filemap.c 102.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
13
#include <linux/export.h>
L
Linus Torvalds 已提交
14
#include <linux/compiler.h>
15
#include <linux/dax.h>
L
Linus Torvalds 已提交
16
#include <linux/fs.h>
17
#include <linux/sched/signal.h>
18
#include <linux/uaccess.h>
19
#include <linux/capability.h>
L
Linus Torvalds 已提交
20
#include <linux/kernel_stat.h>
21
#include <linux/gfp.h>
L
Linus Torvalds 已提交
22 23 24 25 26 27
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
28
#include <linux/error-injection.h>
L
Linus Torvalds 已提交
29 30
#include <linux/hash.h>
#include <linux/writeback.h>
31
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
32 33 34
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
35
#include <linux/cpuset.h>
36
#include <linux/hugetlb.h>
37
#include <linux/memcontrol.h>
38
#include <linux/cleancache.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/rmap.h>
41
#include <linux/delayacct.h>
42
#include <linux/psi.h>
43
#include <linux/ramfs.h>
44
#include <linux/page_idle.h>
45
#include <asm/pgalloc.h>
46
#include <asm/tlbflush.h>
47 48
#include "internal.h"

R
Robert Jarzmik 已提交
49 50 51
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
52 53 54
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
55
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
74
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
75
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
77
 *        ->i_pages lock
L
Linus Torvalds 已提交
78
 *
79
 *  ->i_mutex
80
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
81
 *
82
 *  ->mmap_lock
83
 *    ->i_mmap_rwsem
84
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
85
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
86
 *
87
 *  ->mmap_lock
L
Linus Torvalds 已提交
88 89
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
90
 *  ->i_mutex			(generic_perform_write)
91
 *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
92
 *
93
 *  bdi->wb.list_lock
94
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
95
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
96
 *
97
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
98 99 100
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
101
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
102
 *
103
 *  ->page_table_lock or pte_lock
104
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
105
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
106
 *    ->i_pages lock		(try_to_unmap_one)
107 108
 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
109
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
110
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
111
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
112
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
113
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
114
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
115
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
116 117
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
118
 * ->i_mmap_rwsem
119
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
120 121
 */

122
static void page_cache_delete(struct address_space *mapping,
123 124
				   struct page *page, void *shadow)
{
125 126
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
127

128
	mapping_set_update(&xas, mapping);
129

130 131 132
	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
133
		nr = compound_nr(page);
134
	}
135

136 137 138
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
139

140 141
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
142

143 144 145
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

146 147 148 149 150 151 152 153 154 155 156
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
157 158
}

159 160
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
161
{
162
	int nr;
L
Linus Torvalds 已提交
163

164 165 166 167 168 169 170 171
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
172
		cleancache_invalidate_page(mapping, page);
173

174
	VM_BUG_ON_PAGE(PageTail(page), page);
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
195
			page_ref_sub(page, mapcount);
196 197 198
		}
	}

199
	/* hugetlb pages do not participate in page cache accounting. */
200 201
	if (PageHuge(page))
		return;
202

203
	nr = thp_nr_pages(page);
204

205
	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
206
	if (PageSwapBacked(page)) {
207
		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
208
		if (PageTransHuge(page))
209
			__dec_lruvec_page_state(page, NR_SHMEM_THPS);
210
	} else if (PageTransHuge(page)) {
211
		__dec_lruvec_page_state(page, NR_FILE_THPS);
212
		filemap_nr_thps_dec(mapping);
213
	}
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
232
 * is safe.  The caller must hold the i_pages lock.
233 234 235 236 237 238 239 240
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
241
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
242 243
}

244 245 246 247 248 249 250 251 252 253
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
254
		page_ref_sub(page, thp_nr_pages(page));
255 256 257 258 259 260
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

261 262 263 264 265 266 267 268 269
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
270
{
271
	struct address_space *mapping = page_mapping(page);
272
	unsigned long flags;
L
Linus Torvalds 已提交
273

M
Matt Mackall 已提交
274
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
275
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
276
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
277
	xa_unlock_irqrestore(&mapping->i_pages, flags);
278

279
	page_cache_free_page(mapping, page);
280 281 282
}
EXPORT_SYMBOL(delete_from_page_cache);

283
/*
284
 * page_cache_delete_batch - delete several pages from page cache
285 286 287
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
288
 * The function walks over mapping->i_pages and removes pages passed in @pvec
289 290
 * from the mapping. The function expects @pvec to be sorted by page index
 * and is optimised for it to be dense.
M
Matthew Wilcox 已提交
291
 * It tolerates holes in @pvec (mapping entries at those indices are not
292
 * modified). The function expects only THP head pages to be present in the
293
 * @pvec.
294
 *
M
Matthew Wilcox 已提交
295
 * The function expects the i_pages lock to be held.
296
 */
297
static void page_cache_delete_batch(struct address_space *mapping,
298 299
			     struct pagevec *pvec)
{
300
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
301
	int total_pages = 0;
302
	int i = 0;
303 304
	struct page *page;

305 306
	mapping_set_update(&xas, mapping);
	xas_for_each(&xas, page, ULONG_MAX) {
307
		if (i >= pagevec_count(pvec))
308
			break;
309 310

		/* A swap/dax/shadow entry got inserted? Skip it. */
311
		if (xa_is_value(page))
312
			continue;
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
		/*
		 * A page got inserted in our range? Skip it. We have our
		 * pages locked so they are protected from being removed.
		 * If we see a page whose index is higher than ours, it
		 * means our page has been removed, which shouldn't be
		 * possible because we're holding the PageLock.
		 */
		if (page != pvec->pages[i]) {
			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
					page);
			continue;
		}

		WARN_ON_ONCE(!PageLocked(page));

		if (page->index == xas.xa_index)
329
			page->mapping = NULL;
330 331 332 333 334 335 336 337
		/* Leave page->index set: truncation lookup relies on it */

		/*
		 * Move to the next page in the vector if this is a regular
		 * page or the index is of the last sub-page of this compound
		 * page.
		 */
		if (page->index + compound_nr(page) - 1 == xas.xa_index)
338
			i++;
339
		xas_store(&xas, NULL);
340 341 342 343 344 345 346 347 348 349 350 351 352 353
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
354
	xa_lock_irqsave(&mapping->i_pages, flags);
355 356 357 358 359
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
360
	page_cache_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
361
	xa_unlock_irqrestore(&mapping->i_pages, flags);
362 363 364 365 366

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

367
int filemap_check_errors(struct address_space *mapping)
368 369 370
{
	int ret = 0;
	/* Check for outstanding write errors */
371 372
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
373
		ret = -ENOSPC;
374 375
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
376 377 378
		ret = -EIO;
	return ret;
}
379
EXPORT_SYMBOL(filemap_check_errors);
380

381 382 383 384 385 386 387 388 389 390
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
391
/**
392
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
393 394
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
395
 * @end:	offset in bytes where the range ends (inclusive)
396
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
397
 *
398 399 400
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
401
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
402
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
403 404
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
405 406
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
407
 */
408 409
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
410 411 412 413
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
414
		.nr_to_write = LONG_MAX,
415 416
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
417 418
	};

419
	if (!mapping_can_writeback(mapping) ||
420
	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
L
Linus Torvalds 已提交
421 422
		return 0;

423
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
424
	ret = do_writepages(mapping, &wbc);
425
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
426 427 428 429 430 431
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
432
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
433 434 435 436 437 438 439 440
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

441
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
442
				loff_t end)
L
Linus Torvalds 已提交
443 444 445
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
446
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
447

448 449 450 451
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
452 453
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
454 455
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
456 457 458 459 460 461 462
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

463 464 465 466 467 468 469 470
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
471 472 473
 *
 * Return: %true if at least one page exists in the specified range,
 * %false otherwise.
474 475 476 477
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
478
	struct page *page;
479 480
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
	pgoff_t max = end_byte >> PAGE_SHIFT;
481 482 483 484

	if (end_byte < start_byte)
		return false;

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	rcu_read_lock();
	for (;;) {
		page = xas_find(&xas, max);
		if (xas_retry(&xas, page))
			continue;
		/* Shadow entries don't count */
		if (xa_is_value(page))
			continue;
		/*
		 * We don't need to try to pin this page; we're about to
		 * release the RCU lock anyway.  It is enough to know that
		 * there was a page here recently.
		 */
		break;
	}
	rcu_read_unlock();
501

502
	return page != NULL;
503 504 505
}
EXPORT_SYMBOL(filemap_range_has_page);

506
static void __filemap_fdatawait_range(struct address_space *mapping,
507
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
508
{
509 510
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
511 512 513
	struct pagevec pvec;
	int nr_pages;

514
	if (end_byte < start_byte)
515
		return;
L
Linus Torvalds 已提交
516

517
	pagevec_init(&pvec);
518
	while (index <= end) {
L
Linus Torvalds 已提交
519 520
		unsigned i;

521
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
522
				end, PAGECACHE_TAG_WRITEBACK);
523 524 525
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
526 527 528 529
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
530
			ClearPageError(page);
L
Linus Torvalds 已提交
531 532 533 534
		}
		pagevec_release(&pvec);
		cond_resched();
	}
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
550 551
 *
 * Return: error status of the address space.
552 553 554 555
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
556 557
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
558
}
559 560
EXPORT_SYMBOL(filemap_fdatawait_range);

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/**
 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space in the
 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 * this function does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
 */
int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
		loff_t start_byte, loff_t end_byte)
{
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_and_keep_errors(mapping);
}
EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);

583 584 585 586 587 588 589 590 591 592 593 594 595
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
596 597
 *
 * Return: error status of the address space vs. the file->f_wb_err cursor.
598 599 600 601 602 603 604 605 606
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
607

608 609 610 611 612 613 614 615 616 617 618
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
619 620
 *
 * Return: error status of the address space.
621
 */
622
int filemap_fdatawait_keep_errors(struct address_space *mapping)
623
{
624
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625
	return filemap_check_and_keep_errors(mapping);
626
}
627
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
628

