intel_device_info.c 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "intel_device_info.h"
28 29
#include "i915_drv.h"

30 31 32 33 34 35 36 37 38 39 40 41
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
	PLATFORM_NAME(I830),
	PLATFORM_NAME(I845G),
	PLATFORM_NAME(I85X),
	PLATFORM_NAME(I865G),
	PLATFORM_NAME(I915G),
	PLATFORM_NAME(I915GM),
	PLATFORM_NAME(I945G),
	PLATFORM_NAME(I945GM),
	PLATFORM_NAME(G33),
	PLATFORM_NAME(PINEVIEW),
42 43
	PLATFORM_NAME(I965G),
	PLATFORM_NAME(I965GM),
44 45
	PLATFORM_NAME(G45),
	PLATFORM_NAME(GM45),
46 47 48 49 50 51 52 53 54 55 56
	PLATFORM_NAME(IRONLAKE),
	PLATFORM_NAME(SANDYBRIDGE),
	PLATFORM_NAME(IVYBRIDGE),
	PLATFORM_NAME(VALLEYVIEW),
	PLATFORM_NAME(HASWELL),
	PLATFORM_NAME(BROADWELL),
	PLATFORM_NAME(CHERRYVIEW),
	PLATFORM_NAME(SKYLAKE),
	PLATFORM_NAME(BROXTON),
	PLATFORM_NAME(KABYLAKE),
	PLATFORM_NAME(GEMINILAKE),
57
	PLATFORM_NAME(COFFEELAKE),
58
	PLATFORM_NAME(CANNONLAKE),
59
	PLATFORM_NAME(ICELAKE),
60 61 62 63 64
};
#undef PLATFORM_NAME

const char *intel_platform_name(enum intel_platform platform)
{
65 66
	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);

67 68 69 70 71 72 73
	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
			 platform_names[platform] == NULL))
		return "<unknown>";

	return platform_names[platform];
}

74 75 76 77 78 79 80 81
void intel_device_info_dump_flags(const struct intel_device_info *info,
				  struct drm_printer *p)
{
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
	drm_printf(p, "slice mask: %04x\n", sseu->slice_mask);
	drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask));
	drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
	drm_printf(p, "subslice mask %04x\n", sseu->subslice_mask);
	drm_printf(p, "subslice per slice: %u\n",
		   hweight8(sseu->subslice_mask));
	drm_printf(p, "EU total: %u\n", sseu->eu_total);
	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
	drm_printf(p, "has slice power gating: %s\n",
		   yesno(sseu->has_slice_pg));
	drm_printf(p, "has subslice power gating: %s\n",
		   yesno(sseu->has_subslice_pg));
	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}

void intel_device_info_dump_runtime(const struct intel_device_info *info,
				    struct drm_printer *p)
{
	sseu_dump(&info->sseu, p);

	drm_printf(p, "CS timestamp frequency: %u kHz\n",
		   info->cs_timestamp_frequency_khz);
}

108 109
void intel_device_info_dump(const struct intel_device_info *info,
			    struct drm_printer *p)
110
{
111 112
	struct drm_i915_private *dev_priv =
		container_of(info, struct drm_i915_private, info);
113

114 115 116 117 118
	drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
		   INTEL_DEVID(dev_priv),
		   INTEL_REVID(dev_priv),
		   intel_platform_name(info->platform),
		   info->gen);
119

120
	intel_device_info_dump_flags(info, p);
121 122
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
	const u32 fuse2 = I915_READ(GEN8_FUSE2);

	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
			    GEN10_F2_S_ENA_SHIFT;
	sseu->subslice_mask = (1 << 4) - 1;
	sseu->subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
				 GEN10_F2_SS_DIS_SHIFT);

	sseu->eu_total = hweight32(~I915_READ(GEN8_EU_DISABLE0));
	sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE1));
	sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE2));
	sseu->eu_total += hweight8(~(I915_READ(GEN10_EU_DISABLE3) &
				     GEN10_EU_DIS_SS_MASK));

	/*
	 * CNL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery.
	 */
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;

	/* No restrictions on Power Gating */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

156 157
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
158
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
159 160 161 162
	u32 fuse, eu_dis;

	fuse = I915_READ(CHV_FUSE_GT);

163
	sseu->slice_mask = BIT(0);
164 165

	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
166
		sseu->subslice_mask |= BIT(0);
167 168
		eu_dis = fuse & (CHV_FGT_EU_DIS_SS0_R0_MASK |
				 CHV_FGT_EU_DIS_SS0_R1_MASK);
169
		sseu->eu_total += 8 - hweight32(eu_dis);
170 171 172
	}

