intel_device_info.c 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "intel_device_info.h"
28 29
#include "i915_drv.h"

30 31 32 33 34 35 36 37 38 39 40 41
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
	PLATFORM_NAME(I830),
	PLATFORM_NAME(I845G),
	PLATFORM_NAME(I85X),
	PLATFORM_NAME(I865G),
	PLATFORM_NAME(I915G),
	PLATFORM_NAME(I915GM),
	PLATFORM_NAME(I945G),
	PLATFORM_NAME(I945GM),
	PLATFORM_NAME(G33),
	PLATFORM_NAME(PINEVIEW),
42 43
	PLATFORM_NAME(I965G),
	PLATFORM_NAME(I965GM),
44 45
	PLATFORM_NAME(G45),
	PLATFORM_NAME(GM45),
46 47 48 49 50 51 52 53 54 55 56
	PLATFORM_NAME(IRONLAKE),
	PLATFORM_NAME(SANDYBRIDGE),
	PLATFORM_NAME(IVYBRIDGE),
	PLATFORM_NAME(VALLEYVIEW),
	PLATFORM_NAME(HASWELL),
	PLATFORM_NAME(BROADWELL),
	PLATFORM_NAME(CHERRYVIEW),
	PLATFORM_NAME(SKYLAKE),
	PLATFORM_NAME(BROXTON),
	PLATFORM_NAME(KABYLAKE),
	PLATFORM_NAME(GEMINILAKE),
57
	PLATFORM_NAME(COFFEELAKE),
58
	PLATFORM_NAME(CANNONLAKE),
59
	PLATFORM_NAME(ICELAKE),
60 61 62 63 64
};
#undef PLATFORM_NAME

const char *intel_platform_name(enum intel_platform platform)
{
65 66
	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);

67 68 69 70 71 72 73
	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
			 platform_names[platform] == NULL))
		return "<unknown>";

	return platform_names[platform];
}

74 75 76 77 78 79
void intel_device_info_dump_flags(const struct intel_device_info *info,
				  struct drm_printer *p)
{
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
80 81 82 83

#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
84 85
}

86 87
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
88 89
	int s;

90 91
	drm_printf(p, "slice total: %u, mask=%04x\n",
		   hweight8(sseu->slice_mask), sseu->slice_mask);
92
	drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
93 94
	for (s = 0; s < sseu->max_slices; s++) {
		drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
95 96 97
			   s, hweight8(sseu->subslice_mask[s]),
			   sseu->subslice_mask[s]);
	}
98 99 100 101 102 103 104 105 106
	drm_printf(p, "EU total: %u\n", sseu->eu_total);
	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
	drm_printf(p, "has slice power gating: %s\n",
		   yesno(sseu->has_slice_pg));
	drm_printf(p, "has subslice power gating: %s\n",
		   yesno(sseu->has_subslice_pg));
	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}

107
void intel_device_info_dump_runtime(const struct intel_runtime_info *info,
108 109 110 111 112 113 114 115
				    struct drm_printer *p)
{
	sseu_dump(&info->sseu, p);

	drm_printf(p, "CS timestamp frequency: %u kHz\n",
		   info->cs_timestamp_frequency_khz);
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
				     struct drm_printer *p)
{
	int s, ss;

	if (sseu->max_slices == 0) {
		drm_printf(p, "Unavailable\n");
		return;
	}

	for (s = 0; s < sseu->max_slices; s++) {
		drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
			   s, hweight8(sseu->subslice_mask[s]),
			   sseu->subslice_mask[s]);

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u16 enabled_eus = sseu_get_eus(sseu, s, ss);

			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
				   ss, hweight16(enabled_eus), enabled_eus);
		}
	}
}

140 141 142 143 144 145 146 147 148 149
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
	u16 i, total = 0;

	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
		total += hweight8(sseu->eu_mask[i]);

	return total;
}

150 151
static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
{
152
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
	u8 s_en;
	u32 ss_en, ss_en_mask;
	u8 eu_en;
	int s;

	sseu->max_slices = 1;
	sseu->max_subslices = 8;
	sseu->max_eus_per_subslice = 8;