629
/* Returns true if writeback might be needed or already in progress. */
630
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
631
{
632 633 634 635
	if (dax_mapping(mapping))
		return mapping->nrexceptional;

	return mapping->nrpages;
L
Linus Torvalds 已提交
636 637
}

638 639 640 641 642 643
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
644 645
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
646
 * Note that @lend is inclusive (describes the last byte to be written) so
647
 * that this function can be used to write to the very end-of-file (end = -1).
648 649
 *
 * Return: error status of the address space.
650
 */
L
Linus Torvalds 已提交
651 652 653
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
654
	int err = 0;
L
Linus Torvalds 已提交
655

656
	if (mapping_needs_writeback(mapping)) {
657 658
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
659 660 661 662 663 664
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
665
		if (err != -EIO) {
666 667
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
668 669
			if (!err)
				err = err2;
670 671 672
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
673
		}
674 675
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
676
	}
677
	return err;
L
Linus Torvalds 已提交
678
}
679
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
680

681 682
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
683
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
710 711
 *
 * Return: %0 on success, negative error code otherwise.
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
729 730 731 732 733 734 735 736

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
754 755
 *
 * Return: %0 on success, negative error code otherwise.
756 757 758 759 760 761
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

762
	if (mapping_needs_writeback(mapping)) {
763 764 765 766 767 768 769 770 771 772 773 774 775
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

776 777 778 779 780 781 782 783 784 785 786
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
787
 * The remove + add is atomic.  This function cannot fail.
788
 */
789
void replace_page_cache_page(struct page *old, struct page *new)
790
{
791 792 793 794 795
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
796

797 798 799
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
800

801 802 803
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
804

805 806
	mem_cgroup_migrate(old, new);

807 808
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
809

810 811 812
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
813
		__dec_lruvec_page_state(old, NR_FILE_PAGES);
814
	if (!PageHuge(new))
815
		__inc_lruvec_page_state(new, NR_FILE_PAGES);
816
	if (PageSwapBacked(old))
817
		__dec_lruvec_page_state(old, NR_SHMEM);
818
	if (PageSwapBacked(new))
819
		__inc_lruvec_page_state(new, NR_SHMEM);
820 821 822 823
	xas_unlock_irqrestore(&xas, flags);
	if (freepage)
		freepage(old);
	put_page(old);
824 825 826
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

827
noinline int __add_to_page_cache_locked(struct page *page,
828
					struct address_space *mapping,
829
					pgoff_t offset, gfp_t gfp,
830
					void **shadowp)
L
Linus Torvalds 已提交
831
{
832
	XA_STATE(xas, &mapping->i_pages, offset);
833
	int huge = PageHuge(page);
N
Nick Piggin 已提交
834
	int error;
835
	bool charged = false;
N
Nick Piggin 已提交
836

837 838
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
839
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
840

841
	get_page(page);
842 843 844
	page->mapping = mapping;
	page->index = offset;

845
	if (!huge) {
846
		error = mem_cgroup_charge(page, current->mm, gfp);
847 848
		if (error)
			goto error;
849
		charged = true;
850 851
	}

852 853
	gfp &= GFP_RECLAIM_MASK;

854
	do {
855 856 857 858 859 860
		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
		void *entry, *old = NULL;

		if (order > thp_order(page))
			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
					order, gfp);
861
		xas_lock_irq(&xas);
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		xas_for_each_conflict(&xas, entry) {
			old = entry;
			if (!xa_is_value(entry)) {
				xas_set_err(&xas, -EEXIST);
				goto unlock;
			}
		}

		if (old) {
			if (shadowp)
				*shadowp = old;
			/* entry may have been split before we acquired lock */
			order = xa_get_order(xas.xa, xas.xa_index);
			if (order > thp_order(page)) {
				xas_split(&xas, old, order);
				xas_reset(&xas);
			}
		}

881 882 883 884
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

885
		if (old)
886 887 888 889 890
			mapping->nrexceptional--;
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
891
			__inc_lruvec_page_state(page, NR_FILE_PAGES);
892 893
unlock:
		xas_unlock_irq(&xas);
894
	} while (xas_nomem(&xas, gfp));
895

896 897
	if (xas_error(&xas)) {
		error = xas_error(&xas);
898 899
		if (charged)
			mem_cgroup_uncharge(page);
900
		goto error;
901
	}
902

903 904
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
905
error:
906 907
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
908
	put_page(page);
909
	return error;
L
Linus Torvalds 已提交
910
}
911
ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
912 913 914 915 916 917 918 919 920 921

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
922 923
 *
 * Return: %0 on success, negative error code otherwise.
924 925 926 927 928 929 930
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
931
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
932 933

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
934
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
935
{
936
	void *shadow = NULL;
937 938
	int ret;

939
	__SetPageLocked(page);
940 941 942
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
943
		__ClearPageLocked(page);
944 945 946 947 948
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
949 950 951
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
952
		 */
953 954 955
		WARN_ON_ONCE(PageActive(page));
		if (!(gfp_mask & __GFP_WRITE) && shadow)
			workingset_refault(page, shadow);
956 957
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
958 959
	return ret;
}
960
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
961

962
#ifdef CONFIG_NUMA
963
struct page *__page_cache_alloc(gfp_t gfp)
964
{
965 966 967
	int n;
	struct page *page;

968
	if (cpuset_do_page_mem_spread()) {
969 970
		unsigned int cpuset_mems_cookie;
		do {
971
			cpuset_mems_cookie = read_mems_allowed_begin();
972
			n = cpuset_mem_spread_node();
973
			page = __alloc_pages_node(n, gfp, 0);
974
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
975

976
		return page;
977
	}
978
	return alloc_pages(gfp, 0);
979
}
980
EXPORT_SYMBOL(__page_cache_alloc);
981 982
#endif

L
Linus Torvalds 已提交
983 984 985 986 987 988 989 990 991 992
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
993 994 995 996 997
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
998
{
999
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
1000 1001
}

1002
void __init pagecache_init(void)
L
Linus Torvalds 已提交
1003
{
1004
	int i;
L
Linus Torvalds 已提交
1005

1006 1007 1008 1009
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
1010 1011
}

1012 1013
/*
 * The page wait code treats the "wait->flags" somewhat unusually, because
1014
 * we have multiple different kinds of waits, not just the usual "exclusive"
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
 * one.
 *
 * We have:
 *
 *  (a) no special bits set:
 *
 *	We're just waiting for the bit to be released, and when a waker
 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
 *	and remove it from the wait queue.
 *
 *	Simple and straightforward.
 *
 *  (b) WQ_FLAG_EXCLUSIVE:
 *
 *	The waiter is waiting to get the lock, and only one waiter should
 *	be woken up to avoid any thundering herd behavior. We'll set the
 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
 *
 *	This is the traditional exclusive wait.
 *
1035
 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
 *
 *	The waiter is waiting to get the bit, and additionally wants the
 *	lock to be transferred to it for fair lock behavior. If the lock
 *	cannot be taken, we stop walking the wait queue without waking
 *	the waiter.
 *
 *	This is the "fair lock handoff" case, and in addition to setting
 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
 *	that it now has the lock.
 */
1046
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1047
{
1048
	unsigned int flags;
1049 1050 1051 1052
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

1053
	if (!wake_page_match(wait_page, key))
1054
		return 0;
L
Linus Torvalds 已提交
1055

1056
	/*
1057 1058
	 * If it's a lock handoff wait, we get the bit for it, and
	 * stop walking (and do not wake it up) if we can't.
1059
	 */
1060 1061 1062
	flags = wait->flags;
	if (flags & WQ_FLAG_EXCLUSIVE) {
		if (test_bit(key->bit_nr, &key->page->flags))
1063
			return -1;
1064 1065 1066 1067 1068
		if (flags & WQ_FLAG_CUSTOM) {
			if (test_and_set_bit(key->bit_nr, &key->page->flags))
				return -1;
			flags |= WQ_FLAG_DONE;
		}
1069
	}
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	/*
	 * We are holding the wait-queue lock, but the waiter that
	 * is waiting for this will be checking the flags without
	 * any locking.
	 *
	 * So update the flags atomically, and wake up the waiter
	 * afterwards to avoid any races. This store-release pairs
	 * with the load-acquire in wait_on_page_bit_common().
	 */
	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1081 1082 1083 1084 1085 1086
	wake_up_state(wait->private, mode);

	/*
	 * Ok, we have successfully done what we're waiting for,
	 * and we can unconditionally remove the wait entry.
	 *
1087 1088 1089
	 * Note that this pairs with the "finish_wait()" in the
	 * waiter, and has to be the absolute last thing we do.
	 * After this list_del_init(&wait->entry) the wait entry
1090 1091 1092
	 * might be de-allocated and the process might even have
	 * exited.
	 */
1093
	list_del_init_careful(&wait->entry);
1094
	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1095 1096
}

1097
static void wake_up_page_bit(struct page *page, int bit_nr)
1098
{
1099 1100 1101
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
1102
	wait_queue_entry_t bookmark;
1103

1104 1105 1106 1107
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

1108 1109 1110 1111 1112
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

1113
	spin_lock_irqsave(&q->lock, flags);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1150 1151 1152 1153 1154 1155 1156

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/*
 * A choice of three behaviors for wait_on_page_bit_common():
 */
enum behavior {
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
			 * __lock_page() waiting on then setting PG_locked.
			 */
	SHARED,		/* Hold ref to page and check the bit when woken, like
			 * wait_on_page_writeback() waiting on PG_writeback.
			 */
	DROP,		/* Drop ref to page before wait, no check when woken,
			 * like put_and_wait_on_page_locked() on PG_locked.
			 */
};

1173
/*
1174 1175
 * Attempt to check (or get) the page bit, and mark us done
 * if successful.
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
 */
static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
					struct wait_queue_entry *wait)
{
	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
		if (test_and_set_bit(bit_nr, &page->flags))
			return false;
	} else if (test_bit(bit_nr, &page->flags))
		return false;

1186
	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1187 1188 1189
	return true;
}

1190 1191 1192
/* How many times do we accept lock stealing from under a waiter? */
int sysctl_page_lock_unfairness = 5;

