32 fuse2 = I915_READ(GEN8_FUSE2);
235 236 237
	int s, ss;
	const int eu_mask = 0xff;
	u32 subslice_mask, eu_en;
238 239 240

	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
			    GEN10_F2_S_ENA_SHIFT;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	sseu->max_slices = 6;
	sseu->max_subslices = 4;
	sseu->max_eus_per_subslice = 8;

	subslice_mask = (1 << 4) - 1;
	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
			   GEN10_F2_SS_DIS_SHIFT);

	/*
	 * Slice0 can have up to 3 subslices, but there are only 2 in
	 * slice1/2.
	 */
	sseu->subslice_mask[0] = subslice_mask;
	for (s = 1; s < sseu->max_slices; s++)
		sseu->subslice_mask[s] = subslice_mask & 0x3;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

	/* Slice0 */
	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
	for (ss = 0; ss < sseu->max_subslices; ss++)
		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
	/* Slice1 */
	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
	/* Slice2 */
	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
	/* Slice3 */
	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
	/* Slice4 */
	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
	/* Slice5 */
	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);

280 281 282
	/* Do a second pass where we mark the subslices disabled if all their
	 * eus are off.
	 */
283 284 285
	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			if (sseu_get_eus(sseu, s, ss) == 0)
286
				sseu->subslice_mask[s] &= ~BIT(ss);
287 288 289 290
		}
	}

	sseu->eu_total = compute_eu_total(sseu);
291 292 293 294 295 296 297

	/*
	 * CNL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery.
	 */
298
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
299
				DIV_ROUND_UP(sseu->eu_total,
300 301
					     intel_sseu_subslice_total(sseu)) :
				0;
302 303 304 305 306 307 308

	/* No restrictions on Power Gating */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

309 310
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
311
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
312
	u32 fuse;
313 314 315

	fuse = I915_READ(CHV_FUSE_GT);

316
	sseu->slice_mask = BIT(0);
317 318 319
	sseu->max_slices = 1;
	sseu->max_subslices = 2;
	sseu->max_eus_per_subslice = 8;
320 321

	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
322 323 324 325 326 327
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);

328
		sseu->subslice_mask[0] |= BIT(0);
329
		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
330 331 332
	}

	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
333 334 335 336 337 338
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);

339
		sseu->subslice_mask[0] |= BIT(1);
340
		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
341 342
	}

343 344
	sseu->eu_total = compute_eu_total(sseu);

345 346 347 348
	/*
	 * CHV expected to always have a uniform distribution of EU
	 * across subslices.
	*/
349 350 351
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
				sseu->eu_total /
					intel_sseu_subslice_total(sseu) :
352 353 354 355 356 357
				0;
	/*
	 * CHV supports subslice power gating on devices with more than
	 * one subslice, and supports EU power gating on devices with
	 * more than one EU pair per subslice.
	*/
358
	sseu->has_slice_pg = 0;
359
	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
360
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
361 362 363 364 365
}

static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
366
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
367
	int s, ss;
368 369
	u32 fuse2, eu_disable, subslice_mask;
	const u8 eu_mask = 0xff;
370 371

	fuse2 = I915_READ(GEN8_FUSE2);
372
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
373

374
	/* BXT has a single slice and at most 3 subslices. */
375 376 377
	sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
	sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
	sseu->max_eus_per_subslice = 8;
378

379 380 381 382
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	*/
383 384 385
	subslice_mask = (1 << sseu->max_subslices) - 1;
	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
			   GEN9_F2_SS_DIS_SHIFT);
386 387 388 389 390

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	*/
391
	for (s = 0; s < sseu->max_slices; s++) {
392
		if (!(sseu->slice_mask & BIT(s)))
393 394 395
			/* skip disabled slice */
			continue;

396
		sseu->subslice_mask[s] = subslice_mask;
397

398
		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
399
		for (ss = 0; ss < sseu->max_subslices; ss++) {
400
			int eu_per_ss;
401
			u8 eu_disabled_mask;
402

403
			if (!(sseu->subslice_mask[s] & BIT(ss)))
404 405 406
				/* skip disabled subslice */
				continue;

407
			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
408 409 410 411 412

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			eu_per_ss = sseu->max_eus_per_subslice -
				hweight8(eu_disabled_mask);
413 414 415 416 417 418 419

			/*
			 * Record which subslice(s) has(have) 7 EUs. we
			 * can tune the hash used to spread work among
			 * subslices if they are unbalanced.
			 */
			if (eu_per_ss == 7)
420
				sseu->subslice_7eu[s] |= BIT(ss);
421 422 423
		}
	}

