intel_pm.c 277.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/pm_runtime.h>
30
#include <drm/drm_plane_helper.h>
31 32
#include "i915_drv.h"
#include "intel_drv.h"
33 34
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
35
#include <drm/drm_atomic_helper.h>
36

B
Ben Widawsky 已提交
37
/**
38 39
 * DOC: RC6
 *
B
Ben Widawsky 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

57
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
58
{
59 60 61
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
62
		 * Display WA #0390: skl,kbl
63 64 65 66 67 68 69 70 71
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

72
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
73 74 75
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

76
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
77 78
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
79

80 81
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
82 83 84
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
85

86
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
87 88
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
89 90 91 92 93 94

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
95 96
}

97
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
98
{
99
	gen9_init_clock_gating(dev_priv);
100

101 102 103 104
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

105 106
	/*
	 * FIXME:
107
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
108 109
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
110
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
111 112 113 114 115

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
116 117
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
118 119
}

120 121 122 123 124 125 126 127 128 129 130
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
131 132 133 134 135 136 137 138 139 140

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

141 142
}

143
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

181
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

208
	dev_priv->ips.r_t = dev_priv->mem_freq;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
240
		dev_priv->ips.c_m = 0;
241
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
242
		dev_priv->ips.c_m = 1;
243
	} else {
244
		dev_priv->ips.c_m = 2;
245 246 247
	}
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

286 287
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

310 311 312 313
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

314
	mutex_lock(&dev_priv->pcu_lock);
315 316 317 318 319 320 321 322 323 324 325 326 327 328

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

329
	mutex_unlock(&dev_priv->pcu_lock);
330 331
}

332 333 334 335
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

336
	mutex_lock(&dev_priv->pcu_lock);
337 338 339 340 341 342 343 344

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

345
	mutex_unlock(&dev_priv->pcu_lock);
346 347
}

348 349 350
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

351
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
352
{
353
	bool was_enabled;
354
	u32 val;
355

356
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
357
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
358
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
359
		POSTING_READ(FW_BLC_SELF_VLV);
360
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
361
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
362
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
363
		POSTING_READ(FW_BLC_SELF);
364
	} else if (IS_PINEVIEW(dev_priv)) {
365 366 367 368 369 370
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
371
		I915_WRITE(DSPFW3, val);
372
		POSTING_READ(DSPFW3);
373
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
374
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
375 376 377
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
378
		POSTING_READ(FW_BLC_SELF);
379
	} else if (IS_I915GM(dev_priv)) {
380 381 382 383 384
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
385
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
386 387 388
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
389
		POSTING_READ(INSTPM);
390
	} else {
391
		return false;
392
	}
393

394 395
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

396 397 398 399 400
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
401 402
}

V
Ville Syrjälä 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
440
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
441
{
442 443
	bool ret;

444
	mutex_lock(&dev_priv->wm.wm_mutex);
445
	ret = _intel_set_memory_cxsr(dev_priv, enable);
446 447 448 449
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
450
	mutex_unlock(&dev_priv->wm.wm_mutex);
451 452

	return ret;
453
}
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
469
static const int pessimal_latency_ns = 5000;
470

471 472 473
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

474
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
475
{
476
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
477
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
478
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
479 480
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
481

482
	switch (pipe) {
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
503 504
		MISSING_CASE(pipe);
		return;
505 506
	}

507 508 509 510
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
511 512
}

513 514
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
515 516 517 518 519
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
520
	if (i9xx_plane == PLANE_B)
521 522
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

523 524
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
525 526 527 528

	return size;
}

529 530
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
531 532 533 534 535
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
536
	if (i9xx_plane == PLANE_B)
537 538 539
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

540 541
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
542 543 544 545

	return size;
}

546 547
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
548 549 550 551 552 553 554
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

555 556
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
557 558 559 560 561 562

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
563 564 565 566 567
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
568 569
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
570 571 572 573 574
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
575 576
};
static const struct intel_watermark_params pineview_cursor_wm = {
577 578 579 580 581
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582 583
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
584 585 586 587 588
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589 590
};
static const struct intel_watermark_params i965_cursor_wm_info = {
591 592 593 594 595
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
596 597
};
static const struct intel_watermark_params i945_wm_info = {
598 599 600 601 602
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
603 604
};
static const struct intel_watermark_params i915_wm_info = {
605 606 607 608 609
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
610
};
611
static const struct intel_watermark_params i830_a_wm_info = {
612 613 614 615 616
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
617
};
618 619 620 621 622 623 624
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
625
static const struct intel_watermark_params i845_wm_info = {
626 627 628 629 630
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
631 632
};

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

729 730
/**
 * intel_calculate_wm - calculate watermark level
731
 * @pixel_rate: pixel clock
732
 * @wm: chip FIFO params
733
 * @fifo_size: size of the FIFO buffer
734
 * @cpp: bytes per pixel
735 736 737 738 739 740 741 742 743 744 745 746 747
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
748 749 750 751
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
752
{
753
	int entries, wm_size;
754 755 756 757 758 759 760

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
761 762 763 764 765
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
766

767 768
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
769 770

	/* Don't promote wm_size to unsigned... */
771
	if (wm_size > wm->max_wm)
772 773 774
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
775 776 777 778 779 780 781 782 783 784 785

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

786 787 788
	return wm_size;
}

789 790 791 792 793 794 795 796 797 798
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

799 800 801 802 803
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

827
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
828
{
829
	struct intel_crtc *crtc, *enabled = NULL;
830

831
	for_each_intel_crtc(&dev_priv->drm, crtc) {
832
		if (intel_crtc_active(crtc)) {
833 834 835 836 837 838 839 840 841
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

842
static void pineview_update_wm(struct intel_crtc *unused_crtc)
843
{
844
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
845
	struct intel_crtc *crtc;
846 847
	const struct cxsr_latency *latency;
	u32 reg;
848
	unsigned int wm;
849

850 851 852 853
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
854 855
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
856
		intel_set_memory_cxsr(dev_priv, false);
857 858 859
		return;
	}

860
	crtc = single_enabled_crtc(dev_priv);
861
	if (crtc) {
862 863 864 865
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
866
		int cpp = fb->format->cpp[0];
867
		int clock = adjusted_mode->crtc_clock;
868 869 870 871

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
872
					cpp, latency->display_sr);
873 874
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
875
		reg |= FW_WM(wm, SR);
876 877 878 879 880 881
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
882
					4, latency->cursor_sr);
883 884
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
885
		reg |= FW_WM(wm, CURSOR_SR);
886 887 888 889 890
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
891
					cpp, latency->display_hpll_disable);
892 893
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
894
		reg |= FW_WM(wm, HPLL_SR);
895 896 897 898 899
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
900
					4, latency->cursor_hpll_disable);
901 902
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
903
		reg |= FW_WM(wm, HPLL_CURSOR);
904 905 906
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

907
		intel_set_memory_cxsr(dev_priv, true);
908
	} else {
909
		intel_set_memory_cxsr(dev_priv, false);
910 911 912
	}
}

913 914 915 916 917 918 919 920 921 922
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
923
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
924 925 926 927 928 929
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

930 931
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
932
{
933 934 935 936 937
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
955

956
	POSTING_READ(DSPFW1);
957 958
}

959 960 961
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

962
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
963 964
				const struct vlv_wm_values *wm)
{
965 966 967
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
968 969
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

970 971 972 973 974 975
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
976

977 978 979 980 981 982 983 984 985 986 987
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

988
	I915_WRITE(DSPFW1,
989
		   FW_WM(wm->sr.plane, SR) |
990 991 992
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
993
	I915_WRITE(DSPFW2,
994 995 996
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
997
	I915_WRITE(DSPFW3,
998
		   FW_WM(wm->sr.cursor, CURSOR_SR));
999 1000 1001

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1002 1003
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1004
		I915_WRITE(DSPFW8_CHV,
1005 1006
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1007
		I915_WRITE(DSPFW9_CHV,
1008 1009
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1010
		I915_WRITE(DSPHOWM,
1011
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1012 1013 1014 1015 1016 1017 1018 1019 1020
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1021 1022
	} else {
		I915_WRITE(DSPFW7,
1023 1024
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1025
		I915_WRITE(DSPHOWM,
1026
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1027 1028 1029 1030 1031 1032
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1033 1034 1035
	}

	POSTING_READ(DSPFW1);
1036 1037
}

1038 1039
#undef FW_WM_VLV

1040 1041 1042 1043 1044
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1045
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1046

1047
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1100 1101
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1140
		unsigned int small, large;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1153
	return min_t(unsigned int, wm, USHRT_MAX);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1322 1323
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1324 1325 1326 1327 1328
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1329 1330 1331 1332
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1333 1334 1335
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1336
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
1404
				       struct intel_crtc_state *new_crtc_state)
1405
{
1406 1407 1408 1409 1410 1411 1412
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1413 1414
	enum plane_id plane_id;

1415 1416 1417 1418 1419 1420 1421 1422
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1423
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1424
		!new_crtc_state->disable_cxsr;
1425
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1426
		!new_crtc_state->disable_cxsr;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1468
out:
1469 1470 1471 1472 1473
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1474
		new_crtc_state->wm.need_postvbl_update = true;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1571 1572
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1573 1574
				   unsigned int htotal,
				   unsigned int width,
1575
				   unsigned int cpp,
1576 1577 1578 1579
				   unsigned int latency)
{
	unsigned int ret;

1580 1581
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1582 1583 1584 1585 1586
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1587
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1588 1589 1590 1591
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1592 1593
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1594 1595 1596
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1597 1598

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1599 1600 1601
	}
}

1602 1603
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1604 1605
				     int level)
{
1606
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1607
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1608 1609
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1610
	unsigned int clock, htotal, cpp, width, wm;
1611 1612 1613 1614

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1615
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1616 1617
		return 0;

1618
	cpp = plane_state->base.fb->format->cpp[0];
1619 1620 1621
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1622

1623
	if (plane->id == PLANE_CURSOR) {
1624 1625 1626 1627 1628 1629 1630 1631
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1632
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1633 1634 1635
				    dev_priv->wm.pri_latency[level] * 10);
	}

1636
	return min_t(unsigned int, wm, USHRT_MAX);
1637 1638
}

1639 1640 1641 1642 1643 1644
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1645
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1646
{
1647
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1648
	const struct g4x_pipe_wm *raw =
1649
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1650
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1651 1652 1653
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1654
	int fifo_extra, fifo_left = fifo_size;
1655
	int sprite0_fifo_extra = 0;
1656 1657
	unsigned int total_rate;
	enum plane_id plane_id;
1658

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1670 1671
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1672 1673
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1674

1675 1676
	if (total_rate > fifo_size)
		return -EINVAL;
1677

1678 1679
	if (total_rate == 0)
		total_rate = 1;
1680

1681
	for_each_plane_id_on_crtc(crtc, plane_id) {
1682 1683
		unsigned int rate;

1684 1685
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1686 1687 1688
			continue;
		}

1689 1690 1691
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1692 1693
	}

1694 1695 1696
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1697 1698 1699
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1700 1701

	/* spread the remainder evenly */
1702
	for_each_plane_id_on_crtc(crtc, plane_id) {
1703 1704 1705 1706 1707
		int plane_extra;

		if (fifo_left == 0)
			break;

1708
		if ((active_planes & BIT(plane_id)) == 0)
1709 1710 1711
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1712
		fifo_state->plane[plane_id] += plane_extra;
1713 1714 1715
		fifo_left -= plane_extra;
	}

1716 1717 1718 1719 1720 1721 1722 1723 1724
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1725 1726
}

1727 1728 1729 1730 1731 1732
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1733
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1744 1745 1746 1747 1748 1749 1750 1751
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1752 1753 1754 1755
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1756
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1757
				 int level, enum plane_id plane_id, u16 value)
1758
{
1759
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1760
	int num_levels = intel_wm_num_levels(dev_priv);
1761
	bool dirty = false;
1762

1763
	for (; level < num_levels; level++) {
1764
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1765

1766
		dirty |= raw->plane[plane_id] != value;
1767
		raw->plane[plane_id] = value;
1768
	}
1769 1770

	return dirty;
1771 1772
}

1773 1774
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1775
{
1776 1777
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1778
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1779
	int level;
1780
	bool dirty = false;
1781

1782
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1783 1784
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1785
	}
1786

1787
	for (level = 0; level < num_levels; level++) {
1788
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1789 1790
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1791

1792 1793
		if (wm > max_wm)
			break;
1794

1795
		dirty |= raw->plane[plane_id] != wm;
1796 1797
		raw->plane[plane_id] = wm;
	}
1798

1799
	/* mark all higher levels as invalid */
1800
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1801

1802 1803
out:
	if (dirty)
1804
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1805 1806 1807 1808 1809 1810
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1811
}
1812

1813 1814
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1815
{
1816
	const struct g4x_pipe_wm *raw =
1817 1818 1819
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1820

1821 1822
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1823

1824
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1825
{
1826 1827 1828 1829
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1843
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1844 1845
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1846 1847 1848
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1849
	unsigned int dirty = 0;
1850

1851 1852 1853 1854
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1855 1856
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1857

1858
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1877
			intel_atomic_get_old_crtc_state(state, crtc);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1889
	}
1890

1891
	/* initially allow all levels */
1892
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1893 1894 1895 1896 1897
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1898
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1899

1900
	for (level = 0; level < wm_state->num_levels; level++) {
1901
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1902
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1903

1904
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1905
			break;
1906

1907 1908 1909 1910 1911 1912 1913 1914
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1915
						 raw->plane[PLANE_SPRITE0],
1916 1917
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1918

1919 1920 1921
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1922 1923
	}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1934 1935
}

1936 1937 1938
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1939 1940
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1941
{
1942
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1943
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1944 1945
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1946
	int sprite0_start, sprite1_start, fifo_size;
1947

1948 1949 1950
	if (!crtc_state->fifo_changed)
		return;

1951 1952 1953
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1954

1955 1956
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1957

1958 1959
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1970

1971 1972 1973
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1974 1975
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1987 1988
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1989 1990
		break;
	case PIPE_B:
1991 1992
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2004 2005
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2006 2007
		break;
	case PIPE_C:
2008 2009
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2021 2022
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2023 2024 2025 2026
		break;
	default:
		break;
	}
2027

2028
	POSTING_READ_FW(DSPARB);
2029

2030
	spin_unlock(&dev_priv->uncore.lock);
2031 2032 2033 2034
}

#undef VLV_FIFO

2035 2036
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
2037
				       struct intel_crtc_state *new_crtc_state)
2038
{
2039 2040 2041 2042 2043 2044 2045
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2046 2047
	int level;

2048 2049 2050 2051 2052 2053 2054
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2055
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2056
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2057
		!new_crtc_state->disable_cxsr;
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2076
out:
2077 2078 2079 2080
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2081
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2082
		new_crtc_state->wm.need_postvbl_update = true;
2083 2084 2085 2086

	return 0;
}

2087
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2088 2089 2090 2091 2092
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2093
	wm->level = dev_priv->wm.max_level;
2094 2095
	wm->cxsr = true;

