intel_device_info.c 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "intel_device_info.h"
28 29
#include "i915_drv.h"

30 31 32 33 34 35 36 37 38 39 40 41
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
	PLATFORM_NAME(I830),
	PLATFORM_NAME(I845G),
	PLATFORM_NAME(I85X),
	PLATFORM_NAME(I865G),
	PLATFORM_NAME(I915G),
	PLATFORM_NAME(I915GM),
	PLATFORM_NAME(I945G),
	PLATFORM_NAME(I945GM),
	PLATFORM_NAME(G33),
	PLATFORM_NAME(PINEVIEW),
42 43
	PLATFORM_NAME(I965G),
	PLATFORM_NAME(I965GM),
44 45
	PLATFORM_NAME(G45),
	PLATFORM_NAME(GM45),
46 47 48 49 50 51 52 53 54 55 56
	PLATFORM_NAME(IRONLAKE),
	PLATFORM_NAME(SANDYBRIDGE),
	PLATFORM_NAME(IVYBRIDGE),
	PLATFORM_NAME(VALLEYVIEW),
	PLATFORM_NAME(HASWELL),
	PLATFORM_NAME(BROADWELL),
	PLATFORM_NAME(CHERRYVIEW),
	PLATFORM_NAME(SKYLAKE),
	PLATFORM_NAME(BROXTON),
	PLATFORM_NAME(KABYLAKE),
	PLATFORM_NAME(GEMINILAKE),
57
	PLATFORM_NAME(COFFEELAKE),
58
	PLATFORM_NAME(CANNONLAKE),
59
	PLATFORM_NAME(ICELAKE),
60 61 62 63 64
};
#undef PLATFORM_NAME

const char *intel_platform_name(enum intel_platform platform)
{
65 66
	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);

67 68 69 70 71 72 73
	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
			 platform_names[platform] == NULL))
		return "<unknown>";

	return platform_names[platform];
}

74 75 76 77 78 79 80 81
void intel_device_info_dump_flags(const struct intel_device_info *info,
				  struct drm_printer *p)
{
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
}

82 83
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
84 85
	int s;

86 87
	drm_printf(p, "slice total: %u, mask=%04x\n",
		   hweight8(sseu->slice_mask), sseu->slice_mask);
88
	drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
89 90
	for (s = 0; s < sseu->max_slices; s++) {
		drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
91 92 93
			   s, hweight8(sseu->subslice_mask[s]),
			   sseu->subslice_mask[s]);
	}
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	drm_printf(p, "EU total: %u\n", sseu->eu_total);
	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
	drm_printf(p, "has slice power gating: %s\n",
		   yesno(sseu->has_slice_pg));
	drm_printf(p, "has subslice power gating: %s\n",
		   yesno(sseu->has_subslice_pg));
	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}

void intel_device_info_dump_runtime(const struct intel_device_info *info,
				    struct drm_printer *p)
{
	sseu_dump(&info->sseu, p);

	drm_printf(p, "CS timestamp frequency: %u kHz\n",
		   info->cs_timestamp_frequency_khz);
}

112 113
void intel_device_info_dump(const struct intel_device_info *info,
			    struct drm_printer *p)
114
{
115 116
	struct drm_i915_private *dev_priv =
		container_of(info, struct drm_i915_private, info);
117

118 119 120 121 122
	drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
		   INTEL_DEVID(dev_priv),
		   INTEL_REVID(dev_priv),
		   intel_platform_name(info->platform),
		   info->gen);
123

124
	intel_device_info_dump_flags(info, p);
125 126
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
				     struct drm_printer *p)
{
	int s, ss;

	if (sseu->max_slices == 0) {
		drm_printf(p, "Unavailable\n");
		return;
	}

	for (s = 0; s < sseu->max_slices; s++) {
		drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
			   s, hweight8(sseu->subslice_mask[s]),
			   sseu->subslice_mask[s]);