	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
	ss_en_mask = BIT(sseu->max_subslices) - 1;
	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);

	for (s = 0; s < sseu->max_slices; s++) {
		if (s_en & BIT(s)) {
			int ss_idx = sseu->max_subslices * s;
			int ss;

			sseu->slice_mask |= BIT(s);
			sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
			for (ss = 0; ss < sseu->max_subslices; ss++) {
				if (sseu->subslice_mask[s] & BIT(ss))
					sseu_set_eus(sseu, s, ss, eu_en);
			}
		}
	}
	sseu->eu_per_subslice = hweight8(eu_en);
	sseu->eu_total = compute_eu_total(sseu);

	/* ICL has no power gating restrictions. */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

189 190
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
191
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
192
	const u32 fuse2 = I915_READ(GEN8_FUSE2);
193 194 195
	int s, ss;
	const int eu_mask = 0xff;
	u32 subslice_mask, eu_en;
196 197 198

	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
			    GEN10_F2_S_ENA_SHIFT;
199 200 201
	sseu->max_slices = 6;
	sseu->max_subslices = 4;
	sseu->max_eus_per_subslice = 8;
202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	subslice_mask = (1 << 4) - 1;
	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
			   GEN10_F2_SS_DIS_SHIFT);

	/*
	 * Slice0 can have up to 3 subslices, but there are only 2 in
	 * slice1/2.
	 */
	sseu->subslice_mask[0] = subslice_mask;
	for (s = 1; s < sseu->max_slices; s++)
		sseu->subslice_mask[s] = subslice_mask & 0x3;

	/* Slice0 */
	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
	for (ss = 0; ss < sseu->max_subslices; ss++)
		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
	/* Slice1 */
	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
	/* Slice2 */
	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
	/* Slice3 */
	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
	/* Slice4 */
	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
	/* Slice5 */
	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);

	/* Do a second pass where we mark the subslices disabled if all their
	 * eus are off.
	 */
	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			if (sseu_get_eus(sseu, s, ss) == 0)
				sseu->subslice_mask[s] &= ~BIT(ss);
		}
	}

	sseu->eu_total = compute_eu_total(sseu);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

	/*
	 * CNL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery.
	 */
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;

	/* No restrictions on Power Gating */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

266 267
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
268
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
269
	u32 fuse;
270 271 272

	fuse = I915_READ(CHV_FUSE_GT);

273
	sseu->slice_mask = BIT(0);
274 275 276
	sseu->max_slices = 1;
	sseu->max_subslices = 2;
	sseu->max_eus_per_subslice = 8;
277 278

	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
279 280 281 282 283 284 285 286
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);

		sseu->subslice_mask[0] |= BIT(0);
		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
287 288 289
	}

	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
290 291 292 293 294 295 296 297
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);

		sseu->subslice_mask[0] |= BIT(1);
		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
298 299
	}

300 301
	sseu->eu_total = compute_eu_total(sseu);

302 303 304 305
	/*
	 * CHV expected to always have a uniform distribution of EU
	 * across subslices.
	*/
306 307
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				sseu->eu_total / sseu_subslice_total(sseu) :
308 309 310 311 312 313
				0;
	/*
	 * CHV supports subslice power gating on devices with more than
	 * one subslice, and supports EU power gating on devices with
	 * more than one EU pair per subslice.
	*/
314
	sseu->has_slice_pg = 0;
315
	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
316
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
317 318 319 320 321
}

static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
322
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
323
	int s, ss;
324 325
	u32 fuse2, eu_disable, subslice_mask;
	const u8 eu_mask = 0xff;
326 327

	fuse2 = I915_READ(GEN8_FUSE2);
328
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
329

330 331 332 333 334
	/* BXT has a single slice and at most 3 subslices. */
	sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
	sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
	sseu->max_eus_per_subslice = 8;