1193
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1194
	struct page *page, int bit_nr, int state, enum behavior behavior)
1195
{
1196
	int unfairness = sysctl_page_lock_unfairness;
1197
	struct wait_page_queue wait_page;
1198
	wait_queue_entry_t *wait = &wait_page.wait;
1199
	bool thrashing = false;
1200
	bool delayacct = false;
1201
	unsigned long pflags;
1202

1203
	if (bit_nr == PG_locked &&
1204
	    !PageUptodate(page) && PageWorkingset(page)) {
1205
		if (!PageSwapBacked(page)) {
1206
			delayacct_thrashing_start();
1207 1208
			delayacct = true;
		}
1209
		psi_memstall_enter(&pflags);
1210 1211 1212
		thrashing = true;
	}

1213 1214 1215 1216 1217
	init_wait(wait);
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

1218 1219 1220 1221 1222 1223 1224 1225
repeat:
	wait->flags = 0;
	if (behavior == EXCLUSIVE) {
		wait->flags = WQ_FLAG_EXCLUSIVE;
		if (--unfairness < 0)
			wait->flags |= WQ_FLAG_CUSTOM;
	}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	/*
	 * Do one last check whether we can get the
	 * page bit synchronously.
	 *
	 * Do the SetPageWaiters() marking before that
	 * to let any waker we _just_ missed know they
	 * need to wake us up (otherwise they'll never
	 * even go to the slow case that looks at the
	 * page queue), and add ourselves to the wait
	 * queue if we need to sleep.
	 *
	 * This part needs to be done under the queue
	 * lock to avoid races.
	 */
	spin_lock_irq(&q->lock);
	SetPageWaiters(page);
	if (!trylock_page_bit_common(page, bit_nr, wait))
		__add_wait_queue_entry_tail(q, wait);
	spin_unlock_irq(&q->lock);
1245

1246 1247
	/*
	 * From now on, all the logic will be based on
1248 1249 1250
	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
	 * see whether the page bit testing has already
	 * been done by the wake function.
1251 1252 1253 1254 1255
	 *
	 * We can drop our reference to the page.
	 */
	if (behavior == DROP)
		put_page(page);
1256

1257 1258 1259 1260 1261 1262
	/*
	 * Note that until the "finish_wait()", or until
	 * we see the WQ_FLAG_WOKEN flag, we need to
	 * be very careful with the 'wait->flags', because
	 * we may race with a waker that sets them.
	 */
1263
	for (;;) {
1264 1265
		unsigned int flags;

1266 1267
		set_current_state(state);

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		/* Loop until we've been woken or interrupted */
		flags = smp_load_acquire(&wait->flags);
		if (!(flags & WQ_FLAG_WOKEN)) {
			if (signal_pending_state(state, current))
				break;

			io_schedule();
			continue;
		}

		/* If we were non-exclusive, we're done */
		if (behavior != EXCLUSIVE)
1280
			break;
1281

1282 1283
		/* If the waker got the lock for us, we're done */
		if (flags & WQ_FLAG_DONE)
1284
			break;
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		/*
		 * Otherwise, if we're getting the lock, we need to
		 * try to get it ourselves.
		 *
		 * And if that fails, we'll have to retry this all.
		 */
		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
			goto repeat;

		wait->flags |= WQ_FLAG_DONE;
		break;
1297 1298
	}

1299 1300 1301 1302 1303 1304
	/*
	 * If a signal happened, this 'finish_wait()' may remove the last
	 * waiter from the wait-queues, but the PageWaiters bit will remain
	 * set. That's ok. The next wakeup will take care of it, and trying
	 * to do it here would be difficult and prone to races.
	 */
1305 1306
	finish_wait(q, wait);

1307
	if (thrashing) {
1308
		if (delayacct)
1309 1310 1311
			delayacct_thrashing_end();
		psi_memstall_leave(&pflags);
	}
1312

1313
	/*
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	 * NOTE! The wait->flags weren't stable until we've done the
	 * 'finish_wait()', and we could have exited the loop above due
	 * to a signal, and had a wakeup event happen after the signal
	 * test but before the 'finish_wait()'.
	 *
	 * So only after the finish_wait() can we reliably determine
	 * if we got woken up or not, so we can now figure out the final
	 * return value based on that state without races.
	 *
	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1325
	 */
1326 1327
	if (behavior == EXCLUSIVE)
		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1328

1329
	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1330 1331 1332 1333 1334
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1335
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1336 1337 1338 1339 1340 1341
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1342
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1343
}
1344
EXPORT_SYMBOL(wait_on_page_bit_killable);
1345

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
static int __wait_on_page_locked_async(struct page *page,
				       struct wait_page_queue *wait, bool set)
{
	struct wait_queue_head *q = page_waitqueue(page);
	int ret = 0;

	wait->page = page;
	wait->bit_nr = PG_locked;

	spin_lock_irq(&q->lock);
	__add_wait_queue_entry_tail(q, &wait->wait);
	SetPageWaiters(page);
	if (set)
		ret = !trylock_page(page);
	else
		ret = PageLocked(page);
	/*
1363
	 * If we were successful now, we know we're still on the
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	 * waitqueue as we're still under the lock. This means it's
	 * safe to remove and return success, we know the callback
	 * isn't going to trigger.
	 */
	if (!ret)
		__remove_wait_queue(q, &wait->wait);
	else
		ret = -EIOCBQUEUED;
	spin_unlock_irq(&q->lock);
	return ret;
}

1376 1377 1378 1379 1380 1381 1382 1383
static int wait_on_page_locked_async(struct page *page,
				     struct wait_page_queue *wait)
{
	if (!PageLocked(page))
		return 0;
	return __wait_on_page_locked_async(compound_head(page), wait, false);
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
/**
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 * @page: The page to wait for.
 *
 * The caller should hold a reference on @page.  They expect the page to
 * become unlocked relatively soon, but do not wish to hold up migration
 * (for example) by holding the reference while waiting for the page to
 * come unlocked.  After this function returns, the caller should not
 * dereference @page.
 */
void put_and_wait_on_page_locked(struct page *page)
{
	wait_queue_head_t *q;

	page = compound_head(page);
	q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}

1403 1404
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1405 1406
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1407 1408 1409
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1410
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1411 1412 1413 1414 1415
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1416
	__add_wait_queue_entry_tail(q, waiter);
1417
	SetPageWaiters(page);
1418 1419 1420 1421
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1433
 * being cleared, but a memory barrier should be unnecessary since it is
1434 1435 1436 1437 1438 1439
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1440
	return test_bit(PG_waiters, mem);
1441 1442 1443 1444
}

#endif

L
Linus Torvalds 已提交
1445
/**
1446
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1447 1448
 * @page: the page
 *
M
Miaohe Lin 已提交
1449
 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
L
Linus Torvalds 已提交
1450
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1451
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1452 1453
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1454 1455 1456 1457 1458
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1459
 */
H
Harvey Harrison 已提交
1460
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1461
{
1462
	BUILD_BUG_ON(PG_waiters != 7);
1463
	page = compound_head(page);
1464
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1465 1466
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1467 1468 1469
}
EXPORT_SYMBOL(unlock_page);

1470 1471 1472
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1473 1474 1475
 */
void end_page_writeback(struct page *page)
{
1476 1477 1478 1479 1480 1481 1482 1483 1484
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1485
		rotate_reclaimable_page(page);
1486
	}
1487

1488 1489 1490 1491 1492 1493 1494
	/*
	 * Writeback does not hold a page reference of its own, relying
	 * on truncation to wait for the clearing of PG_writeback.
	 * But here we must make sure that the page is not freed and
	 * reused before the wake_up_page().
	 */
	get_page(page);
1495 1496 1497
	if (!test_clear_page_writeback(page))
		BUG();

1498
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1499
	wake_up_page(page, PG_writeback);
1500
	put_page(page);
L
Linus Torvalds 已提交
1501 1502 1503
}
EXPORT_SYMBOL(end_page_writeback);

1504 1505 1506 1507
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1508
void page_endio(struct page *page, bool is_write, int err)
1509
{
1510
	if (!is_write) {
1511 1512 1513 1514 1515 1516 1517
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1518
	} else {
1519
		if (err) {
1520 1521
			struct address_space *mapping;

1522
			SetPageError(page);
1523 1524 1525
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1526 1527 1528 1529 1530 1531
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1532 1533
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1534
 * @__page: the page to lock
L
Linus Torvalds 已提交
1535
 */
1536
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1537
{
1538 1539
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1540 1541
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
				EXCLUSIVE);
L
Linus Torvalds 已提交
1542 1543 1544
}
EXPORT_SYMBOL(__lock_page);

1545
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1546
{
1547 1548
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1549 1550
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
					EXCLUSIVE);
M
Matthew Wilcox 已提交
1551
}
1552
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1553

1554 1555 1556 1557 1558
int __lock_page_async(struct page *page, struct wait_page_queue *wait)
{
	return __wait_on_page_locked_async(page, wait, true);
}

1559 1560
/*
 * Return values:
1561
 * 1 - page is locked; mmap_lock is still held.
1562
 * 0 - page is not locked.
1563
 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1564
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1565
 *     which case mmap_lock is still held.
1566 1567
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1568
 * with the page locked and the mmap_lock unperturbed.
1569
 */
1570 1571 1572
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1573
	if (fault_flag_allow_retry_first(flags)) {
1574
		/*
1575
		 * CAUTION! In this case, mmap_lock is not released
1576 1577 1578 1579 1580
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

1581
		mmap_read_unlock(mm);
1582 1583 1584
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1585
			wait_on_page_locked(page);
1586
		return 0;
1587 1588 1589
	}
	if (flags & FAULT_FLAG_KILLABLE) {
		int ret;
1590

1591 1592 1593 1594 1595 1596 1597
		ret = __lock_page_killable(page);
		if (ret) {
			mmap_read_unlock(mm);
			return 0;
		}
	} else {
		__lock_page(page);
1598
	}
1599 1600
	return 1;