424 425
	sseu->eu_total = compute_eu_total(sseu);

426 427 428 429 430 431 432
	/*
	 * SKL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery. BXT is expected to be perfectly uniform in EU
	 * distribution.
	*/
433
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
434
				DIV_ROUND_UP(sseu->eu_total,
435 436
					     intel_sseu_subslice_total(sseu)) :
				0;
437
	/*
438
	 * SKL+ supports slice power gating on devices with more than
439
	 * one slice, and supports EU power gating on devices with
440
	 * more than one EU pair per subslice. BXT+ supports subslice
441 442 443 444
	 * power gating on devices with more than one subslice, and
	 * supports EU power gating on devices with more than one EU
	 * pair per subslice.
	*/
445
	sseu->has_slice_pg =
446
		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
447
	sseu->has_subslice_pg =
448
		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
449
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
450

451
	if (IS_GEN9_LP(dev_priv)) {
452 453
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
454

455
		sseu->min_eu_in_pool = 0;
456
		if (info->has_pooled_eu) {
457
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
458
				sseu->min_eu_in_pool = 3;
459
			else if (IS_SS_DISABLED(1))
460
				sseu->min_eu_in_pool = 6;
461
			else
462
				sseu->min_eu_in_pool = 9;
463 464 465 466 467 468 469
		}
#undef IS_SS_DISABLED
	}
}

static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
{
470
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
471
	int s, ss;
472
	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
473 474

	fuse2 = I915_READ(GEN8_FUSE2);
475
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
476 477 478
	sseu->max_slices = 3;
	sseu->max_subslices = 3;
	sseu->max_eus_per_subslice = 8;
479

480 481 482 483
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
484 485 486
	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
			   GEN8_F2_SS_DIS_SHIFT);
487 488 489 490 491 492 493 494 495 496 497 498 499

	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
			 (32 - GEN8_EU_DIS0_S1_SHIFT));
	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
			 (32 - GEN8_EU_DIS1_S2_SHIFT));

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
500
	for (s = 0; s < sseu->max_slices; s++) {
501
		if (!(sseu->slice_mask & BIT(s)))
502 503 504
			/* skip disabled slice */
			continue;

505
		sseu->subslice_mask[s] = subslice_mask;
506 507 508

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u8 eu_disabled_mask;
509 510
			u32 n_disabled;

511
			if (!(sseu->subslice_mask[s] & BIT(ss)))
512 513 514
				/* skip disabled subslice */
				continue;

515
			eu_disabled_mask =
516
				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
517 518 519 520

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			n_disabled = hweight8(eu_disabled_mask);
521 522 523 524

			/*
			 * Record which subslices have 7 EUs.
			 */
525
			if (sseu->max_eus_per_subslice - n_disabled == 7)
526
				sseu->subslice_7eu[s] |= 1 << ss;
527 528 529
		}
	}

530 531
	sseu->eu_total = compute_eu_total(sseu);

532 533 534 535 536
	/*
	 * BDW is expected to always have a uniform distribution of EU across
	 * subslices with the exception that any one EU in any one subslice may
	 * be fused off for die recovery.
	 */
537
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
538
				DIV_ROUND_UP(sseu->eu_total,
539 540
					     intel_sseu_subslice_total(sseu)) :
				0;
541 542 543 544 545

	/*
	 * BDW supports slice power gating on devices with more than
	 * one slice.
	 */
546
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
547 548
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
549 550
}

551 552
static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
{
553
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
554
	u32 fuse1;
555
	int s, ss;
556 557 558 559 560

	/*
	 * There isn't a register to tell us how many slices/subslices. We
	 * work off the PCI-ids here.
	 */
561
	switch (INTEL_INFO(dev_priv)->gt) {
562
	default:
563
		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
564 565 566
		/* fall through */
	case 1:
		sseu->slice_mask = BIT(0);
567
		sseu->subslice_mask[0] = BIT(0);
568 569 570
		break;
	case 2:
		sseu->slice_mask = BIT(0);
571
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
572 573 574
		break;
	case 3:
		sseu->slice_mask = BIT(0) | BIT(1);
575 576
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
		sseu->subslice_mask[1] = BIT(0) | BIT(1);
577 578 579
		break;
	}

580 581 582
	sseu->max_slices = hweight8(sseu->slice_mask);
	sseu->max_subslices = hweight8(sseu->subslice_mask[0]);

