intel_device_info.c 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "intel_device_info.h"
28 29
#include "i915_drv.h"

30 31 32 33 34 35 36 37 38 39 40 41
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
	PLATFORM_NAME(I830),
	PLATFORM_NAME(I845G),
	PLATFORM_NAME(I85X),
	PLATFORM_NAME(I865G),
	PLATFORM_NAME(I915G),
	PLATFORM_NAME(I915GM),
	PLATFORM_NAME(I945G),
	PLATFORM_NAME(I945GM),
	PLATFORM_NAME(G33),
	PLATFORM_NAME(PINEVIEW),
42 43
	PLATFORM_NAME(I965G),
	PLATFORM_NAME(I965GM),
44 45
	PLATFORM_NAME(G45),
	PLATFORM_NAME(GM45),
46 47 48 49 50 51 52 53 54 55 56
	PLATFORM_NAME(IRONLAKE),
	PLATFORM_NAME(SANDYBRIDGE),
	PLATFORM_NAME(IVYBRIDGE),
	PLATFORM_NAME(VALLEYVIEW),
	PLATFORM_NAME(HASWELL),
	PLATFORM_NAME(BROADWELL),
	PLATFORM_NAME(CHERRYVIEW),
	PLATFORM_NAME(SKYLAKE),
	PLATFORM_NAME(BROXTON),
	PLATFORM_NAME(KABYLAKE),
	PLATFORM_NAME(GEMINILAKE),
57
	PLATFORM_NAME(COFFEELAKE),
58
	PLATFORM_NAME(CANNONLAKE),
59
	PLATFORM_NAME(ICELAKE),
60
	PLATFORM_NAME(ELKHARTLAKE),
61 62 63 64 65
};
#undef PLATFORM_NAME

const char *intel_platform_name(enum intel_platform platform)
{
66 67
	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);

68 69 70 71 72 73 74
	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
			 platform_names[platform] == NULL))
		return "<unknown>";

	return platform_names[platform];
}

75 76 77 78 79 80
void intel_device_info_dump_flags(const struct intel_device_info *info,
				  struct drm_printer *p)
{
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
81 82 83 84

#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
85 86
}

87 88
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
89 90
	int s;

91 92
	drm_printf(p, "slice total: %u, mask=%04x\n",
		   hweight8(sseu->slice_mask), sseu->slice_mask);
93
	drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
94 95
	for (s = 0; s < sseu->max_slices; s++) {
		drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
96 97 98
			   s, hweight8(sseu->subslice_mask[s]),
			   sseu->subslice_mask[s]);
	}
99 100 101 102 103 104 105 106 107
	drm_printf(p, "EU total: %u\n", sseu->eu_total);
	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
	drm_printf(p, "has slice power gating: %s\n",
		   yesno(sseu->has_slice_pg));
	drm_printf(p, "has subslice power gating: %s\n",
		   yesno(sseu->has_subslice_pg));
	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}

108
void intel_device_info_dump_runtime(const struct intel_runtime_info *info,
109 110 111 112 113 114 115 116
				    struct drm_printer *p)
{
	sseu_dump(&info->sseu, p);

	drm_printf(p, "CS timestamp frequency: %u kHz\n",
		   info->cs_timestamp_frequency_khz);
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
				     struct drm_printer *p)
{
	int s, ss;

	if (sseu->max_slices == 0) {
		drm_printf(p, "Unavailable\n");
		return;
	}

	for (s = 0; s < sseu->max_slices; s++) {
		drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
			   s, hweight8(sseu->subslice_mask[s]),
			   sseu->subslice_mask[s]);

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u16 enabled_eus = sseu_get_eus(sseu, s, ss);

			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
				   ss, hweight16(enabled_eus), enabled_eus);
		}
	}
}

141 142 143 144 145 146 147 148 149 150
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
	u16 i, total = 0;

	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
		total += hweight8(sseu->eu_mask[i]);

	return total;
}

151 152
static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
{
153
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
154 155 156 157 158
	u8 s_en;
	u32 ss_en, ss_en_mask;
	u8 eu_en;
	int s;