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u16 enabled_eus = sseu_get_eus(sseu, s, ss);

			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
				   ss, hweight16(enabled_eus), enabled_eus);
		}
	}
}

151 152 153 154 155 156 157 158 159 160
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
	u16 i, total = 0;

	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
		total += hweight8(sseu->eu_mask[i]);

	return total;
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
	u8 s_en;
	u32 ss_en, ss_en_mask;
	u8 eu_en;
	int s;

	sseu->max_slices = 1;
	sseu->max_subslices = 8;
	sseu->max_eus_per_subslice = 8;

	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
	ss_en_mask = BIT(sseu->max_subslices) - 1;
	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);

	for (s = 0; s < sseu->max_slices; s++) {
		if (s_en & BIT(s)) {
			int ss_idx = sseu->max_subslices * s;
			int ss;

			sseu->slice_mask |= BIT(s);
			sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
			for (ss = 0; ss < sseu->max_subslices; ss++) {
				if (sseu->subslice_mask[s] & BIT(ss))
					sseu_set_eus(sseu, s, ss, eu_en);
			}
		}
	}
	sseu->eu_per_subslice = hweight8(eu_en);
	sseu->eu_total = compute_eu_total(sseu);

	/* ICL has no power gating restrictions. */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

200 201 202 203
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
	const u32 fuse2 = I915_READ(GEN8_FUSE2);
204 205 206
	int s, ss;
	const int eu_mask = 0xff;
	u32 subslice_mask, eu_en;
207 208 209

	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
			    GEN10_F2_S_ENA_SHIFT;
210 211 212
	sseu->max_slices = 6;
	sseu->max_subslices = 4;
	sseu->max_eus_per_subslice = 8;
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	subslice_mask = (1 << 4) - 1;
	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
			   GEN10_F2_SS_DIS_SHIFT);

	/*
	 * Slice0 can have up to 3 subslices, but there are only 2 in
	 * slice1/2.
	 */
	sseu->subslice_mask[0] = subslice_mask;
	for (s = 1; s < sseu->max_slices; s++)
		sseu->subslice_mask[s] = subslice_mask & 0x3;

	/* Slice0 */
	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
	for (ss = 0; ss < sseu->max_subslices; ss++)
		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
	/* Slice1 */
	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
	/* Slice2 */
	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
	/* Slice3 */
	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
	/* Slice4 */
	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
	/* Slice5 */
	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);

	/* Do a second pass where we mark the subslices disabled if all their
	 * eus are off.
	 */
	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			if (sseu_get_eus(sseu, s, ss) == 0)
				sseu->subslice_mask[s] &= ~BIT(ss);
		}
	}

	sseu->eu_total = compute_eu_total(sseu);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

	/*
	 * CNL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery.
	 */
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;

	/* No restrictions on Power Gating */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

277 278
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
279
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
280
	u32 fuse;
281 282 283

	fuse = I915_READ(CHV_FUSE_GT);

284
	sseu->slice_mask = BIT(0);
285 286 287
	sseu->max_slices = 1;
	sseu->max_subslices = 2;
	sseu->max_eus_per_subslice = 8;
288 289

	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
290 291 292 293 294 295 296 297
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);

		sseu->subslice_mask[0] |= BIT(0);
		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
298 299 300
	}

	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
301 302 303 304 305 306 307 308
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);

		sseu->subslice_mask[0] |= BIT(1);
		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
309 310
	}

311 312
	sseu->eu_total = compute_eu_total(sseu);

313 314 315 316
	/*
	 * CHV expected to always have a uniform distribution of EU
	 * across subslices.
	*/
317 318
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				sseu->eu_total / sseu_subslice_total(sseu) :
319 320 321 322 323 324
				0;
	/*
	 * CHV supports subslice power gating on devices with more than
	 * one subslice, and supports EU power gating on devices with
	 * more than one EU pair per subslice.
	*/
325
	sseu->has_slice_pg = 0;
326
	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
327
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
328 329 330 331 332
}

static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
333
	struct sseu_dev_info *sseu = &info->sseu;
334
	int s, ss;
335 336
	u32 fuse2, eu_disable, subslice_mask;
	const u8 eu_mask = 0xff;
337 338

	fuse2 = I915_READ(GEN8_FUSE2);
339
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
340

