intel_device_info.c 32.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <drm/drm_print.h>
26
#include <drm/i915_pciids.h>
27

28
#include "display/intel_cdclk.h"
29
#include "intel_device_info.h"
30 31
#include "i915_drv.h"

32 33 34 35 36 37 38 39 40 41 42 43
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
	PLATFORM_NAME(I830),
	PLATFORM_NAME(I845G),
	PLATFORM_NAME(I85X),
	PLATFORM_NAME(I865G),
	PLATFORM_NAME(I915G),
	PLATFORM_NAME(I915GM),
	PLATFORM_NAME(I945G),
	PLATFORM_NAME(I945GM),
	PLATFORM_NAME(G33),
	PLATFORM_NAME(PINEVIEW),
44 45
	PLATFORM_NAME(I965G),
	PLATFORM_NAME(I965GM),
46 47
	PLATFORM_NAME(G45),
	PLATFORM_NAME(GM45),
48 49 50 51 52 53 54 55 56 57 58
	PLATFORM_NAME(IRONLAKE),
	PLATFORM_NAME(SANDYBRIDGE),
	PLATFORM_NAME(IVYBRIDGE),
	PLATFORM_NAME(VALLEYVIEW),
	PLATFORM_NAME(HASWELL),
	PLATFORM_NAME(BROADWELL),
	PLATFORM_NAME(CHERRYVIEW),
	PLATFORM_NAME(SKYLAKE),
	PLATFORM_NAME(BROXTON),
	PLATFORM_NAME(KABYLAKE),
	PLATFORM_NAME(GEMINILAKE),
59
	PLATFORM_NAME(COFFEELAKE),
60
	PLATFORM_NAME(CANNONLAKE),
61
	PLATFORM_NAME(ICELAKE),
62
	PLATFORM_NAME(ELKHARTLAKE),
63
	PLATFORM_NAME(TIGERLAKE),
64 65 66 67 68
};
#undef PLATFORM_NAME

const char *intel_platform_name(enum intel_platform platform)
{
69 70
	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);

71 72 73 74 75 76 77
	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
			 platform_names[platform] == NULL))
		return "<unknown>";

	return platform_names[platform];
}

78
static const char *iommu_name(void)
79
{
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	const char *msg = "n/a";

#ifdef CONFIG_INTEL_IOMMU
	msg = enableddisabled(intel_iommu_gfx_mapped);
#endif

	return msg;
}

void intel_device_info_print_static(const struct intel_device_info *info,
				    struct drm_printer *p)
{
	drm_printf(p, "engines: %x\n", info->engine_mask);
	drm_printf(p, "gen: %d\n", info->gen);
	drm_printf(p, "gt: %d\n", info->gt);
	drm_printf(p, "iommu: %s\n", iommu_name());
	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);

102 103 104
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
105 106 107 108

#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
109 110
}

111 112
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
113 114
	int s;

115 116
	drm_printf(p, "slice total: %u, mask=%04x\n",
		   hweight8(sseu->slice_mask), sseu->slice_mask);
117
	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
118
	for (s = 0; s < sseu->max_slices; s++) {
S
Stuart Summers 已提交
119
		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
120
			   s, intel_sseu_subslices_per_slice(sseu, s),
S
Stuart Summers 已提交
121
			   intel_sseu_get_subslices(sseu, s));
122
	}
123 124 125 126 127 128 129 130 131
	drm_printf(p, "EU total: %u\n", sseu->eu_total);
	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
	drm_printf(p, "has slice power gating: %s\n",
		   yesno(sseu->has_slice_pg));
	drm_printf(p, "has subslice power gating: %s\n",
		   yesno(sseu->has_subslice_pg));
	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}

132 133
void intel_device_info_print_runtime(const struct intel_runtime_info *info,
				     struct drm_printer *p)
134 135 136
{
	sseu_dump(&info->sseu, p);

137
	drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
138 139 140 141
	drm_printf(p, "CS timestamp frequency: %u kHz\n",
		   info->cs_timestamp_frequency_khz);
}