2096
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2097
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2112 2113 2114
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2115
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2116
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2117 2118 2119
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2120
		if (crtc->active && wm->cxsr)
2121 2122
			wm->sr = wm_state->sr[wm->level];

2123 2124 2125 2126
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2127 2128 2129
	}
}

2130
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2131
{
2132 2133
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2134

2135
	vlv_merge_wm(dev_priv, &new_wm);
2136

2137
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2138 2139
		return;

2140
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2141 2142
		chv_set_memory_dvfs(dev_priv, false);

2143
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2144 2145
		chv_set_memory_pm5(dev_priv, false);

2146
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2147
		_intel_set_memory_cxsr(dev_priv, false);
2148

2149
	vlv_write_wm_values(dev_priv, &new_wm);
2150

2151
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2152
		_intel_set_memory_cxsr(dev_priv, true);
2153

2154
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2155 2156
		chv_set_memory_pm5(dev_priv, true);

2157
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2158 2159
		chv_set_memory_dvfs(dev_priv, true);

2160
	*old_wm = new_wm;
2161 2162
}

2163 2164 2165 2166 2167 2168 2169
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2186 2187 2188 2189
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2190
static void i965_update_wm(struct intel_crtc *unused_crtc)
2191
{
2192
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2193
	struct intel_crtc *crtc;
2194 2195
	int srwm = 1;
	int cursor_sr = 16;
2196
	bool cxsr_enabled;
2197 2198

	/* Calc sr entries for one plane configs */
2199
	crtc = single_enabled_crtc(dev_priv);
2200 2201 2202
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2203 2204 2205 2206
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2207
		int clock = adjusted_mode->crtc_clock;
2208
		int htotal = adjusted_mode->crtc_htotal;
2209
		int hdisplay = crtc->config->pipe_src_w;
2210
		int cpp = fb->format->cpp[0];
2211 2212
		int entries;

2213 2214
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2215 2216 2217 2218 2219 2220 2221 2222
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2223 2224 2225
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2226
		entries = DIV_ROUND_UP(entries,
2227 2228
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2229

2230
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2231 2232 2233 2234 2235 2236
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2237
		cxsr_enabled = true;
2238
	} else {
2239
		cxsr_enabled = false;
2240
		/* Turn off self refresh if both pipes are enabled */
2241
		intel_set_memory_cxsr(dev_priv, false);
2242 2243 2244 2245 2246 2247
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2248 2249 2250 2251 2252 2253
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2254
	/* update cursor SR watermark */
2255
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2256 2257 2258

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2259 2260
}

2261 2262
#undef FW_WM

2263
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2264
{
2265
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2266 2267 2268 2269 2270 2271
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2272
	struct intel_crtc *crtc, *enabled = NULL;
2273

2274
	if (IS_I945GM(dev_priv))
2275
		wm_info = &i945_wm_info;
2276
	else if (!IS_GEN2(dev_priv))
2277 2278
		wm_info = &i915_wm_info;
	else
2279
		wm_info = &i830_a_wm_info;
2280

2281 2282
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2283 2284 2285 2286 2287 2288 2289
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2290
		if (IS_GEN2(dev_priv))
2291
			cpp = 4;
2292
		else
2293
			cpp = fb->format->cpp[0];
2294

2295
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2296
					       wm_info, fifo_size, cpp,
2297
					       pessimal_latency_ns);
2298
		enabled = crtc;
2299
	} else {
2300
		planea_wm = fifo_size - wm_info->guard_size;
2301 2302 2303 2304
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2305
	if (IS_GEN2(dev_priv))
2306
		wm_info = &i830_bc_wm_info;
2307

2308 2309
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2310 2311 2312 2313 2314 2315 2316
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2317
		if (IS_GEN2(dev_priv))
2318
			cpp = 4;
2319
		else
2320
			cpp = fb->format->cpp[0];
2321

2322
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2323
					       wm_info, fifo_size, cpp,
2324
					       pessimal_latency_ns);
2325 2326 2327 2328
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2329
	} else {
2330
		planeb_wm = fifo_size - wm_info->guard_size;
2331 2332 2333
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2334 2335 2336

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2337
	if (IS_I915GM(dev_priv) && enabled) {
2338
		struct drm_i915_gem_object *obj;
2339

2340
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2341 2342

		/* self-refresh seems busted with untiled */
2343
		if (!i915_gem_object_is_tiled(obj))
2344 2345 2346
			enabled = NULL;
	}

2347 2348 2349 2350 2351 2352
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2353
	intel_set_memory_cxsr(dev_priv, false);
2354 2355

	/* Calc sr entries for one plane configs */
2356
	if (HAS_FW_BLC(dev_priv) && enabled) {
2357 2358
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2359 2360 2361 2362
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2363
		int clock = adjusted_mode->crtc_clock;
2364
		int htotal = adjusted_mode->crtc_htotal;
2365 2366
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2367 2368
		int entries;

2369
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2370
			cpp = 4;
2371
		else
2372
			cpp = fb->format->cpp[0];
2373

2374 2375
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2376 2377 2378 2379 2380 2381
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2382
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2383 2384
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2385
		else
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2402 2403
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2404 2405
}

2406
static void i845_update_wm(struct intel_crtc *unused_crtc)
2407
{
2408
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2409
	struct intel_crtc *crtc;
2410
	const struct drm_display_mode *adjusted_mode;
2411 2412 2413
	uint32_t fwater_lo;
	int planea_wm;

2414
	crtc = single_enabled_crtc(dev_priv);
2415 2416 2417
	if (crtc == NULL)
		return;

2418
	adjusted_mode = &crtc->config->base.adjusted_mode;
2419
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2420
				       &i845_wm_info,
2421
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2422
				       4, pessimal_latency_ns);
2423 2424 2425 2426 2427 2428 2429 2430
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2431
/* latency must be in 0.1us units. */
2432 2433 2434
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2435
{
2436
	unsigned int ret;
2437

2438 2439
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2440 2441 2442 2443

	return ret;
}

2444
/* latency must be in 0.1us units. */
2445 2446 2447 2448 2449
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2450
{
2451
	unsigned int ret;
2452

2453 2454
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2455
	ret = DIV_ROUND_UP(ret, 64) + 2;
2456

2457 2458 2459
	return ret;
}

2460
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2461
			   uint8_t cpp)
2462
{
2463 2464 2465 2466 2467 2468
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2469
	if (WARN_ON(!cpp))
2470 2471 2472 2473
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2474
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2475 2476
}

2477
struct ilk_wm_maximums {
2478 2479 2480 2481 2482 2483
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2484 2485 2486 2487
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2488
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2489
				   const struct intel_plane_state *pstate,
2490 2491
				   uint32_t mem_value,
				   bool is_lp)
2492
{
2493
	uint32_t method1, method2;
2494
	int cpp;
2495

2496
	if (!intel_wm_plane_visible(cstate, pstate))
2497 2498
		return 0;

2499
	cpp = pstate->base.fb->format->cpp[0];
2500

2501
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2502 2503 2504 2505

	if (!is_lp)
		return method1;

2506
	method2 = ilk_wm_method2(cstate->pixel_rate,
2507
				 cstate->base.adjusted_mode.crtc_htotal,
2508
				 drm_rect_width(&pstate->base.dst),
2509
				 cpp, mem_value);
2510 2511

	return min(method1, method2);
2512 2513
}

2514 2515 2516 2517
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2518
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2519
				   const struct intel_plane_state *pstate,
2520 2521 2522
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2523
	int cpp;
2524

2525
	if (!intel_wm_plane_visible(cstate, pstate))
2526 2527
		return 0;

2528
	cpp = pstate->base.fb->format->cpp[0];
2529

2530 2531
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2532
				 cstate->base.adjusted_mode.crtc_htotal,
2533
				 drm_rect_width(&pstate->base.dst),
2534
				 cpp, mem_value);
2535 2536 2537
	return min(method1, method2);
}

2538 2539 2540 2541
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2542
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2543
				   const struct intel_plane_state *pstate,
2544 2545
				   uint32_t mem_value)
{
2546 2547
	int cpp;

2548
	if (!intel_wm_plane_visible(cstate, pstate))
2549 2550
		return 0;

2551 2552
	cpp = pstate->base.fb->format->cpp[0];

2553
	return ilk_wm_method2(cstate->pixel_rate,
2554
			      cstate->base.adjusted_mode.crtc_htotal,
2555
			      pstate->base.crtc_w, cpp, mem_value);
2556 2557
}

2558
/* Only for WM_LP. */
2559
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2560
				   const struct intel_plane_state *pstate,
2561
				   uint32_t pri_val)
2562
{
2563
	int cpp;
2564

2565
	if (!intel_wm_plane_visible(cstate, pstate))
2566 2567
		return 0;

2568
	cpp = pstate->base.fb->format->cpp[0];
2569

2570
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2571 2572
}

2573 2574
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2575
{
2576
	if (INTEL_GEN(dev_priv) >= 8)
2577
		return 3072;
2578
	else if (INTEL_GEN(dev_priv) >= 7)
2579 2580 2581 2582 2583
		return 768;
	else
		return 512;
}

2584 2585 2586
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2587
{
2588
	if (INTEL_GEN(dev_priv) >= 8)
2589 2590
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2591
	else if (INTEL_GEN(dev_priv) >= 7)
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2602 2603
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2604
{
2605
	if (INTEL_GEN(dev_priv) >= 7)
2606 2607 2608 2609 2610
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2611
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2612
{
2613
	if (INTEL_GEN(dev_priv) >= 8)
2614 2615 2616 2617 2618
		return 31;
	else
		return 15;
}

2619 2620 2621
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2622
				     const struct intel_wm_config *config,
2623 2624 2625
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2626 2627
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2628 2629

	/* if sprites aren't enabled, sprites get nothing */
2630
	if (is_sprite && !config->sprites_enabled)
2631 2632 2633
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2634
	if (level == 0 || config->num_pipes_active > 1) {
2635
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2636 2637 2638 2639 2640 2641

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2642
		if (INTEL_GEN(dev_priv) <= 6)
2643 2644 2645
			fifo_size /= 2;
	}

2646
	if (config->sprites_enabled) {
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2658
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2659 2660 2661 2662
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2663 2664
				      int level,
				      const struct intel_wm_config *config)
2665 2666
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2667
	if (level > 0 && config->num_pipes_active > 1)
2668 2669 2670
		return 64;

	/* otherwise just report max that registers can hold */
2671
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2672 2673
}

2674
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2675 2676 2677
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2678
				    struct ilk_wm_maximums *max)
2679
{
2680 2681 2682
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2683
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2684 2685
}

2686
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2687 2688 2689
					int level,
					struct ilk_wm_maximums *max)
{
2690 2691 2692 2693
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2694 2695
}

2696
static bool ilk_validate_wm_level(int level,
2697
				  const struct ilk_wm_maximums *max,
2698
				  struct intel_wm_level *result)
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2737
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2738
				 const struct intel_crtc *intel_crtc,
2739
				 int level,
2740
				 struct intel_crtc_state *cstate,
2741 2742 2743
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2744
				 struct intel_wm_level *result)
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2769 2770 2771
	result->enable = true;
}

2772
static uint32_t
2773
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2774
{
2775 2776
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2777 2778
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2779
	u32 linetime, ips_linetime;
2780

2781 2782 2783 2784
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2785
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2786
		return 0;
2787

2788 2789 2790
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2791 2792 2793
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2794
					 intel_state->cdclk.logical.cdclk);
2795

2796 2797
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2798 2799
}

2800 2801
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2802
{
2803
	if (INTEL_GEN(dev_priv) >= 9) {
2804
		uint32_t val;
2805
		int ret, i;
2806
		int level, max_level = ilk_wm_max_level(dev_priv);
2807 2808 2809

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2810
		mutex_lock(&dev_priv->pcu_lock);
2811 2812 2813
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2814
		mutex_unlock(&dev_priv->pcu_lock);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2831
		mutex_lock(&dev_priv->pcu_lock);
2832 2833 2834
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2835
		mutex_unlock(&dev_priv->pcu_lock);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2862
		/*
2863
		 * WaWmMemoryReadLatency:skl+,glk
2864
		 *
2865
		 * punit doesn't take into account the read latency so we need
2866 2867
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2868
		 */
2869 2870 2871 2872 2873
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2874
				wm[level] += 2;
2875
			}
2876 2877
		}

2878 2879 2880 2881 2882 2883
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2884
		if (dev_priv->dram_info.is_16gb_dimm)
2885 2886
			wm[0] += 1;

2887
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2888 2889 2890 2891 2892
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2893 2894 2895 2896
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2897
	} else if (INTEL_GEN(dev_priv) >= 6) {
2898 2899 2900 2901 2902 2903
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2904
	} else if (INTEL_GEN(dev_priv) >= 5) {
2905 2906 2907 2908 2909 2910
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2911 2912
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2913 2914 2915
	}
}

2916 2917
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2918 2919
{
	/* ILK sprite LP0 latency is 1300 ns */
2920
	if (IS_GEN5(dev_priv))
2921 2922 2923
		wm[0] = 13;
}

2924 2925
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2926 2927
{
	/* ILK cursor LP0 latency is 1300 ns */
2928
	if (IS_GEN5(dev_priv))
2929 2930 2931
		wm[0] = 13;
}

2932
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2933 2934
{
	/* how many WM levels are we expecting */
2935
	if (INTEL_GEN(dev_priv) >= 9)
2936
		return 7;
2937
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2938
		return 4;
2939
	else if (INTEL_GEN(dev_priv) >= 6)
2940
		return 3;
2941
	else
2942 2943
		return 2;
}
2944

2945
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2946
				   const char *name,
2947
				   const uint16_t wm[8])
2948
{
2949
	int level, max_level = ilk_wm_max_level(dev_priv);
2950 2951 2952 2953 2954

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2955 2956
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2957 2958 2959
			continue;
		}

2960 2961 2962 2963
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2964
		if (INTEL_GEN(dev_priv) >= 9)
2965 2966
			latency *= 10;
		else if (level > 0)
2967 2968 2969 2970 2971 2972 2973 2974
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2975 2976 2977
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2978
	int level, max_level = ilk_wm_max_level(dev_priv);
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2990
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3006 3007 3008
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3009 3010
}

3011
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3012
{
3013
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3014 3015 3016 3017 3018 3019

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3020
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3021
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3022

3023 3024 3025
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3026

3027
	if (IS_GEN6(dev_priv))
3028
		snb_wm_latency_quirk(dev_priv);
3029 3030
}

3031
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3032
{
3033
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3034
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3035 3036
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3060
/* Compute new watermarks for the pipe */
3061
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3062
{
3063 3064
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3065
	struct intel_pipe_wm *pipe_wm;
3066
	struct drm_device *dev = state->dev;
3067
	const struct drm_i915_private *dev_priv = to_i915(dev);
3068 3069 3070 3071 3072
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3073
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3074
	struct ilk_wm_maximums max;
3075