	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
173
		sseu->subslice_mask |= BIT(1);
174 175
		eu_dis = fuse & (CHV_FGT_EU_DIS_SS1_R0_MASK |
				 CHV_FGT_EU_DIS_SS1_R1_MASK);
176
		sseu->eu_total += 8 - hweight32(eu_dis);
177 178 179 180 181 182
	}

	/*
	 * CHV expected to always have a uniform distribution of EU
	 * across subslices.
	*/
183 184
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				sseu->eu_total / sseu_subslice_total(sseu) :
185 186 187 188 189 190
				0;
	/*
	 * CHV supports subslice power gating on devices with more than
	 * one subslice, and supports EU power gating on devices with
	 * more than one EU pair per subslice.
	*/
191
	sseu->has_slice_pg = 0;
192
	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
193
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
194 195 196 197 198
}

static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
199
	struct sseu_dev_info *sseu = &info->sseu;
200 201
	int s_max = 3, ss_max = 4, eu_max = 8;
	int s, ss;
202
	u32 fuse2, eu_disable;
203 204 205
	u8 eu_mask = 0xff;

	fuse2 = I915_READ(GEN8_FUSE2);
206
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
207 208 209 210 211

	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	*/
212 213 214
	sseu->subslice_mask = (1 << ss_max) - 1;
	sseu->subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
				 GEN9_F2_SS_DIS_SHIFT);
215 216 217 218 219 220

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	*/
	for (s = 0; s < s_max; s++) {
221
		if (!(sseu->slice_mask & BIT(s)))
222 223 224 225 226 227 228
			/* skip disabled slice */
			continue;

		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
		for (ss = 0; ss < ss_max; ss++) {
			int eu_per_ss;

229
			if (!(sseu->subslice_mask & BIT(ss)))
230 231 232 233 234 235 236 237 238 239 240 241
				/* skip disabled subslice */
				continue;

			eu_per_ss = eu_max - hweight8((eu_disable >> (ss*8)) &
						      eu_mask);

			/*
			 * Record which subslice(s) has(have) 7 EUs. we
			 * can tune the hash used to spread work among
			 * subslices if they are unbalanced.
			 */
			if (eu_per_ss == 7)
242
				sseu->subslice_7eu[s] |= BIT(ss);
243

244
			sseu->eu_total += eu_per_ss;
245 246 247 248 249 250 251 252 253 254
		}
	}

	/*
	 * SKL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery. BXT is expected to be perfectly uniform in EU
	 * distribution.
	*/
255
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
256
				DIV_ROUND_UP(sseu->eu_total,
257
					     sseu_subslice_total(sseu)) : 0;
258
	/*
259
	 * SKL+ supports slice power gating on devices with more than
260
	 * one slice, and supports EU power gating on devices with
261
	 * more than one EU pair per subslice. BXT+ supports subslice
262 263 264 265
	 * power gating on devices with more than one subslice, and
	 * supports EU power gating on devices with more than one EU
	 * pair per subslice.
	*/
266
	sseu->has_slice_pg =
267
		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
268
	sseu->has_subslice_pg =
269
		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
270
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
271

272
	if (IS_GEN9_LP(dev_priv)) {
273
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask & BIT(ss)))
274 275
		info->has_pooled_eu = hweight8(sseu->subslice_mask) == 3;

276
		sseu->min_eu_in_pool = 0;
277
		if (info->has_pooled_eu) {
278
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
279
				sseu->min_eu_in_pool = 3;
280
			else if (IS_SS_DISABLED(1))
281
				sseu->min_eu_in_pool = 6;
282
			else
283
				sseu->min_eu_in_pool = 9;
284 285 286 287 288 289 290
		}
#undef IS_SS_DISABLED
	}
}

static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
{
291
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
292 293
	const int s_max = 3, ss_max = 3, eu_max = 8;
	int s, ss;
294
	u32 fuse2, eu_disable[3]; /* s_max */
295 296

	fuse2 = I915_READ(GEN8_FUSE2);
297
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
298 299 300 301
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
302
	sseu->subslice_mask = GENMASK(ss_max - 1, 0);
303 304
	sseu->subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
				 GEN8_F2_SS_DIS_SHIFT);
305 306 307 308 309 310 311 312 313 314 315 316 317 318

	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
			 (32 - GEN8_EU_DIS0_S1_SHIFT));
	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
			 (32 - GEN8_EU_DIS1_S2_SHIFT));

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
	for (s = 0; s < s_max; s++) {
319
		if (!(sseu->slice_mask & BIT(s)))
320 321 322 323 324 325
			/* skip disabled slice */
			continue;

		for (ss = 0; ss < ss_max; ss++) {
			u32 n_disabled;