142 143 144
static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
		       int subslice)
{
145
	int slice_stride = sseu->max_subslices * sseu->eu_stride;
146

147
	return slice * slice_stride + subslice * sseu->eu_stride;
148 149 150 151 152 153 154 155
}

static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
			int subslice)
{
	int i, offset = sseu_eu_idx(sseu, slice, subslice);
	u16 eu_mask = 0;

156
	for (i = 0; i < sseu->eu_stride; i++) {
157 158 159 160 161 162 163 164 165 166 167 168
		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
			(i * BITS_PER_BYTE);
	}

	return eu_mask;
}

static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
			 u16 eu_mask)
{
	int i, offset = sseu_eu_idx(sseu, slice, subslice);

169
	for (i = 0; i < sseu->eu_stride; i++) {
170 171 172 173 174
		sseu->eu_mask[offset + i] =
			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
	}
}

175 176
void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
				      struct drm_printer *p)
177 178 179 180 181 182 183 184 185
{
	int s, ss;

	if (sseu->max_slices == 0) {
		drm_printf(p, "Unavailable\n");
		return;
	}

	for (s = 0; s < sseu->max_slices; s++) {
S
Stuart Summers 已提交
186
		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
187
			   s, intel_sseu_subslices_per_slice(sseu, s),
S
Stuart Summers 已提交
188
			   intel_sseu_get_subslices(sseu, s));
189 190 191 192 193 194 195 196 197 198

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u16 enabled_eus = sseu_get_eus(sseu, s, ss);

			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
				   ss, hweight16(enabled_eus), enabled_eus);
		}
	}
}

199 200 201 202 203 204 205 206 207 208
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
	u16 i, total = 0;

	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
		total += hweight8(sseu->eu_mask[i]);

	return total;
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
				    u8 s_en, u32 ss_en, u16 eu_en)
{
	int s, ss;

	/* ss_en represents entire subslice mask across all slices */
	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
		   sizeof(ss_en) * BITS_PER_BYTE);

	for (s = 0; s < sseu->max_slices; s++) {
		if ((s_en & BIT(s)) == 0)
			continue;

		sseu->slice_mask |= BIT(s);

		intel_sseu_set_subslices(sseu, s, ss_en);

		for (ss = 0; ss < sseu->max_subslices; ss++)
			if (intel_sseu_has_subslice(sseu, s, ss))
				sseu_set_eus(sseu, s, ss, eu_en);
	}
	sseu->eu_per_subslice = hweight16(eu_en);
	sseu->eu_total = compute_eu_total(sseu);
}

static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
	u8 s_en;
	u32 dss_en;
	u16 eu_en = 0;
	u8 eu_en_fuse;
	int eu;

	/*
	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
	 * Instead of splitting these, provide userspace with an array
	 * of DSS to more closely represent the hardware resource.
	 */
	intel_sseu_set_info(sseu, 1, 6, 16);

	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;

	dss_en = I915_READ(GEN12_GT_DSS_ENABLE);

	/* one bit per pair of EUs */
	eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
		if (eu_en_fuse & BIT(eu))
			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);

	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);

	/* TGL only supports slice-level power gating */
	sseu->has_slice_pg = 1;
}

266 267
static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
{
268
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
269
	u8 s_en;
270
	u32 ss_en;
271 272
	u8 eu_en;

273 274 275 276
	if (IS_ELKHARTLAKE(dev_priv))
		intel_sseu_set_info(sseu, 1, 4, 8);
	else
		intel_sseu_set_info(sseu, 1, 8, 8);
277 278 279 280 281

	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);

282
	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
283 284 285 286 287 288 289

	/* ICL has no power gating restrictions. */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

290 291
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
292
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
293
	const u32 fuse2 = I915_READ(GEN8_FUSE2);
294 295 296
	int s, ss;
	const int eu_mask = 0xff;
	u32 subslice_mask, eu_en;
297

298 299
	intel_sseu_set_info(sseu, 6, 4, 8);