3076
	pipe_wm = &cstate->wm.ilk.optimal;
3077

3078 3079
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3080

3081
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3082
			pristate = ps;
3083
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3084
			sprstate = ps;
3085
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3086
			curstate = ps;
3087 3088
	}

3089
	pipe_wm->pipe_enabled = cstate->base.active;
3090
	if (sprstate) {
3091 3092 3093 3094
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3095 3096
	}

3097 3098
	usable_level = max_level;

3099
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3100
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3101
		usable_level = 1;
3102 3103

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3104
	if (pipe_wm->sprites_scaled)
3105
		usable_level = 0;
3106

3107
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3108 3109
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3110

3111
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3112
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3113

3114
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3115
		return -EINVAL;
3116

3117
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3118

3119 3120
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3121

3122
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3123
				     pristate, sprstate, curstate, wm);
3124 3125 3126 3127 3128 3129

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3130 3131 3132 3133
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3134 3135
	}

3136
	return 0;
3137 3138
}

3139 3140 3141 3142 3143 3144 3145 3146 3147
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3148
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3149 3150 3151 3152 3153
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3154
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3155 3156 3157 3158 3159 3160

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3161
	*a = newstate->wm.ilk.optimal;
3162 3163 3164
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
		return 0;

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3193 3194
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3195 3196 3197 3198

	return 0;
}

3199 3200 3201 3202 3203 3204 3205 3206 3207
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3208 3209
	ret_wm->enable = true;

3210
	for_each_intel_crtc(dev, intel_crtc) {
3211
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3212 3213 3214 3215
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3216

3217 3218 3219 3220 3221
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3222
		if (!wm->enable)
3223
			ret_wm->enable = false;
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3236
			 const struct intel_wm_config *config,
3237
			 const struct ilk_wm_maximums *max,
3238 3239
			 struct intel_pipe_wm *merged)
{
3240
	struct drm_i915_private *dev_priv = to_i915(dev);
3241
	int level, max_level = ilk_wm_max_level(dev_priv);
3242
	int last_enabled_level = max_level;
3243

3244
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3245
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3246
	    config->num_pipes_active > 1)
3247
		last_enabled_level = 0;
3248

3249
	/* ILK: FBC WM must be disabled always */
3250
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3251 3252 3253 3254 3255 3256 3257

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3258 3259 3260 3261 3262
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3263 3264 3265 3266 3267 3268

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3269 3270
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3271 3272 3273
			wm->fbc_val = 0;
		}
	}
3274 3275 3276 3277 3278 3279 3280

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3281
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3282
	    intel_fbc_is_active(dev_priv)) {
3283 3284 3285 3286 3287 3288
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3289 3290
}

3291 3292 3293 3294 3295 3296
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3297 3298 3299
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3300
	struct drm_i915_private *dev_priv = to_i915(dev);
3301

3302
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3303 3304 3305 3306 3307
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3308
static void ilk_compute_wm_results(struct drm_device *dev,
3309
				   const struct intel_pipe_wm *merged,
3310
				   enum intel_ddb_partitioning partitioning,
3311
				   struct ilk_wm_values *results)
3312
{
3313
	struct drm_i915_private *dev_priv = to_i915(dev);
3314 3315
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3316

3317
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3318
	results->partitioning = partitioning;
3319

3320
	/* LP1+ register values */
3321
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3322
		const struct intel_wm_level *r;
3323

3324
		level = ilk_wm_lp_to_level(wm_lp, merged);
3325

3326
		r = &merged->wm[level];
3327

3328 3329 3330 3331 3332
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3333
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3334 3335 3336
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3337 3338 3339
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3340
		if (INTEL_GEN(dev_priv) >= 8)
3341 3342 3343 3344 3345 3346
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3347 3348 3349 3350
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3351
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3352 3353 3354 3355
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3356
	}
3357

3358
	/* LP0 register values */
3359
	for_each_intel_crtc(dev, intel_crtc) {
3360
		enum pipe pipe = intel_crtc->pipe;
3361 3362
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3363 3364 3365 3366

		if (WARN_ON(!r->enable))
			continue;

3367
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3368

3369 3370 3371 3372
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3373 3374 3375
	}
}

3376 3377
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3378
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3379 3380
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3381
{
3382
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3383
	int level1 = 0, level2 = 0;
3384

3385 3386 3387 3388 3389
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3390 3391
	}

3392 3393
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3394 3395 3396
			return r2;
		else
			return r1;
3397
	} else if (level1 > level2) {
3398 3399 3400 3401 3402 3403
		return r1;
	} else {
		return r2;
	}
}

3404 3405 3406 3407 3408 3409 3410 3411
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3412
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3413 3414
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3415 3416 3417 3418 3419
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3420
	for_each_pipe(dev_priv, pipe) {
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3464 3465
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3466
{
3467
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3468
	bool changed = false;
3469

3470 3471 3472
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3473
		changed = true;
3474 3475 3476 3477
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3478
		changed = true;
3479 3480 3481 3482
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3483
		changed = true;
3484
	}
3485

3486 3487 3488 3489
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3490

3491 3492 3493 3494 3495 3496 3497
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3498 3499
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3500
{
3501
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3502 3503 3504
	unsigned int dirty;
	uint32_t val;

3505
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3506 3507 3508 3509 3510
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3511
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3512
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3513
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3514
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3515
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3516 3517
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3518
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3519
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3520
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3521
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3522
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3523 3524
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3525
	if (dirty & WM_DIRTY_DDB) {
3526
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3541 3542
	}

3543
	if (dirty & WM_DIRTY_FBC) {
3544 3545 3546 3547 3548 3549 3550 3551
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3552 3553 3554 3555
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3556
	if (INTEL_GEN(dev_priv) >= 7) {
3557 3558 3559 3560 3561
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3562

3563
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3564
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3565
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3566
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3567
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3568
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3569 3570

	dev_priv->wm.hw = *results;
3571 3572
}

3573
bool ilk_disable_lp_wm(struct drm_device *dev)
3574
{
3575
	struct drm_i915_private *dev_priv = to_i915(dev);
3576 3577 3578 3579

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

	if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
		enabled_slices++;

	return enabled_slices;
}

3597 3598 3599 3600 3601 3602 3603 3604
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3605
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3606 3607 3608 3609 3610
		return true;

	return false;
}

3611 3612 3613
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3614 3615
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CANNONLAKE(dev_priv))
3616 3617 3618 3619 3620 3621 3622
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3623 3624
}

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3637
intel_enable_sagv(struct drm_i915_private *dev_priv)
3638 3639 3640
{
	int ret;

3641 3642 3643 3644
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3645 3646 3647
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
3648
	mutex_lock(&dev_priv->pcu_lock);
3649 3650 3651 3652 3653

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
3654
	mutex_unlock(&dev_priv->pcu_lock);
3655 3656 3657 3658 3659

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3660
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3661
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3662
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3663 3664 3665 3666 3667 3668
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3669
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3670 3671 3672 3673
	return 0;
}

int
3674
intel_disable_sagv(struct drm_i915_private *dev_priv)
3675
{
3676
	int ret;
3677

3678 3679 3680 3681
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3682 3683 3684
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
3685
	mutex_lock(&dev_priv->pcu_lock);
3686 3687

	/* bspec says to keep retrying for at least 1 ms */
3688 3689 3690 3691
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3692
	mutex_unlock(&dev_priv->pcu_lock);
3693 3694 3695 3696 3697

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3698
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3699
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3700
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3701
		return 0;
3702 3703 3704
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3705 3706
	}

3707
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3708 3709 3710
	return 0;
}

3711
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3712 3713 3714 3715
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3716 3717
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3718
	struct intel_crtc_state *cstate;
3719
	enum pipe pipe;
3720
	int level, latency;
3721
	int sagv_block_time_us;
3722

3723 3724 3725
	if (!intel_has_sagv(dev_priv))
		return false;

3726 3727 3728 3729 3730 3731 3732
	if (IS_GEN9(dev_priv))
		sagv_block_time_us = 30;
	else if (IS_GEN10(dev_priv))
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3733
	/*
3734
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3746
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3747
	cstate = to_intel_crtc_state(crtc->base.state);
3748

3749
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3750 3751
		return false;

3752
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3753 3754
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3755

3756
		/* Skip this plane if it's not enabled */
3757
		if (!wm->wm[0].plane_en)
3758 3759 3760
			continue;

		/* Find the highest enabled wm level for this plane */
3761
		for (level = ilk_wm_max_level(dev_priv);
3762
		     !wm->wm[level].plane_en; --level)
3763 3764
		     { }

3765 3766 3767
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3768
		    plane->base.state->fb->modifier ==
3769 3770 3771
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3772
		/*
3773 3774 3775
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3776
		 */
3777
		if (latency < sagv_block_time_us)
3778 3779 3780 3781 3782 3783
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3784 3785 3786 3787 3788
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
			      const struct intel_crtc_state *cstate,
			      const unsigned int total_data_rate,
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
	total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
	 */
	if (total_data_bw >= GBps(12) || num_active > 1) {
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3815 3816
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3817
				   const struct intel_crtc_state *cstate,
3818 3819
				   const unsigned int total_data_rate,
				   struct skl_ddb_allocation *ddb,
3820 3821
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3822
{
3823 3824 3825
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3826
	struct drm_crtc *for_crtc = cstate->base.crtc;
3827 3828 3829 3830 3831 3832
	const struct drm_crtc_state *crtc_state;
	const struct drm_crtc *crtc;
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3833

3834
	if (WARN_ON(!state) || !cstate->base.active) {
3835 3836
		alloc->start = 0;
		alloc->end = 0;
3837
		*num_active = hweight32(dev_priv->active_crtcs);
3838 3839 3840
		return;
	}

3841 3842 3843 3844 3845
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3846 3847
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3848

3849
	/*
3850 3851 3852 3853 3854 3855
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3856
	 */
3857
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3858 3859 3860 3861 3862
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3863
		return;
3864
	}
3865

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode;
		int hdisplay, vdisplay;
		enum pipe pipe;

		if (!crtc_state->enable)
			continue;

		pipe = to_intel_crtc(crtc)->pipe;
		adjusted_mode = &crtc_state->adjusted_mode;
		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3892 3893
}

3894
static unsigned int skl_cursor_allocation(int num_active)
3895
{
3896
	if (num_active == 1)
3897 3898 3899 3900 3901
		return 32;

	return 8;
}

3902 3903
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3904
{
3905 3906 3907 3908 3909 3910 3911 3912 3913
	u16 mask;

	if (INTEL_GEN(dev_priv) >= 11)
		mask = ICL_DDB_ENTRY_MASK;
	else
		mask = SKL_DDB_ENTRY_MASK;
	entry->start = reg & mask;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;

3914 3915
	if (entry->end)
		entry->end += 1;
3916 3917
}

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
			   struct skl_ddb_allocation *ddb /* out */)
{
	u32 val, val2 = 0;
	int fourcc, pixel_format;

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3930 3931
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->plane[pipe][plane_id], val);
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
	if (!(val & PLANE_CTL_ENABLE))
		return;

	pixel_format = val & PLANE_CTL_FORMAT_MASK;
	fourcc = skl_format_to_fourcc(pixel_format,
				      val & PLANE_CTL_ORDER_RGBX,
				      val & PLANE_CTL_ALPHA_MASK);

	val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3947 3948 3949 3950 3951 3952
	/*
	 * FIXME: add proper NV12 support for ICL. Avoid reading unclaimed
	 * registers for now.
	 */
	if (INTEL_GEN(dev_priv) < 11)
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3953 3954

	if (fourcc == DRM_FORMAT_NV12) {
3955 3956 3957 3958
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->plane[pipe][plane_id], val2);
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->uv_plane[pipe][plane_id], val);
3959
	} else {
3960 3961
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->plane[pipe][plane_id], val);
3962 3963 3964
	}
}

3965 3966
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3967
{
3968
	struct intel_crtc *crtc;
3969

3970 3971
	memset(ddb, 0, sizeof(*ddb));

3972 3973
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);

3974
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3975
		enum intel_display_power_domain power_domain;
3976 3977
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3978 3979 3980

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3981 3982
			continue;

3983 3984 3985
		for_each_plane_id_on_crtc(crtc, plane_id)
			skl_ddb_get_hw_plane_state(dev_priv, pipe,
						   plane_id, ddb);
3986 3987

		intel_display_power_put(dev_priv, power_domain);
3988 3989 3990
	}
}

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4007
static uint_fixed_16_16_t
4008 4009
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
4010
{
4011
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4012
	uint32_t src_w, src_h, dst_w, dst_h;
4013 4014
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4015

4016
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4017
		return u32_to_fixed16(0);
4018 4019

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4020
	if (plane->id == PLANE_CURSOR) {
4021 4022 4023 4024
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4025 4026
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
4027 4028 4029
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
4030 4031 4032 4033 4034
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4035 4036
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
4037 4038 4039 4040
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4041 4042 4043 4044
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4045

4046
	return mul_fixed16(downscale_w, downscale_h);
4047 4048
}

4049 4050 4051
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4052
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4071 4072 4073 4074
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4085
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4086 4087 4088 4089 4090
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4091
	int crtc_clock, dotclk;
4092 4093
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
4094
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4095 4096 4097 4098 4099 4100

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4101
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4119
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4120 4121 4122 4123 4124 4125
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4126 4127
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4128
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4129 4130 4131
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4132 4133

	if (pipe_max_pixel_rate < crtc_clock) {
4134
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4135 4136 4137 4138 4139 4140
		return -EINVAL;
	}

	return 0;
}

4141
static unsigned int
4142 4143
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
4144
			     const int plane)
4145
{
4146
	struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4147
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4148
	uint32_t data_rate;
4149
	uint32_t width = 0, height = 0;
4150 4151
	struct drm_framebuffer *fb;
	u32 format;
4152
	uint_fixed_16_16_t down_scale_amount;
4153

4154
	if (!intel_pstate->base.visible)
4155
		return 0;
4156 4157

	fb = pstate->fb;
V
Ville Syrjälä 已提交
4158
	format = fb->format->format;
4159

4160
	if (intel_plane->id == PLANE_CURSOR)
4161
		return 0;
4162
	if (plane == 1 && format != DRM_FORMAT_NV12)
4163
		return 0;
4164

4165 4166 4167 4168 4169
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4170 4171
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4172

4173 4174 4175 4176
	/* UV plane does 1/2 pixel sub-sampling */
	if (plane == 1 && format == DRM_FORMAT_NV12) {
		width /= 2;
		height /= 2;
4177 4178
	}

4179 4180
	data_rate = width * height * fb->format->cpp[plane];