1601 1602
}

1603
/**
1604 1605 1606 1607
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1608
 *
1609 1610
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1611
 *
1612 1613 1614 1615 1616
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1617
 *
1618 1619 1620
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1621
 */
1622
pgoff_t page_cache_next_miss(struct address_space *mapping,
1623 1624
			     pgoff_t index, unsigned long max_scan)
{
1625
	XA_STATE(xas, &mapping->i_pages, index);
1626

1627 1628 1629
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1630
			break;
1631
		if (xas.xa_index == 0)
1632 1633 1634
			break;
	}

1635
	return xas.xa_index;
1636
}
1637
EXPORT_SYMBOL(page_cache_next_miss);
1638 1639

/**
L
Laurent Dufour 已提交
1640
 * page_cache_prev_miss() - Find the previous gap in the page cache.
1641 1642 1643
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1644
 *
1645 1646
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1647
 *
1648 1649 1650 1651 1652
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1653
 *
1654 1655 1656
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1657
 */
1658
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1659 1660
			     pgoff_t index, unsigned long max_scan)
{
1661
	XA_STATE(xas, &mapping->i_pages, index);
1662

1663 1664 1665
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1666
			break;
1667
		if (xas.xa_index == ULONG_MAX)
1668 1669 1670
			break;
	}

1671
	return xas.xa_index;
1672
}
1673
EXPORT_SYMBOL(page_cache_prev_miss);
1674

1675
/**
1676
 * find_get_entry - find and get a page cache entry
1677
 * @mapping: the address_space to search
1678
 * @index: The page cache index.
1679 1680
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
1681
 * page cache page, the head page is returned with an increased refcount.
1682
 *
1683 1684
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1685
 *
1686
 * Return: The head page or shadow entry, %NULL if nothing is found.
L
Linus Torvalds 已提交
1687
 */
1688
struct page *find_get_entry(struct address_space *mapping, pgoff_t index)
L
Linus Torvalds 已提交
1689
{
1690
	XA_STATE(xas, &mapping->i_pages, index);
1691
	struct page *page;
L
Linus Torvalds 已提交
1692

N
Nick Piggin 已提交
1693 1694
	rcu_read_lock();
repeat:
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1705

1706
	if (!page_cache_get_speculative(page))
1707
		goto repeat;
1708

1709
	/*
1710
	 * Has the page moved or been split?
1711 1712 1713 1714
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
1715
		put_page(page);
1716
		goto repeat;
N
Nick Piggin 已提交
1717
	}
N
Nick Piggin 已提交
1718
out:
N
Nick Piggin 已提交
1719 1720
	rcu_read_unlock();

L
Linus Torvalds 已提交
1721 1722 1723
	return page;
}

1724
/**
1725 1726 1727
 * find_lock_entry - Locate and lock a page cache entry.
 * @mapping: The address_space to search.
 * @index: The page cache index.
1728
 *
1729 1730
 * Looks up the page at @mapping & @index.  If there is a page in the
 * cache, the head page is returned locked and with an increased refcount.
1731
 *
1732 1733
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1734
 *
1735 1736
 * Context: May sleep.
 * Return: The head page or shadow entry, %NULL if nothing is found.
1737
 */
1738
struct page *find_lock_entry(struct address_space *mapping, pgoff_t index)
L
Linus Torvalds 已提交
1739 1740 1741 1742
{
	struct page *page;

repeat:
1743
	page = find_get_entry(mapping, index);
1744
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1745 1746
		lock_page(page);
		/* Has the page been truncated? */
1747
		if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
1748
			unlock_page(page);
1749
			put_page(page);
N
Nick Piggin 已提交
1750
			goto repeat;
L
Linus Torvalds 已提交
1751
		}
1752
		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
L
Linus Torvalds 已提交
1753 1754 1755
	}
	return page;
}
1756 1757

/**
1758 1759 1760 1761 1762
 * pagecache_get_page - Find and get a reference to a page.
 * @mapping: The address_space to search.
 * @index: The page index.
 * @fgp_flags: %FGP flags modify how the page is returned.
 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
L
Linus Torvalds 已提交
1763
 *
1764
 * Looks up the page cache entry at @mapping & @index.
1765
 *
1766
 * @fgp_flags can be zero or more of these flags:
1767
 *
1768 1769
 * * %FGP_ACCESSED - The page will be marked accessed.
 * * %FGP_LOCK - The page is returned locked.
M
Matthew Wilcox (Oracle) 已提交
1770 1771
 * * %FGP_HEAD - If the page is present and a THP, return the head page
 *   rather than the exact page specified by the index.
1772 1773 1774 1775 1776 1777
 * * %FGP_CREAT - If no page is present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU list.
 *   The page is returned locked and with an increased refcount.
 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
 *   page is already in cache.  If the page was allocated, unlock it before
 *   returning so the caller can do the same dance.
1778 1779 1780
 * * %FGP_WRITE - The page will be written
 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
 * * %FGP_NOWAIT - Don't get blocked by page lock
L
Linus Torvalds 已提交
1781
 *
1782 1783
 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
 * if the %GFP flags specified for %FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1784
 *
1785
 * If there is a page cache page, it is returned with an increased refcount.
1786
 *
1787
 * Return: The found page or %NULL otherwise.
L
Linus Torvalds 已提交
1788
 */
1789 1790
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
		int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1791
{
N
Nick Piggin 已提交
1792
	struct page *page;
1793

L
Linus Torvalds 已提交
1794
repeat:
1795
	page = find_get_entry(mapping, index);
1796
	if (xa_is_value(page))
1797 1798 1799 1800 1801 1802 1803
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1804
				put_page(page);
1805 1806 1807 1808 1809 1810 1811
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
M
Matthew Wilcox (Oracle) 已提交
1812
		if (unlikely(page->mapping != mapping)) {
1813
			unlock_page(page);
1814
			put_page(page);
1815 1816
			goto repeat;
		}
M
Matthew Wilcox (Oracle) 已提交
1817
		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1818 1819
	}

1820
	if (fgp_flags & FGP_ACCESSED)
1821
		mark_page_accessed(page);
1822 1823 1824 1825 1826
	else if (fgp_flags & FGP_WRITE) {
		/* Clear idle flag for buffer write */
		if (page_is_idle(page))
			clear_page_idle(page);
	}
M
Matthew Wilcox (Oracle) 已提交
1827 1828
	if (!(fgp_flags & FGP_HEAD))
		page = find_subpage(page, index);
1829 1830 1831 1832

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
1833
		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1834 1835 1836
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1837

1838
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1839 1840
		if (!page)
			return NULL;
1841

1842
		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1843 1844
			fgp_flags |= FGP_LOCK;

1845
		/* Init accessed so avoid atomic mark_page_accessed later */
1846
		if (fgp_flags & FGP_ACCESSED)
1847
			__SetPageReferenced(page);
1848

1849
		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
N
Nick Piggin 已提交
1850
		if (unlikely(err)) {
1851
			put_page(page);
N
Nick Piggin 已提交
1852 1853 1854
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1855
		}
1856 1857 1858 1859 1860 1861 1862

		/*
		 * add_to_page_cache_lru locks the page, and for mmap we expect
		 * an unlocked page.
		 */
		if (page && (fgp_flags & FGP_FOR_MMAP))
			unlock_page(page);
L
Linus Torvalds 已提交
1863
	}
1864

L
Linus Torvalds 已提交
1865 1866
	return page;
}
1867
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1886 1887
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1888
 *
1889 1890 1891 1892 1893
 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
 * stops at that page: the caller is likely to have a better way to handle
 * the compound page as a whole, and then skip its extent, than repeatedly
 * calling find_get_entries() to return all its tails.
 *
1894
 * Return: the number of pages and shadow entries which were found.
1895 1896 1897 1898 1899
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
1900 1901
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
1902 1903 1904 1905 1906 1907
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1908 1909
	xas_for_each(&xas, page, ULONG_MAX) {
		if (xas_retry(&xas, page))
1910
			continue;
1911 1912 1913 1914 1915 1916
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
1917
			goto export;
1918

1919
		if (!page_cache_get_speculative(page))
1920
			goto retry;
1921

1922
		/* Has the page moved or been split? */
1923 1924 1925
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;

1926 1927 1928 1929 1930 1931 1932 1933
		/*
		 * Terminate early on finding a THP, to allow the caller to
		 * handle it all at once; but continue if this is hugetlbfs.
		 */
		if (PageTransHuge(page) && !PageHuge(page)) {
			page = find_subpage(page, xas.xa_index);
			nr_entries = ret + 1;
		}
1934
export:
1935
		indices[ret] = xas.xa_index;
1936 1937 1938
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1939 1940
		continue;
put_page:
1941
		put_page(page);
1942 1943
retry:
		xas_reset(&xas);
1944 1945 1946 1947 1948
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1949
/**
J
Jan Kara 已提交
1950
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1951 1952
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1953
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1954 1955 1956
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1957 1958 1959 1960
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1961 1962 1963
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1964
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1965
 *
1966 1967
 * Return: the number of pages which were found. If this number is
 * smaller than @nr_pages, the end of specified range has been
J
Jan Kara 已提交
1968
 * reached.
L
Linus Torvalds 已提交
1969
 */
J
Jan Kara 已提交
1970 1971 1972
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1973
{
1974 1975
	XA_STATE(xas, &mapping->i_pages, *start);
	struct page *page;
1976 1977 1978 1979
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1980 1981

	rcu_read_lock();
1982 1983
	xas_for_each(&xas, page, end) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1984
			continue;
1985 1986
		/* Skip over shadow, swap and DAX entries */
		if (xa_is_value(page))
1987
			continue;
N
Nick Piggin 已提交
1988

1989
		if (!page_cache_get_speculative(page))
1990
			goto retry;
1991

1992
		/* Has the page moved or been split? */
1993 1994
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
L
Linus Torvalds 已提交
1995

1996
		pages[ret] = find_subpage(page, xas.xa_index);
J
Jan Kara 已提交
1997
		if (++ret == nr_pages) {
1998
			*start = xas.xa_index + 1;
J
Jan Kara 已提交
1999 2000
			goto out;
		}
2001 2002
		continue;
put_page:
2003
		put_page(page);
2004 2005
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
2006
	}
2007