300 301
	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
			    GEN10_F2_S_ENA_SHIFT;
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
	/* Slice0 */
	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
	for (ss = 0; ss < sseu->max_subslices; ss++)
		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
	/* Slice1 */
	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
	/* Slice2 */
	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
	/* Slice3 */
	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
	/* Slice4 */
	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
	/* Slice5 */
	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);

326 327 328 329
	subslice_mask = (1 << 4) - 1;
	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
			   GEN10_F2_SS_DIS_SHIFT);

330
	for (s = 0; s < sseu->max_slices; s++) {
331 332
		u32 subslice_mask_with_eus = subslice_mask;

333 334
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			if (sseu_get_eus(sseu, s, ss) == 0)
335
				subslice_mask_with_eus &= ~BIT(ss);
336
		}
337 338 339 340 341

		/*
		 * Slice0 can have up to 3 subslices, but there are only 2 in
		 * slice1/2.
		 */
342 343 344
		intel_sseu_set_subslices(sseu, s, s == 0 ?
						  subslice_mask_with_eus :
						  subslice_mask_with_eus & 0x3);
345 346 347
	}

	sseu->eu_total = compute_eu_total(sseu);
348 349 350 351 352 353 354

	/*
	 * CNL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery.
	 */
355
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
356
				DIV_ROUND_UP(sseu->eu_total,
357 358
					     intel_sseu_subslice_total(sseu)) :
				0;
359 360 361 362 363 364 365

	/* No restrictions on Power Gating */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

366 367
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
368
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
369
	u32 fuse;
370
	u8 subslice_mask = 0;
371 372 373

	fuse = I915_READ(CHV_FUSE_GT);

374
	sseu->slice_mask = BIT(0);
375
	intel_sseu_set_info(sseu, 1, 2, 8);
376 377

	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
378 379 380 381 382 383
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);

384
		subslice_mask |= BIT(0);
385
		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
386 387 388
	}

	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
389 390 391 392 393 394
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);

395
		subslice_mask |= BIT(1);
396
		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
397 398
	}

399
	intel_sseu_set_subslices(sseu, 0, subslice_mask);
400

401 402
	sseu->eu_total = compute_eu_total(sseu);

403 404 405 406
	/*
	 * CHV expected to always have a uniform distribution of EU
	 * across subslices.
	*/
407 408 409
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
				sseu->eu_total /
					intel_sseu_subslice_total(sseu) :
410 411 412 413 414 415
				0;
	/*
	 * CHV supports subslice power gating on devices with more than
	 * one subslice, and supports EU power gating on devices with
	 * more than one EU pair per subslice.
	*/
416
	sseu->has_slice_pg = 0;
417
	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
418
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
419 420 421 422 423
}

static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
424
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
425
	int s, ss;
426 427
	u32 fuse2, eu_disable, subslice_mask;
	const u8 eu_mask = 0xff;
428 429

	fuse2 = I915_READ(GEN8_FUSE2);
430
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
431

432
	/* BXT has a single slice and at most 3 subslices. */
433 434
	intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
			    IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
435

436 437 438 439
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	*/
440 441 442
	subslice_mask = (1 << sseu->max_subslices) - 1;
	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
			   GEN9_F2_SS_DIS_SHIFT);
443 444 445 446 447

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	*/
448
	for (s = 0; s < sseu->max_slices; s++) {
449
		if (!(sseu->slice_mask & BIT(s)))
450 451 452
			/* skip disabled slice */
			continue;

453
		intel_sseu_set_subslices(sseu, s, subslice_mask);
454

455
		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
456
		for (ss = 0; ss < sseu->max_subslices; ss++) {
457
			int eu_per_ss;
458
			u8 eu_disabled_mask;
459

460
			if (!intel_sseu_has_subslice(sseu, s, ss))
461 462 463
				/* skip disabled subslice */
				continue;

464
			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
465 466 467 468 469

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			eu_per_ss = sseu->max_eus_per_subslice -
				hweight8(eu_disabled_mask);
470 471 472 473 474 475 476