341 342 343 344 345
	/* BXT has a single slice and at most 3 subslices. */
	sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
	sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
	sseu->max_eus_per_subslice = 8;

346 347 348 349
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	*/
350 351 352
	subslice_mask = (1 << sseu->max_subslices) - 1;
	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
			   GEN9_F2_SS_DIS_SHIFT);
353 354 355 356 357

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	*/
358
	for (s = 0; s < sseu->max_slices; s++) {
359
		if (!(sseu->slice_mask & BIT(s)))
360 361 362
			/* skip disabled slice */
			continue;

363 364
		sseu->subslice_mask[s] = subslice_mask;

365
		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
366
		for (ss = 0; ss < sseu->max_subslices; ss++) {
367
			int eu_per_ss;
368
			u8 eu_disabled_mask;
369

370
			if (!(sseu->subslice_mask[s] & BIT(ss)))
371 372 373
				/* skip disabled subslice */
				continue;

374
			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
375 376 377 378 379

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			eu_per_ss = sseu->max_eus_per_subslice -
				hweight8(eu_disabled_mask);
380 381 382 383 384 385 386

			/*
			 * Record which subslice(s) has(have) 7 EUs. we
			 * can tune the hash used to spread work among
			 * subslices if they are unbalanced.
			 */
			if (eu_per_ss == 7)
387
				sseu->subslice_7eu[s] |= BIT(ss);
388 389 390
		}
	}

391 392
	sseu->eu_total = compute_eu_total(sseu);

393 394 395 396 397 398 399
	/*
	 * SKL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery. BXT is expected to be perfectly uniform in EU
	 * distribution.
	*/
400
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
401
				DIV_ROUND_UP(sseu->eu_total,
402
					     sseu_subslice_total(sseu)) : 0;
403
	/*
404
	 * SKL+ supports slice power gating on devices with more than
405
	 * one slice, and supports EU power gating on devices with
406
	 * more than one EU pair per subslice. BXT+ supports subslice
407 408 409 410
	 * power gating on devices with more than one subslice, and
	 * supports EU power gating on devices with more than one EU
	 * pair per subslice.
	*/
411
	sseu->has_slice_pg =
412
		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
413
	sseu->has_subslice_pg =
414
		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
415
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
416

417
	if (IS_GEN9_LP(dev_priv)) {
418 419
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
420

421
		sseu->min_eu_in_pool = 0;
422
		if (info->has_pooled_eu) {
423
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
424
				sseu->min_eu_in_pool = 3;
425
			else if (IS_SS_DISABLED(1))
426
				sseu->min_eu_in_pool = 6;
427
			else
428
				sseu->min_eu_in_pool = 9;
429 430 431 432 433 434 435
		}
#undef IS_SS_DISABLED
	}
}

static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
{
436
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
437
	int s, ss;
438
	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
439 440

	fuse2 = I915_READ(GEN8_FUSE2);
441
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
442 443 444 445
	sseu->max_slices = 3;
	sseu->max_subslices = 3;
	sseu->max_eus_per_subslice = 8;

446 447 448 449
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
450 451 452
	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
			   GEN8_F2_SS_DIS_SHIFT);
453 454 455 456 457 458 459 460 461 462 463 464 465

	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
			 (32 - GEN8_EU_DIS0_S1_SHIFT));
	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
			 (32 - GEN8_EU_DIS1_S2_SHIFT));

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
466
	for (s = 0; s < sseu->max_slices; s++) {
467
		if (!(sseu->slice_mask & BIT(s)))
468 469 470
			/* skip disabled slice */
			continue;