159 160 161 162 163 164 165 166 167
	if (IS_ELKHARTLAKE(dev_priv)) {
		sseu->max_slices = 1;
		sseu->max_subslices = 4;
		sseu->max_eus_per_subslice = 8;
	} else {
		sseu->max_slices = 1;
		sseu->max_subslices = 8;
		sseu->max_eus_per_subslice = 8;
	}
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
	ss_en_mask = BIT(sseu->max_subslices) - 1;
	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);

	for (s = 0; s < sseu->max_slices; s++) {
		if (s_en & BIT(s)) {
			int ss_idx = sseu->max_subslices * s;
			int ss;

			sseu->slice_mask |= BIT(s);
			sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
			for (ss = 0; ss < sseu->max_subslices; ss++) {
				if (sseu->subslice_mask[s] & BIT(ss))
					sseu_set_eus(sseu, s, ss, eu_en);
			}
		}
	}
	sseu->eu_per_subslice = hweight8(eu_en);
	sseu->eu_total = compute_eu_total(sseu);

	/* ICL has no power gating restrictions. */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

196 197
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
198
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
199
	const u32 fuse2 = I915_READ(GEN8_FUSE2);
200 201 202
	int s, ss;
	const int eu_mask = 0xff;
	u32 subslice_mask, eu_en;
203 204 205

	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
			    GEN10_F2_S_ENA_SHIFT;
206 207 208
	sseu->max_slices = 6;
	sseu->max_subslices = 4;
	sseu->max_eus_per_subslice = 8;
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	subslice_mask = (1 << 4) - 1;
	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
			   GEN10_F2_SS_DIS_SHIFT);

	/*
	 * Slice0 can have up to 3 subslices, but there are only 2 in
	 * slice1/2.
	 */
	sseu->subslice_mask[0] = subslice_mask;
	for (s = 1; s < sseu->max_slices; s++)
		sseu->subslice_mask[s] = subslice_mask & 0x3;

	/* Slice0 */
	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
	for (ss = 0; ss < sseu->max_subslices; ss++)
		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
	/* Slice1 */
	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
	/* Slice2 */
	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
	/* Slice3 */
	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
	/* Slice4 */
	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
	/* Slice5 */
	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);

	/* Do a second pass where we mark the subslices disabled if all their
	 * eus are off.
	 */
	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			if (sseu_get_eus(sseu, s, ss) == 0)
				sseu->subslice_mask[s] &= ~BIT(ss);
		}
	}

	sseu->eu_total = compute_eu_total(sseu);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

	/*
	 * CNL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery.
	 */
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;

	/* No restrictions on Power Gating */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

273 274
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
275
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
276
	u32 fuse;
277 278 279

	fuse = I915_READ(CHV_FUSE_GT);

280
	sseu->slice_mask = BIT(0);
281 282 283
	sseu->max_slices = 1;
	sseu->max_subslices = 2;
	sseu->max_eus_per_subslice = 8;
284 285

	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
286 287 288 289 290 291 292 293
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);

		sseu->subslice_mask[0] |= BIT(0);
		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
294 295 296
	}

	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
297 298 299 300 301 302 303 304
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);

		sseu->subslice_mask[0] |= BIT(1);
		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
305 306
	}

307 308
	sseu->eu_total = compute_eu_total(sseu);

309 310 311 312
	/*
	 * CHV expected to always have a uniform distribution of EU
	 * across subslices.
	*/
313 314
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				sseu->eu_total / sseu_subslice_total(sseu) :
315 316 317 318 319 320
				0;
	/*
	 * CHV supports subslice power gating on devices with more than
	 * one subslice, and supports EU power gating on devices with
	 * more than one EU pair per subslice.
	*/
321
	sseu->has_slice_pg = 0;
322
	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
323
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
324 325 326 327 328
}

static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
329
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
330
	int s, ss;
331 332
	u32 fuse2, eu_disable, subslice_mask;
	const u8 eu_mask = 0xff;
333 334

	fuse2 = I915_READ(GEN8_FUSE2);
335
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
336