326
			if (!(sseu->subslice_mask & BIT(ss)))
327 328 329 330 331 332 333 334 335
				/* skip disabled subslice */
				continue;

			n_disabled = hweight8(eu_disable[s] >> (ss * eu_max));

			/*
			 * Record which subslices have 7 EUs.
			 */
			if (eu_max - n_disabled == 7)
336
				sseu->subslice_7eu[s] |= 1 << ss;
337

338
			sseu->eu_total += eu_max - n_disabled;
339 340 341 342 343 344 345 346
		}
	}

	/*
	 * BDW is expected to always have a uniform distribution of EU across
	 * subslices with the exception that any one EU in any one subslice may
	 * be fused off for die recovery.
	 */
347 348 349
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;
350 351 352 353 354

	/*
	 * BDW supports slice power gating on devices with more than
	 * one slice.
	 */
355
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
356 357
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
358 359
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
	struct sseu_dev_info *sseu = &info->sseu;
	u32 fuse1;

	/*
	 * There isn't a register to tell us how many slices/subslices. We
	 * work off the PCI-ids here.
	 */
	switch (info->gt) {
	default:
		MISSING_CASE(info->gt);
		/* fall through */
	case 1:
		sseu->slice_mask = BIT(0);
		sseu->subslice_mask = BIT(0);
		break;
	case 2:
		sseu->slice_mask = BIT(0);
		sseu->subslice_mask = BIT(0) | BIT(1);
		break;
	case 3:
		sseu->slice_mask = BIT(0) | BIT(1);
		sseu->subslice_mask = BIT(0) | BIT(1);
		break;
	}

	fuse1 = I915_READ(HSW_PAVP_FUSE1);
	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
	default:
		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
			     HSW_F1_EU_DIS_SHIFT);
		/* fall through */
	case HSW_F1_EU_DIS_10EUS:
		sseu->eu_per_subslice = 10;
		break;
	case HSW_F1_EU_DIS_8EUS:
		sseu->eu_per_subslice = 8;
		break;
	case HSW_F1_EU_DIS_6EUS:
		sseu->eu_per_subslice = 6;
		break;
	}

	sseu->eu_total = sseu_subslice_total(sseu) * sseu->eu_per_subslice;

	/* No powergating for you. */
	sseu->has_slice_pg = 0;
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
}

L
Lionel Landwerlin 已提交
413
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
414 415
{
	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
L
Lionel Landwerlin 已提交
416
	u32 base_freq, frac_freq;
417 418 419

	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
L
Lionel Landwerlin 已提交
420
	base_freq *= 1000;
421 422 423 424

	frac_freq = ((ts_override &
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
L
Lionel Landwerlin 已提交
425
	frac_freq = 1000 / (frac_freq + 1);
426 427 428 429

	return base_freq + frac_freq;
}

L
Lionel Landwerlin 已提交
430
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
431
{
L
Lionel Landwerlin 已提交
432 433 434
	u32 f12_5_mhz = 12500;
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
435 436 437 438 439 440 441 442

	if (INTEL_GEN(dev_priv) <= 4) {
		/* PRMs say:
		 *
		 *     "The value in this register increments once every 16
		 *      hclks." (through the “Clocking Configuration”
		 *      (“CLKCFG”) MCHBAR register)
		 */
L
Lionel Landwerlin 已提交
443
		return dev_priv->rawclk_freq / 16;
444 445 446 447 448 449 450 451 452 453
	} else if (INTEL_GEN(dev_priv) <= 8) {
		/* PRMs say:
		 *
		 *     "The PCU TSC counts 10ns increments; this timestamp
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
		 *      rolling over every 1.5 hours).
		 */
		return f12_5_mhz;
	} else if (INTEL_GEN(dev_priv) <= 9) {
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
454
		u32 freq = 0;
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;

			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
				      CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
	} else if (INTEL_GEN(dev_priv) <= 10) {
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
472
		u32 freq = 0;
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
		u32 rpm_config_reg = 0;

		/* First figure out the reference frequency. There are 2 ways
		 * we can compute the frequency, either through the
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
		 * tells us which one we should use.
		 */
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			u32 crystal_clock;

			rpm_config_reg = I915_READ(RPM_CONFIG0);
			crystal_clock = (rpm_config_reg &
					 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
				GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
			switch (crystal_clock) {
			case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
				freq = f19_2_mhz;
				break;
			case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
				freq = f24_mhz;
				break;
			}

498 499 500 501 502 503 504 505
			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((rpm_config_reg &
				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
		}
506 507 508 509

		return freq;
	}

510
	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
511 512 513
	return 0;
}