J
Jan Kara 已提交
2008 2009 2010
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
2011
	 * breaks the iteration when there is a page at index -1 but that is
J
Jan Kara 已提交
2012 2013 2014 2015 2016 2017 2018
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
2019
	rcu_read_unlock();
2020

L
Linus Torvalds 已提交
2021 2022 2023
	return ret;
}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
2034
 * Return: the number of pages which were found.
2035 2036 2037 2038
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
2039 2040
	XA_STATE(xas, &mapping->i_pages, index);
	struct page *page;
2041 2042 2043 2044
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
2045 2046

	rcu_read_lock();
2047 2048 2049 2050 2051 2052 2053 2054
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
		if (xas_retry(&xas, page))
			continue;
		/*
		 * If the entry has been swapped out, we can stop looking.
		 * No current caller is looking for DAX entries.
		 */
		if (xa_is_value(page))
2055
			break;
2056

2057
		if (!page_cache_get_speculative(page))
2058
			goto retry;
2059

2060
		/* Has the page moved or been split? */
2061 2062
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
2063

2064
		pages[ret] = find_subpage(page, xas.xa_index);
2065 2066
		if (++ret == nr_pages)
			break;
2067 2068
		continue;
put_page:
2069
		put_page(page);
2070 2071
retry:
		xas_reset(&xas);
2072
	}
N
Nick Piggin 已提交
2073 2074
	rcu_read_unlock();
	return ret;
2075
}
2076
EXPORT_SYMBOL(find_get_pages_contig);
2077

2078
/**
2079
 * find_get_pages_range_tag - find and return pages in given range matching @tag
2080 2081
 * @mapping:	the address_space to search
 * @index:	the starting page index
2082
 * @end:	The final page index (inclusive)
2083 2084 2085 2086
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
2087
 * Like find_get_pages, except we only return pages which are tagged with
2088
 * @tag.   We update @index to index the next page for the traversal.
2089 2090
 *
 * Return: the number of pages which were found.
L
Linus Torvalds 已提交
2091
 */
2092
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2093
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2094
			struct page **pages)
L
Linus Torvalds 已提交
2095
{
2096 2097
	XA_STATE(xas, &mapping->i_pages, *index);
	struct page *page;
2098 2099 2100 2101
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
2102 2103

	rcu_read_lock();
2104 2105
	xas_for_each_marked(&xas, page, end, tag) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
2106
			continue;
2107 2108 2109 2110 2111 2112
		/*
		 * Shadow entries should never be tagged, but this iteration
		 * is lockless so there is a window for page reclaim to evict
		 * a page we saw tagged.  Skip over it.
		 */
		if (xa_is_value(page))
2113
			continue;
N
Nick Piggin 已提交
2114

2115
		if (!page_cache_get_speculative(page))
2116
			goto retry;
N
Nick Piggin 已提交
2117

2118
		/* Has the page moved or been split? */
2119 2120
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
2121

2122
		pages[ret] = find_subpage(page, xas.xa_index);
2123
		if (++ret == nr_pages) {
2124
			*index = xas.xa_index + 1;
2125 2126
			goto out;
		}
2127 2128
		continue;
put_page:
2129
		put_page(page);
2130 2131
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
2132
	}
2133

2134
	/*
2135
	 * We come here when we got to @end. We take care to not overflow the
2136
	 * index @index as it confuses some of the callers. This breaks the
2137 2138
	 * iteration when there is a page at index -1 but that is already
	 * broken anyway.
2139 2140 2141 2142 2143 2144
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
2145
	rcu_read_unlock();
L
Linus Torvalds 已提交
2146 2147 2148

	return ret;
}
2149
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
2150

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
2166
static void shrink_readahead_size_eio(struct file_ra_state *ra)
2167 2168 2169 2170
{
	ra->ra_pages /= 4;
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
static int lock_page_for_iocb(struct kiocb *iocb, struct page *page)
{
	if (iocb->ki_flags & IOCB_WAITQ)
		return lock_page_async(page, iocb->ki_waitq);
	else if (iocb->ki_flags & IOCB_NOWAIT)
		return trylock_page(page) ? 0 : -EAGAIN;
	else
		return lock_page_killable(page);
}

static struct page *
generic_file_buffered_read_readpage(struct kiocb *iocb,
				    struct file *filp,
				    struct address_space *mapping,
				    struct page *page)
{
	struct file_ra_state *ra = &filp->f_ra;
	int error;

	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
		unlock_page(page);
		put_page(page);
		return ERR_PTR(-EAGAIN);
	}

	/*
	 * A previous I/O error may have been due to temporary
	 * failures, eg. multipath errors.
	 * PG_error will be set again if readpage fails.
	 */
	ClearPageError(page);
	/* Start the actual read. The read will unlock the page. */
	error = mapping->a_ops->readpage(filp, page);

	if (unlikely(error)) {
		put_page(page);
		return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL;
	}

	if (!PageUptodate(page)) {
		error = lock_page_for_iocb(iocb, page);
		if (unlikely(error)) {
			put_page(page);
			return ERR_PTR(error);
		}
		if (!PageUptodate(page)) {
			if (page->mapping == NULL) {
				/*
				 * invalidate_mapping_pages got it
				 */
				unlock_page(page);
				put_page(page);
				return NULL;
			}
			unlock_page(page);
			shrink_readahead_size_eio(ra);
			put_page(page);
			return ERR_PTR(-EIO);
		}
		unlock_page(page);
	}

	return page;
}

static struct page *
generic_file_buffered_read_pagenotuptodate(struct kiocb *iocb,
					   struct file *filp,
					   struct iov_iter *iter,
					   struct page *page,
					   loff_t pos, loff_t count)
{
	struct address_space *mapping = filp->f_mapping;
	struct inode *inode = mapping->host;
	int error;

	/*
	 * See comment in do_read_cache_page on why
	 * wait_on_page_locked is used to avoid unnecessarily
	 * serialisations and why it's safe.
	 */
	if (iocb->ki_flags & IOCB_WAITQ) {
		error = wait_on_page_locked_async(page,
						iocb->ki_waitq);
	} else {
		error = wait_on_page_locked_killable(page);
	}
	if (unlikely(error)) {
		put_page(page);
		return ERR_PTR(error);
	}
	if (PageUptodate(page))
		return page;

	if (inode->i_blkbits == PAGE_SHIFT ||
			!mapping->a_ops->is_partially_uptodate)
		goto page_not_up_to_date;
	/* pipes can't handle partially uptodate pages */
	if (unlikely(iov_iter_is_pipe(iter)))
		goto page_not_up_to_date;
	if (!trylock_page(page))
		goto page_not_up_to_date;
	/* Did it get truncated before we got the lock? */
	if (!page->mapping)
		goto page_not_up_to_date_locked;
	if (!mapping->a_ops->is_partially_uptodate(page,
				pos & ~PAGE_MASK, count))
		goto page_not_up_to_date_locked;
	unlock_page(page);
	return page;

page_not_up_to_date:
	/* Get exclusive access to the page ... */
	error = lock_page_for_iocb(iocb, page);
	if (unlikely(error)) {
		put_page(page);
		return ERR_PTR(error);
	}

page_not_up_to_date_locked:
	/* Did it get truncated before we got the lock? */
	if (!page->mapping) {
		unlock_page(page);
		put_page(page);
		return NULL;
	}

	/* Did somebody else fill it already? */
	if (PageUptodate(page)) {
		unlock_page(page);
		return page;
	}

	return generic_file_buffered_read_readpage(iocb, filp, mapping, page);
}

static struct page *
generic_file_buffered_read_no_cached_page(struct kiocb *iocb,
					  struct iov_iter *iter)
{
	struct file *filp = iocb->ki_filp;
	struct address_space *mapping = filp->f_mapping;
	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
	struct page *page;
	int error;

	if (iocb->ki_flags & IOCB_NOIO)
		return ERR_PTR(-EAGAIN);

	/*
	 * Ok, it wasn't cached, so we need to create a new
	 * page..
	 */
	page = page_cache_alloc(mapping);
	if (!page)
		return ERR_PTR(-ENOMEM);

	error = add_to_page_cache_lru(page, mapping, index,
				      mapping_gfp_constraint(mapping, GFP_KERNEL));
	if (error) {
		put_page(page);
		return error != -EEXIST ? ERR_PTR(error) : NULL;
	}

	return generic_file_buffered_read_readpage(iocb, filp, mapping, page);
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
static int generic_file_buffered_read_get_pages(struct kiocb *iocb,
						struct iov_iter *iter,
						struct page **pages,
						unsigned int nr)
{
	struct file *filp = iocb->ki_filp;
	struct address_space *mapping = filp->f_mapping;
	struct file_ra_state *ra = &filp->f_ra;
	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
	pgoff_t last_index = (iocb->ki_pos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	int i, j, nr_got, err = 0;

	nr = min_t(unsigned long, last_index - index, nr);
find_page:
	if (fatal_signal_pending(current))
		return -EINTR;

	nr_got = find_get_pages_contig(mapping, index, nr, pages);
	if (nr_got)
		goto got_pages;

	if (iocb->ki_flags & IOCB_NOIO)
		return -EAGAIN;

	page_cache_sync_readahead(mapping, ra, filp, index, last_index - index);

	nr_got = find_get_pages_contig(mapping, index, nr, pages);
	if (nr_got)
		goto got_pages;

	pages[0] = generic_file_buffered_read_no_cached_page(iocb, iter);
	err = PTR_ERR_OR_ZERO(pages[0]);
	if (!IS_ERR_OR_NULL(pages[0]))
		nr_got = 1;
got_pages:
	for (i = 0; i < nr_got; i++) {
		struct page *page = pages[i];
		pgoff_t pg_index = index + i;
		loff_t pg_pos = max(iocb->ki_pos,
				    (loff_t) pg_index << PAGE_SHIFT);
		loff_t pg_count = iocb->ki_pos + iter->count - pg_pos;

		if (PageReadahead(page)) {
			if (iocb->ki_flags & IOCB_NOIO) {
				for (j = i; j < nr_got; j++)
					put_page(pages[j]);
				nr_got = i;
				err = -EAGAIN;
				break;
			}
			page_cache_async_readahead(mapping, ra, filp, page,
					pg_index, last_index - pg_index);
		}

		if (!PageUptodate(page)) {
			if ((iocb->ki_flags & IOCB_NOWAIT) ||
			    ((iocb->ki_flags & IOCB_WAITQ) && i)) {
				for (j = i; j < nr_got; j++)
					put_page(pages[j]);
				nr_got = i;
				err = -EAGAIN;
				break;
			}

			page = generic_file_buffered_read_pagenotuptodate(iocb,
					filp, iter, page, pg_pos, pg_count);
			if (IS_ERR_OR_NULL(page)) {
				for (j = i + 1; j < nr_got; j++)
					put_page(pages[j]);
				nr_got = i;
				err = PTR_ERR_OR_ZERO(page);
				break;
			}
		}
	}

	if (likely(nr_got))
		return nr_got;
	if (err)
		return err;
	/*
	 * No pages and no error means we raced and should retry:
	 */
	goto find_page;
}