337 338 339 340 341
	/* BXT has a single slice and at most 3 subslices. */
	sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
	sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
	sseu->max_eus_per_subslice = 8;

342 343 344 345
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	*/
346 347 348
	subslice_mask = (1 << sseu->max_subslices) - 1;
	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
			   GEN9_F2_SS_DIS_SHIFT);
349 350 351 352 353

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	*/
354
	for (s = 0; s < sseu->max_slices; s++) {
355
		if (!(sseu->slice_mask & BIT(s)))
356 357 358
			/* skip disabled slice */
			continue;

359 360
		sseu->subslice_mask[s] = subslice_mask;

361
		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
362
		for (ss = 0; ss < sseu->max_subslices; ss++) {
363
			int eu_per_ss;
364
			u8 eu_disabled_mask;
365

366
			if (!(sseu->subslice_mask[s] & BIT(ss)))
367 368 369
				/* skip disabled subslice */
				continue;

370
			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
371 372 373 374 375

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			eu_per_ss = sseu->max_eus_per_subslice -
				hweight8(eu_disabled_mask);
376 377 378 379 380 381 382

			/*
			 * Record which subslice(s) has(have) 7 EUs. we
			 * can tune the hash used to spread work among
			 * subslices if they are unbalanced.
			 */
			if (eu_per_ss == 7)
383
				sseu->subslice_7eu[s] |= BIT(ss);
384 385 386
		}
	}

387 388
	sseu->eu_total = compute_eu_total(sseu);

389 390 391 392 393 394 395
	/*
	 * SKL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery. BXT is expected to be perfectly uniform in EU
	 * distribution.
	*/
396
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
397
				DIV_ROUND_UP(sseu->eu_total,
398
					     sseu_subslice_total(sseu)) : 0;
399
	/*
400
	 * SKL+ supports slice power gating on devices with more than
401
	 * one slice, and supports EU power gating on devices with
402
	 * more than one EU pair per subslice. BXT+ supports subslice
403 404 405 406
	 * power gating on devices with more than one subslice, and
	 * supports EU power gating on devices with more than one EU
	 * pair per subslice.
	*/
407
	sseu->has_slice_pg =
408
		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
409
	sseu->has_subslice_pg =
410
		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
411
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
412

413
	if (IS_GEN9_LP(dev_priv)) {
414 415
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
416

417
		sseu->min_eu_in_pool = 0;
418
		if (info->has_pooled_eu) {
419
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
420
				sseu->min_eu_in_pool = 3;
421
			else if (IS_SS_DISABLED(1))
422
				sseu->min_eu_in_pool = 6;
423
			else
424
				sseu->min_eu_in_pool = 9;
425 426 427 428 429 430 431
		}
#undef IS_SS_DISABLED
	}
}

static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
{
432
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
433
	int s, ss;
434
	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
435 436

	fuse2 = I915_READ(GEN8_FUSE2);
437
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
438 439 440 441
	sseu->max_slices = 3;
	sseu->max_subslices = 3;
	sseu->max_eus_per_subslice = 8;

442 443 444 445
	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
446 447 448
	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
			   GEN8_F2_SS_DIS_SHIFT);
449 450 451 452 453 454 455 456 457 458 459 460 461

	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
			 (32 - GEN8_EU_DIS0_S1_SHIFT));
	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
			 (32 - GEN8_EU_DIS1_S2_SHIFT));

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
462
	for (s = 0; s < sseu->max_slices; s++) {
463
		if (!(sseu->slice_mask & BIT(s)))
464 465 466
			/* skip disabled slice */
			continue;

467 468 469 470
		sseu->subslice_mask[s] = subslice_mask;

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u8 eu_disabled_mask;
471 472
			u32 n_disabled;

473
			if (!(sseu->subslice_mask[s] & BIT(ss)))
474 475 476
				/* skip disabled subslice */
				continue;