			/*
			 * Record which subslice(s) has(have) 7 EUs. we
			 * can tune the hash used to spread work among
			 * subslices if they are unbalanced.
			 */
			if (eu_per_ss == 7)
477
				sseu->subslice_7eu[s] |= BIT(ss);
478 479 480
		}
	}

481 482
	sseu->eu_total = compute_eu_total(sseu);

483 484 485 486 487 488 489
	/*
	 * SKL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery. BXT is expected to be perfectly uniform in EU
	 * distribution.
	*/
490
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
491
				DIV_ROUND_UP(sseu->eu_total,
492 493
					     intel_sseu_subslice_total(sseu)) :
				0;
494
	/*
495
	 * SKL+ supports slice power gating on devices with more than
496
	 * one slice, and supports EU power gating on devices with
497
	 * more than one EU pair per subslice. BXT+ supports subslice
498 499 500 501
	 * power gating on devices with more than one subslice, and
	 * supports EU power gating on devices with more than one EU
	 * pair per subslice.
	*/
502
	sseu->has_slice_pg =
503
		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
504
	sseu->has_subslice_pg =
505
		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
506
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
507

508
	if (IS_GEN9_LP(dev_priv)) {
509 510
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
511

512
		sseu->min_eu_in_pool = 0;
513
		if (info->has_pooled_eu) {
514
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
515
				sseu->min_eu_in_pool = 3;
516
			else if (IS_SS_DISABLED(1))
517
				sseu->min_eu_in_pool = 6;
518
			else
519
				sseu->min_eu_in_pool = 9;
520 521 522 523 524
		}
#undef IS_SS_DISABLED
	}
}

525
static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
526
{
527
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
528
	int s, ss;
529
	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
530 531

	fuse2 = I915_READ(GEN8_FUSE2);
532
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
533
	intel_sseu_set_info(sseu, 3, 3, 8);
534

535 536 537 538
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
539 540 541
	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
			   GEN8_F2_SS_DIS_SHIFT);
542 543 544 545 546 547 548 549 550 551 552 553 554

	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
			 (32 - GEN8_EU_DIS0_S1_SHIFT));
	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
			 (32 - GEN8_EU_DIS1_S2_SHIFT));

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
555
	for (s = 0; s < sseu->max_slices; s++) {
556
		if (!(sseu->slice_mask & BIT(s)))
557 558 559
			/* skip disabled slice */
			continue;

560
		intel_sseu_set_subslices(sseu, s, subslice_mask);
561 562 563

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u8 eu_disabled_mask;
564 565
			u32 n_disabled;

566
			if (!intel_sseu_has_subslice(sseu, s, ss))
567 568 569
				/* skip disabled subslice */
				continue;

570
			eu_disabled_mask =
571
				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
572 573 574 575

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			n_disabled = hweight8(eu_disabled_mask);
576 577 578 579

			/*
			 * Record which subslices have 7 EUs.
			 */
580
			if (sseu->max_eus_per_subslice - n_disabled == 7)
581
				sseu->subslice_7eu[s] |= 1 << ss;
582 583 584
		}
	}

585 586
	sseu->eu_total = compute_eu_total(sseu);

587 588 589 590 591
	/*
	 * BDW is expected to always have a uniform distribution of EU across
	 * subslices with the exception that any one EU in any one subslice may
	 * be fused off for die recovery.
	 */
592
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
593
				DIV_ROUND_UP(sseu->eu_total,
594 595
					     intel_sseu_subslice_total(sseu)) :
				0;
596 597 598 599 600

	/*
	 * BDW supports slice power gating on devices with more than
	 * one slice.
	 */
601
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
602 603
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
604 605
}

606
static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
607
{
608
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
609
	u32 fuse1;
610
	u8 subslice_mask = 0;
611
	int s, ss;
612 613 614 615 616