2424
/**
2425 2426
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
2427 2428
 * @iter:	data destination
 * @written:	already copied
2429
 *
L
Linus Torvalds 已提交
2430
 * This is a generic file read routine, and uses the
2431
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
2432 2433 2434
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
2435 2436 2437 2438
 *
 * Return:
 * * total number of bytes copied, including those the were already @written
 * * negative error code if nothing was copied
L
Linus Torvalds 已提交
2439
 */
2440
ssize_t generic_file_buffered_read(struct kiocb *iocb,
2441
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
2442
{
2443
	struct file *filp = iocb->ki_filp;
2444
	struct file_ra_state *ra = &filp->f_ra;
C
Christoph Hellwig 已提交
2445
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
2446
	struct inode *inode = mapping->host;
2447 2448 2449 2450 2451 2452 2453
	struct page *pages_onstack[PAGEVEC_SIZE], **pages = NULL;
	unsigned int nr_pages = min_t(unsigned int, 512,
			((iocb->ki_pos + iter->count + PAGE_SIZE - 1) >> PAGE_SHIFT) -
			(iocb->ki_pos >> PAGE_SHIFT));
	int i, pg_nr, error = 0;
	bool writably_mapped;
	loff_t isize, end_offset;
L
Linus Torvalds 已提交
2454

2455
	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2456
		return 0;
2457 2458 2459
	if (unlikely(!iov_iter_count(iter)))
		return 0;

2460 2461
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2462 2463
	if (nr_pages > ARRAY_SIZE(pages_onstack))
		pages = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
2464

2465 2466 2467 2468
	if (!pages) {
		pages = pages_onstack;
		nr_pages = min_t(unsigned int, nr_pages, ARRAY_SIZE(pages_onstack));
	}
L
Linus Torvalds 已提交
2469

2470
	do {
L
Linus Torvalds 已提交
2471
		cond_resched();
2472

2473
		/*
2474 2475 2476
		 * If we've already successfully copied some data, then we
		 * can no longer safely return -EIOCBQUEUED. Hence mark
		 * an async read NOWAIT at that point.
2477
		 */
2478
		if ((iocb->ki_flags & IOCB_WAITQ) && written)
2479 2480
			iocb->ki_flags |= IOCB_NOWAIT;

2481 2482 2483 2484 2485 2486
		i = 0;
		pg_nr = generic_file_buffered_read_get_pages(iocb, iter,
							     pages, nr_pages);
		if (pg_nr < 0) {
			error = pg_nr;
			break;
L
Linus Torvalds 已提交
2487 2488
		}

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
		/*
		 * i_size must be checked after we know the pages are Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */
		isize = i_size_read(inode);
		if (unlikely(iocb->ki_pos >= isize))
			goto put_pages;
L
Linus Torvalds 已提交
2500

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);

		while ((iocb->ki_pos >> PAGE_SHIFT) + pg_nr >
		       (end_offset + PAGE_SIZE - 1) >> PAGE_SHIFT)
			put_page(pages[--pg_nr]);

		/*
		 * Once we start copying data, we don't want to be touching any
		 * cachelines that might be contended:
		 */
		writably_mapped = mapping_writably_mapped(mapping);

		/*
		 * When a sequential read accesses a page several times, only
		 * mark it as accessed the first time.
		 */
		if (iocb->ki_pos >> PAGE_SHIFT !=
		    ra->prev_pos >> PAGE_SHIFT)
			mark_page_accessed(pages[0]);
		for (i = 1; i < pg_nr; i++)
			mark_page_accessed(pages[i]);

		for (i = 0; i < pg_nr; i++) {
			unsigned int offset = iocb->ki_pos & ~PAGE_MASK;
			unsigned int bytes = min_t(loff_t, end_offset - iocb->ki_pos,
						   PAGE_SIZE - offset);
			unsigned int copied;

			/*
			 * If users can be writing to this page using arbitrary
			 * virtual addresses, take care about potential aliasing
			 * before reading the page on the kernel side.
			 */
			if (writably_mapped)
				flush_dcache_page(pages[i]);

			copied = copy_page_to_iter(pages[i], offset, bytes, iter);

			written += copied;
			iocb->ki_pos += copied;
			ra->prev_pos = iocb->ki_pos;

			if (copied < bytes) {
				error = -EFAULT;
				break;
			}
L
Linus Torvalds 已提交
2547
		}
2548 2549 2550 2551
put_pages:
		for (i = 0; i < pg_nr; i++)
			put_page(pages[i]);
	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
L
Linus Torvalds 已提交
2552

2553
	file_accessed(filp);
2554 2555 2556

	if (pages != pages_onstack)
		kfree(pages);
2557

2558
	return written ? written : error;
L
Linus Torvalds 已提交
2559
}
2560
EXPORT_SYMBOL_GPL(generic_file_buffered_read);
L
Linus Torvalds 已提交
2561

2562
/**
A
Al Viro 已提交
2563
 * generic_file_read_iter - generic filesystem read routine
2564
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2565
 * @iter:	destination for the data read
2566
 *
A
Al Viro 已提交
2567
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2568
 * that can use the page cache directly.
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
 *
 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
 * be returned when no data can be read without waiting for I/O requests
 * to complete; it doesn't prevent readahead.
 *
 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
 * requests shall be made for the read or for readahead.  When no data
 * can be read, -EAGAIN shall be returned.  When readahead would be
 * triggered, a partial, possibly empty read shall be returned.
 *
2579 2580
 * Return:
 * * number of bytes copied, even for partial reads
2581
 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
L
Linus Torvalds 已提交
2582 2583
 */
ssize_t
A
Al Viro 已提交
2584
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2585
{
2586
	size_t count = iov_iter_count(iter);
2587
	ssize_t retval = 0;
2588 2589 2590

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2591

2592
	if (iocb->ki_flags & IOCB_DIRECT) {
2593
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2594 2595
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2596
		loff_t size;
L
Linus Torvalds 已提交
2597 2598

		size = i_size_read(inode);
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2610

2611 2612
		file_accessed(file);

2613
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2614
		if (retval >= 0) {
2615
			iocb->ki_pos += retval;
2616
			count -= retval;
2617
		}
A
Al Viro 已提交
2618
		iov_iter_revert(iter, count - iov_iter_count(iter));
2619

2620 2621 2622 2623 2624 2625
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2626 2627
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2628
		 */
2629
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2630
		    IS_DAX(inode))
2631
			goto out;
L
Linus Torvalds 已提交
2632 2633
	}

2634
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2635 2636 2637
out:
	return retval;
}
A
Al Viro 已提交
2638
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2639 2640 2641

#ifdef CONFIG_MMU
#define MMAP_LOTSAMISS  (100)
2642
/*
2643
 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2644 2645 2646 2647
 * @vmf - the vm_fault for this fault.
 * @page - the page to lock.
 * @fpin - the pointer to the file we may pin (or is already pinned).
 *
2648
 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2649
 * It differs in that it actually returns the page locked if it returns 1 and 0
2650
 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2651 2652 2653 2654 2655 2656 2657 2658
 * will point to the pinned file and needs to be fput()'ed at a later point.
 */
static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
				     struct file **fpin)
{
	if (trylock_page(page))
		return 1;

2659 2660
	/*
	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2661
	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2662 2663
	 * is supposed to work. We have way too many special cases..
	 */
2664 2665 2666 2667 2668 2669 2670
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
		return 0;

	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
	if (vmf->flags & FAULT_FLAG_KILLABLE) {
		if (__lock_page_killable(page)) {
			/*
2671
			 * We didn't have the right flags to drop the mmap_lock,
2672 2673
			 * but all fault_handlers only check for fatal signals
			 * if we return VM_FAULT_RETRY, so we need to drop the
2674
			 * mmap_lock here and return 0 if we don't have a fpin.
2675 2676
			 */
			if (*fpin == NULL)
2677
				mmap_read_unlock(vmf->vma->vm_mm);
2678 2679 2680 2681 2682 2683 2684
			return 0;
		}
	} else
		__lock_page(page);
	return 1;
}

L
Linus Torvalds 已提交
2685

2686
/*
2687 2688 2689 2690 2691
 * Synchronous readahead happens when we don't even find a page in the page
 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 * to drop the mmap sem we return the file that was pinned in order for us to do
 * that.  If we didn't pin a file then we return NULL.  The file that is
 * returned needs to be fput()'ed when we're done with it.
2692
 */
2693
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2694
{
2695 2696
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2697
	struct address_space *mapping = file->f_mapping;
2698
	DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
2699
	struct file *fpin = NULL;
2700
	unsigned int mmap_miss;
2701 2702

	/* If we don't want any read-ahead, don't bother */
2703
	if (vmf->vma->vm_flags & VM_RAND_READ)
2704
		return fpin;
2705
	if (!ra->ra_pages)
2706
		return fpin;
2707