471 472 473 474
		sseu->subslice_mask[s] = subslice_mask;

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u8 eu_disabled_mask;
475 476
			u32 n_disabled;

477
			if (!(sseu->subslice_mask[ss] & BIT(ss)))
478 479 480
				/* skip disabled subslice */
				continue;

481 482 483 484 485 486
			eu_disabled_mask =
				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			n_disabled = hweight8(eu_disabled_mask);
487 488 489 490

			/*
			 * Record which subslices have 7 EUs.
			 */
491
			if (sseu->max_eus_per_subslice - n_disabled == 7)
492
				sseu->subslice_7eu[s] |= 1 << ss;
493 494 495
		}
	}

496 497
	sseu->eu_total = compute_eu_total(sseu);

498 499 500 501 502
	/*
	 * BDW is expected to always have a uniform distribution of EU across
	 * subslices with the exception that any one EU in any one subslice may
	 * be fused off for die recovery.
	 */
503 504 505
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;
506 507 508 509 510

	/*
	 * BDW supports slice power gating on devices with more than
	 * one slice.
	 */
511
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
512 513
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
514 515
}

516 517 518 519 520
static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
	struct sseu_dev_info *sseu = &info->sseu;
	u32 fuse1;
521
	int s, ss;
522 523 524 525 526 527 528 529 530 531 532

	/*
	 * There isn't a register to tell us how many slices/subslices. We
	 * work off the PCI-ids here.
	 */
	switch (info->gt) {
	default:
		MISSING_CASE(info->gt);
		/* fall through */
	case 1:
		sseu->slice_mask = BIT(0);
533
		sseu->subslice_mask[0] = BIT(0);
534 535 536
		break;
	case 2:
		sseu->slice_mask = BIT(0);
537
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
538 539 540
		break;
	case 3:
		sseu->slice_mask = BIT(0) | BIT(1);
541 542
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
		sseu->subslice_mask[1] = BIT(0) | BIT(1);
543 544 545
		break;
	}

546 547 548
	sseu->max_slices = hweight8(sseu->slice_mask);
	sseu->max_subslices = hweight8(sseu->subslice_mask[0]);

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	fuse1 = I915_READ(HSW_PAVP_FUSE1);
	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
	default:
		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
			     HSW_F1_EU_DIS_SHIFT);
		/* fall through */
	case HSW_F1_EU_DIS_10EUS:
		sseu->eu_per_subslice = 10;
		break;
	case HSW_F1_EU_DIS_8EUS:
		sseu->eu_per_subslice = 8;
		break;
	case HSW_F1_EU_DIS_6EUS:
		sseu->eu_per_subslice = 6;
		break;
	}
565 566 567 568 569 570 571 572
	sseu->max_eus_per_subslice = sseu->eu_per_subslice;

	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			sseu_set_eus(sseu, s, ss,
				     (1UL << sseu->eu_per_subslice) - 1);
		}
	}
573

574
	sseu->eu_total = compute_eu_total(sseu);
575 576 577 578 579 580 581

	/* No powergating for you. */
	sseu->has_slice_pg = 0;
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
}

L
Lionel Landwerlin 已提交
582
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
583 584
{
	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
L
Lionel Landwerlin 已提交
585
	u32 base_freq, frac_freq;
586 587 588

	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
L
Lionel Landwerlin 已提交
589
	base_freq *= 1000;
590 591 592 593

	frac_freq = ((ts_override &
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
L
Lionel Landwerlin 已提交
594
	frac_freq = 1000 / (frac_freq + 1);
595 596 597 598

	return base_freq + frac_freq;
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
	u32 crystal_clock = (rpm_config_reg &
			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
	u32 f25_mhz = 25000;
	u32 f38_4_mhz = 38400;
	u32 crystal_clock = (rpm_config_reg &
			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
		return f38_4_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
		return f25_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