477 478 479 480 481 482
			eu_disabled_mask =
				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);

			n_disabled = hweight8(eu_disabled_mask);
483 484 485 486

			/*
			 * Record which subslices have 7 EUs.
			 */
487
			if (sseu->max_eus_per_subslice - n_disabled == 7)
488
				sseu->subslice_7eu[s] |= 1 << ss;
489 490 491
		}
	}

492 493
	sseu->eu_total = compute_eu_total(sseu);

494 495 496 497 498
	/*
	 * BDW is expected to always have a uniform distribution of EU across
	 * subslices with the exception that any one EU in any one subslice may
	 * be fused off for die recovery.
	 */
499 500 501
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
				DIV_ROUND_UP(sseu->eu_total,
					     sseu_subslice_total(sseu)) : 0;
502 503 504 505 506

	/*
	 * BDW supports slice power gating on devices with more than
	 * one slice.
	 */
507
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
508 509
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
510 511
}

512 513
static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
{
514
	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
515
	u32 fuse1;
516
	int s, ss;
517 518 519 520 521

	/*
	 * There isn't a register to tell us how many slices/subslices. We
	 * work off the PCI-ids here.
	 */
522
	switch (INTEL_INFO(dev_priv)->gt) {
523
	default:
524
		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
525 526 527
		/* fall through */
	case 1:
		sseu->slice_mask = BIT(0);
528
		sseu->subslice_mask[0] = BIT(0);
529 530 531
		break;
	case 2:
		sseu->slice_mask = BIT(0);
532
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
533 534 535
		break;
	case 3:
		sseu->slice_mask = BIT(0) | BIT(1);
536 537
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
		sseu->subslice_mask[1] = BIT(0) | BIT(1);
538 539 540
		break;
	}

541 542 543
	sseu->max_slices = hweight8(sseu->slice_mask);
	sseu->max_subslices = hweight8(sseu->subslice_mask[0]);

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	fuse1 = I915_READ(HSW_PAVP_FUSE1);
	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
	default:
		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
			     HSW_F1_EU_DIS_SHIFT);
		/* fall through */
	case HSW_F1_EU_DIS_10EUS:
		sseu->eu_per_subslice = 10;
		break;
	case HSW_F1_EU_DIS_8EUS:
		sseu->eu_per_subslice = 8;
		break;
	case HSW_F1_EU_DIS_6EUS:
		sseu->eu_per_subslice = 6;
		break;
	}
560 561 562 563 564 565 566 567
	sseu->max_eus_per_subslice = sseu->eu_per_subslice;

	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			sseu_set_eus(sseu, s, ss,
				     (1UL << sseu->eu_per_subslice) - 1);
		}
	}
568

569
	sseu->eu_total = compute_eu_total(sseu);
570 571 572 573 574 575 576

	/* No powergating for you. */
	sseu->has_slice_pg = 0;
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
}

L
Lionel Landwerlin 已提交
577
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
578 579
{
	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
L
Lionel Landwerlin 已提交
580
	u32 base_freq, frac_freq;
581 582 583

	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
L
Lionel Landwerlin 已提交
584
	base_freq *= 1000;
585 586 587 588

	frac_freq = ((ts_override &
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
L
Lionel Landwerlin 已提交
589
	frac_freq = 1000 / (frac_freq + 1);
590 591 592 593

	return base_freq + frac_freq;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
	u32 crystal_clock = (rpm_config_reg &
			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
	u32 f25_mhz = 25000;
	u32 f38_4_mhz = 38400;
	u32 crystal_clock = (rpm_config_reg &
			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
		return f38_4_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
		return f25_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