	/*
	 * There isn't a register to tell us how many slices/subslices. We
	 * work off the PCI-ids here.
	 */
617
	switch (INTEL_INFO(dev_priv)->gt) {
618
	default:
619
		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
620 621 622
		/* fall through */
	case 1:
		sseu->slice_mask = BIT(0);
623
		subslice_mask = BIT(0);
624 625 626
		break;
	case 2:
		sseu->slice_mask = BIT(0);
627
		subslice_mask = BIT(0) | BIT(1);
628 629 630
		break;
	case 3:
		sseu->slice_mask = BIT(0) | BIT(1);
631
		subslice_mask = BIT(0) | BIT(1);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
		break;
	}

	fuse1 = I915_READ(HSW_PAVP_FUSE1);
	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
	default:
		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
			     HSW_F1_EU_DIS_SHIFT);
		/* fall through */
	case HSW_F1_EU_DIS_10EUS:
		sseu->eu_per_subslice = 10;
		break;
	case HSW_F1_EU_DIS_8EUS:
		sseu->eu_per_subslice = 8;
		break;
	case HSW_F1_EU_DIS_6EUS:
		sseu->eu_per_subslice = 6;
		break;
	}
651 652

	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
653
			    hweight8(subslice_mask),
654
			    sseu->eu_per_subslice);
655 656

	for (s = 0; s < sseu->max_slices; s++) {
657
		intel_sseu_set_subslices(sseu, s, subslice_mask);
658

659 660 661 662 663
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			sseu_set_eus(sseu, s, ss,
				     (1UL << sseu->eu_per_subslice) - 1);
		}
	}
664

665
	sseu->eu_total = compute_eu_total(sseu);
666 667 668 669 670 671 672

	/* No powergating for you. */
	sseu->has_slice_pg = 0;
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
}

L
Lionel Landwerlin 已提交
673
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
674 675
{
	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
L
Lionel Landwerlin 已提交
676
	u32 base_freq, frac_freq;
677 678 679

	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
L
Lionel Landwerlin 已提交
680
	base_freq *= 1000;
681 682 683 684

	frac_freq = ((ts_override &
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
L
Lionel Landwerlin 已提交
685
	frac_freq = 1000 / (frac_freq + 1);
686 687 688 689

	return base_freq + frac_freq;
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
	u32 crystal_clock = (rpm_config_reg &
			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
	u32 f25_mhz = 25000;
	u32 f38_4_mhz = 38400;
	u32 crystal_clock = (rpm_config_reg &
			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
		return f38_4_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
		return f25_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

L
Lionel Landwerlin 已提交
736
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
737
{
L
Lionel Landwerlin 已提交
738 739 740
	u32 f12_5_mhz = 12500;
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
741 742 743 744 745 746 747 748

	if (INTEL_GEN(dev_priv) <= 4) {
		/* PRMs say:
		 *
		 *     "The value in this register increments once every 16
		 *      hclks." (through the “Clocking Configuration”
		 *      (“CLKCFG”) MCHBAR register)
		 */
749
		return RUNTIME_INFO(dev_priv)->rawclk_freq / 16;
750 751 752 753 754 755 756 757 758 759
	} else if (INTEL_GEN(dev_priv) <= 8) {
		/* PRMs say:
		 *
		 *     "The PCU TSC counts 10ns increments; this timestamp
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
		 *      rolling over every 1.5 hours).
		 */
		return f12_5_mhz;
	} else if (INTEL_GEN(dev_priv) <= 9) {
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
760
		u32 freq = 0;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;

			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
				      CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
776
	} else if (INTEL_GEN(dev_priv) <= 12) {
777
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
778
		u32 freq = 0;
779 780 781 782 783 784 785 786 787

		/* First figure out the reference frequency. There are 2 ways
		 * we can compute the frequency, either through the
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
		 * tells us which one we should use.
		 */
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
788 789 790 791 792 793 794 795
			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);

			if (INTEL_GEN(dev_priv) <= 10)
				freq = gen10_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
			else
				freq = gen11_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
796