4181
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4182

4183
	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4184 4185 4186 4187 4188 4189 4190 4191
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
4192
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4193 4194
				 unsigned int *plane_data_rate,
				 unsigned int *uv_plane_data_rate)
4195
{
4196 4197
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4198 4199
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4200
	unsigned int total_data_rate = 0;
4201 4202 4203

	if (WARN_ON(!state))
		return 0;
4204

4205
	/* Calculate and cache data rate for each plane */
4206
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4207 4208
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
4209

4210
		/* packed/y */
4211 4212
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
4213
		plane_data_rate[plane_id] = rate;
4214 4215

		total_data_rate += rate;
4216

4217
		/* uv-plane */
4218 4219
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
4220
		uv_plane_data_rate[plane_id] = rate;
4221

4222
		total_data_rate += rate;
4223 4224 4225 4226 4227
	}

	return total_data_rate;
}

4228
static uint16_t
4229
skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

4240 4241
	/* For packed formats, and uv-plane, return 0 */
	if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4242 4243 4244
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
4245
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4246 4247 4248
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4249 4250
		return 8;

4251 4252 4253 4254 4255
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4256 4257
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4258 4259

	/* Halve UV plane width and height for NV12 */
4260
	if (plane == 1) {
4261 4262 4263 4264
		src_w /= 2;
		src_h /= 2;
	}

4265
	plane_bpp = fb->format->cpp[plane];
4266

4267
	if (drm_rotation_90_or_270(pstate->rotation)) {
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4291 4292
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4293
		 uint16_t *minimum, uint16_t *uv_minimum)
4294 4295 4296 4297 4298
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4299
		enum plane_id plane_id = to_intel_plane(plane)->id;
4300

4301
		if (plane_id == PLANE_CURSOR)
4302 4303 4304 4305 4306
			continue;

		if (!pstate->visible)
			continue;

4307
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4308
		uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4309 4310 4311 4312 4313
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4314
static int
4315
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4316 4317
		      struct skl_ddb_allocation *ddb /* out */)
{
4318
	struct drm_atomic_state *state = cstate->base.state;
4319
	struct drm_crtc *crtc = cstate->base.crtc;
4320 4321 4322
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4323
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4324
	uint16_t alloc_size, start;
4325
	uint16_t minimum[I915_MAX_PLANES] = {};
4326
	uint16_t uv_minimum[I915_MAX_PLANES] = {};
4327
	unsigned int total_data_rate;
4328
	enum plane_id plane_id;
4329
	int num_active;
4330 4331
	unsigned int plane_data_rate[I915_MAX_PLANES] = {};
	unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4332
	uint16_t total_min_blocks = 0;
4333

4334 4335
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4336
	memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4337

4338 4339 4340
	if (WARN_ON(!state))
		return 0;

4341
	if (!cstate->base.active) {
4342
		alloc->start = alloc->end = 0;
4343 4344 4345
		return 0;
	}

4346 4347 4348 4349 4350
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   uv_plane_data_rate);
	skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
					   alloc, &num_active);
4351
	alloc_size = skl_ddb_entry_size(alloc);
4352
	if (alloc_size == 0)
4353
		return 0;
4354

4355
	skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4356

4357 4358 4359 4360 4361
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4362

4363
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4364
		total_min_blocks += minimum[plane_id];
4365
		total_min_blocks += uv_minimum[plane_id];
4366 4367
	}

4368 4369 4370 4371 4372 4373 4374
	if (total_min_blocks > alloc_size) {
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
							alloc_size);
		return -EINVAL;
	}

4375 4376
	alloc_size -= total_min_blocks;
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4377 4378
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4379
	/*
4380 4381
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4382 4383 4384
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4385
	if (total_data_rate == 0)
4386
		return 0;
4387

4388
	start = alloc->start;
4389
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4390 4391
		unsigned int data_rate, uv_data_rate;
		uint16_t plane_blocks, uv_plane_blocks;
4392

4393
		if (plane_id == PLANE_CURSOR)
4394 4395
			continue;

4396
		data_rate = plane_data_rate[plane_id];
4397 4398

		/*
4399
		 * allocation for (packed formats) or (uv-plane part of planar format):
4400 4401 4402
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4403 4404 4405
		plane_blocks = minimum[plane_id];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4406

4407 4408
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4409 4410
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4411
		}
4412

4413 4414
		start += plane_blocks;

4415 4416
		/* Allocate DDB for UV plane for planar format/NV12 */
		uv_data_rate = uv_plane_data_rate[plane_id];
4417

4418 4419 4420
		uv_plane_blocks = uv_minimum[plane_id];
		uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
					   total_data_rate);
4421

4422 4423 4424 4425
		if (uv_data_rate) {
			ddb->uv_plane[pipe][plane_id].start = start;
			ddb->uv_plane[pipe][plane_id].end =
				start + uv_plane_blocks;
4426
		}
4427

4428
		start += uv_plane_blocks;
4429 4430
	}

4431
	return 0;
4432 4433
}

4434 4435
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4436
 * for the read latency) and cpp should always be <= 8, so that
4437 4438 4439
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4440 4441
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4442
	       uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4443
{
4444 4445
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4446 4447

	if (latency == 0)
4448
		return FP_16_16_MAX;
4449

4450
	wm_intermediate_val = latency * pixel_rate * cpp;
4451
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4452 4453 4454 4455

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4456 4457 4458
	return ret;
}

4459 4460 4461 4462
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4463
{
4464
	uint32_t wm_intermediate_val;
4465
	uint_fixed_16_16_t ret;
4466 4467

	if (latency == 0)
4468
		return FP_16_16_MAX;
4469 4470

	wm_intermediate_val = latency * pixel_rate;
4471 4472
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4473
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4474 4475 4476
	return ret;
}

4477 4478 4479 4480 4481 4482 4483 4484
static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state *cstate)
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4485
		return u32_to_fixed16(0);
4486 4487 4488 4489

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4490
		return u32_to_fixed16(0);
4491 4492

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4493
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4494 4495 4496 4497

	return linetime_us;
}

4498 4499 4500
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4501 4502
{
	uint64_t adjusted_pixel_rate;
4503
	uint_fixed_16_16_t downscale_amount;
4504 4505

	/* Shouldn't reach here on disabled planes... */
4506
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4507 4508 4509 4510 4511 4512
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4513
	adjusted_pixel_rate = cstate->pixel_rate;
4514
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4515

4516 4517
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4518 4519
}

4520 4521 4522 4523
static int
skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
			    struct intel_crtc_state *cstate,
			    const struct intel_plane_state *intel_pstate,
4524
			    struct skl_wm_params *wp, int plane_id)
4525
{
4526
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4527 4528
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4529
	uint32_t interm_pbpl;
4530 4531 4532
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4533

4534
	if (!intel_wm_plane_visible(cstate, intel_pstate))
4535
		return 0;
4536

4537 4538 4539 4540 4541 4542
	/* only NV12 format has two planes */
	if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
		DRM_DEBUG_KMS("Non NV12 format have single plane\n");
		return -EINVAL;
	}

4543 4544 4545 4546 4547 4548 4549
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4550
	wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4551

4552
	if (plane->id == PLANE_CURSOR) {
4553
		wp->width = intel_pstate->base.crtc_w;
4554
	} else {
4555 4556 4557 4558 4559
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4560
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4561
	}
4562

4563 4564 4565 4566
	if (plane_id == 1 && wp->is_planar)
		wp->width /= 2;

	wp->cpp = fb->format->cpp[plane_id];
4567 4568
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4569

4570 4571 4572 4573 4574 4575
	if (INTEL_GEN(dev_priv) >= 11 &&
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4576
	if (drm_rotation_90_or_270(pstate->rotation)) {
4577

4578
		switch (wp->cpp) {
4579
		case 1:
4580
			wp->y_min_scanlines = 16;
4581 4582
			break;
		case 2:
4583
			wp->y_min_scanlines = 8;
4584 4585
			break;
		case 4:
4586
			wp->y_min_scanlines = 4;
4587
			break;
4588
		default:
4589
			MISSING_CASE(wp->cpp);
4590
			return -EINVAL;
4591 4592
		}
	} else {
4593
		wp->y_min_scanlines = 4;
4594 4595
	}

4596
	if (apply_memory_bw_wa)
4597
		wp->y_min_scanlines *= 2;
4598

4599 4600 4601
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4602 4603
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4604 4605 4606 4607

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4608 4609 4610
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
	} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4611 4612
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4613
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4614
	} else {
4615 4616
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4617
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4618 4619
	}

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				const struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				const struct skl_wm_params *wp,
4634
				const struct skl_wm_level *result_prev,
4635
				struct skl_wm_level *result /* out */)
4636 4637 4638 4639 4640 4641 4642 4643 4644
{
	const struct drm_plane_state *pstate = &intel_pstate->base;
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
	uint32_t res_blocks, res_lines;
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4645
	uint32_t min_disp_buf_needed;
4646 4647 4648

	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
4649
		result->plane_en = false;
4650 4651 4652 4653
		return 0;
	}

	/* Display WA #1141: kbl,cfl */
4654 4655
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4656 4657 4658 4659 4660 4661 4662
	    dev_priv->ipc_enabled)
		latency += 4;

	if (apply_memory_bw_wa && wp->x_tiled)
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4663
				 wp->cpp, latency, wp->dbuf_block_size);
4664
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4665
				 cstate->base.adjusted_mode.crtc_htotal,
4666
				 latency,
4667
				 wp->plane_blocks_per_line);
4668

4669 4670
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4671
	} else {
4672
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4673 4674
		     wp->dbuf_block_size < 1) &&
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4675
			selected_result = method2;
4676
		else if (ddb_allocation >=
4677
			 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4678
			selected_result = min_fixed16(method1, method2);
4679
		else if (latency >= wp->linetime_us)
4680
			selected_result = min_fixed16(method1, method2);
4681 4682 4683
		else
			selected_result = method1;
	}
4684

4685
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4686
	res_lines = div_round_up_fixed16(selected_result,
4687
					 wp->plane_blocks_per_line);
4688

4689
	/* Display WA #1125: skl,bxt,kbl,glk */
4690 4691
	if (level == 0 && wp->rc_surface)
		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4692 4693

	/* Display WA #1126: skl,bxt,kbl,glk */
4694
	if (level >= 1 && level <= 7) {
4695 4696 4697 4698
		if (wp->y_tiled) {
			res_blocks += fixed16_to_u32_round_up(
							wp->y_tile_minimum);
			res_lines += wp->y_min_scanlines;
4699
		} else {
4700
			res_blocks++;
4701
		}
4702 4703 4704 4705 4706 4707 4708 4709 4710

		/*
		 * Make sure result blocks for higher latency levels are atleast
		 * as high as level below the current level.
		 * Assumption in DDB algorithm optimization for special cases.
		 * Also covers Display WA #1125 for RC.
		 */
		if (result_prev->plane_res_b > res_blocks)
			res_blocks = result_prev->plane_res_b;
4711
	}
4712

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			uint32_t extra_lines;
			uint_fixed_16_16_t fp_min_disp_buf_needed;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					      res_lines % wp->y_min_scanlines;

			fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
						extra_lines,
						wp->plane_blocks_per_line);
			min_disp_buf_needed = fixed16_to_u32_round_up(
						fp_min_disp_buf_needed);
		} else {
			min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
		}
	} else {
		min_disp_buf_needed = res_blocks;
	}

4736 4737
	if ((level > 0 && res_lines > 31) ||
	    res_blocks >= ddb_allocation ||
4738
	    min_disp_buf_needed >= ddb_allocation) {
4739
		result->plane_en = false;
4740

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			struct drm_plane *plane = pstate->plane;

			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4756
	}
4757

4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
	/*
	 * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
	 * disable wm level 1-7 on NV12 planes
	 */
	if (wp->is_planar && level >= 1 &&
	    (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	     IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
		result->plane_en = false;
		return 0;
	}

4769
	/* The number of lines are ignored for the level 0 watermark. */
4770 4771 4772
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
	result->plane_en = true;
4773

4774
	return 0;
4775 4776
}

4777
static int
4778
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4779
		      struct skl_ddb_allocation *ddb,
4780 4781
		      struct intel_crtc_state *cstate,
		      const struct intel_plane_state *intel_pstate,
4782
		      const struct skl_wm_params *wm_params,
4783 4784
		      struct skl_plane_wm *wm,
		      int plane_id)
4785
{
4786 4787 4788 4789 4790
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_plane *plane = intel_pstate->base.plane;
	struct intel_plane *intel_plane = to_intel_plane(plane);
	uint16_t ddb_blocks;
	enum pipe pipe = intel_crtc->pipe;
4791
	int level, max_level = ilk_wm_max_level(dev_priv);
4792
	enum plane_id intel_plane_id = intel_plane->id;
4793
	int ret;
L
Lyude 已提交
4794

4795 4796
	if (WARN_ON(!intel_pstate->base.fb))
		return -EINVAL;
4797

4798 4799 4800
	ddb_blocks = plane_id ?
		     skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
		     skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4801

4802
	for (level = 0; level <= max_level; level++) {
4803 4804
		struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
							  &wm->wm[level];
4805 4806 4807 4808 4809 4810 4811
		struct skl_wm_level *result_prev;

		if (level)
			result_prev = plane_id ? &wm->uv_wm[level - 1] :
						  &wm->wm[level - 1];
		else
			result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4812 4813 4814 4815

		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
4816
					   ddb_blocks,
4817
					   level,
4818
					   wm_params,
4819
					   result_prev,
4820
					   result);
4821 4822 4823
		if (ret)
			return ret;
	}
4824

4825 4826 4827
	if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
		wm->is_planar = true;

4828
	return 0;
4829 4830
}

4831
static uint32_t
4832
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4833
{
M
Mahesh Kumar 已提交
4834 4835
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4836
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4837
	uint32_t linetime_wm;
4838

4839
	linetime_us = intel_get_linetime_us(cstate);
4840

4841
	if (is_fixed16_zero(linetime_us))
4842
		return 0;
4843

4844
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4845

4846 4847 4848 4849
	/* Display WA #1135: bxt:ALL GLK:ALL */
	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4850 4851

	return linetime_wm;
4852 4853
}

4854
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4855 4856 4857
				      struct skl_wm_params *wp,
				      struct skl_wm_level *wm_l0,
				      uint16_t ddb_allocation,
4858
				      struct skl_wm_level *trans_wm /* out */)
4859
{
4860 4861 4862 4863 4864 4865
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	uint16_t trans_min, trans_y_tile_min;
	const uint16_t trans_amount = 10; /* This is configurable amount */
	uint16_t trans_offset_b, res_blocks;

4866
	if (!cstate->base.active)
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
		goto exit;

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
		goto exit;

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
		goto exit;

4877
	trans_min = 0;
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
	if (INTEL_GEN(dev_priv) >= 10)
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

	if (wp->y_tiled) {
		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
							wp->y_tile_minimum);
		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
				trans_offset_b;
	} else {
		res_blocks = wm_l0->plane_res_b + trans_offset_b;