335 336 337 338
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	*/
339 340 341
	subslice_mask = (1 << sseu->max_subslices) - 1;
	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
			   GEN9_F2_SS_DIS_SHIFT);
342 343 344 345 346

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	*/
347
	for (s = 0; s < sseu->max_slices; s++) {
348
		if (!(sseu->slice_mask & BIT(s)))
349 350 351
			/* skip disabled slice */
			continue;

352 353
		sseu->subslice_mask[s] = subslice_mask;

354
		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
355
		for (ss = 0; ss < sseu->max_subslices; ss++) {
356
			int eu_per_ss;
357
			u8 eu_disabled_mask;
358

359
			if (!(sseu->subslice_mask[s] & BIT(ss)))
360 361 362
				/* skip disabled subslice */
				continue;

363
			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
364 365 366 367 368

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			eu_per_ss = sseu->max_eus_per_subslice -
				hweight8(eu_disabled_mask);
369 370 371 372 373 374 375

			/*
			 * Record which subslice(s) has(have) 7 EUs. we
			 * can tune the hash used to spread work among
			 * subslices if they are unbalanced.
			 */
			if (eu_per_ss == 7)
376
				sseu->subslice_7eu[s] |= BIT(ss);
377 378 379
		}
	}

380 381
	sseu->eu_total = compute_eu_total(sseu);

382 383 384 385 386 387 388
	/*
	 * SKL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery. BXT is expected to be perfectly uniform in EU
	 * distribution.
	*/
389
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
390
				DIV_ROUND_UP(sseu->eu_total,
391
					     sseu_subslice_total(sseu)) : 0;
392
	/*
393
	 * SKL+ supports slice power gating on devices with more than
394
	 * one slice, and supports EU power gating on devices with
395
	 * more than one EU pair per subslice. BXT+ supports subslice
396 397 398 399
	 * power gating on devices with more than one subslice, and
	 * supports EU power gating on devices with more than one EU
	 * pair per subslice.
	*/
400
	sseu->has_slice_pg =
401
		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
402
	sseu->has_subslice_pg =
403
		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
404
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
405

406
	if (IS_GEN9_LP(dev_priv)) {
407 408
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
409

410
		sseu->min_eu_in_pool = 0;
411
		if (info->has_pooled_eu) {
412
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
413
				sseu->min_eu_in_pool = 3;
414
			else if (IS_SS_DISABLED(1))
415
				sseu->min_eu_in_pool = 6;
416
			else
417
				sseu->min_eu_in_pool = 9;
418 419 420 421 422 423 424
		}
#undef IS_SS_DISABLED
	}
}

static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
{
425
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
426
	int s, ss;
427
	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
428 429

	fuse2 = I915_READ(GEN8_FUSE2);
430
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
431 432 433 434
	sseu->max_slices = 3;
	sseu->max_subslices = 3;
	sseu->max_eus_per_subslice = 8;

435 436 437 438
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
439 440 441
	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
			   GEN8_F2_SS_DIS_SHIFT);
442 443 444 445 446 447 448 449 450 451 452 453 454

	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
			 (32 - GEN8_EU_DIS0_S1_SHIFT));
	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
			 (32 - GEN8_EU_DIS1_S2_SHIFT));

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
455
	for (s = 0; s < sseu->max_slices; s++) {
456
		if (!(sseu->slice_mask & BIT(s)))
457 458 459
			/* skip disabled slice */
			continue;

460 461 462 463
		sseu->subslice_mask[s] = subslice_mask;

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u8 eu_disabled_mask;
464 465
			u32 n_disabled;

466
			if (!(sseu->subslice_mask[s] & BIT(ss)))
467 468 469
				/* skip disabled subslice */
				continue;

470 471 472 473 474 475
			eu_disabled_mask =
				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			n_disabled = hweight8(eu_disabled_mask);
476 477 478 479

			/*
			 * Record which subslices have 7 EUs.
			 */
480
			if (sseu->max_eus_per_subslice - n_disabled == 7)
481
				sseu->subslice_7eu[s] |= 1 << ss;
482 483 484
		}
	}