797 798 799 800 801 802 803 804
			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((rpm_config_reg &
				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
		}
805 806 807 808

		return freq;
	}

809
	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
810 811 812
	return 0;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
#undef INTEL_VGA_DEVICE
#define INTEL_VGA_DEVICE(id, info) (id)

static const u16 subplatform_ult_ids[] = {
	INTEL_HSW_ULT_GT1_IDS(0),
	INTEL_HSW_ULT_GT2_IDS(0),
	INTEL_HSW_ULT_GT3_IDS(0),
	INTEL_BDW_ULT_GT1_IDS(0),
	INTEL_BDW_ULT_GT2_IDS(0),
	INTEL_BDW_ULT_GT3_IDS(0),
	INTEL_BDW_ULT_RSVD_IDS(0),
	INTEL_SKL_ULT_GT1_IDS(0),
	INTEL_SKL_ULT_GT2_IDS(0),
	INTEL_SKL_ULT_GT3_IDS(0),
	INTEL_KBL_ULT_GT1_IDS(0),
	INTEL_KBL_ULT_GT2_IDS(0),
	INTEL_KBL_ULT_GT3_IDS(0),
	INTEL_CFL_U_GT2_IDS(0),
	INTEL_CFL_U_GT3_IDS(0),
	INTEL_WHL_U_GT1_IDS(0),
	INTEL_WHL_U_GT2_IDS(0),
834
	INTEL_WHL_U_GT3_IDS(0),
835 836
	INTEL_CML_U_GT1_IDS(0),
	INTEL_CML_U_GT2_IDS(0),
837 838 839 840 841 842 843 844 845 846 847 848
};

static const u16 subplatform_ulx_ids[] = {
	INTEL_HSW_ULX_GT1_IDS(0),
	INTEL_HSW_ULX_GT2_IDS(0),
	INTEL_BDW_ULX_GT1_IDS(0),
	INTEL_BDW_ULX_GT2_IDS(0),
	INTEL_BDW_ULX_GT3_IDS(0),
	INTEL_BDW_ULX_RSVD_IDS(0),
	INTEL_SKL_ULX_GT1_IDS(0),
	INTEL_SKL_ULX_GT2_IDS(0),
	INTEL_KBL_ULX_GT1_IDS(0),
849
	INTEL_KBL_ULX_GT2_IDS(0),
850
	INTEL_AML_KBL_GT2_IDS(0),
851
	INTEL_AML_CFL_GT2_IDS(0),
852 853 854 855
};

static const u16 subplatform_portf_ids[] = {
	INTEL_CNL_PORT_F_IDS(0),
856
	INTEL_ICL_PORT_F_IDS(0),
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
};

static bool find_devid(u16 id, const u16 *p, unsigned int num)
{
	for (; num; num--, p++) {
		if (*p == id)
			return true;
	}

	return false;
}

void intel_device_info_subplatform_init(struct drm_i915_private *i915)
{
	const struct intel_device_info *info = INTEL_INFO(i915);
	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
	u16 devid = INTEL_DEVID(i915);
876
	u32 mask = 0;
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

	/* Make sure IS_<platform> checks are working. */
	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);

	/* Find and mark subplatform bits based on the PCI device id. */
	if (find_devid(devid, subplatform_ult_ids,
		       ARRAY_SIZE(subplatform_ult_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_ULT);
	} else if (find_devid(devid, subplatform_ulx_ids,
			      ARRAY_SIZE(subplatform_ulx_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_ULX);
		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
			/* ULX machines are also considered ULT. */
			mask |= BIT(INTEL_SUBPLATFORM_ULT);
		}
	} else if (find_devid(devid, subplatform_portf_ids,
			      ARRAY_SIZE(subplatform_portf_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_PORTF);
	}

	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);

	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
}

902 903
/**
 * intel_device_info_runtime_init - initialize runtime info
904
 * @dev_priv: the i915 device
905
 *
906 907 908 909 910 911 912 913 914 915 916 917
 * Determine various intel_device_info fields at runtime.
 *
 * Use it when either:
 *   - it's judged too laborious to fill n static structures with the limit
 *     when a simple if statement does the job,
 *   - run-time checks (eg read fuse/strap registers) are needed.
 *
 * This function needs to be called:
 *   - after the MMIO has been setup as we are reading registers,
 *   - after the PCH has been detected,
 *   - before the first usage of the fields it can tweak.
 */
918
void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
919
{
920
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
921
	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
922 923
	enum pipe pipe;