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

	res_blocks += 1;

	if (res_blocks < ddb_allocation) {
		trans_wm->plane_res_b = res_blocks;
		trans_wm->plane_en = true;
4902
		return;
4903
	}
4904

4905
exit:
L
Lyude 已提交
4906
	trans_wm->plane_en = false;
4907 4908
}

4909 4910 4911
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4912
{
4913
	struct drm_device *dev = cstate->base.crtc->dev;
4914
	struct drm_crtc_state *crtc_state = &cstate->base;
4915
	const struct drm_i915_private *dev_priv = to_i915(dev);
4916 4917
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
L
Lyude 已提交
4918
	struct skl_plane_wm *wm;
4919
	int ret;
4920

L
Lyude 已提交
4921 4922 4923 4924 4925 4926
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4927 4928 4929 4930
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
4931
		struct skl_wm_params wm_params;
4932 4933
		enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
		uint16_t ddb_blocks;
4934 4935

		wm = &pipe_wm->planes[plane_id];
4936
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4937 4938

		ret = skl_compute_plane_wm_params(dev_priv, cstate,
4939
						  intel_pstate, &wm_params, 0);
4940 4941
		if (ret)
			return ret;
L
Lyude 已提交
4942

4943
		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4944
					    intel_pstate, &wm_params, wm, 0);
4945 4946
		if (ret)
			return ret;
4947

4948 4949
		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
					  ddb_blocks, &wm->trans_wm);
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967

		/* uv plane watermarks must also be validated for NV12/Planar */
		if (wm_params.is_planar) {
			memset(&wm_params, 0, sizeof(struct skl_wm_params));
			wm->is_planar = true;

			ret = skl_compute_plane_wm_params(dev_priv, cstate,
							  intel_pstate,
							  &wm_params, 1);
			if (ret)
				return ret;

			ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
						    intel_pstate, &wm_params,
						    wm, 1);
			if (ret)
				return ret;
		}
4968
	}
4969

4970
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4971

4972
	return 0;
4973 4974
}

4975 4976
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4977 4978 4979 4980 4981 4982 4983 4984
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

5000 5001 5002
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
5003
			       enum plane_id plane_id)
5004 5005 5006 5007
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
5008
	int level, max_level = ilk_wm_max_level(dev_priv);
5009 5010 5011
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
5012
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5013
				   &wm->wm[level]);
5014
	}
5015
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5016
			   &wm->trans_wm);
5017

5018 5019
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
5020
	/* FIXME: add proper NV12 support for ICL. */
5021 5022 5023 5024 5025 5026 5027
	if (INTEL_GEN(dev_priv) >= 11)
		return skl_ddb_entry_write(dev_priv,
					   PLANE_BUF_CFG(pipe, plane_id),
					   &ddb->plane[pipe][plane_id]);
	if (wm->is_planar) {
		skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
				    &ddb->uv_plane[pipe][plane_id]);
5028 5029
		skl_ddb_entry_write(dev_priv,
				    PLANE_NV12_BUF_CFG(pipe, plane_id),
5030 5031 5032 5033 5034 5035
				    &ddb->plane[pipe][plane_id]);
	} else {
		skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
				    &ddb->plane[pipe][plane_id]);
		I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
	}
5036 5037
}

5038 5039 5040
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
5041 5042 5043 5044
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
5045
	int level, max_level = ilk_wm_max_level(dev_priv);
5046 5047 5048
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
5049 5050
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5051
	}
5052
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5053

5054
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5055
			    &ddb->plane[pipe][PLANE_CURSOR]);
5056 5057
}

5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

5072 5073
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5074
{
5075
	return a->start < b->end && b->start < a->end;
5076 5077
}

5078 5079
bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
				 const struct skl_ddb_entry **entries,
5080 5081
				 const struct skl_ddb_entry *ddb,
				 int ignore)
5082
{
5083
	enum pipe pipe;
5084

5085 5086 5087
	for_each_pipe(dev_priv, pipe) {
		if (pipe != ignore && entries[pipe] &&
		    skl_ddb_entries_overlap(ddb, entries[pipe]))
5088
			return true;
5089
	}
5090

5091
	return false;
5092 5093
}

5094
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5095
			      const struct skl_pipe_wm *old_pipe_wm,
5096
			      struct skl_pipe_wm *pipe_wm, /* out */
5097
			      struct skl_ddb_allocation *ddb, /* out */
5098
			      bool *changed /* out */)
5099
{
5100
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5101
	int ret;
5102

5103 5104 5105
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
5106

5107
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5108 5109 5110
		*changed = false;
	else
		*changed = true;
5111

5112
	return 0;
5113 5114
}

5115 5116 5117 5118 5119 5120 5121
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

5122
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5123 5124 5125 5126 5127
		ret |= drm_crtc_mask(crtc);

	return ret;
}

5128
static int
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
		enum plane_id plane_id = to_intel_plane(plane)->id;

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
5148 5149
		    skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
					&new_ddb->uv_plane[pipe][plane_id]))
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

static int
skl_compute_ddb(struct drm_atomic_state *state)
5162
{
5163
	const struct drm_i915_private *dev_priv = to_i915(state->dev);
5164
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5165
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5166 5167 5168
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
	int ret, i;
5169

5170 5171
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5172
	for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5173 5174 5175 5176 5177 5178 5179
		ret = skl_allocate_pipe_ddb(cstate, ddb);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(cstate);
		if (ret)
			return ret;
5180 5181 5182 5183 5184
	}

	return 0;
}

5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5197
	int i;
5198

5199
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5200 5201
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
5202

5203
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5204
			enum plane_id plane_id = intel_plane->id;
5205 5206
			const struct skl_ddb_entry *old, *new;

5207 5208
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
5209 5210 5211 5212

			if (skl_ddb_entry_equal(old, new))
				continue;

5213 5214 5215 5216 5217
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
5218 5219 5220 5221
		}
	}
}

5222
static int
5223
skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5224
{
5225
	struct drm_device *dev = state->dev;
5226 5227 5228 5229 5230 5231
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	struct intel_crtc *intel_crtc;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	uint32_t realloc_pipes = pipes_modified(state);
5232
	int ret, i;
5233

5234 5235 5236 5237
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5238 5239
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5240

5241 5242 5243 5244 5245 5246 5247 5248
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5249
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5250
		(*changed) = true;
5251

5252
	if (!*changed)
5253 5254
		return 0;

5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

		intel_state->active_pipe_changes = ~0;

		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5292
	if (intel_state->active_pipe_changes || intel_state->modeset) {
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
		realloc_pipes = ~0;
		intel_state->wm_results.dirty_pipes = ~0;
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
	bool changed = false;
	int ret, i;

5323 5324 5325
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5326 5327 5328 5329
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5330
	ret = skl_compute_ddb(state);
5331 5332 5333
	if (ret)
		return ret;

5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
5344
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5345 5346
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
5347 5348
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5349 5350

		pipe_wm = &intel_cstate->wm.skl.optimal;
5351 5352
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

5366 5367
	skl_print_wm_changes(state);

5368 5369 5370
	return 0;
}

5371 5372 5373 5374 5375 5376
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5377
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5378
	enum pipe pipe = crtc->pipe;
5379
	enum plane_id plane_id;
5380 5381 5382

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5383 5384

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5385

5386 5387 5388 5389 5390 5391 5392 5393
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
5394 5395
}

5396 5397
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5398
{
5399
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5400
	struct drm_device *dev = intel_crtc->base.dev;
5401
	struct drm_i915_private *dev_priv = to_i915(dev);
5402 5403
	struct skl_ddb_values *results = &state->wm_results;
	struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5404
	enum pipe pipe = intel_crtc->pipe;
5405

5406
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5407 5408
		return;

5409
	mutex_lock(&dev_priv->wm.wm_mutex);
5410

5411 5412
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5413

5414 5415 5416 5417
	memcpy(hw_vals->ddb.uv_plane[pipe], results->ddb.uv_plane[pipe],
	       sizeof(hw_vals->ddb.uv_plane[pipe]));
	memcpy(hw_vals->ddb.plane[pipe], results->ddb.plane[pipe],
	       sizeof(hw_vals->ddb.plane[pipe]));
5418 5419

	mutex_unlock(&dev_priv->wm.wm_mutex);
5420 5421
}

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5440
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5441
{
5442
	struct drm_device *dev = &dev_priv->drm;
5443
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5444
	struct ilk_wm_maximums max;
5445
	struct intel_wm_config config = {};
5446
	struct ilk_wm_values results = {};
5447
	enum intel_ddb_partitioning partitioning;
5448

5449 5450 5451 5452
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5453 5454

	/* 5/6 split only in single pipe config on IVB+ */
5455
	if (INTEL_GEN(dev_priv) >= 7 &&
5456 5457 5458
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5459

5460
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5461
	} else {
5462
		best_lp_wm = &lp_wm_1_2;
5463 5464
	}

5465
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5466
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5467

5468
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5469

5470
	ilk_write_wm_values(dev_priv, &results);
5471 5472
}

5473 5474
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5475
{
5476 5477
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5478

5479
	mutex_lock(&dev_priv->wm.wm_mutex);
5480
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5481 5482 5483
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5484

5485 5486
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5487 5488 5489
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5490

5491 5492
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5493
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5494 5495 5496
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5497 5498
}

5499 5500
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5501
{
5502 5503 5504 5505
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5506 5507
}

5508 5509
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5510
{
5511
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5512 5513
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5514 5515
	int level, max_level;
	enum plane_id plane_id;
5516
	uint32_t val;
5517

5518
	max_level = ilk_wm_max_level(dev_priv);
5519

5520 5521
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5522

5523
		for (level = 0; level <= max_level; level++) {
5524 5525
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5526 5527
			else
				val = I915_READ(CUR_WM(pipe, level));
5528

5529
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5530 5531
		}

5532 5533
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5534 5535 5536 5537
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5538 5539
	}

5540 5541
	if (!intel_crtc->active)
		return;
5542

5543
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5544 5545 5546 5547
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5548
	struct drm_i915_private *dev_priv = to_i915(dev);
5549
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5550
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5551
	struct drm_crtc *crtc;
5552 5553
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5554

5555
	skl_ddb_get_hw_state(dev_priv, ddb);
5556 5557 5558 5559 5560 5561
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5562
		if (intel_crtc->active)
5563 5564
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5565

5566 5567 5568 5569
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
5570 5571 5572 5573 5574 5575
		/*
		 * Easy/common case; just sanitize DDB now if everything off
		 * Keep dbuf slice info intact
		 */
		memset(ddb->plane, 0, sizeof(ddb->plane));
		memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5576
	}
5577 5578
}

5579 5580 5581
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5582
	struct drm_i915_private *dev_priv = to_i915(dev);
5583
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5584
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5585
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5586
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5587
	enum pipe pipe = intel_crtc->pipe;
5588
	static const i915_reg_t wm0_pipe_reg[] = {
5589 5590 5591 5592 5593 5594
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5595
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5596
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5597

5598 5599
	memset(active, 0, sizeof(*active));

5600
	active->pipe_enabled = intel_crtc->active;
5601 5602

	if (active->pipe_enabled) {
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5617
		int level, max_level = ilk_wm_max_level(dev_priv);
5618 5619 5620 5621 5622 5623 5624 5625 5626

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5627 5628

	intel_crtc->wm.active.ilk = *active;
5629 5630
}

5631 5632 5633 5634 5635
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5662 5663 5664 5665 5666 5667 5668 5669 5670
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5671
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5672
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5673
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5674
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5675
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5676
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5677
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5678 5679 5680 5681 5682
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5683 5684 5685
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5686 5687

	tmp = I915_READ(DSPFW2);
5688 5689 5690
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5691 5692 5693 5694 5695 5696

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5697 5698
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5699 5700

		tmp = I915_READ(DSPFW8_CHV);
5701 5702
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5703 5704

		tmp = I915_READ(DSPFW9_CHV);
5705 5706
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5707 5708 5709

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5710 5711 5712 5713 5714 5715 5716 5717 5718
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5719 5720
	} else {
		tmp = I915_READ(DSPFW7);
5721 5722
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5723 5724 5725

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5726 5727 5728 5729 5730 5731
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5732 5733 5734 5735 5736 5737
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5879 5880 5881 5882
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5883
	struct intel_crtc *crtc;
5884 5885 5886 5887 5888 5889 5890 5891
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5892
		mutex_lock(&dev_priv->pcu_lock);
5893 5894 5895 5896 5897

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5898 5899 5900 5901 5902 5903 5904 5905 5906
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5907
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5921

5922
		mutex_unlock(&dev_priv->pcu_lock);
5923 5924
	}

5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5941
			struct g4x_pipe_wm *raw =
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5963
		crtc_state->wm.vlv.intermediate = *active;
5964

5965
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5966 5967 5968 5969 5970
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5971
	}
5972 5973 5974 5975 5976

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6001
			struct g4x_pipe_wm *raw =
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6042 6043
void ilk_wm_get_hw_state(struct drm_device *dev)
{
6044
	struct drm_i915_private *dev_priv = to_i915(dev);
6045
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6046 6047
	struct drm_crtc *crtc;

6048 6049
	ilk_init_lp_watermarks(dev_priv);

6050
	for_each_crtc(dev, crtc)
6051 6052 6053 6054 6055 6056 6057
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6058
	if (INTEL_GEN(dev_priv) >= 7) {
6059 6060 6061
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6062

6063
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6064 6065
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6066
	else if (IS_IVYBRIDGE(dev_priv))
6067 6068
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6069 6070 6071 6072 6073

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6074 6075
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6076
 * @crtc: the #intel_crtc on which to compute the WM
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6107
void intel_update_watermarks(struct intel_crtc *crtc)
6108
{
6109
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6110 6111

	if (dev_priv->display.update_wm)
6112
		dev_priv->display.update_wm(crtc);
6113 6114
}

6115 6116 6117 6118
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6119
	/* Display WA #0477 WaDisableIPC: skl */
6120
	if (IS_SKYLAKE(dev_priv))
6121 6122
		dev_priv->ipc_enabled = false;

6123 6124 6125 6126 6127
	/* Display WA #1141: SKL:all KBL:all CFL */
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
	    !dev_priv->dram_info.symmetric_memory)
		dev_priv->ipc_enabled = false;

6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	dev_priv->ipc_enabled = false;
	if (!HAS_IPC(dev_priv))
		return;

	dev_priv->ipc_enabled = true;
	intel_enable_ipc(dev_priv);
}

6148
/*
6149 6150 6151 6152 6153 6154 6155 6156
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

6157
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6158 6159 6160
{
	u16 rgvswctl;

6161
	lockdep_assert_held(&mchdev_lock);
6162

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

6180
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6181
{
6182
	u32 rgvmodectl;
6183 6184
	u8 fmax, fmin, fstart, vstart;

6185 6186
	spin_lock_irq(&mchdev_lock);

6187 6188
	rgvmodectl = I915_READ(MEMMODECTL);