485 486
	sseu->eu_total = compute_eu_total(sseu);

487 488 489 490 491
	/*
	 * BDW is expected to always have a uniform distribution of EU across
	 * subslices with the exception that any one EU in any one subslice may
	 * be fused off for die recovery.
	 */
492 493 494
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;
495 496 497 498 499

	/*
	 * BDW supports slice power gating on devices with more than
	 * one slice.
	 */
500
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
501 502
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
503 504
}

505 506
static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
{
507
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
508
	u32 fuse1;
509
	int s, ss;
510 511 512 513 514

	/*
	 * There isn't a register to tell us how many slices/subslices. We
	 * work off the PCI-ids here.
	 */
515
	switch (INTEL_INFO(dev_priv)->gt) {
516
	default:
517
		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
518 519 520
		/* fall through */
	case 1:
		sseu->slice_mask = BIT(0);
521
		sseu->subslice_mask[0] = BIT(0);
522 523 524
		break;
	case 2:
		sseu->slice_mask = BIT(0);
525
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
526 527 528
		break;
	case 3:
		sseu->slice_mask = BIT(0) | BIT(1);
529 530
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
		sseu->subslice_mask[1] = BIT(0) | BIT(1);
531 532 533
		break;
	}

534 535 536
	sseu->max_slices = hweight8(sseu->slice_mask);
	sseu->max_subslices = hweight8(sseu->subslice_mask[0]);

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	fuse1 = I915_READ(HSW_PAVP_FUSE1);
	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
	default:
		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
			     HSW_F1_EU_DIS_SHIFT);
		/* fall through */
	case HSW_F1_EU_DIS_10EUS:
		sseu->eu_per_subslice = 10;
		break;
	case HSW_F1_EU_DIS_8EUS:
		sseu->eu_per_subslice = 8;
		break;
	case HSW_F1_EU_DIS_6EUS:
		sseu->eu_per_subslice = 6;
		break;
	}
553 554 555 556 557 558 559 560
	sseu->max_eus_per_subslice = sseu->eu_per_subslice;

	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			sseu_set_eus(sseu, s, ss,
				     (1UL << sseu->eu_per_subslice) - 1);
		}
	}
561

562
	sseu->eu_total = compute_eu_total(sseu);
563 564 565 566 567 568 569

	/* No powergating for you. */
	sseu->has_slice_pg = 0;
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
}

L
Lionel Landwerlin 已提交
570
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
571 572
{
	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
L
Lionel Landwerlin 已提交
573
	u32 base_freq, frac_freq;
574 575 576

	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
L
Lionel Landwerlin 已提交
577
	base_freq *= 1000;
578 579 580 581

	frac_freq = ((ts_override &
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
L
Lionel Landwerlin 已提交
582
	frac_freq = 1000 / (frac_freq + 1);
583 584 585 586

	return base_freq + frac_freq;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
	u32 crystal_clock = (rpm_config_reg &
			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
	u32 f25_mhz = 25000;
	u32 f38_4_mhz = 38400;
	u32 crystal_clock = (rpm_config_reg &
			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
		return f38_4_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
		return f25_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

L
Lionel Landwerlin 已提交
633
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
634
{
L
Lionel Landwerlin 已提交
635 636 637
	u32 f12_5_mhz = 12500;
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
638 639 640 641 642 643 644 645

	if (INTEL_GEN(dev_priv) <= 4) {
		/* PRMs say:
		 *
		 *     "The value in this register increments once every 16
		 *      hclks." (through the “Clocking Configuration”
		 *      (“CLKCFG”) MCHBAR register)
		 */
L
Lionel Landwerlin 已提交
646
		return dev_priv->rawclk_freq / 16;
647 648 649 650 651 652 653 654 655 656
	} else if (INTEL_GEN(dev_priv) <= 8) {
		/* PRMs say:
		 *
		 *     "The PCU TSC counts 10ns increments; this timestamp
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
		 *      rolling over every 1.5 hours).
		 */
		return f12_5_mhz;
	} else if (INTEL_GEN(dev_priv) <= 9) {
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
657
		u32 freq = 0;
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;