L
Lionel Landwerlin 已提交
645
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
646
{
L
Lionel Landwerlin 已提交
647 648 649
	u32 f12_5_mhz = 12500;
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
650 651 652 653 654 655 656 657

	if (INTEL_GEN(dev_priv) <= 4) {
		/* PRMs say:
		 *
		 *     "The value in this register increments once every 16
		 *      hclks." (through the “Clocking Configuration”
		 *      (“CLKCFG”) MCHBAR register)
		 */
L
Lionel Landwerlin 已提交
658
		return dev_priv->rawclk_freq / 16;
659 660 661 662 663 664 665 666 667 668
	} else if (INTEL_GEN(dev_priv) <= 8) {
		/* PRMs say:
		 *
		 *     "The PCU TSC counts 10ns increments; this timestamp
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
		 *      rolling over every 1.5 hours).
		 */
		return f12_5_mhz;
	} else if (INTEL_GEN(dev_priv) <= 9) {
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
669
		u32 freq = 0;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;

			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
				      CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
685
	} else if (INTEL_GEN(dev_priv) <= 11) {
686
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
687
		u32 freq = 0;
688 689 690 691 692 693 694 695 696

		/* First figure out the reference frequency. There are 2 ways
		 * we can compute the frequency, either through the
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
		 * tells us which one we should use.
		 */
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
697 698 699 700 701 702 703 704
			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);

			if (INTEL_GEN(dev_priv) <= 10)
				freq = gen10_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
			else
				freq = gen11_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
705

706 707 708 709 710 711 712 713
			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((rpm_config_reg &
				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
		}
714 715 716 717

		return freq;
	}

718
	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
719 720 721
	return 0;
}

722 723 724 725
/**
 * intel_device_info_runtime_init - initialize runtime info
 * @info: intel device info struct
 *
726 727 728 729 730 731 732 733 734 735 736 737
 * Determine various intel_device_info fields at runtime.
 *
 * Use it when either:
 *   - it's judged too laborious to fill n static structures with the limit
 *     when a simple if statement does the job,
 *   - run-time checks (eg read fuse/strap registers) are needed.
 *
 * This function needs to be called:
 *   - after the MMIO has been setup as we are reading registers,
 *   - after the PCH has been detected,
 *   - before the first usage of the fields it can tweak.
 */
738
void intel_device_info_runtime_init(struct intel_device_info *info)
739
{
740 741
	struct drm_i915_private *dev_priv =
		container_of(info, struct drm_i915_private, info);
742 743
	enum pipe pipe;

744 745 746 747
	if (INTEL_GEN(dev_priv) >= 10) {
		for_each_pipe(dev_priv, pipe)
			info->num_scalers[pipe] = 2;
	} else if (INTEL_GEN(dev_priv) == 9) {
748 749 750 751 752
		info->num_scalers[PIPE_A] = 2;
		info->num_scalers[PIPE_B] = 2;
		info->num_scalers[PIPE_C] = 1;
	}

753
	BUILD_BUG_ON(I915_NUM_ENGINES > BITS_PER_TYPE(intel_ring_mask_t));
754

755 756 757 758 759 760 761 762
	/*
	 * Skylake and Broxton currently don't expose the topmost plane as its
	 * use is exclusive with the legacy cursor and we only want to expose
	 * one of those, not both. Until we can safely expose the topmost plane
	 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
	 * we don't expose the topmost plane at all to prevent ABI breakage
	 * down the line.
	 */
763
	if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
764 765 766
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 3;
	else if (IS_BROXTON(dev_priv)) {
767 768 769
		info->num_sprites[PIPE_A] = 2;
		info->num_sprites[PIPE_B] = 2;
		info->num_sprites[PIPE_C] = 1;
770
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
771 772
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 2;
773
	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
774 775
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 1;
776
	}
777