6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6209
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6210 6211
		PXVFREQ_PX_SHIFT;

6212 6213
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6214

6215 6216 6217
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6234
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6235
		DRM_ERROR("stuck trying to change perf mode\n");
6236
	mdelay(1);
6237

6238
	ironlake_set_drps(dev_priv, fstart);
6239

6240 6241
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6242
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6243
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6244
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6245 6246

	spin_unlock_irq(&mchdev_lock);
6247 6248
}

6249
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6250
{
6251 6252 6253 6254 6255
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6256 6257 6258 6259 6260 6261 6262 6263 6264

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6265
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6266
	mdelay(1);
6267 6268
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6269
	mdelay(1);
6270

6271
	spin_unlock_irq(&mchdev_lock);
6272 6273
}

6274 6275 6276 6277 6278
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6279
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6280
{
6281
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6282
	u32 limits;
6283

6284 6285 6286 6287 6288 6289
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6290
	if (INTEL_GEN(dev_priv) >= 9) {
6291 6292 6293
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6294
	} else {
6295 6296 6297
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6298
	}
6299 6300 6301 6302

	return limits;
}

C
Chris Wilson 已提交
6303
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6304
{
6305
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6306 6307
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6308

C
Chris Wilson 已提交
6309
	lockdep_assert_held(&rps->power.mutex);
6310

C
Chris Wilson 已提交
6311
	if (new_power == rps->power.mode)
6312 6313 6314 6315 6316 6317
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6318 6319
		ei_up = 16000;
		threshold_up = 95;
6320 6321

		/* Downclock if less than 85% busy over 32ms */
6322 6323
		ei_down = 32000;
		threshold_down = 85;
6324 6325 6326 6327
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6328 6329
		ei_up = 13000;
		threshold_up = 90;
6330 6331

		/* Downclock if less than 75% busy over 32ms */
6332 6333
		ei_down = 32000;
		threshold_down = 75;
6334 6335 6336 6337
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6338 6339
		ei_up = 10000;
		threshold_up = 85;
6340 6341

		/* Downclock if less than 60% busy over 32ms */
6342 6343
		ei_down = 32000;
		threshold_down = 60;
6344 6345 6346
		break;
	}

6347 6348 6349 6350 6351 6352
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6353
	I915_WRITE(GEN6_RP_UP_EI,
6354
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6355
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6356 6357
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6358 6359

	I915_WRITE(GEN6_RP_DOWN_EI,
6360
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6361
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6372

6373
skip_hw_write:
C
Chris Wilson 已提交
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6418 6419
}

C
Chris Wilson 已提交
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6438 6439
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6440
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6441 6442
	u32 mask = 0;

6443
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6444
	if (val > rps->min_freq_softlimit)
6445
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6446
	if (val < rps->max_freq_softlimit)
6447
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6448

6449 6450
	mask &= dev_priv->pm_rps_events;

6451
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6452 6453
}

6454 6455 6456
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6457
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6458
{
6459 6460
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6461 6462 6463
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6464
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6465
		gen6_set_rps_thresholds(dev_priv, val);
6466

6467
		if (INTEL_GEN(dev_priv) >= 9)
6468 6469
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6470
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6471 6472 6473 6474 6475 6476 6477
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6478
	}
6479 6480 6481 6482

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6483
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6484
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6485

6486
	rps->cur_freq = val;
6487
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6488 6489

	return 0;
6490 6491
}

6492
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6493
{
6494 6495
	int err;

6496
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6497 6498 6499
		      "Odd GPU freq value\n"))
		val &= ~1;

6500 6501
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6502
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6503 6504 6505 6506
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6507
		gen6_set_rps_thresholds(dev_priv, val);
6508
	}
6509

6510
	dev_priv->gt_pm.rps.cur_freq = val;
6511
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6512 6513

	return 0;
6514 6515
}

6516
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6517 6518
 *
 * * If Gfx is Idle, then
6519 6520 6521
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6522 6523 6524
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6525 6526
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6527
	int err;
6528

6529
	if (rps->cur_freq <= val)
6530 6531
		return;

6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6544
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6545
	err = valleyview_set_rps(dev_priv, val);
6546
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6547 6548 6549

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6550 6551
}

6552 6553
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6554 6555
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6556
	mutex_lock(&dev_priv->pcu_lock);
6557
	if (rps->enabled) {
6558 6559
		u8 freq;

6560
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6561 6562
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6563
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6564

6565 6566
		gen6_enable_rps_interrupts(dev_priv);

6567 6568 6569
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6570 6571
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6572

6573
		if (intel_set_rps(dev_priv,
6574
				  clamp(freq,
6575 6576
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6577
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6578
	}
6579
	mutex_unlock(&dev_priv->pcu_lock);
6580 6581
}

6582 6583
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6584 6585
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6586 6587 6588 6589 6590 6591 6592
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6593
	mutex_lock(&dev_priv->pcu_lock);
6594
	if (rps->enabled) {
6595
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6596
			vlv_set_rps_idle(dev_priv);
6597
		else
6598 6599
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6600 6601
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6602
	}
6603
	mutex_unlock(&dev_priv->pcu_lock);
6604 6605
}

6606
void gen6_rps_boost(struct i915_request *rq,
6607
		    struct intel_rps_client *rps_client)
6608
{
6609
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6610
	unsigned long flags;
6611 6612
	bool boost;

6613 6614 6615
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6616
	if (!rps->enabled)
6617
		return;
6618

6619 6620 6621
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return;

6622
	/* Serializes with i915_request_retire() */
6623
	boost = false;
6624
	spin_lock_irqsave(&rq->lock, flags);
6625 6626
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6627
		rq->waitboost = true;
6628
	}
6629
	spin_unlock_irqrestore(&rq->lock, flags);
6630 6631 6632
	if (!boost)
		return;

6633 6634
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6635

6636
	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6637 6638
}

6639
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6640
{
6641
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6642 6643
	int err;

6644
	lockdep_assert_held(&dev_priv->pcu_lock);
6645 6646
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6647

6648 6649
	if (!rps->enabled) {
		rps->cur_freq = val;
6650 6651 6652
		return 0;
	}

6653
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6654
		err = valleyview_set_rps(dev_priv, val);
6655
	else
6656 6657 6658
		err = gen6_set_rps(dev_priv, val);

	return err;
6659 6660
}

6661
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6662 6663
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6664
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6665 6666
}

6667
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6668 6669 6670 6671
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6672
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6673 6674
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6675 6676 6677 6678
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6679
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6680
	I915_WRITE(GEN6_RP_CONTROL, 0);
6681 6682
}

6683
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6684 6685 6686 6687
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6688 6689 6690 6691 6692
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6693
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6694
{
6695
	/* We're doing forcewake before Disabling RC6,
6696
	 * This what the BIOS expects when going into suspend */
6697
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6698

6699
	I915_WRITE(GEN6_RC_CONTROL, 0);
6700

6701
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6702 6703
}

6704 6705 6706 6707 6708
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6709
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6710 6711 6712
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6724 6725

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6726
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6727 6728 6729 6730 6731 6732 6733 6734
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6735 6736
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6737
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6738 6739 6740 6741 6742 6743 6744
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6745
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6746 6747 6748
		enable_rc6 = false;
	}

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6763 6764 6765 6766 6767 6768
		enable_rc6 = false;
	}

	return enable_rc6;
}

6769
static bool sanitize_rc6(struct drm_i915_private *i915)
6770
{
6771
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
6772

6773 6774 6775
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(i915))
		info->has_rc6 = 0;
6776

6777 6778
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6779
		DRM_INFO("RC6 disabled by BIOS\n");
6780
		info->has_rc6 = 0;
6781 6782
	}

6783 6784 6785 6786 6787 6788 6789 6790
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
6791

6792
	return info->has_rc6;
6793 6794
}

6795
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6796
{
6797 6798
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6799
	/* All of these values are in units of 50MHz */
6800

6801
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6802
	if (IS_GEN9_LP(dev_priv)) {
6803
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6804 6805 6806
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6807
	} else {
6808
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6809 6810 6811
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6812
	}
6813
	/* hw_max = RP0 until we check for overclocking */
6814
	rps->max_freq = rps->rp0_freq;
6815

6816
	rps->efficient_freq = rps->rp1_freq;
6817
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6818
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6819 6820 6821 6822 6823
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6824
			rps->efficient_freq =
6825 6826
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6827 6828
					rps->min_freq,
					rps->max_freq);
6829 6830
	}

6831
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6832
		/* Store the frequency values in 16.66 MHZ units, which is
6833 6834
		 * the natural hardware unit for SKL
		 */
6835 6836 6837 6838 6839
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6840
	}
6841 6842
}

6843
static void reset_rps(struct drm_i915_private *dev_priv,
6844
		      int (*set)(struct drm_i915_private *, u8))
6845
{
6846 6847
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6848 6849

	/* force a reset */
C
Chris Wilson 已提交
6850
	rps->power.mode = -1;
6851
	rps->cur_freq = -1;
6852

6853 6854
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6855 6856
}

J
Jesse Barnes 已提交
6857
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6858
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6859 6860 6861
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6862 6863 6864 6865
	/* Program defaults and thresholds for RPS */
	if (IS_GEN9(dev_priv))
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6866 6867 6868 6869 6870

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6871 6872
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6873 6874 6875
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6876
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6877 6878 6879 6880

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6881
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6882
{
6883
	struct intel_engine_cs *engine;
6884
	enum intel_engine_id id;
6885
	u32 rc6_mode;
Z
Zhe Wang 已提交
6886 6887 6888 6889 6890 6891

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6892
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6893 6894 6895 6896 6897

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
6898 6899 6900 6901 6902 6903 6904 6905
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
6906
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
6907
	} else {
6908
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
6909 6910
	}

Z
Zhe Wang 已提交
6911 6912
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6913
	for_each_engine(engine, dev_priv, id)
6914
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6915

6916
	if (HAS_GUC(dev_priv))
6917 6918
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6919 6920
	I915_WRITE(GEN6_RC_SLEEP, 0);

6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6944

Z
Zhe Wang 已提交
6945
	/* 3a: Enable RC6 */
6946
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
6947 6948 6949 6950 6951 6952 6953

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

6954
	I915_WRITE(GEN6_RC_CONTROL,
6955 6956 6957
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
6958

6959 6960
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6961
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6962
	 */
6963
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6964 6965
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
6966 6967
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6968

6969
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6970 6971
}

6972
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6973
{
6974
	struct intel_engine_cs *engine;
6975
	enum intel_engine_id id;
6976 6977 6978 6979

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

6980
	/* 1b: Get forcewake during program sequence. Although the driver
6981
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6982
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6983 6984 6985 6986 6987 6988 6989 6990

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6991
	for_each_engine(engine, dev_priv, id)
6992
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6993
	I915_WRITE(GEN6_RC_SLEEP, 0);
6994
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6995 6996

	/* 3: Enable RC6 */
6997

6998 6999 7000 7001
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
7002

7003 7004 7005 7006 7007
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
7008 7009
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7010 7011 7012
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
7013
	I915_WRITE(GEN6_RPNSWREQ,
7014
		   HSW_FREQUENCY(rps->rp1_freq));
7015
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7016
		   HSW_FREQUENCY(rps->rp1_freq));
7017 7018 7019 7020 7021
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7022 7023
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7024 7025 7026 7027 7028 7029 7030

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7031

7032
	/* 2: Enable RPS */
7033 7034 7035 7036 7037 7038 7039 7040
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7041
	reset_rps(dev_priv, gen6_set_rps);
7042

7043
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7044 7045
}

7046
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7047
{
7048
	struct intel_engine_cs *engine;
7049
	enum intel_engine_id id;
7050
	u32 rc6vids, rc6_mask;
7051
	u32 gtfifodbg;
7052
	int ret;
7053 7054 7055 7056

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
7057 7058
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7059 7060 7061 7062
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7063
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7074
	for_each_engine(engine, dev_priv, id)
7075
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7076 7077 7078

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7079
	if (IS_IVYBRIDGE(dev_priv))
7080 7081 7082
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7083
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7084 7085
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7086
	/* We don't use those on Haswell */
7087 7088 7089 7090 7091
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7092 7093 7094 7095 7096
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7097 7098
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7099
	if (IS_GEN6(dev_priv) && ret) {
7100
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7101
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7102 7103 7104 7105 7106 7107 7108 7109 7110
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7111
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7112 7113
}

7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7133
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7134
{
7135
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7136 7137
	const int min_freq = 15;
	const int scaling_factor = 180;
7138 7139
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7140
	unsigned int max_gpu_freq, min_gpu_freq;
7141
	struct cpufreq_policy *policy;
7142

7143
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7144

7145 7146 7147
	if (rps->max_freq <= rps->min_freq)
		return;

7148 7149 7150 7151 7152 7153 7154 7155 7156
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7157
		max_ia_freq = tsc_khz;
7158
	}
7159 7160 7161 7162

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7163
	min_ring_freq = I915_READ(DCLK) & 0xf;
7164 7165
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7166

7167 7168
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7169
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7170
		/* Convert GT frequency to 50 HZ units */
7171 7172
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7173 7174
	}

7175 7176 7177 7178 7179
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7180
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7181
		const int diff = max_gpu_freq - gpu_freq;
7182 7183
		unsigned int ia_freq = 0, ring_freq = 0;

7184
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7185 7186 7187 7188 7189
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7190
		} else if (INTEL_GEN(dev_priv) >= 8) {
7191 7192
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7193
		} else if (IS_HASWELL(dev_priv)) {
7194
			ring_freq = mult_frac(gpu_freq, 5, 4);
7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7211

B
Ben Widawsky 已提交
7212 7213
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7214 7215 7216
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7217 7218 7219
	}
}

7220
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7221 7222 7223
{
	u32 val, rp0;

7224
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7225

7226
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7241
	}
7242 7243 7244

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7258 7259 7260 7261
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7262 7263 7264
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7265 7266 7267
	return rp1;
}

7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7290
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7291 7292 7293
{
	u32 val, rp0;

7294
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7307
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7308
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7309
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7310 7311 7312 7313 7314
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7315
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7316
{
7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7328 7329
}

7330 7331 7332 7333 7334
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7335
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7336 7337 7338
			     dev_priv->vlv_pctx->stolen->start);
}

7339 7340 7341 7342 7343 7344 7345 7346 7347

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7348
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7349
{
7350 7351
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7352 7353 7354 7355
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7356
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7357 7358
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7359 7360 7361 7362

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7363 7364

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7365 7366
}

7367
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7368 7369
{
	struct drm_i915_gem_object *pctx;
7370 7371
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7372 7373 7374 7375 7376
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7377
		resource_size_t pcbr_offset;
7378

7379
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7380
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7381
								      pcbr_offset,
7382
								      I915_GTT_OFFSET_NONE,
7383 7384 7385 7386
								      pctx_size);
		goto out;
	}