L
Lionel Landwerlin 已提交
640
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
641
{
L
Lionel Landwerlin 已提交
642 643 644
	u32 f12_5_mhz = 12500;
	u32 f19_2_mhz = 19200;
	u32 f24_mhz = 24000;
645 646 647 648 649 650 651 652

	if (INTEL_GEN(dev_priv) <= 4) {
		/* PRMs say:
		 *
		 *     "The value in this register increments once every 16
		 *      hclks." (through the “Clocking Configuration”
		 *      (“CLKCFG”) MCHBAR register)
		 */
L
Lionel Landwerlin 已提交
653
		return dev_priv->rawclk_freq / 16;
654 655 656 657 658 659 660 661 662 663
	} else if (INTEL_GEN(dev_priv) <= 8) {
		/* PRMs say:
		 *
		 *     "The PCU TSC counts 10ns increments; this timestamp
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
		 *      rolling over every 1.5 hours).
		 */
		return f12_5_mhz;
	} else if (INTEL_GEN(dev_priv) <= 9) {
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
664
		u32 freq = 0;
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;

			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
				      CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
680
	} else if (INTEL_GEN(dev_priv) <= 11) {
681
		u32 ctc_reg = I915_READ(CTC_MODE);
L
Lionel Landwerlin 已提交
682
		u32 freq = 0;
683 684 685 686 687 688 689 690 691

		/* First figure out the reference frequency. There are 2 ways
		 * we can compute the frequency, either through the
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
		 * tells us which one we should use.
		 */
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(dev_priv);
		} else {
692 693 694 695 696 697 698 699
			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);

			if (INTEL_GEN(dev_priv) <= 10)
				freq = gen10_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
			else
				freq = gen11_get_crystal_clock_freq(dev_priv,
								rpm_config_reg);
700

701 702 703 704 705 706 707 708
			/* Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((rpm_config_reg &
				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
		}
709 710 711 712

		return freq;
	}

713
	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
714 715 716
	return 0;
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
#undef INTEL_VGA_DEVICE
#define INTEL_VGA_DEVICE(id, info) (id)

static const u16 subplatform_ult_ids[] = {
	INTEL_HSW_ULT_GT1_IDS(0),
	INTEL_HSW_ULT_GT2_IDS(0),
	INTEL_HSW_ULT_GT3_IDS(0),
	INTEL_BDW_ULT_GT1_IDS(0),
	INTEL_BDW_ULT_GT2_IDS(0),
	INTEL_BDW_ULT_GT3_IDS(0),
	INTEL_BDW_ULT_RSVD_IDS(0),
	INTEL_SKL_ULT_GT1_IDS(0),
	INTEL_SKL_ULT_GT2_IDS(0),
	INTEL_SKL_ULT_GT3_IDS(0),
	INTEL_KBL_ULT_GT1_IDS(0),
	INTEL_KBL_ULT_GT2_IDS(0),
	INTEL_KBL_ULT_GT3_IDS(0),
	INTEL_CFL_U_GT2_IDS(0),
	INTEL_CFL_U_GT3_IDS(0),
	INTEL_WHL_U_GT1_IDS(0),
	INTEL_WHL_U_GT2_IDS(0),
	INTEL_WHL_U_GT3_IDS(0)
};

static const u16 subplatform_ulx_ids[] = {
	INTEL_HSW_ULX_GT1_IDS(0),
	INTEL_HSW_ULX_GT2_IDS(0),
	INTEL_BDW_ULX_GT1_IDS(0),
	INTEL_BDW_ULX_GT2_IDS(0),
	INTEL_BDW_ULX_GT3_IDS(0),
	INTEL_BDW_ULX_RSVD_IDS(0),
	INTEL_SKL_ULX_GT1_IDS(0),
	INTEL_SKL_ULX_GT2_IDS(0),
	INTEL_KBL_ULX_GT1_IDS(0),
	INTEL_KBL_ULX_GT2_IDS(0)
};

static const u16 subplatform_aml_ids[] = {
	INTEL_AML_KBL_GT2_IDS(0),
	INTEL_AML_CFL_GT2_IDS(0)
};

static const u16 subplatform_portf_ids[] = {
	INTEL_CNL_PORT_F_IDS(0),
	INTEL_ICL_PORT_F_IDS(0)
};

static bool find_devid(u16 id, const u16 *p, unsigned int num)
{
	for (; num; num--, p++) {
		if (*p == id)
			return true;
	}

	return false;
}

void intel_device_info_subplatform_init(struct drm_i915_private *i915)
{
	const struct intel_device_info *info = INTEL_INFO(i915);
	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
	u16 devid = INTEL_DEVID(i915);
	u32 mask;