2708
	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2709
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2710
		page_cache_sync_ra(&ractl, ra, ra->ra_pages);
2711
		return fpin;
2712 2713
	}

2714
	/* Avoid banging the cache line if not needed */
2715 2716 2717
	mmap_miss = READ_ONCE(ra->mmap_miss);
	if (mmap_miss < MMAP_LOTSAMISS * 10)
		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2718 2719 2720 2721 2722

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
2723
	if (mmap_miss > MMAP_LOTSAMISS)
2724
		return fpin;
2725

2726 2727 2728
	/*
	 * mmap read-around
	 */
2729
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2730
	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2731 2732
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2733 2734
	ractl._index = ra->start;
	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2735
	return fpin;
2736 2737 2738 2739
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
2740
 * so we want to possibly extend the readahead further.  We return the file that
2741
 * was pinned if we have to drop the mmap_lock in order to do IO.
2742
 */
2743 2744
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
					    struct page *page)
2745
{
2746 2747
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2748
	struct address_space *mapping = file->f_mapping;
2749
	struct file *fpin = NULL;
2750
	unsigned int mmap_miss;
2751
	pgoff_t offset = vmf->pgoff;
2752 2753

	/* If we don't want any read-ahead, don't bother */
2754
	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2755
		return fpin;
2756 2757 2758
	mmap_miss = READ_ONCE(ra->mmap_miss);
	if (mmap_miss)
		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2759 2760
	if (PageReadahead(page)) {
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2761 2762
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2763 2764
	}
	return fpin;
2765 2766
}

2767
/**
2768
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2769
 * @vmf:	struct vm_fault containing details of the fault
2770
 *
2771
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2772 2773 2774 2775 2776
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2777
 *
2778
 * vma->vm_mm->mmap_lock must be held on entry.
2779
 *
2780
 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2781
 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2782
 *
2783
 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2784 2785 2786
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2787 2788
 *
 * Return: bitwise-OR of %VM_FAULT_ codes.
L
Linus Torvalds 已提交
2789
 */
2790
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2791 2792
{
	int error;
2793
	struct file *file = vmf->vma->vm_file;
2794
	struct file *fpin = NULL;
L
Linus Torvalds 已提交
2795 2796 2797
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2798
	pgoff_t offset = vmf->pgoff;
2799
	pgoff_t max_off;
L
Linus Torvalds 已提交
2800
	struct page *page;
2801
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2802

2803 2804
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2805
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2806 2807

	/*
2808
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2809
	 */
2810
	page = find_get_page(mapping, offset);
2811
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2812
		/*
2813 2814
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2815
		 */
2816
		fpin = do_async_mmap_readahead(vmf, page);
2817
	} else if (!page) {
2818 2819
		/* No page in the page cache at all */
		count_vm_event(PGMAJFAULT);
2820
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2821
		ret = VM_FAULT_MAJOR;
2822
		fpin = do_sync_mmap_readahead(vmf);
2823
retry_find:
2824 2825 2826
		page = pagecache_get_page(mapping, offset,
					  FGP_CREAT|FGP_FOR_MMAP,
					  vmf->gfp_mask);
2827 2828 2829
		if (!page) {
			if (fpin)
				goto out_retry;
2830
			return VM_FAULT_OOM;
2831
		}
L
Linus Torvalds 已提交
2832 2833
	}

2834 2835
	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
		goto out_retry;
2836 2837

	/* Did it get truncated? */
2838
	if (unlikely(compound_head(page)->mapping != mapping)) {
2839 2840 2841 2842
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2843
	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2844

L
Linus Torvalds 已提交
2845
	/*
2846 2847
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2848
	 */
2849
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2850 2851
		goto page_not_uptodate;

2852
	/*
2853
	 * We've made it this far and we had to drop our mmap_lock, now is the
2854 2855 2856 2857 2858 2859 2860 2861
	 * time to return to the upper layer and have it re-find the vma and
	 * redo the fault.
	 */
	if (fpin) {
		unlock_page(page);
		goto out_retry;
	}

2862 2863 2864 2865
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2866 2867
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2868
		unlock_page(page);
2869
		put_page(page);
2870
		return VM_FAULT_SIGBUS;
2871 2872
	}

N
Nick Piggin 已提交
2873
	vmf->page = page;
N
Nick Piggin 已提交
2874
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2884
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2885
	error = mapping->a_ops->readpage(file, page);
2886 2887 2888 2889 2890
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2891 2892
	if (fpin)
		goto out_retry;
2893
	put_page(page);
2894 2895

	if (!error || error == AOP_TRUNCATED_PAGE)
2896
		goto retry_find;
L
Linus Torvalds 已提交
2897

2898
	shrink_readahead_size_eio(ra);
N
Nick Piggin 已提交
2899
	return VM_FAULT_SIGBUS;
2900 2901 2902

out_retry:
	/*
2903
	 * We dropped the mmap_lock, we need to return to the fault handler to
2904 2905 2906 2907 2908 2909 2910 2911
	 * re-find the vma and come back and find our hopefully still populated
	 * page.
	 */
	if (page)
		put_page(page);
	if (fpin)
		fput(fpin);
	return ret | VM_FAULT_RETRY;
2912 2913 2914
}
EXPORT_SYMBOL(filemap_fault);

2915
static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
2916
{
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	struct mm_struct *mm = vmf->vma->vm_mm;

	/* Huge page is mapped? No need to proceed. */
	if (pmd_trans_huge(*vmf->pmd)) {
		unlock_page(page);
		put_page(page);
		return true;
	}

	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
	    vm_fault_t ret = do_set_pmd(vmf, page);
	    if (!ret) {
		    /* The page is mapped successfully, reference consumed. */
		    unlock_page(page);
		    return true;
	    }
	}

	if (pmd_none(*vmf->pmd)) {
		vmf->ptl = pmd_lock(mm, vmf->pmd);
		if (likely(pmd_none(*vmf->pmd))) {
			mm_inc_nr_ptes(mm);
			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
			vmf->prealloc_pte = NULL;
		}
		spin_unlock(vmf->ptl);
	}

	/* See comment in handle_pte_fault() */
	if (pmd_devmap_trans_unstable(vmf->pmd)) {
		unlock_page(page);
		put_page(page);
		return true;
	}

	return false;
}

static struct page *next_uptodate_page(struct page *page,
				       struct address_space *mapping,
				       struct xa_state *xas, pgoff_t end_pgoff)
{
	unsigned long max_idx;

	do {
		if (!page)
			return NULL;
		if (xas_retry(xas, page))
			continue;
		if (xa_is_value(page))
			continue;
		if (PageLocked(page))
			continue;
		if (!page_cache_get_speculative(page))
			continue;
		/* Has the page moved or been split? */
		if (unlikely(page != xas_reload(xas)))
			goto skip;
		if (!PageUptodate(page) || PageReadahead(page))
			goto skip;
		if (PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;
		if (page->mapping != mapping)
			goto unlock;
		if (!PageUptodate(page))
			goto unlock;
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (xas->xa_index >= max_idx)
			goto unlock;
		return page;
unlock:
		unlock_page(page);
skip:
		put_page(page);
	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);

	return NULL;
}

static inline struct page *first_map_page(struct address_space *mapping,
					  struct xa_state *xas,
					  pgoff_t end_pgoff)
{
	return next_uptodate_page(xas_find(xas, end_pgoff),
				  mapping, xas, end_pgoff);
}

static inline struct page *next_map_page(struct address_space *mapping,
					 struct xa_state *xas,
					 pgoff_t end_pgoff)
{
	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
				  mapping, xas, end_pgoff);
}

vm_fault_t filemap_map_pages(struct vm_fault *vmf,
			     pgoff_t start_pgoff, pgoff_t end_pgoff)
{
	struct vm_area_struct *vma = vmf->vma;
	struct file *file = vma->vm_file;
3019
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
3020
	pgoff_t last_pgoff = start_pgoff;
3021
	unsigned long addr;
3022
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3023
	struct page *head, *page;
3024
	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3025
	vm_fault_t ret = 0;
3026 3027

	rcu_read_lock();
3028 3029 3030
	head = first_map_page(mapping, &xas, end_pgoff);
	if (!head)
		goto out;
3031

3032 3033 3034 3035
	if (filemap_map_pmd(vmf, head)) {
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
3036

3037 3038
	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3039
	do {
3040
		page = find_subpage(head, xas.xa_index);
3041
		if (PageHWPoison(page))
3042 3043
			goto unlock;

3044 3045
		if (mmap_miss > 0)
			mmap_miss--;
3046

3047
		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3048
		vmf->pte += xas.xa_index - last_pgoff;
3049
		last_pgoff = xas.xa_index;
3050 3051

		if (!pte_none(*vmf->pte))
3052
			goto unlock;
3053

3054
		/* We're about to handle the fault */
3055
		if (vmf->address == addr)
3056 3057
			ret = VM_FAULT_NOPAGE;

3058
		do_set_pte(vmf, page, addr);
3059
		/* no need to invalidate: a not-present page won't be cached */
3060
		update_mmu_cache(vma, addr, vmf->pte);
3061
		unlock_page(head);
3062
		continue;
3063
unlock:
3064 3065
		unlock_page(head);
		put_page(head);
3066 3067 3068
	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
	pte_unmap_unlock(vmf->pte, vmf->ptl);
out:
3069
	rcu_read_unlock();
3070
	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3071
	return ret;
3072 3073 3074
}
EXPORT_SYMBOL(filemap_map_pages);

3075
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3076
{
3077
	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3078
	struct page *page = vmf->page;
3079
	vm_fault_t ret = VM_FAULT_LOCKED;
3080

3081
	sb_start_pagefault(mapping->host->i_sb);
3082
	file_update_time(vmf->vma->vm_file);
3083
	lock_page(page);
3084
	if (page->mapping != mapping) {
3085 3086 3087 3088
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
3089 3090 3091 3092 3093 3094
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
3095
	wait_for_stable_page(page);
3096
out:
3097
	sb_end_pagefault(mapping->host->i_sb);
3098 3099 3100
	return ret;
}