7387 7388
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7389 7390 7391 7392 7393 7394 7395 7396
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7397
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7398 7399
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7400
		goto out;
7401 7402
	}

7403 7404 7405 7406 7407
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7408 7409 7410
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7411
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7412 7413 7414
	dev_priv->vlv_pctx = pctx;
}

7415
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7416
{
7417
	struct drm_i915_gem_object *pctx;
7418

7419 7420 7421
	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
	if (pctx)
		i915_gem_object_put(pctx);
7422 7423
}

7424 7425
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7426
	dev_priv->gt_pm.rps.gpll_ref_freq =
7427 7428 7429 7430 7431
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7432
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7433 7434
}

7435
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7436
{
7437
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7438
	u32 val;
7439

7440
	valleyview_setup_pctx(dev_priv);
7441

7442 7443
	vlv_init_gpll_ref_freq(dev_priv);

7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7457
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7458

7459 7460
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7461
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7462 7463
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7464

7465
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7466
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7467 7468
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7469

7470
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7471
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7472 7473
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7474

7475
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7476
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7477 7478
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7479 7480
}

7481
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7482
{
7483
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7484
	u32 val;
7485

7486
	cherryview_setup_pctx(dev_priv);
7487

7488 7489
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7490
	mutex_lock(&dev_priv->sb_lock);
7491
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7492
	mutex_unlock(&dev_priv->sb_lock);
7493

7494 7495 7496 7497
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7498
	default:
7499 7500 7501
		dev_priv->mem_freq = 1600;
		break;
	}
7502
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7503

7504 7505
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7506
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7507 7508
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7509

7510
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7511
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7512 7513
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7514

7515
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7516
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7517 7518
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7519

7520
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7521
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7522 7523
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7524

7525 7526
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7527
		  "Odd GPU freq values\n");
7528 7529
}

7530
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7531
{
7532
	valleyview_cleanup_pctx(dev_priv);
7533 7534
}

7535
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7536
{
7537
	struct intel_engine_cs *engine;
7538
	enum intel_engine_id id;
7539
	u32 gtfifodbg, rc6_mode, pcbr;
7540

7541 7542
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7553
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7554

7555 7556 7557
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7558 7559 7560 7561 7562
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7563
	for_each_engine(engine, dev_priv, id)
7564
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7565 7566
	I915_WRITE(GEN6_RC_SLEEP, 0);

7567 7568
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7569

7570
	/* Allows RC6 residency counter to work */
7571 7572 7573 7574 7575 7576 7577 7578 7579
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7580 7581
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7582
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7583 7584
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7595
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7596 7597 7598 7599 7600 7601 7602
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7603
	/* 2: Enable RPS */
7604 7605
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7606
		   GEN6_RP_MEDIA_IS_GFX |
7607 7608 7609 7610
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7611 7612 7613 7614 7615 7616
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7617 7618
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7619 7620 7621
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7622
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7623 7624
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7625
	reset_rps(dev_priv, valleyview_set_rps);
7626

7627
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7628 7629
}

7630
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7631
{
7632
	struct intel_engine_cs *engine;
7633
	enum intel_engine_id id;
7634
	u32 gtfifodbg;
7635

7636 7637
	valleyview_check_pctx(dev_priv);

7638 7639
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7640 7641
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7642 7643 7644
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7645
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7646

7647 7648 7649
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7650 7651 7652 7653
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7654
	for_each_engine(engine, dev_priv, id)
7655
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7656

7657
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7658

7659
	/* Allows RC6 residency counter to work */
7660
	I915_WRITE(VLV_COUNTER_CONTROL,
7661 7662
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7663
				      VLV_RENDER_RC0_COUNT_EN |
7664 7665
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7666

7667 7668
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7669

7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7695 7696 7697 7698 7699 7700
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7701
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7702

7703 7704 7705
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7706
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7707 7708
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7709
	reset_rps(dev_priv, valleyview_set_rps);
7710

7711
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7712 7713
}

7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7743
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7744 7745 7746 7747 7748 7749
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7750
	lockdep_assert_held(&mchdev_lock);
7751

7752
	diff1 = now - dev_priv->ips.last_time1;
7753 7754 7755 7756 7757 7758 7759

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7760
		return dev_priv->ips.chipset_power;
7761 7762 7763 7764 7765 7766 7767 7768

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7769 7770
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7771 7772
		diff += total_count;
	} else {
7773
		diff = total_count - dev_priv->ips.last_count1;
7774 7775 7776
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7777 7778
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7789 7790
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7791

7792
	dev_priv->ips.chipset_power = ret;
7793 7794 7795 7796

	return ret;
}

7797 7798 7799 7800
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7801
	if (!IS_GEN5(dev_priv))
7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7840
{
7841 7842 7843
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7844
	if (INTEL_INFO(dev_priv)->is_mobile)
7845 7846 7847
		return vm > 0 ? vm : 0;

	return vd;
7848 7849
}

7850
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7851
{
7852
	u64 now, diff, diffms;
7853 7854
	u32 count;

7855
	lockdep_assert_held(&mchdev_lock);
7856

7857 7858 7859
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7860 7861 7862 7863 7864 7865 7866

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7867 7868
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7869 7870
		diff += count;
	} else {
7871
		diff = count - dev_priv->ips.last_count2;
7872 7873
	}

7874 7875
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7876 7877 7878 7879

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7880
	dev_priv->ips.gfx_power = diff;
7881 7882
}

7883 7884
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7885
	if (!IS_GEN5(dev_priv))
7886 7887
		return;

7888
	spin_lock_irq(&mchdev_lock);
7889 7890 7891

	__i915_update_gfx_val(dev_priv);

7892
	spin_unlock_irq(&mchdev_lock);
7893 7894
}

7895
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7896 7897 7898 7899
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7900
	lockdep_assert_held(&mchdev_lock);
7901

7902
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7922
	corr2 = (corr * dev_priv->ips.corr);
7923 7924 7925 7926

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7927
	__i915_update_gfx_val(dev_priv);
7928

7929
	return dev_priv->ips.gfx_power + state2;
7930 7931
}

7932 7933 7934 7935
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7936
	if (!IS_GEN5(dev_priv))
7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7959
	spin_lock_irq(&mchdev_lock);
7960 7961 7962 7963
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7964 7965
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7966 7967 7968 7969

	ret = chipset_val + graphics_val;

out_unlock:
7970
	spin_unlock_irq(&mchdev_lock);
7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7986
	spin_lock_irq(&mchdev_lock);
7987 7988 7989 7990 7991 7992
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7993 7994
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7995 7996

out_unlock:
7997
	spin_unlock_irq(&mchdev_lock);
7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

8014
	spin_lock_irq(&mchdev_lock);
8015 8016 8017 8018 8019 8020
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

8021 8022
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
8023 8024

out_unlock:
8025
	spin_unlock_irq(&mchdev_lock);
8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

8040
	spin_lock_irq(&mchdev_lock);
8041 8042
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
8043
	spin_unlock_irq(&mchdev_lock);
8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

8060
	spin_lock_irq(&mchdev_lock);
8061 8062 8063 8064 8065 8066
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

8067
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
8068

8069
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8070 8071 8072
		ret = false;

out_unlock:
8073
	spin_unlock_irq(&mchdev_lock);
8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8101 8102
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8103
	spin_lock_irq(&mchdev_lock);
8104
	i915_mch_dev = dev_priv;
8105
	spin_unlock_irq(&mchdev_lock);
8106 8107 8108 8109 8110 8111

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8112
	spin_lock_irq(&mchdev_lock);
8113
	i915_mch_dev = NULL;
8114
	spin_unlock_irq(&mchdev_lock);
8115
}
8116

8117
static void intel_init_emon(struct drm_i915_private *dev_priv)
8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8134
		I915_WRITE(PEW(i), 0);
8135
	for (i = 0; i < 3; i++)
8136
		I915_WRITE(DEW(i), 0);
8137 8138 8139

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8140
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8161
		I915_WRITE(PXW(i), val);
8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8177
		I915_WRITE(PXWL(i), 0);
8178 8179 8180 8181 8182 8183

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8184
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8185 8186
}

8187
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8188
{
8189 8190
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8191 8192 8193 8194
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8195
	if (!sanitize_rc6(dev_priv)) {
8196
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8197
		pm_runtime_get(&dev_priv->drm.pdev->dev);
8198
	}
I
Imre Deak 已提交
8199

8200
	mutex_lock(&dev_priv->pcu_lock);
8201 8202

	/* Initialize RPS limits (for userspace) */
8203 8204 8205 8206
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8207
	else if (INTEL_GEN(dev_priv) >= 6)
8208 8209 8210
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8211 8212
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8213

8214 8215
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8216 8217

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8218
		rps->min_freq_softlimit =
8219
			max_t(int,
8220
			      rps->efficient_freq,
8221 8222
			      intel_freq_opcode(dev_priv, 450));

8223 8224 8225 8226 8227 8228 8229 8230
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8231
					 (rps->max_freq & 0xff) * 50,
8232
					 (params & 0xff) * 50);
8233
			rps->max_freq = params & 0xff;
8234 8235 8236
		}
	}

8237
	/* Finally allow us to boost to max by default */
8238
	rps->boost_freq = rps->max_freq;
8239

8240
	mutex_unlock(&dev_priv->pcu_lock);
8241 8242
}

8243
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8244
{
8245
	if (IS_VALLEYVIEW(dev_priv))
8246
		valleyview_cleanup_gt_powersave(dev_priv);
8247

8248
	if (!HAS_RC6(dev_priv))
8249
		pm_runtime_put(&dev_priv->drm.pdev->dev);
8250 8251
}

8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

8268 8269
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8270 8271
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8272
	intel_disable_gt_powersave(dev_priv);
8273

8274 8275
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
8276
	else if (INTEL_GEN(dev_priv) >= 6)
8277
		gen6_reset_rps_interrupts(dev_priv);
8278 8279
}

8280 8281 8282 8283
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8284 8285 8286
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8287
	/* Currently there is no HW configuration to be done to disable. */
8288 8289

	i915->gt_pm.llc_pstate.enabled = false;
8290 8291
}

8292
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8293
{
8294
	lockdep_assert_held(&dev_priv->pcu_lock);
8295

8296 8297 8298
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8299 8300 8301 8302 8303 8304 8305 8306
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8307 8308

	dev_priv->gt_pm.rc6.enabled = false;
8309
}
8310

8311 8312 8313
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8314

8315 8316 8317
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8318
	if (INTEL_GEN(dev_priv) >= 9)
8319
		gen9_disable_rps(dev_priv);
8320
	else if (IS_CHERRYVIEW(dev_priv))
8321
		cherryview_disable_rps(dev_priv);
8322
	else if (IS_VALLEYVIEW(dev_priv))
8323
		valleyview_disable_rps(dev_priv);
8324
	else if (INTEL_GEN(dev_priv) >= 6)
8325
		gen6_disable_rps(dev_priv);
8326
	else if (IS_IRONLAKE_M(dev_priv))
8327
		ironlake_disable_drps(dev_priv);
8328 8329

	dev_priv->gt_pm.rps.enabled = false;
8330 8331 8332 8333 8334
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8335

8336 8337
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8338 8339 8340
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8341
	mutex_unlock(&dev_priv->pcu_lock);
8342 8343
}

8344 8345 8346 8347
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8348 8349 8350
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8351
	gen6_update_ring_freq(i915);
8352 8353

	i915->gt_pm.llc_pstate.enabled = true;
8354 8355
}

8356
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8357
{
8358
	lockdep_assert_held(&dev_priv->pcu_lock);
8359

8360 8361 8362
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8363 8364 8365 8366 8367 8368 8369 8370 8371 8372
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8373 8374

	dev_priv->gt_pm.rc6.enabled = true;
8375
}
8376

8377 8378 8379
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8380

8381
	lockdep_assert_held(&dev_priv->pcu_lock);
8382

8383 8384 8385
	if (rps->enabled)
		return;

8386 8387 8388 8389
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8390
	} else if (INTEL_GEN(dev_priv) >= 9) {
8391 8392 8393
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8394
	} else if (INTEL_GEN(dev_priv) >= 6) {
8395
		gen6_enable_rps(dev_priv);
8396 8397 8398
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8399
	}
8400

8401 8402
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8403

8404 8405
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8406 8407

	rps->enabled = true;
8408 8409 8410 8411 8412 8413 8414 8415 8416 8417
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

8418 8419
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8420 8421 8422
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8423

8424
	mutex_unlock(&dev_priv->pcu_lock);
8425
}
I
Imre Deak 已提交
8426

8427
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8428 8429 8430 8431 8432 8433 8434 8435 8436
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8437
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8438
{
8439
	enum pipe pipe;
8440

8441
	for_each_pipe(dev_priv, pipe) {
8442 8443 8444
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8445 8446 8447

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8448 8449 8450
	}
}

8451
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8452
{
8453
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8454

8455 8456 8457 8458
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8459 8460 8461
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8479
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8480 8481 8482
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8483

8484 8485 8486 8487 8488 8489 8490
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8491
	if (IS_IRONLAKE_M(dev_priv)) {
8492
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8493 8494 8495 8496 8497 8498 8499 8500
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8501 8502
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8503 8504 8505 8506 8507 8508
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8509

8510
	/* WaDisableRenderCachePipelinedFlush:ilk */
8511 8512
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8513

8514 8515 8516
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8517
	g4x_disable_trickle_feed(dev_priv);
8518

8519
	ibx_init_clock_gating(dev_priv);
8520 8521
}

8522
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8523 8524
{
	int pipe;
8525
	uint32_t val;
8526 8527 8528 8529 8530 8531

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8532 8533 8534
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8535 8536
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8537 8538 8539
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8540
	for_each_pipe(dev_priv, pipe) {
8541 8542 8543
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8544
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8545
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8546 8547 8548
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8549 8550
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8551
	/* WADP0ClockGatingDisable */
8552
	for_each_pipe(dev_priv, pipe) {
8553 8554 8555
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8556 8557
}

8558
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8559 8560 8561 8562
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8563 8564 8565
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8566 8567
}

8568
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8569
{
8570
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8571

8572
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8573 8574 8575 8576 8577

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8578
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8579 8580 8581
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8582 8583 8584
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8585 8586 8587
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8588 8589 8590 8591
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8592 8593
	 */
	I915_WRITE(GEN6_GT_MODE,
8594
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8595

8596
	I915_WRITE(CACHE_MODE_0,
8597
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8613
	 *
8614 8615
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8616 8617 8618 8619 8620
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8621
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8622 8623
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8624

8625 8626 8627 8628 8629 8630 8631 8632
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8633 8634 8635 8636 8637 8638 8639 8640
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8641 8642
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8643 8644 8645 8646 8647 8648 8649
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8650 8651 8652 8653
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8654