			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
				      CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
673
	} else if (INTEL_GEN(dev_priv) <= 11) {
674
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
675
		u32 freq = 0;
676 677 678 679 680 681 682 683 684

		/* First figure out the reference frequency. There are 2 ways
		 * we can compute the frequency, either through the
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
		 * tells us which one we should use.
		 */
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
685 686 687 688 689 690 691 692
			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);

			if (INTEL_GEN(dev_priv) <= 10)
				freq = gen10_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
			else
				freq = gen11_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
693

694 695 696 697 698 699 700 701
			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((rpm_config_reg &
				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
		}
702 703 704 705

		return freq;
	}

706
	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
707 708 709
	return 0;
}

710 711
/**
 * intel_device_info_runtime_init - initialize runtime info
712
 * @dev_priv: the i915 device
713
 *
714 715 716 717 718 719 720 721 722 723 724 725
 * Determine various intel_device_info fields at runtime.
 *
 * Use it when either:
 *   - it's judged too laborious to fill n static structures with the limit
 *     when a simple if statement does the job,
 *   - run-time checks (eg read fuse/strap registers) are needed.
 *
 * This function needs to be called:
 *   - after the MMIO has been setup as we are reading registers,
 *   - after the PCH has been detected,
 *   - before the first usage of the fields it can tweak.
 */
726
void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
727
{
728
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
729
	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
730 731
	enum pipe pipe;

732 733
	if (INTEL_GEN(dev_priv) >= 10) {
		for_each_pipe(dev_priv, pipe)
734
			runtime->num_scalers[pipe] = 2;
735
	} else if (IS_GEN(dev_priv, 9)) {
736 737 738
		runtime->num_scalers[PIPE_A] = 2;
		runtime->num_scalers[PIPE_B] = 2;
		runtime->num_scalers[PIPE_C] = 1;
739 740
	}

741
	BUILD_BUG_ON(I915_NUM_ENGINES > BITS_PER_TYPE(intel_ring_mask_t));
742

743
	if (IS_GEN(dev_priv, 11))
744
		for_each_pipe(dev_priv, pipe)
745
			runtime->num_sprites[pipe] = 6;
746
	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
747
		for_each_pipe(dev_priv, pipe)
748
			runtime->num_sprites[pipe] = 3;
749
	else if (IS_BROXTON(dev_priv)) {
750 751 752 753 754 755 756 757 758
		/*
		 * Skylake and Broxton currently don't expose the topmost plane as its
		 * use is exclusive with the legacy cursor and we only want to expose
		 * one of those, not both. Until we can safely expose the topmost plane
		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
		 * we don't expose the topmost plane at all to prevent ABI breakage
		 * down the line.
		 */

759 760 761
		runtime->num_sprites[PIPE_A] = 2;
		runtime->num_sprites[PIPE_B] = 2;
		runtime->num_sprites[PIPE_C] = 1;
762
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
763
		for_each_pipe(dev_priv, pipe)
764
			runtime->num_sprites[pipe] = 2;
765
	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
766
		for_each_pipe(dev_priv, pipe)
767
			runtime->num_sprites[pipe] = 1;
768
	}
769

770
	if (i915_modparams.disable_display) {
771 772
		DRM_INFO("Display disabled (module parameter)\n");
		info->num_pipes = 0;
773
	} else if (HAS_DISPLAY(dev_priv) &&
774
		   (IS_GEN_RANGE(dev_priv, 7, 8)) &&
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		   HAS_PCH_SPLIT(dev_priv)) {
		u32 fuse_strap = I915_READ(FUSE_STRAP);
		u32 sfuse_strap = I915_READ(SFUSE_STRAP);