	/* Make sure IS_<platform> checks are working. */
	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);

	/* Find and mark subplatform bits based on the PCI device id. */
	if (find_devid(devid, subplatform_ult_ids,
		       ARRAY_SIZE(subplatform_ult_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_ULT);
	} else if (find_devid(devid, subplatform_ulx_ids,
			      ARRAY_SIZE(subplatform_ulx_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_ULX);
		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
			/* ULX machines are also considered ULT. */
			mask |= BIT(INTEL_SUBPLATFORM_ULT);
		}
	} else if (find_devid(devid, subplatform_aml_ids,
			      ARRAY_SIZE(subplatform_aml_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_AML);
	} else if (find_devid(devid, subplatform_portf_ids,
			      ARRAY_SIZE(subplatform_portf_ids))) {
		mask = BIT(INTEL_SUBPLATFORM_PORTF);
	}

	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);

	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
}

810 811
/**
 * intel_device_info_runtime_init - initialize runtime info
812
 * @dev_priv: the i915 device
813
 *
814 815 816 817 818 819 820 821 822 823 824 825
 * Determine various intel_device_info fields at runtime.
 *
 * Use it when either:
 *   - it's judged too laborious to fill n static structures with the limit
 *     when a simple if statement does the job,
 *   - run-time checks (eg read fuse/strap registers) are needed.
 *
 * This function needs to be called:
 *   - after the MMIO has been setup as we are reading registers,
 *   - after the PCH has been detected,
 *   - before the first usage of the fields it can tweak.
 */
826
void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
827
{
828
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
829
	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
830 831
	enum pipe pipe;

832 833
	if (INTEL_GEN(dev_priv) >= 10) {
		for_each_pipe(dev_priv, pipe)
834
			runtime->num_scalers[pipe] = 2;
835
	} else if (IS_GEN(dev_priv, 9)) {
836 837 838
		runtime->num_scalers[PIPE_A] = 2;
		runtime->num_scalers[PIPE_B] = 2;
		runtime->num_scalers[PIPE_C] = 1;
839 840
	}

841
	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
842

843
	if (INTEL_GEN(dev_priv) >= 11)
844
		for_each_pipe(dev_priv, pipe)
845
			runtime->num_sprites[pipe] = 6;
846
	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
847
		for_each_pipe(dev_priv, pipe)
848
			runtime->num_sprites[pipe] = 3;
849
	else if (IS_BROXTON(dev_priv)) {
850 851 852 853 854 855 856 857 858
		/*
		 * Skylake and Broxton currently don't expose the topmost plane as its
		 * use is exclusive with the legacy cursor and we only want to expose
		 * one of those, not both. Until we can safely expose the topmost plane
		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
		 * we don't expose the topmost plane at all to prevent ABI breakage
		 * down the line.
		 */

859 860 861
		runtime->num_sprites[PIPE_A] = 2;
		runtime->num_sprites[PIPE_B] = 2;
		runtime->num_sprites[PIPE_C] = 1;
862
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
863
		for_each_pipe(dev_priv, pipe)
864
			runtime->num_sprites[pipe] = 2;
865
	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
866
		for_each_pipe(dev_priv, pipe)
867
			runtime->num_sprites[pipe] = 1;
868
	}
869

870
	if (i915_modparams.disable_display) {
871 872
		DRM_INFO("Display disabled (module parameter)\n");
		info->num_pipes = 0;
873
	} else if (HAS_DISPLAY(dev_priv) &&
874
		   (IS_GEN_RANGE(dev_priv, 7, 8)) &&
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
		   HAS_PCH_SPLIT(dev_priv)) {
		u32 fuse_strap = I915_READ(FUSE_STRAP);
		u32 sfuse_strap = I915_READ(SFUSE_STRAP);