924 925
	if (INTEL_GEN(dev_priv) >= 10) {
		for_each_pipe(dev_priv, pipe)
926
			runtime->num_scalers[pipe] = 2;
927
	} else if (IS_GEN(dev_priv, 9)) {
928 929 930
		runtime->num_scalers[PIPE_A] = 2;
		runtime->num_scalers[PIPE_B] = 2;
		runtime->num_scalers[PIPE_C] = 1;
931 932
	}

933
	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
934

935
	if (INTEL_GEN(dev_priv) >= 11)
936
		for_each_pipe(dev_priv, pipe)
937
			runtime->num_sprites[pipe] = 6;
938
	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
939
		for_each_pipe(dev_priv, pipe)
940
			runtime->num_sprites[pipe] = 3;
941
	else if (IS_BROXTON(dev_priv)) {
942 943 944 945 946 947 948 949 950
		/*
		 * Skylake and Broxton currently don't expose the topmost plane as its
		 * use is exclusive with the legacy cursor and we only want to expose
		 * one of those, not both. Until we can safely expose the topmost plane
		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
		 * we don't expose the topmost plane at all to prevent ABI breakage
		 * down the line.
		 */

951 952 953
		runtime->num_sprites[PIPE_A] = 2;
		runtime->num_sprites[PIPE_B] = 2;
		runtime->num_sprites[PIPE_C] = 1;
954
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
955
		for_each_pipe(dev_priv, pipe)
956
			runtime->num_sprites[pipe] = 2;
957
	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
958
		for_each_pipe(dev_priv, pipe)
959
			runtime->num_sprites[pipe] = 1;
960
	}
961

962 963
	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
	    HAS_PCH_SPLIT(dev_priv)) {
964 965 966 967 968 969 970 971 972 973 974 975 976 977
		u32 fuse_strap = I915_READ(FUSE_STRAP);
		u32 sfuse_strap = I915_READ(SFUSE_STRAP);

		/*
		 * SFUSE_STRAP is supposed to have a bit signalling the display
		 * is fused off. Unfortunately it seems that, at least in
		 * certain cases, fused off display means that PCH display
		 * reads don't land anywhere. In that case, we read 0s.
		 *
		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
		 * should be set when taking over after the firmware.
		 */
		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
978
		    (HAS_PCH_CPT(dev_priv) &&
979
		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
980 981
			drm_info(&dev_priv->drm,
				 "Display fused off, disabling\n");
982
			info->pipe_mask = 0;
983
		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
984
			drm_info(&dev_priv->drm, "PipeC fused off\n");
985
			info->pipe_mask &= ~BIT(PIPE_C);
986
		}
987
	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
988
		u32 dfsm = I915_READ(SKL_DFSM);
989
		u8 enabled_mask = info->pipe_mask;
990 991

		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
992
			enabled_mask &= ~BIT(PIPE_A);
993
		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
994
			enabled_mask &= ~BIT(PIPE_B);
995
		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
996
			enabled_mask &= ~BIT(PIPE_C);
997 998 999
		if (INTEL_GEN(dev_priv) >= 12 &&
		    (dfsm & TGL_DFSM_PIPE_D_DISABLE))
			enabled_mask &= ~BIT(PIPE_D);
1000

1001
		info->pipe_mask = enabled_mask;
1002 1003 1004

		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
			info->display.has_hdcp = 0;
1005 1006 1007

		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
			info->display.has_fbc = 0;
1008 1009 1010

		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
			info->display.has_csr = 0;
1011 1012 1013 1014

		if (INTEL_GEN(dev_priv) >= 10 &&
		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
			info->display.has_dsc = 0;
1015 1016 1017
	}