8655
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8656

8657
	cpt_init_clock_gating(dev_priv);
8658

8659
	gen6_check_mch_setup(dev_priv);
8660 8661 8662 8663 8664 8665
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8666
	/*
8667
	 * WaVSThreadDispatchOverride:ivb,vlv
8668 8669 8670 8671
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8672 8673 8674 8675 8676 8677 8678 8679
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8680
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8681 8682 8683 8684 8685
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8686
	if (HAS_PCH_LPT_LP(dev_priv))
8687 8688 8689
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8690 8691

	/* WADPOClockGatingDisable:hsw */
8692 8693
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8694
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8695 8696
}

8697
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8698
{
8699
	if (HAS_PCH_LPT_LP(dev_priv)) {
8700 8701 8702 8703 8704 8705 8706
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8707 8708 8709 8710 8711
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8712
	u32 val;
8713 8714 8715 8716 8717

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8718 8719 8720 8721 8722
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
8733 8734 8735 8736 8737 8738 8739
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
}

8740 8741 8742 8743 8744
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8745
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8746 8747
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8748 8749
}

8750
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8751
{
8752
	u32 val;
8753 8754
	cnp_init_clock_gating(dev_priv);

8755 8756 8757 8758
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8759 8760 8761 8762 8763 8764 8765 8766
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8767 8768 8769
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8770 8771
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8772 8773
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8774

R
Rodrigo Vivi 已提交
8775 8776 8777 8778 8779
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

8780
	/* WaDisableVFclkgate:cnl */
8781
	/* WaVFUnitClockGatingDisable:cnl */
8782 8783 8784
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8785 8786
}

8787 8788 8789 8790 8791 8792 8793 8794 8795 8796
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8797
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8798
{
8799
	gen9_init_clock_gating(dev_priv);
8800 8801 8802 8803 8804

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8805 8806 8807 8808 8809

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8810

8811
	/* WaFbcNukeOnHostModify:kbl */
8812 8813
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8814 8815
}

8816
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8817
{
8818
	gen9_init_clock_gating(dev_priv);
8819 8820 8821 8822

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8823 8824 8825 8826

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8827 8828
}

8829
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8830
{
8831 8832 8833
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
8834
	enum pipe pipe;
B
Ben Widawsky 已提交
8835

8836
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8837
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8838

8839
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8840 8841 8842
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8843
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8844
	for_each_pipe(dev_priv, pipe) {
8845
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8846
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8847
			   BDW_DPRS_MASK_VBLANK_SRD);
8848
	}
8849

8850 8851 8852 8853 8854
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8855

8856 8857
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8858 8859 8860 8861

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8862

8863 8864
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8865

8866 8867
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8868

8869 8870 8871 8872
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8873
	lpt_init_clock_gating(dev_priv);
8874 8875 8876 8877 8878 8879 8880 8881

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8882 8883
}

8884
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8885
{
8886 8887 8888 8889 8890
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8891
	/* This is required by WaCatErrorRejectionIssue:hsw */
8892 8893 8894 8895
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8896 8897 8898
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8899

8900 8901 8902
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8903 8904 8905 8906
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8907
	/* WaDisable4x2SubspanOptimization:hsw */
8908 8909
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8910

8911 8912 8913
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8914 8915 8916 8917
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8918 8919
	 */
	I915_WRITE(GEN7_GT_MODE,
8920
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8921

8922 8923 8924 8925
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8926
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8927 8928
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8929
	lpt_init_clock_gating(dev_priv);
8930 8931
}

8932
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8933
{
8934
	uint32_t snpcr;
8935

8936
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8937

8938
	/* WaDisableEarlyCull:ivb */
8939 8940 8941
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8942
	/* WaDisableBackToBackFlipFix:ivb */
8943 8944 8945 8946
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8947
	/* WaDisablePSDDualDispatchEnable:ivb */
8948
	if (IS_IVB_GT1(dev_priv))
8949 8950 8951
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8952 8953 8954
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8955
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8956 8957 8958
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8959
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8960 8961 8962
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8963
		   GEN7_WA_L3_CHICKEN_MODE);
8964
	if (IS_IVB_GT1(dev_priv))
8965 8966
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8967 8968 8969 8970
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8971 8972
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8973
	}
8974

8975
	/* WaForceL3Serialization:ivb */
8976 8977 8978
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8979
	/*
8980
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8981
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8982 8983
	 */
	I915_WRITE(GEN6_UCGCTL2,
8984
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8985

8986
	/* This is required by WaCatErrorRejectionIssue:ivb */
8987 8988 8989 8990
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8991
	g4x_disable_trickle_feed(dev_priv);
8992 8993

	gen7_setup_fixed_func_scheduler(dev_priv);
8994

8995 8996 8997 8998 8999
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
9000

9001
	/* WaDisable4x2SubspanOptimization:ivb */
9002 9003
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9004

9005 9006 9007
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9008 9009 9010 9011
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9012 9013
	 */
	I915_WRITE(GEN7_GT_MODE,
9014
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9015

9016 9017 9018 9019
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9020

9021
	if (!HAS_PCH_NOP(dev_priv))
9022
		cpt_init_clock_gating(dev_priv);
9023

9024
	gen6_check_mch_setup(dev_priv);
9025 9026
}

9027
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9028
{
9029
	/* WaDisableEarlyCull:vlv */
9030 9031 9032
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9033
	/* WaDisableBackToBackFlipFix:vlv */
9034 9035 9036 9037
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9038
	/* WaPsdDispatchEnable:vlv */
9039
	/* WaDisablePSDDualDispatchEnable:vlv */
9040
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9041 9042
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9043

9044 9045 9046
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9047
	/* WaForceL3Serialization:vlv */
9048 9049 9050
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9051
	/* WaDisableDopClockGating:vlv */
9052 9053 9054
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

9055
	/* This is required by WaCatErrorRejectionIssue:vlv */
9056 9057 9058 9059
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9060 9061
	gen7_setup_fixed_func_scheduler(dev_priv);

9062
	/*
9063
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9064
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9065 9066
	 */
	I915_WRITE(GEN6_UCGCTL2,
9067
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9068

9069 9070 9071 9072 9073
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9074

9075 9076 9077 9078
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9079 9080
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9081

9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9093 9094 9095 9096 9097 9098
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9099
	/*
9100
	 * WaDisableVLVClockGating_VBIIssue:vlv
9101 9102 9103
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9104
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9105 9106
}

9107
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9108
{
9109 9110 9111 9112 9113
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9114 9115 9116 9117

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9118 9119 9120 9121

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9122 9123 9124 9125

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9126

9127 9128 9129 9130 9131 9132 9133
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9134 9135 9136 9137 9138
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9139 9140
}

9141
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9153
	if (IS_GM45(dev_priv))
9154 9155
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9156 9157 9158 9159

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9160

9161 9162 9163
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9164
	g4x_disable_trickle_feed(dev_priv);
9165 9166
}

9167
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9168 9169 9170 9171 9172 9173
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
9174 9175
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9176 9177 9178

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9179 9180
}

9181
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9182 9183 9184 9185 9186 9187 9188
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9189 9190
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9191 9192 9193

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9194 9195
}

9196
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9197 9198 9199 9200 9201 9202
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9203

9204
	if (IS_PINEVIEW(dev_priv))
9205
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9206 9207 9208

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9209 9210

	/* interrupts should cause a wake up from C3 */
9211
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9212 9213 9214

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9215 9216 9217

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9218 9219
}

9220
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9221 9222
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9223 9224 9225 9226

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9227 9228 9229

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9230 9231
}

9232
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9233
{
9234 9235 9236
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9237 9238
}

9239
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9240
{
9241
	dev_priv->display.init_clock_gating(dev_priv);
9242 9243
}

9244
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9245
{
9246 9247
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9248 9249
}

9250
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9266
	if (IS_ICELAKE(dev_priv))
O
Oscar Mateo 已提交
9267
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9268
	else if (IS_CANNONLAKE(dev_priv))
9269
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9270 9271
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9272
	else if (IS_SKYLAKE(dev_priv))
9273
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9274
	else if (IS_KABYLAKE(dev_priv))
9275
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9276
	else if (IS_BROXTON(dev_priv))
9277
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9278 9279
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9280
	else if (IS_BROADWELL(dev_priv))
9281
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9282
	else if (IS_CHERRYVIEW(dev_priv))
9283
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9284
	else if (IS_HASWELL(dev_priv))
9285
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9286
	else if (IS_IVYBRIDGE(dev_priv))
9287
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9288
	else if (IS_VALLEYVIEW(dev_priv))
9289
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9290 9291 9292
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
9293
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9294 9295
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9296
	else if (IS_I965GM(dev_priv))
9297
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9298
	else if (IS_I965G(dev_priv))
9299
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9312
/* Set up chip specific power management-related functions */
9313
void intel_init_pm(struct drm_i915_private *dev_priv)
9314
{
9315
	intel_fbc_init(dev_priv);
9316

9317
	/* For cxsr */
9318
	if (IS_PINEVIEW(dev_priv))
9319
		i915_pineview_get_mem_freq(dev_priv);
9320
	else if (IS_GEN5(dev_priv))
9321
		i915_ironlake_get_mem_freq(dev_priv);
9322

9323
	/* For FIFO watermark updates */
9324
	if (INTEL_GEN(dev_priv) >= 9) {
9325
		skl_setup_wm_latency(dev_priv);
9326
		dev_priv->display.initial_watermarks = skl_initial_wm;
9327
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9328
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9329
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9330
		ilk_setup_wm_latency(dev_priv);
9331

9332
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9333
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9334
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9335
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9336
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9337 9338 9339 9340 9341 9342
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9343 9344 9345 9346
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9347
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9348
		vlv_setup_wm_latency(dev_priv);
9349
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9350
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9351
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9352
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9353
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9354 9355 9356 9357 9358 9359
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9360
	} else if (IS_PINEVIEW(dev_priv)) {
9361
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9362 9363 9364 9365 9366 9367 9368 9369 9370
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9371
			intel_set_memory_cxsr(dev_priv, false);
9372 9373 9374
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9375
	} else if (IS_GEN4(dev_priv)) {
9376
		dev_priv->display.update_wm = i965_update_wm;
9377
	} else if (IS_GEN3(dev_priv)) {
9378 9379
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9380
	} else if (IS_GEN2(dev_priv)) {
9381
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9382
			dev_priv->display.update_wm = i845_update_wm;
9383
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9384 9385
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9386
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9387 9388 9389
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9390 9391 9392
	}
}

9393 9394 9395 9396 9397 9398 9399 9400 9401
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9402
		return -ENODEV;
9403 9404 9405
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9406
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9407 9408 9409 9410
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9411
		MISSING_CASE(flags);
9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9438
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9439
{
9440 9441
	int status;

9442
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9443

9444 9445 9446 9447 9448 9449
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9450 9451
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9452 9453 9454
		return -EAGAIN;
	}

9455 9456 9457
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9458

9459 9460 9461
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9462 9463
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9464 9465 9466
		return -ETIMEDOUT;
	}

9467 9468
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9469

9470 9471 9472 9473 9474 9475
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9476 9477
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9478 9479 9480
		return status;
	}

B
Ben Widawsky 已提交
9481 9482 9483
	return 0;
}

9484
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9485 9486
				    u32 mbox, u32 val,
				    int fast_timeout_us, int slow_timeout_ms)
B
Ben Widawsky 已提交
9487
{
9488 9489
	int status;

9490
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9491

9492 9493 9494 9495 9496 9497
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9498 9499
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9500 9501 9502
		return -EAGAIN;
	}

9503
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9504
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9505
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9506

9507 9508
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9509 9510
					 fast_timeout_us, slow_timeout_ms,
					 NULL)) {
9511 9512
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9513 9514 9515
		return -ETIMEDOUT;
	}

9516
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9517

9518 9519 9520 9521 9522 9523
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9524 9525
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9526 9527 9528
		return status;
	}

B
Ben Widawsky 已提交
9529 9530
	return 0;
}
9531

9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9553
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9554 9555
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9556
 * for @timeout_base_ms and if this times out for another 50 ms with
9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9568
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9583
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9584 9585 9586 9587 9588 9589 9590 9591
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9592
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9593
	 * account for interrupts that could reduce the number of these
9594 9595
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9596 9597 9598 9599
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9600
	ret = wait_for_atomic(COND, 50);
9601 9602 9603 9604 9605 9606 9607
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9608 9609
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9610 9611
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9612 9613 9614 9615
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9616
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9617 9618
}

9619
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9620
{
9621 9622 9623
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9624 9625
}

9626
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9627
{
9628 9629
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9630 9631 9632 9633
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9634
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9635 9636
}

9637
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9638
{
9639 9640
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9641
	/* CHV needs even values */
9642
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9643 9644
}

9645
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9646
{
9647
	if (INTEL_GEN(dev_priv) >= 9)
9648 9649
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9650
	else if (IS_CHERRYVIEW(dev_priv))
9651
		return chv_gpu_freq(dev_priv, val);
9652
	else if (IS_VALLEYVIEW(dev_priv))
9653 9654 9655
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9656 9657
}

9658 9659
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9660
	if (INTEL_GEN(dev_priv) >= 9)
9661 9662
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9663
	else if (IS_CHERRYVIEW(dev_priv))
9664
		return chv_freq_opcode(dev_priv, val);
9665
	else if (IS_VALLEYVIEW(dev_priv))
9666 9667
		return byt_freq_opcode(dev_priv, val);
	else
9668
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9669
}
9670

9671
void intel_pm_setup(struct drm_i915_private *dev_priv)
9672
{
9673
	mutex_init(&dev_priv->pcu_lock);
C
Chris Wilson 已提交
9674
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9675

9676
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9677

9678 9679
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9680
}
9681

9682 9683 9684
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9685
	u32 lower, upper, tmp;
9686
	int loop = 2;
9687

9688 9689
	/*
	 * The register accessed do not need forcewake. We borrow
9690 9691
	 * uncore lock to prevent concurrent access to range reg.
	 */
9692
	lockdep_assert_held(&dev_priv->uncore.lock);
9693

9694 9695
	/*
	 * vlv and chv residency counters are 40 bits in width.
9696 9697
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9698 9699 9700 9701 9702
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9703
	 */
9704 9705
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9717
	} while (upper != tmp && --loop);
9718

9719 9720
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9721 9722 9723 9724
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9725 9726 9727
	return lower | (u64)upper << 8;
}

9728
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9729
			   const i915_reg_t reg)
9730
{
9731 9732 9733 9734
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9735
	u32 mul, div;
9736

9737
	if (!HAS_RC6(dev_priv))
9738 9739
		return 0;

9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);

	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

9757 9758
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9759
		mul = 1000000;
9760
		div = dev_priv->czclk_freq;
9761
		overflow_hw = BIT_ULL(40);
9762 9763
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9764 9765 9766 9767 9768 9769 9770 9771
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9772

9773 9774
		overflow_hw = BIT_ULL(32);
		time_hw = I915_READ_FW(reg);
9775
	}
9776

9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);

	return mul_u64_u32_div(time_hw, mul, div);
9800
}
T
Tvrtko Ursulin 已提交
9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}