intel_device_info.c 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include "i915_drv.h"

27 28 29 30 31 32 33 34 35 36 37 38
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
	PLATFORM_NAME(I830),
	PLATFORM_NAME(I845G),
	PLATFORM_NAME(I85X),
	PLATFORM_NAME(I865G),
	PLATFORM_NAME(I915G),
	PLATFORM_NAME(I915GM),
	PLATFORM_NAME(I945G),
	PLATFORM_NAME(I945GM),
	PLATFORM_NAME(G33),
	PLATFORM_NAME(PINEVIEW),
39 40
	PLATFORM_NAME(I965G),
	PLATFORM_NAME(I965GM),
41 42
	PLATFORM_NAME(G45),
	PLATFORM_NAME(GM45),
43 44 45 46 47 48 49 50 51 52 53
	PLATFORM_NAME(IRONLAKE),
	PLATFORM_NAME(SANDYBRIDGE),
	PLATFORM_NAME(IVYBRIDGE),
	PLATFORM_NAME(VALLEYVIEW),
	PLATFORM_NAME(HASWELL),
	PLATFORM_NAME(BROADWELL),
	PLATFORM_NAME(CHERRYVIEW),
	PLATFORM_NAME(SKYLAKE),
	PLATFORM_NAME(BROXTON),
	PLATFORM_NAME(KABYLAKE),
	PLATFORM_NAME(GEMINILAKE),
54
	PLATFORM_NAME(COFFEELAKE),
55
	PLATFORM_NAME(CANNONLAKE),
56 57 58 59 60
};
#undef PLATFORM_NAME

const char *intel_platform_name(enum intel_platform platform)
{
61 62
	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);

63 64 65 66 67 68 69
	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
			 platform_names[platform] == NULL))
		return "<unknown>";

	return platform_names[platform];
}

70 71 72 73
void intel_device_info_dump(struct drm_i915_private *dev_priv)
{
	const struct intel_device_info *info = &dev_priv->info;

74 75
	DRM_DEBUG_DRIVER("i915 device info: platform=%s gen=%i pciid=0x%04x rev=0x%02x",
			 intel_platform_name(info->platform),
76 77
			 info->gen,
			 dev_priv->drm.pdev->device,
78 79 80 81
			 dev_priv->drm.pdev->revision);
#define PRINT_FLAG(name) \
	DRM_DEBUG_DRIVER("i915 device info: " #name ": %s", yesno(info->name))
	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
82 83 84
#undef PRINT_FLAG
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
	const u32 fuse2 = I915_READ(GEN8_FUSE2);

	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
			    GEN10_F2_S_ENA_SHIFT;
	sseu->subslice_mask = (1 << 4) - 1;
	sseu->subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
				 GEN10_F2_SS_DIS_SHIFT);

	sseu->eu_total = hweight32(~I915_READ(GEN8_EU_DISABLE0));
	sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE1));
	sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE2));
	sseu->eu_total += hweight8(~(I915_READ(GEN10_EU_DISABLE3) &
				     GEN10_EU_DIS_SS_MASK));

	/*
	 * CNL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery.
	 */
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;

	/* No restrictions on Power Gating */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

118 119
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
120
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
121 122 123 124
	u32 fuse, eu_dis;

	fuse = I915_READ(CHV_FUSE_GT);

125
	sseu->slice_mask = BIT(0);
126 127

	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
128
		sseu->subslice_mask |= BIT(0);
129 130
		eu_dis = fuse & (CHV_FGT_EU_DIS_SS0_R0_MASK |
				 CHV_FGT_EU_DIS_SS0_R1_MASK);
131
		sseu->eu_total += 8 - hweight32(eu_dis);
132 133 134
	}

	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
135
		sseu->subslice_mask |= BIT(1);
136 137
		eu_dis = fuse & (CHV_FGT_EU_DIS_SS1_R0_MASK |
				 CHV_FGT_EU_DIS_SS1_R1_MASK);
138
		sseu->eu_total += 8 - hweight32(eu_dis);
139 140 141 142 143 144
	}