778
	if (i915_modparams.disable_display) {
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
		DRM_INFO("Display disabled (module parameter)\n");
		info->num_pipes = 0;
	} else if (info->num_pipes > 0 &&
		   (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
		   HAS_PCH_SPLIT(dev_priv)) {
		u32 fuse_strap = I915_READ(FUSE_STRAP);
		u32 sfuse_strap = I915_READ(SFUSE_STRAP);

		/*
		 * SFUSE_STRAP is supposed to have a bit signalling the display
		 * is fused off. Unfortunately it seems that, at least in
		 * certain cases, fused off display means that PCH display
		 * reads don't land anywhere. In that case, we read 0s.
		 *
		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
		 * should be set when taking over after the firmware.
		 */
		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
798
		    (HAS_PCH_CPT(dev_priv) &&
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
			DRM_INFO("Display fused off, disabling\n");
			info->num_pipes = 0;
		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
			DRM_INFO("PipeC fused off\n");
			info->num_pipes -= 1;
		}
	} else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
		u32 dfsm = I915_READ(SKL_DFSM);
		u8 disabled_mask = 0;
		bool invalid;
		int num_bits;

		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
			disabled_mask |= BIT(PIPE_A);
		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
			disabled_mask |= BIT(PIPE_B);
		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
			disabled_mask |= BIT(PIPE_C);

		num_bits = hweight8(disabled_mask);

		switch (disabled_mask) {
		case BIT(PIPE_A):
		case BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_C):
			invalid = true;
			break;
		default:
			invalid = false;
		}

		if (num_bits > info->num_pipes || invalid)
			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
				  disabled_mask);
		else
			info->num_pipes -= num_bits;
	}

	/* Initialize slice/subslice/EU info */
840 841 842
	if (IS_HASWELL(dev_priv))
		haswell_sseu_info_init(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
843 844 845
		cherryview_sseu_info_init(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		broadwell_sseu_info_init(dev_priv);
846
	else if (INTEL_GEN(dev_priv) == 9)
847
		gen9_sseu_info_init(dev_priv);
848
	else if (INTEL_GEN(dev_priv) == 10)
849
		gen10_sseu_info_init(dev_priv);
850
	else if (INTEL_GEN(dev_priv) >= 11)
851
		gen11_sseu_info_init(dev_priv);
852

853 854 855 856 857
	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
		DRM_INFO("Disabling ppGTT for VT-d support\n");
		info->ppgtt = INTEL_PPGTT_NONE;
	}

858
	/* Initialize command stream timestamp frequency */
L
Lionel Landwerlin 已提交
859
	info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
860
}
861 862 863 864

void intel_driver_caps_print(const struct intel_driver_caps *caps,
			     struct drm_printer *p)
{
865 866
	drm_printf(p, "Has logical contexts? %s\n",
		   yesno(caps->has_logical_contexts));
867 868
	drm_printf(p, "scheduler: %x\n", caps->scheduler);
}
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

/*
 * Determine which engines are fused off in our particular hardware. Since the
 * fuse register is in the blitter powerwell, we need forcewake to be ready at
 * this point (but later we need to prune the forcewake domains for engines that
 * are indeed fused off).
 */
void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
	u8 vdbox_disable, vebox_disable;
	u32 media_fuse;
	int i;

	if (INTEL_GEN(dev_priv) < 11)
		return;

	media_fuse = I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_disable = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_disable = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
			GEN11_GT_VEBOX_DISABLE_SHIFT;

	DRM_DEBUG_DRIVER("vdbox disable: %04x\n", vdbox_disable);
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(dev_priv, _VCS(i)))
			continue;

		if (!(BIT(i) & vdbox_disable))
			continue;

		info->ring_mask &= ~ENGINE_MASK(_VCS(i));
		DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
	}

	DRM_DEBUG_DRIVER("vebox disable: %04x\n", vebox_disable);
	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(dev_priv, _VECS(i)))
			continue;

		if (!(BIT(i) & vebox_disable))
			continue;

		info->ring_mask &= ~ENGINE_MASK(_VECS(i));
		DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
	}
}