514 515 516 517
/**
 * intel_device_info_runtime_init - initialize runtime info
 * @info: intel device info struct
 *
518 519 520 521 522 523 524 525 526 527 528 529
 * Determine various intel_device_info fields at runtime.
 *
 * Use it when either:
 *   - it's judged too laborious to fill n static structures with the limit
 *     when a simple if statement does the job,
 *   - run-time checks (eg read fuse/strap registers) are needed.
 *
 * This function needs to be called:
 *   - after the MMIO has been setup as we are reading registers,
 *   - after the PCH has been detected,
 *   - before the first usage of the fields it can tweak.
 */
530
void intel_device_info_runtime_init(struct intel_device_info *info)
531
{
532 533
	struct drm_i915_private *dev_priv =
		container_of(info, struct drm_i915_private, info);
534 535
	enum pipe pipe;

536 537 538 539
	if (INTEL_GEN(dev_priv) >= 10) {
		for_each_pipe(dev_priv, pipe)
			info->num_scalers[pipe] = 2;
	} else if (INTEL_GEN(dev_priv) == 9) {
540 541 542 543 544
		info->num_scalers[PIPE_A] = 2;
		info->num_scalers[PIPE_B] = 2;
		info->num_scalers[PIPE_C] = 1;
	}

545 546 547
	BUILD_BUG_ON(I915_NUM_ENGINES >
		     sizeof(intel_ring_mask_t) * BITS_PER_BYTE);

548 549 550 551 552 553 554 555
	/*
	 * Skylake and Broxton currently don't expose the topmost plane as its
	 * use is exclusive with the legacy cursor and we only want to expose
	 * one of those, not both. Until we can safely expose the topmost plane
	 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
	 * we don't expose the topmost plane at all to prevent ABI breakage
	 * down the line.
	 */
556
	if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
557 558 559
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 3;
	else if (IS_BROXTON(dev_priv)) {
560 561 562
		info->num_sprites[PIPE_A] = 2;
		info->num_sprites[PIPE_B] = 2;
		info->num_sprites[PIPE_C] = 1;
563
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
564 565
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 2;
566
	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
567 568
		for_each_pipe(dev_priv, pipe)
			info->num_sprites[pipe] = 1;
569
	}
570

571
	if (i915_modparams.disable_display) {
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		DRM_INFO("Display disabled (module parameter)\n");
		info->num_pipes = 0;
	} else if (info->num_pipes > 0 &&
		   (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
		   HAS_PCH_SPLIT(dev_priv)) {
		u32 fuse_strap = I915_READ(FUSE_STRAP);
		u32 sfuse_strap = I915_READ(SFUSE_STRAP);

		/*
		 * SFUSE_STRAP is supposed to have a bit signalling the display
		 * is fused off. Unfortunately it seems that, at least in
		 * certain cases, fused off display means that PCH display
		 * reads don't land anywhere. In that case, we read 0s.
		 *
		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
		 * should be set when taking over after the firmware.
		 */
		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
591
		    (HAS_PCH_CPT(dev_priv) &&
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
			DRM_INFO("Display fused off, disabling\n");
			info->num_pipes = 0;
		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
			DRM_INFO("PipeC fused off\n");
			info->num_pipes -= 1;
		}
	} else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
		u32 dfsm = I915_READ(SKL_DFSM);
		u8 disabled_mask = 0;
		bool invalid;
		int num_bits;

		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
			disabled_mask |= BIT(PIPE_A);
		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
			disabled_mask |= BIT(PIPE_B);
		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
			disabled_mask |= BIT(PIPE_C);

		num_bits = hweight8(disabled_mask);

		switch (disabled_mask) {
		case BIT(PIPE_A):
		case BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_C):
			invalid = true;
			break;
		default:
			invalid = false;
		}

		if (num_bits > info->num_pipes || invalid)
			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
				  disabled_mask);
		else
			info->num_pipes -= num_bits;
	}

	/* Initialize slice/subslice/EU info */
633 634 635
	if (IS_HASWELL(dev_priv))
		haswell_sseu_info_init(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
636 637 638
		cherryview_sseu_info_init(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		broadwell_sseu_info_init(dev_priv);
639
	else if (INTEL_GEN(dev_priv) == 9)
640
		gen9_sseu_info_init(dev_priv);
641 642
	else if (INTEL_GEN(dev_priv) >= 10)
		gen10_sseu_info_init(dev_priv);
643

644
	/* Initialize command stream timestamp frequency */
L
Lionel Landwerlin 已提交
645
	info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
646
}
647 648 649 650 651 652

void intel_driver_caps_print(const struct intel_driver_caps *caps,
			     struct drm_printer *p)
{
	drm_printf(p, "scheduler: %x\n", caps->scheduler);
}