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	fuse1 = I915_READ(HSW_PAVP_FUSE1);
	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
	default:
		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
			     HSW_F1_EU_DIS_SHIFT);
		/* fall through */
	case HSW_F1_EU_DIS_10EUS:
		sseu->eu_per_subslice = 10;
		break;
	case HSW_F1_EU_DIS_8EUS:
		sseu->eu_per_subslice = 8;
		break;
	case HSW_F1_EU_DIS_6EUS:
		sseu->eu_per_subslice = 6;
		break;
	}
599
	sseu->max_eus_per_subslice = sseu->eu_per_subslice;
600 601 602 603 604 605 606

	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			sseu_set_eus(sseu, s, ss,
				     (1UL << sseu->eu_per_subslice) - 1);
		}
	}
607

608
	sseu->eu_total = compute_eu_total(sseu);
609 610 611 612 613 614 615

	/* No powergating for you. */
	sseu->has_slice_pg = 0;
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
}

L
Lionel Landwerlin 已提交
616
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
617 618
{
	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
L
Lionel Landwerlin 已提交
619
	u32 base_freq, frac_freq;
620 621 622

	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
L
Lionel Landwerlin 已提交
623
	base_freq *= 1000;
624 625 626 627

	frac_freq = ((ts_override &
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
L
Lionel Landwerlin 已提交
628
	frac_freq = 1000 / (frac_freq + 1);
629 630 631 632

	return base_freq + frac_freq;
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
	u32 crystal_clock = (rpm_config_reg &
			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
	u32 f25_mhz = 25000;
	u32 f38_4_mhz = 38400;
	u32 crystal_clock = (rpm_config_reg &
			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
		return f38_4_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
		return f25_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

L
Lionel Landwerlin 已提交
679
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
680
{
L
Lionel Landwerlin 已提交
681 682 683
	u32 f12_5_mhz = 12500;
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
684 685 686 687 688 689 690 691

	if (INTEL_GEN(dev_priv) <= 4) {
		/* PRMs say:
		 *
		 *     "The value in this register increments once every 16
		 *      hclks." (through the “Clocking Configuration”
		 *      (“CLKCFG”) MCHBAR register)
		 */
L
Lionel Landwerlin 已提交
692
		return dev_priv->rawclk_freq / 16;
693 694 695 696 697 698 699 700 701 702
	} else if (INTEL_GEN(dev_priv) <= 8) {
		/* PRMs say:
		 *
		 *     "The PCU TSC counts 10ns increments; this timestamp
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
		 *      rolling over every 1.5 hours).
		 */
		return f12_5_mhz;
	} else if (INTEL_GEN(dev_priv) <= 9) {
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
703
		u32 freq = 0;
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;

			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
				      CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
719
	} else if (INTEL_GEN(dev_priv) <= 12) {
720
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
721
		u32 freq = 0;
722 723 724 725 726 727 728 729 730

		/* First figure out the reference frequency. There are 2 ways
		 * we can compute the frequency, either through the
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
		 * tells us which one we should use.
		 */
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
731 732 733 734 735 736 737 738
			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);

			if (INTEL_GEN(dev_priv) <= 10)
				freq = gen10_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
			else
				freq = gen11_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
739

740 741 742 743 744 745 746 747
			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((rpm_config_reg &
				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
		}
748 749 750 751

		return freq;
	}

752
	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
753 754 755
	return 0;
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
#undef INTEL_VGA_DEVICE
#define INTEL_VGA_DEVICE(id, info) (id)

static const u16 subplatform_ult_ids[] = {
	INTEL_HSW_ULT_GT1_IDS(0),
	INTEL_HSW_ULT_GT2_IDS(0),
	INTEL_HSW_ULT_GT3_IDS(0),
	INTEL_BDW_ULT_GT1_IDS(0),
	INTEL_BDW_ULT_GT2_IDS(0),
	INTEL_BDW_ULT_GT3_IDS(0),
	INTEL_BDW_ULT_RSVD_IDS(0),
	INTEL_SKL_ULT_GT1_IDS(0),
	INTEL_SKL_ULT_GT2_IDS(0),
	INTEL_SKL_ULT_GT3_IDS(0),
	INTEL_KBL_ULT_GT1_IDS(0),
	INTEL_KBL_ULT_GT2_IDS(0),
	INTEL_KBL_ULT_GT3_IDS(0),
	INTEL_CFL_U_GT2_IDS(0),
	INTEL_CFL_U_GT3_IDS(0),
	INTEL_WHL_U_GT1_IDS(0),
	INTEL_WHL_U_GT2_IDS(0),
777
	INTEL_WHL_U_GT3_IDS(0),
778 779 780 781 782 783 784 785 786 787 788 789
};