	/*
	 * CHV expected to always have a uniform distribution of EU
	 * across subslices.
	*/
145 146
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				sseu->eu_total / sseu_subslice_total(sseu) :
147 148 149 150 151 152
				0;
	/*
	 * CHV supports subslice power gating on devices with more than
	 * one subslice, and supports EU power gating on devices with
	 * more than one EU pair per subslice.
	*/
153
	sseu->has_slice_pg = 0;
154
	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
155
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
156 157 158 159 160
}

static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
161
	struct sseu_dev_info *sseu = &info->sseu;
162 163
	int s_max = 3, ss_max = 4, eu_max = 8;
	int s, ss;
164
	u32 fuse2, eu_disable;
165 166 167
	u8 eu_mask = 0xff;

	fuse2 = I915_READ(GEN8_FUSE2);
168
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
169 170 171 172 173

	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	*/
174 175 176
	sseu->subslice_mask = (1 << ss_max) - 1;
	sseu->subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
				 GEN9_F2_SS_DIS_SHIFT);
177 178 179 180 181 182

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	*/
	for (s = 0; s < s_max; s++) {
183
		if (!(sseu->slice_mask & BIT(s)))
184 185 186 187 188 189 190
			/* skip disabled slice */
			continue;

		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
		for (ss = 0; ss < ss_max; ss++) {
			int eu_per_ss;

191
			if (!(sseu->subslice_mask & BIT(ss)))
192 193 194 195 196 197 198 199 200 201 202 203
				/* skip disabled subslice */
				continue;

			eu_per_ss = eu_max - hweight8((eu_disable >> (ss*8)) &
						      eu_mask);

			/*
			 * Record which subslice(s) has(have) 7 EUs. we
			 * can tune the hash used to spread work among
			 * subslices if they are unbalanced.
			 */
			if (eu_per_ss == 7)
204
				sseu->subslice_7eu[s] |= BIT(ss);
205

206
			sseu->eu_total += eu_per_ss;
207 208 209 210 211 212 213 214 215 216
		}
	}

	/*
	 * SKL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery. BXT is expected to be perfectly uniform in EU
	 * distribution.
	*/
217
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
218
				DIV_ROUND_UP(sseu->eu_total,
219
					     sseu_subslice_total(sseu)) : 0;
220
	/*
221
	 * SKL+ supports slice power gating on devices with more than
222
	 * one slice, and supports EU power gating on devices with
223
	 * more than one EU pair per subslice. BXT+ supports subslice
224 225 226 227
	 * power gating on devices with more than one subslice, and
	 * supports EU power gating on devices with more than one EU
	 * pair per subslice.
	*/
228
	sseu->has_slice_pg =
229
		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
230
	sseu->has_subslice_pg =
231
		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
232
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
233

234
	if (IS_GEN9_LP(dev_priv)) {
235
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask & BIT(ss)))
236 237
		info->has_pooled_eu = hweight8(sseu->subslice_mask) == 3;

238 239 240 241 242 243 244
		/*
		 * There is a HW issue in 2x6 fused down parts that requires
		 * Pooled EU to be enabled as a WA. The pool configuration
		 * changes depending upon which subslice is fused down. This
		 * doesn't affect if the device has all 3 subslices enabled.
		 */
		/* WaEnablePooledEuFor2x6:bxt */
245 246
		info->has_pooled_eu |= (hweight8(sseu->subslice_mask) == 2 &&
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST));
247

248
		sseu->min_eu_in_pool = 0;
249
		if (info->has_pooled_eu) {
250
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
251
				sseu->min_eu_in_pool = 3;
252
			else if (IS_SS_DISABLED(1))
253
				sseu->min_eu_in_pool = 6;
254
			else
255
				sseu->min_eu_in_pool = 9;
256 257 258 259 260 261 262
		}
#undef IS_SS_DISABLED
	}
}

static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
{
263
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
264 265
	const int s_max = 3, ss_max = 3, eu_max = 8;
	int s, ss;
266
	u32 fuse2, eu_disable[3]; /* s_max */
267 268

	fuse2 = I915_READ(GEN8_FUSE2);
269
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
270 271 272 273
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
274
	sseu->subslice_mask = GENMASK(ss_max - 1, 0);
275 276
	sseu->subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
				 GEN8_F2_SS_DIS_SHIFT);
277 278 279 280 281 282 283 284 285 286 287 288 289 290

	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
			 (32 - GEN8_EU_DIS0_S1_SHIFT));
	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
			 (32 - GEN8_EU_DIS1_S2_SHIFT));