	/* Initialize slice/subslice/EU info */
1018
	if (IS_HASWELL(dev_priv))
1019
		hsw_sseu_info_init(dev_priv);
1020
	else if (IS_CHERRYVIEW(dev_priv))
1021 1022
		cherryview_sseu_info_init(dev_priv);
	else if (IS_BROADWELL(dev_priv))
1023
		bdw_sseu_info_init(dev_priv);
1024
	else if (IS_GEN(dev_priv, 9))
1025
		gen9_sseu_info_init(dev_priv);
1026
	else if (IS_GEN(dev_priv, 10))
1027
		gen10_sseu_info_init(dev_priv);
1028
	else if (IS_GEN(dev_priv, 11))
1029
		gen11_sseu_info_init(dev_priv);
1030 1031
	else if (INTEL_GEN(dev_priv) >= 12)
		gen12_sseu_info_init(dev_priv);
1032

1033
	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
1034 1035
		drm_info(&dev_priv->drm,
			 "Disabling ppGTT for VT-d support\n");
1036
		info->ppgtt_type = INTEL_PPGTT_NONE;
1037 1038
	}

1039 1040 1041
	runtime->rawclk_freq = intel_read_rawclk(dev_priv);
	drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);

1042
	/* Initialize command stream timestamp frequency */
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	runtime->cs_timestamp_frequency_khz =
		read_timestamp_frequency(dev_priv);
	if (runtime->cs_timestamp_frequency_khz) {
		runtime->cs_timestamp_period_ns =
			div_u64(1e6, runtime->cs_timestamp_frequency_khz);
		drm_dbg(&dev_priv->drm,
			"CS timestamp wraparound in %lldms\n",
			div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
					    S32_MAX),
				USEC_PER_SEC));
	}
1054
}
1055 1056 1057 1058

void intel_driver_caps_print(const struct intel_driver_caps *caps,
			     struct drm_printer *p)
{
1059 1060
	drm_printf(p, "Has logical contexts? %s\n",
		   yesno(caps->has_logical_contexts));
1061 1062
	drm_printf(p, "scheduler: %x\n", caps->scheduler);
}
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

/*
 * Determine which engines are fused off in our particular hardware. Since the
 * fuse register is in the blitter powerwell, we need forcewake to be ready at
 * this point (but later we need to prune the forcewake domains for engines that
 * are indeed fused off).
 */
void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
1073
	unsigned int logical_vdbox = 0;
1074
	unsigned int i;
1075
	u32 media_fuse;
1076 1077
	u16 vdbox_mask;
	u16 vebox_mask;
1078 1079 1080 1081

	if (INTEL_GEN(dev_priv) < 11)
		return;

1082
	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1083

1084 1085 1086
	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;
1087 1088

	for (i = 0; i < I915_MAX_VCS; i++) {
1089 1090
		if (!HAS_ENGINE(dev_priv, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
1091
			continue;
1092
		}
1093

1094
		if (!(BIT(i) & vdbox_mask)) {
1095
			info->engine_mask &= ~BIT(_VCS(i));
1096
			drm_dbg(&dev_priv->drm, "vcs%u fused off\n", i);
1097
			continue;
1098
		}
1099 1100 1101 1102

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
1103
		 * In TGL each VDBOX has access to an SFC.
1104
		 */
1105
		if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
1106
			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1107
	}
1108 1109
	drm_dbg(&dev_priv->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(dev_priv));
1110
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1111 1112

	for (i = 0; i < I915_MAX_VECS; i++) {
1113 1114
		if (!HAS_ENGINE(dev_priv, _VECS(i))) {
			vebox_mask &= ~BIT(i);
1115
			continue;
1116
		}
1117

1118
		if (!(BIT(i) & vebox_mask)) {
1119
			info->engine_mask &= ~BIT(_VECS(i));
1120
			drm_dbg(&dev_priv->drm, "vecs%u fused off\n", i);
1121
		}
1122
	}
1123 1124
	drm_dbg(&dev_priv->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(dev_priv));
1125
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1126
}