		/*
		 * SFUSE_STRAP is supposed to have a bit signalling the display
		 * is fused off. Unfortunately it seems that, at least in
		 * certain cases, fused off display means that PCH display
		 * reads don't land anywhere. In that case, we read 0s.
		 *
		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
		 * should be set when taking over after the firmware.
		 */
		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
890
		    (HAS_PCH_CPT(dev_priv) &&
891 892 893 894 895 896 897
		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
			DRM_INFO("Display fused off, disabling\n");
			info->num_pipes = 0;
		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
			DRM_INFO("PipeC fused off\n");
			info->num_pipes -= 1;
		}
898
	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
		u32 dfsm = I915_READ(SKL_DFSM);
		u8 disabled_mask = 0;
		bool invalid;
		int num_bits;

		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
			disabled_mask |= BIT(PIPE_A);
		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
			disabled_mask |= BIT(PIPE_B);
		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
			disabled_mask |= BIT(PIPE_C);

		num_bits = hweight8(disabled_mask);

		switch (disabled_mask) {
		case BIT(PIPE_A):
		case BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_B):
		case BIT(PIPE_A) | BIT(PIPE_C):
			invalid = true;
			break;
		default:
			invalid = false;
		}

		if (num_bits > info->num_pipes || invalid)
			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
				  disabled_mask);
		else
			info->num_pipes -= num_bits;
	}

	/* Initialize slice/subslice/EU info */
932 933 934
	if (IS_HASWELL(dev_priv))
		haswell_sseu_info_init(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
935 936 937
		cherryview_sseu_info_init(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		broadwell_sseu_info_init(dev_priv);
938
	else if (IS_GEN(dev_priv, 9))
939
		gen9_sseu_info_init(dev_priv);
940
	else if (IS_GEN(dev_priv, 10))
941
		gen10_sseu_info_init(dev_priv);
942
	else if (INTEL_GEN(dev_priv) >= 11)
943
		gen11_sseu_info_init(dev_priv);
944

945
	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
946
		DRM_INFO("Disabling ppGTT for VT-d support\n");
947
		info->ppgtt_type = INTEL_PPGTT_NONE;
948 949
	}

950
	/* Initialize command stream timestamp frequency */
951
	runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
952
}
953 954 955 956

void intel_driver_caps_print(const struct intel_driver_caps *caps,
			     struct drm_printer *p)
{
957 958
	drm_printf(p, "Has logical contexts? %s\n",
		   yesno(caps->has_logical_contexts));
959 960
	drm_printf(p, "scheduler: %x\n", caps->scheduler);
}
961 962 963 964 965 966 967 968 969 970

/*
 * Determine which engines are fused off in our particular hardware. Since the
 * fuse register is in the blitter powerwell, we need forcewake to be ready at
 * this point (but later we need to prune the forcewake domains for engines that
 * are indeed fused off).
 */
void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
{
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
971
	unsigned int logical_vdbox = 0;
972
	unsigned int i;
973
	u32 media_fuse;
974 975
	u16 vdbox_mask;
	u16 vebox_mask;
976 977 978 979

	if (INTEL_GEN(dev_priv) < 11)
		return;

980
	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
981

982 983 984
	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;
985 986 987 988 989

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(dev_priv, _VCS(i)))
			continue;

990
		if (!(BIT(i) & vdbox_mask)) {
991
			info->engine_mask &= ~BIT(_VCS(i));
992
			DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
993
			continue;
994
		}
995 996 997 998 999 1000

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 */
		if (logical_vdbox++ % 2 == 0)
1001
			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1002
	}
1003 1004 1005
	DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
			 vdbox_mask, VDBOX_MASK(dev_priv));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1006 1007 1008 1009 1010

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(dev_priv, _VECS(i)))
			continue;

1011
		if (!(BIT(i) & vebox_mask)) {
1012
			info->engine_mask &= ~BIT(_VECS(i));
1013 1014
			DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
		}
1015
	}
1016 1017 1018
	DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
			 vebox_mask, VEBOX_MASK(dev_priv));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1019
}