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
	for (s = 0; s < s_max; s++) {
291
		if (!(sseu->slice_mask & BIT(s)))
292 293 294 295 296 297
			/* skip disabled slice */
			continue;

		for (ss = 0; ss < ss_max; ss++) {
			u32 n_disabled;

298
			if (!(sseu->subslice_mask & BIT(ss)))
299 300 301 302 303 304 305 306 307
				/* skip disabled subslice */
				continue;

			n_disabled = hweight8(eu_disable[s] >> (ss * eu_max));

			/*
			 * Record which subslices have 7 EUs.
			 */
			if (eu_max - n_disabled == 7)
308
				sseu->subslice_7eu[s] |= 1 << ss;
309

310
			sseu->eu_total += eu_max - n_disabled;
311 312 313 314 315 316 317 318
		}
	}

	/*
	 * BDW is expected to always have a uniform distribution of EU across
	 * subslices with the exception that any one EU in any one subslice may
	 * be fused off for die recovery.
	 */
319 320 321
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;
322 323 324 325 326

	/*
	 * BDW supports slice power gating on devices with more than
	 * one slice.
	 */
327
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
328 329
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
330 331
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static u64 read_reference_ts_freq(struct drm_i915_private *dev_priv)
{
	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
	u64 base_freq, frac_freq;

	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
	base_freq *= 1000000;

	frac_freq = ((ts_override &
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
	if (frac_freq != 0)
		frac_freq = 1000000 / (frac_freq + 1);

	return base_freq + frac_freq;
}

static u64 read_timestamp_frequency(struct drm_i915_private *dev_priv)
{
	u64 f12_5_mhz = 12500000;
	u64 f19_2_mhz = 19200000;
	u64 f24_mhz = 24000000;

	if (INTEL_GEN(dev_priv) <= 4) {
		/* PRMs say:
		 *
		 *     "The value in this register increments once every 16
		 *      hclks." (through the “Clocking Configuration”
		 *      (“CLKCFG”) MCHBAR register)
		 */
		return (dev_priv->rawclk_freq * 1000) / 16;
	} else if (INTEL_GEN(dev_priv) <= 8) {
		/* PRMs say:
		 *
		 *     "The PCU TSC counts 10ns increments; this timestamp
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
		 *      rolling over every 1.5 hours).
		 */
		return f12_5_mhz;
	} else if (INTEL_GEN(dev_priv) <= 9) {
		u32 ctc_reg = I915_READ(CTC_MODE);
		u64 freq = 0;

		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;

			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
				      CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
	} else if (INTEL_GEN(dev_priv) <= 10) {
		u32 ctc_reg = I915_READ(CTC_MODE);
		u64 freq = 0;
		u32 rpm_config_reg = 0;

		/* First figure out the reference frequency. There are 2 ways
		 * we can compute the frequency, either through the
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
		 * tells us which one we should use.
		 */
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			u32 crystal_clock;

			rpm_config_reg = I915_READ(RPM_CONFIG0);
			crystal_clock = (rpm_config_reg &
					 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
				GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
			switch (crystal_clock) {
			case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
				freq = f19_2_mhz;
				break;
			case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
				freq = f24_mhz;
				break;
			}
		}

		/* Now figure out how the command stream's timestamp register
		 * increments from this frequency (it might increment only
		 * every few clock cycle).
		 */
		freq >>= 3 - ((rpm_config_reg &
			       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
			      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);

		return freq;
	}

	DRM_ERROR("Unknown gen, unable to compute command stream timestamp frequency\n");
	return 0;
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * Determine various intel_device_info fields at runtime.
 *
 * Use it when either:
 *   - it's judged too laborious to fill n static structures with the limit
 *     when a simple if statement does the job,
 *   - run-time checks (eg read fuse/strap registers) are needed.
 *
 * This function needs to be called:
 *   - after the MMIO has been setup as we are reading registers,
 *   - after the PCH has been detected,
 *   - before the first usage of the fields it can tweak.
 */
void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
	enum pipe pipe;

452 453 454 455
	if (INTEL_GEN(dev_priv) >= 10) {
		for_each_pipe(dev_priv, pipe)
			info->num_scalers[pipe] = 2;
	} else if (INTEL_GEN(dev_priv) == 9) {
456 457 458 459 460
		info->num_scalers[PIPE_A] = 2;
		info->num_scalers[PIPE_B] = 2;
		info->num_scalers[PIPE_C] = 1;
	}