3101
const struct vm_operations_struct generic_file_vm_ops = {
3102
	.fault		= filemap_fault,
3103
	.map_pages	= filemap_map_pages,
3104
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
S
Souptick Joarder 已提交
3130
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3131
{
S
Souptick Joarder 已提交
3132
	return VM_FAULT_SIGBUS;
3133
}
L
Linus Torvalds 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

3144
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
3145 3146 3147
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
3148 3149 3150 3151 3152
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
3153
			put_page(page);
S
Sasha Levin 已提交
3154 3155 3156 3157 3158 3159
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

3160
static struct page *do_read_cache_page(struct address_space *mapping,
3161
				pgoff_t index,
3162
				int (*filler)(void *, struct page *),
3163 3164
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
3165
{
N
Nick Piggin 已提交
3166
	struct page *page;
L
Linus Torvalds 已提交
3167 3168 3169 3170
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
3171
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
3172 3173
		if (!page)
			return ERR_PTR(-ENOMEM);
3174
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
3175
		if (unlikely(err)) {
3176
			put_page(page);
N
Nick Piggin 已提交
3177 3178
			if (err == -EEXIST)
				goto repeat;
3179
			/* Presumably ENOMEM for xarray node */
L
Linus Torvalds 已提交
3180 3181
			return ERR_PTR(err);
		}
3182 3183

filler:
3184 3185 3186 3187 3188
		if (filler)
			err = filler(data, page);
		else
			err = mapping->a_ops->readpage(data, page);

L
Linus Torvalds 已提交
3189
		if (err < 0) {
3190
			put_page(page);
3191
			return ERR_PTR(err);
L
Linus Torvalds 已提交
3192 3193
		}

3194 3195 3196 3197 3198
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
3199 3200 3201
	if (PageUptodate(page))
		goto out;

3202
	/*
M
Miaohe Lin 已提交
3203
	 * Page is not up to date and may be locked due to one of the following
3204 3205 3206 3207 3208 3209 3210 3211
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
3212
	 *    page is truncated, the data is still valid if PageUptodate as
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
3238
	lock_page(page);
3239 3240

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
3241 3242
	if (!page->mapping) {
		unlock_page(page);
3243
		put_page(page);
3244
		goto repeat;
L
Linus Torvalds 已提交
3245
	}
3246 3247

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
3248 3249 3250 3251
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
3252 3253 3254 3255 3256 3257 3258 3259

	/*
	 * A previous I/O error may have been due to temporary
	 * failures.
	 * Clear page error before actual read, PG_error will be
	 * set again if read page fails.
	 */
	ClearPageError(page);
3260 3261
	goto filler;

3262
out:
3263 3264 3265
	mark_page_accessed(page);
	return page;
}
3266 3267

/**
S
Sasha Levin 已提交
3268
 * read_cache_page - read into page cache, fill it if needed
3269 3270 3271
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
3272
 * @data:	first arg to filler(data, page) function, often left as NULL
3273 3274
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
3275
 * not set, try to fill the page and wait for it to become unlocked.
3276 3277
 *
 * If the page does not get brought uptodate, return -EIO.
3278 3279
 *
 * Return: up to date page on success, ERR_PTR() on failure.
3280
 */
S
Sasha Levin 已提交
3281
struct page *read_cache_page(struct address_space *mapping,
3282
				pgoff_t index,
3283
				int (*filler)(void *, struct page *),
3284 3285
				void *data)
{
3286 3287
	return do_read_cache_page(mapping, index, filler, data,
			mapping_gfp_mask(mapping));
3288
}
S
Sasha Levin 已提交
3289
EXPORT_SYMBOL(read_cache_page);
3290 3291 3292 3293 3294 3295 3296 3297

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3298
 * any new page allocations done using the specified allocation flags.
3299 3300
 *
 * If the page does not get brought uptodate, return -EIO.
3301 3302
 *
 * Return: up to date page on success, ERR_PTR() on failure.
3303 3304 3305 3306 3307
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
3308
	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3309 3310 3311
}
EXPORT_SYMBOL(read_cache_page_gfp);

3312 3313 3314 3315 3316 3317
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3318
	return aops->write_begin(file, mapping, pos, len, flags,
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3329
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3330 3331 3332
}
EXPORT_SYMBOL(pagecache_write_end);

3333 3334 3335 3336 3337 3338 3339 3340 3341
/*
 * Warn about a page cache invalidation failure during a direct I/O write.
 */
void dio_warn_stale_pagecache(struct file *filp)
{
	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
	char pathname[128];
	char *path;

3342
	errseq_set(&filp->f_mapping->wb_err, -EIO);
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	if (__ratelimit(&_rs)) {
		path = file_path(filp, pathname, sizeof(pathname));
		if (IS_ERR(path))
			path = "(unknown)";
		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
			current->comm);
	}
}

L
Linus Torvalds 已提交
3353
ssize_t
3354
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3355 3356 3357 3358
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
3359
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
3360
	ssize_t		written;
3361 3362
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
3363

A
Al Viro 已提交
3364
	write_len = iov_iter_count(from);
3365
	end = (pos + write_len - 1) >> PAGE_SHIFT;
3366

3367 3368
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
3369
		if (filemap_range_has_page(file->f_mapping, pos,
3370
					   pos + write_len - 1))
3371 3372 3373 3374 3375 3376 3377
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
3378 3379 3380 3381 3382

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
3383
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3384
	 */
3385
	written = invalidate_inode_pages2_range(mapping,
3386
					pos >> PAGE_SHIFT, end);
3387 3388 3389 3390 3391 3392 3393 3394
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
3395 3396
	}

3397
	written = mapping->a_ops->direct_IO(iocb, from);
3398 3399 3400 3401 3402 3403 3404 3405

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3406 3407 3408 3409
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
3410 3411
	 * them by removing it completely.
	 *
3412 3413
	 * Noticeable example is a blkdev_direct_IO().
	 *
3414
	 * Skip invalidation for async writes or if mapping has no pages.
3415
	 */
3416 3417 3418
	if (written > 0 && mapping->nrpages &&
	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
		dio_warn_stale_pagecache(file);
3419

L
Linus Torvalds 已提交
3420
	if (written > 0) {
3421
		pos += written;
3422
		write_len -= written;
3423 3424
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3425 3426
			mark_inode_dirty(inode);
		}
3427
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3428
	}
3429
	iov_iter_revert(from, write_len - iov_iter_count(from));
3430
out:
L
Linus Torvalds 已提交
3431 3432 3433 3434
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3435 3436 3437 3438
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3439 3440
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3441 3442
{
	struct page *page;
3443
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3444

3445
	if (flags & AOP_FLAG_NOFS)
3446 3447 3448
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3449
			mapping_gfp_mask(mapping));
3450
	if (page)
3451
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3452 3453 3454

	return page;
}
3455
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3456

3457
ssize_t generic_perform_write(struct file *file,
3458 3459 3460 3461 3462 3463
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3464 3465
	unsigned int flags = 0;

3466 3467 3468 3469 3470 3471 3472
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3473 3474
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3475 3476 3477
						iov_iter_count(i));

again:
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3493 3494 3495 3496 3497
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3498
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3499
						&page, &fsdata);
3500
		if (unlikely(status < 0))
3501 3502
			break;

3503 3504
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3505

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3517
		iov_iter_advance(i, copied);
3518 3519 3520 3521 3522 3523 3524 3525 3526
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3527
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3539
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3540

3541
/**
3542
 * __generic_file_write_iter - write data to a file
3543
 * @iocb:	IO state structure (file, offset, etc.)
3544
 * @from:	iov_iter with data to write
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
3557 3558 3559 3560
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
3561
 */
3562
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3563 3564
{
	struct file *file = iocb->ki_filp;
3565
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3566
	struct inode 	*inode = mapping->host;
3567
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3568
	ssize_t		err;
3569
	ssize_t		status;
L
Linus Torvalds 已提交
3570 3571

	/* We can write back this queue in page reclaim */
3572
	current->backing_dev_info = inode_to_bdi(inode);
3573
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3574 3575 3576
	if (err)
		goto out;

3577 3578 3579
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3580

3581
	if (iocb->ki_flags & IOCB_DIRECT) {
3582
		loff_t pos, endbyte;
3583

3584
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3585
		/*
3586 3587 3588 3589 3590
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3591
		 */
3592
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3593 3594
			goto out;

3595
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3596
		/*
3597
		 * If generic_perform_write() returned a synchronous error
3598 3599 3600 3601 3602
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3603
		if (unlikely(status < 0)) {
3604
			err = status;
3605 3606 3607 3608 3609 3610 3611
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3612
		endbyte = pos + status - 1;
3613
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3614
		if (err == 0) {
3615
			iocb->ki_pos = endbyte + 1;
3616
			written += status;
3617
			invalidate_mapping_pages(mapping,
3618 3619
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3620 3621 3622 3623 3624 3625 3626
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3627 3628 3629
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3630
	}
L
Linus Torvalds 已提交
3631 3632 3633 3634
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3635
EXPORT_SYMBOL(__generic_file_write_iter);
3636 3637

/**
3638
 * generic_file_write_iter - write data to a file
3639
 * @iocb:	IO state structure
3640
 * @from:	iov_iter with data to write
3641
 *
3642
 * This is a wrapper around __generic_file_write_iter() to be used by most
3643 3644
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
3645 3646 3647 3648
 * Return:
 * * negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * number of bytes written, even for truncated writes
3649
 */
3650
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3651 3652
{
	struct file *file = iocb->ki_filp;
3653
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3654 3655
	ssize_t ret;

A
Al Viro 已提交
3656
	inode_lock(inode);
3657 3658
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3659
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3660
	inode_unlock(inode);
L
Linus Torvalds 已提交
3661

3662 3663
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3664 3665
	return ret;
}
3666
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3667

3668 3669 3670 3671 3672 3673 3674
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3675
 * (presumably at page->private).
3676
 *
3677 3678 3679
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3680
 * The @gfp_mask argument specifies whether I/O may be performed to release
3681
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3682
 *
3683
 * Return: %1 if the release was successful, otherwise return zero.
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);