static const u16 subplatform_ulx_ids[] = {
	INTEL_HSW_ULX_GT1_IDS(0),
	INTEL_HSW_ULX_GT2_IDS(0),
	INTEL_BDW_ULX_GT1_IDS(0),
	INTEL_BDW_ULX_GT2_IDS(0),
	INTEL_BDW_ULX_GT3_IDS(0),
	INTEL_BDW_ULX_RSVD_IDS(0),
	INTEL_SKL_ULX_GT1_IDS(0),
	INTEL_SKL_ULX_GT2_IDS(0),
	INTEL_KBL_ULX_GT1_IDS(0),
790
	INTEL_KBL_ULX_GT2_IDS(0),
791
	INTEL_AML_KBL_GT2_IDS(0),
792
	INTEL_AML_CFL_GT2_IDS(0),
793 794 795 796
};

static const u16 subplatform_portf_ids[] = {
	INTEL_CNL_PORT_F_IDS(0),
797
	INTEL_ICL_PORT_F_IDS(0),
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
};

static bool find_devid(u16 id, const u16 *p, unsigned int num)
{
	for (; num; num--, p++) {
		if (*p == id)
			return true;
	}

	return false;
}

void intel_device_info_subplatform_init(struct drm_i915_private *i915)
{
	const struct intel_device_info *info = INTEL_INFO(i915);
	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
	u16 devid = INTEL_DEVID(i915);
817
	u32 mask = 0;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

	/* Make sure IS_<platform> checks are working. */
	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);

	/* Find and mark subplatform bits based on the PCI device id. */
	if (find_devid(devid, subplatform_ult_ids,
		       ARRAY_SIZE(subplatform_ult_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_ULT);
	} else if (find_devid(devid, subplatform_ulx_ids,
			      ARRAY_SIZE(subplatform_ulx_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_ULX);
		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
			/* ULX machines are also considered ULT. */
			mask |= BIT(INTEL_SUBPLATFORM_ULT);
		}
	} else if (find_devid(devid, subplatform_portf_ids,
			      ARRAY_SIZE(subplatform_portf_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_PORTF);
	}

	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);

	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
}

843 844
/**
 * intel_device_info_runtime_init - initialize runtime info
845
 * @dev_priv: the i915 device
846
 *
847 848 849 850 851 852 853 854 855 856 857 858
 * Determine various intel_device_info fields at runtime.
 *
 * Use it when either:
 *   - it's judged too laborious to fill n static structures with the limit
 *     when a simple if statement does the job,
 *   - run-time checks (eg read fuse/strap registers) are needed.
 *
 * This function needs to be called:
 *   - after the MMIO has been setup as we are reading registers,
 *   - after the PCH has been detected,
 *   - before the first usage of the fields it can tweak.
 */
859
void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
860
{
861
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
862
	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
863 864
	enum pipe pipe;

865 866
	if (INTEL_GEN(dev_priv) >= 10) {
		for_each_pipe(dev_priv, pipe)
867
			runtime->num_scalers[pipe] = 2;
868
	} else if (IS_GEN(dev_priv, 9)) {
869 870 871
		runtime->num_scalers[PIPE_A] = 2;
		runtime->num_scalers[PIPE_B] = 2;
		runtime->num_scalers[PIPE_C] = 1;
872 873
	}

874
	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
875

876
	if (INTEL_GEN(dev_priv) >= 11)
877
		for_each_pipe(dev_priv, pipe)
878
			runtime->num_sprites[pipe] = 6;
879
	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
880
		for_each_pipe(dev_priv, pipe)
881
			runtime->num_sprites[pipe] = 3;
882
	else if (IS_BROXTON(dev_priv)) {
883 884 885 886 887 888 889 890 891
		/*
		 * Skylake and Broxton currently don't expose the topmost plane as its
		 * use is exclusive with the legacy cursor and we only want to expose
		 * one of those, not both. Until we can safely expose the topmost plane
		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
		 * we don't expose the topmost plane at all to prevent ABI breakage
		 * down the line.
		 */

892 893 894
		runtime->num_sprites[PIPE_A] = 2;
		runtime->num_sprites[PIPE_B] = 2;
		runtime->num_sprites[PIPE_C] = 1;
895
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
896
		for_each_pipe(dev_priv, pipe)
897
			runtime->num_sprites[pipe] = 2;
898
	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
899
		for_each_pipe(dev_priv, pipe)
900
			runtime->num_sprites[pipe] = 1;
901
	}
902

903
	if (i915_modparams.disable_display) {
904 905
		DRM_INFO("Display disabled (module parameter)\n");
		info->num_pipes = 0;
906
	} else if (HAS_DISPLAY(dev_priv) &&
907
		   (IS_GEN_RANGE(dev_priv, 7, 8)) &&
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
		   HAS_PCH_SPLIT(dev_priv)) {
		u32 fuse_strap = I915_READ(FUSE_STRAP);
		u32 sfuse_strap = I915_READ(SFUSE_STRAP);