461 462 463 464 465 466 467 468
	/*
	 * Skylake and Broxton currently don't expose the topmost plane as its
	 * use is exclusive with the legacy cursor and we only want to expose
	 * one of those, not both. Until we can safely expose the topmost plane
	 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
	 * we don't expose the topmost plane at all to prevent ABI breakage
	 * down the line.
	 */
469
	if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
470 471 472
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 3;
	else if (IS_BROXTON(dev_priv)) {
473 474 475
		info->num_sprites[PIPE_A] = 2;
		info->num_sprites[PIPE_B] = 2;
		info->num_sprites[PIPE_C] = 1;
476
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
477 478
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 2;
479
	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
480 481
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 1;
482
	}
483

484
	if (i915_modparams.disable_display) {
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
		DRM_INFO("Display disabled (module parameter)\n");
		info->num_pipes = 0;
	} else if (info->num_pipes > 0 &&
		   (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
		   HAS_PCH_SPLIT(dev_priv)) {
		u32 fuse_strap = I915_READ(FUSE_STRAP);
		u32 sfuse_strap = I915_READ(SFUSE_STRAP);

		/*
		 * SFUSE_STRAP is supposed to have a bit signalling the display
		 * is fused off. Unfortunately it seems that, at least in
		 * certain cases, fused off display means that PCH display
		 * reads don't land anywhere. In that case, we read 0s.
		 *
		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
		 * should be set when taking over after the firmware.
		 */
		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
504
		    (HAS_PCH_CPT(dev_priv) &&
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
			DRM_INFO("Display fused off, disabling\n");
			info->num_pipes = 0;
		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
			DRM_INFO("PipeC fused off\n");
			info->num_pipes -= 1;
		}
	} else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
		u32 dfsm = I915_READ(SKL_DFSM);
		u8 disabled_mask = 0;
		bool invalid;
		int num_bits;

		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
			disabled_mask |= BIT(PIPE_A);
		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
			disabled_mask |= BIT(PIPE_B);
		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
			disabled_mask |= BIT(PIPE_C);

		num_bits = hweight8(disabled_mask);

		switch (disabled_mask) {
		case BIT(PIPE_A):
		case BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_C):
			invalid = true;
			break;
		default:
			invalid = false;
		}

		if (num_bits > info->num_pipes || invalid)
			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
				  disabled_mask);
		else
			info->num_pipes -= num_bits;
	}

	/* Initialize slice/subslice/EU info */
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_sseu_info_init(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		broadwell_sseu_info_init(dev_priv);
550
	else if (INTEL_GEN(dev_priv) == 9)
551
		gen9_sseu_info_init(dev_priv);
552 553
	else if (INTEL_GEN(dev_priv) >= 10)
		gen10_sseu_info_init(dev_priv);
554

555 556 557
	/* Initialize command stream timestamp frequency */
	info->cs_timestamp_frequency = read_timestamp_frequency(dev_priv);

558
	DRM_DEBUG_DRIVER("slice mask: %04x\n", info->sseu.slice_mask);
559
	DRM_DEBUG_DRIVER("slice total: %u\n", hweight8(info->sseu.slice_mask));
560 561
	DRM_DEBUG_DRIVER("subslice total: %u\n",
			 sseu_subslice_total(&info->sseu));
562
	DRM_DEBUG_DRIVER("subslice mask %04x\n", info->sseu.subslice_mask);
563
	DRM_DEBUG_DRIVER("subslice per slice: %u\n",
564
			 hweight8(info->sseu.subslice_mask));
565 566
	DRM_DEBUG_DRIVER("EU total: %u\n", info->sseu.eu_total);
	DRM_DEBUG_DRIVER("EU per subslice: %u\n", info->sseu.eu_per_subslice);
567
	DRM_DEBUG_DRIVER("has slice power gating: %s\n",
568
			 info->sseu.has_slice_pg ? "y" : "n");
569
	DRM_DEBUG_DRIVER("has subslice power gating: %s\n",
570
			 info->sseu.has_subslice_pg ? "y" : "n");
571
	DRM_DEBUG_DRIVER("has EU power gating: %s\n",
572
			 info->sseu.has_eu_pg ? "y" : "n");
573 574
	DRM_DEBUG_DRIVER("CS timestamp frequency: %llu\n",
			 info->cs_timestamp_frequency);
575
}