		/*
		 * SFUSE_STRAP is supposed to have a bit signalling the display
		 * is fused off. Unfortunately it seems that, at least in
		 * certain cases, fused off display means that PCH display
		 * reads don't land anywhere. In that case, we read 0s.
		 *
		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
		 * should be set when taking over after the firmware.
		 */
		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
790
		    (HAS_PCH_CPT(dev_priv) &&
791 792 793 794 795 796 797
		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
			DRM_INFO("Display fused off, disabling\n");
			info->num_pipes = 0;
		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
			DRM_INFO("PipeC fused off\n");
			info->num_pipes -= 1;
		}
798
	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		u32 dfsm = I915_READ(SKL_DFSM);
		u8 disabled_mask = 0;
		bool invalid;
		int num_bits;

		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
			disabled_mask |= BIT(PIPE_A);
		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
			disabled_mask |= BIT(PIPE_B);
		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
			disabled_mask |= BIT(PIPE_C);

		num_bits = hweight8(disabled_mask);

		switch (disabled_mask) {
		case BIT(PIPE_A):
		case BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_C):
			invalid = true;
			break;
		default:
			invalid = false;
		}

		if (num_bits > info->num_pipes || invalid)
			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
				  disabled_mask);
		else
			info->num_pipes -= num_bits;
	}

	/* Initialize slice/subslice/EU info */
832 833 834
	if (IS_HASWELL(dev_priv))
		haswell_sseu_info_init(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
835 836 837
		cherryview_sseu_info_init(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		broadwell_sseu_info_init(dev_priv);
838
	else if (IS_GEN(dev_priv, 9))
839
		gen9_sseu_info_init(dev_priv);
840
	else if (IS_GEN(dev_priv, 10))
841
		gen10_sseu_info_init(dev_priv);
842
	else if (INTEL_GEN(dev_priv) >= 11)
843
		gen11_sseu_info_init(dev_priv);
844

845
	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
846 847 848 849
		DRM_INFO("Disabling ppGTT for VT-d support\n");
		info->ppgtt = INTEL_PPGTT_NONE;
	}

850
	/* Initialize command stream timestamp frequency */
851
	runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
852
}
853 854 855 856

void intel_driver_caps_print(const struct intel_driver_caps *caps,
			     struct drm_printer *p)
{
857 858
	drm_printf(p, "Has logical contexts? %s\n",
		   yesno(caps->has_logical_contexts));
859 860
	drm_printf(p, "scheduler: %x\n", caps->scheduler);
}
861 862 863 864 865 866 867 868 869 870

/*
 * Determine which engines are fused off in our particular hardware. Since the
 * fuse register is in the blitter powerwell, we need forcewake to be ready at
 * this point (but later we need to prune the forcewake domains for engines that
 * are indeed fused off).
 */
void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
871
	unsigned int logical_vdbox = 0;
872
	unsigned int i;
873
	u32 media_fuse;
874 875 876 877

	if (INTEL_GEN(dev_priv) < 11)
		return;

878
	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
879

880 881 882
	RUNTIME_INFO(dev_priv)->vdbox_enable = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	RUNTIME_INFO(dev_priv)->vebox_enable = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		GEN11_GT_VEBOX_DISABLE_SHIFT;
883

884
	DRM_DEBUG_DRIVER("vdbox enable: %04x\n", RUNTIME_INFO(dev_priv)->vdbox_enable);
885 886 887 888
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(dev_priv, _VCS(i)))
			continue;

889
		if (!(BIT(i) & RUNTIME_INFO(dev_priv)->vdbox_enable)) {
890 891
			info->ring_mask &= ~ENGINE_MASK(_VCS(i));
			DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
892
			continue;
893
		}
894 895 896 897 898 899

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 */
		if (logical_vdbox++ % 2 == 0)
900
			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
901 902
	}

903
	DRM_DEBUG_DRIVER("vebox enable: %04x\n", RUNTIME_INFO(dev_priv)->vebox_enable);
904 905 906 907
	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(dev_priv, _VECS(i)))
			continue;

908
		if (!(BIT(i) & RUNTIME_INFO(dev_priv)->vebox_enable)) {
909 910 911
			info->ring_mask &= ~ENGINE_MASK(_VECS(i));
			DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
		}
912 913
	}
}