		/*
		 * SFUSE_STRAP is supposed to have a bit signalling the display
		 * is fused off. Unfortunately it seems that, at least in
		 * certain cases, fused off display means that PCH display
		 * reads don't land anywhere. In that case, we read 0s.
		 *
		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
		 * should be set when taking over after the firmware.
		 */
		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
923
		    (HAS_PCH_CPT(dev_priv) &&
924 925 926 927 928 929 930
		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
			DRM_INFO("Display fused off, disabling\n");
			info->num_pipes = 0;
		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
			DRM_INFO("PipeC fused off\n");
			info->num_pipes -= 1;
		}
931
	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
932
		u32 dfsm = I915_READ(SKL_DFSM);
933
		u8 enabled_mask = BIT(info->num_pipes) - 1;
934 935

		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
936
			enabled_mask &= ~BIT(PIPE_A);
937
		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
938
			enabled_mask &= ~BIT(PIPE_B);
939
		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
940
			enabled_mask &= ~BIT(PIPE_C);
941 942 943
		if (INTEL_GEN(dev_priv) >= 12 &&
		    (dfsm & TGL_DFSM_PIPE_D_DISABLE))
			enabled_mask &= ~BIT(PIPE_D);
944

945 946 947 948 949 950 951 952
		/*
		 * At least one pipe should be enabled and if there are
		 * disabled pipes, they should be the last ones, with no holes
		 * in the mask.
		 */
		if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
			DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n",
				  enabled_mask);
953
		else
954
			info->num_pipes = hweight8(enabled_mask);
955 956 957
	}

	/* Initialize slice/subslice/EU info */
958 959 960
	if (IS_HASWELL(dev_priv))
		haswell_sseu_info_init(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
961 962 963
		cherryview_sseu_info_init(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		broadwell_sseu_info_init(dev_priv);
964
	else if (IS_GEN(dev_priv, 9))
965
		gen9_sseu_info_init(dev_priv);
966
	else if (IS_GEN(dev_priv, 10))
967
		gen10_sseu_info_init(dev_priv);
968
	else if (INTEL_GEN(dev_priv) >= 11)
969
		gen11_sseu_info_init(dev_priv);
970

971
	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
972
		DRM_INFO("Disabling ppGTT for VT-d support\n");
973
		info->ppgtt_type = INTEL_PPGTT_NONE;
974 975
	}

976
	/* Initialize command stream timestamp frequency */
977
	runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
978
}
979 980 981 982

void intel_driver_caps_print(const struct intel_driver_caps *caps,
			     struct drm_printer *p)
{
983 984
	drm_printf(p, "Has logical contexts? %s\n",
		   yesno(caps->has_logical_contexts));
985 986
	drm_printf(p, "scheduler: %x\n", caps->scheduler);
}
987 988 989 990 991 992 993 994 995 996

/*
 * Determine which engines are fused off in our particular hardware. Since the
 * fuse register is in the blitter powerwell, we need forcewake to be ready at
 * this point (but later we need to prune the forcewake domains for engines that
 * are indeed fused off).
 */
void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
997
	unsigned int logical_vdbox = 0;
998
	unsigned int i;
999
	u32 media_fuse;
1000 1001
	u16 vdbox_mask;
	u16 vebox_mask;
1002 1003 1004 1005

	if (INTEL_GEN(dev_priv) < 11)
		return;

1006
	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1007

1008 1009 1010
	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;
1011 1012 1013 1014 1015

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(dev_priv, _VCS(i)))
			continue;

1016
		if (!(BIT(i) & vdbox_mask)) {
1017
			info->engine_mask &= ~BIT(_VCS(i));
1018
			DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
1019
			continue;
1020
		}
1021 1022 1023 1024

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
1025
		 * In TGL each VDBOX has access to an SFC.
1026
		 */
1027
		if (IS_TIGERLAKE(dev_priv) || logical_vdbox++ % 2 == 0)
1028
			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1029
	}
1030 1031 1032
	DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
			 vdbox_mask, VDBOX_MASK(dev_priv));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1033 1034 1035 1036 1037

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(dev_priv, _VECS(i)))
			continue;

1038
		if (!(BIT(i) & vebox_mask)) {
1039
			info->engine_mask &= ~BIT(_VECS(i));
1040 1041
			DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
		}
1042
	}
1043 1044 1045
	DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
			 vebox_mask, VEBOX_MASK(dev_priv));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1046
}