Kconfig 47.0 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
51 52
	select CRYPTO_NULL2
	select CRYPTO_RNG2
53

54 55
config CRYPTO_BLKCIPHER
	tristate
56
	select CRYPTO_BLKCIPHER2
57
	select CRYPTO_ALGAPI
58 59 60 61 62

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
63
	select CRYPTO_WORKQUEUE
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97 98 99 100 101 102 103 104
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

105 106
config CRYPTO_RSA
	tristate "RSA algorithm"
107
	select CRYPTO_AKCIPHER
108
	select CRYPTO_MANAGER
109 110 111 112 113
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

H
Herbert Xu 已提交
114 115
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
116
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
117 118 119 120
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

121 122 123 124 125
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
126
	select CRYPTO_AKCIPHER2
127
	select CRYPTO_KPP2
128

129 130
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
131
	depends on NET
132 133
	select CRYPTO_MANAGER
	help
134
	  Userspace configuration for cryptographic instantiations such as
135 136
	  cbc(aes).

137 138
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
139 140
	default y
	depends on CRYPTO_MANAGER2
141
	help
142 143
	  Disable run-time self tests that normally take place at
	  algorithm registration.
144

145
config CRYPTO_GF128MUL
146
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
147
	help
148 149 150 151 152
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
153

L
Linus Torvalds 已提交
154 155
config CRYPTO_NULL
	tristate "Null algorithms"
156
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
157 158 159
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

160
config CRYPTO_NULL2
161
	tristate
162 163 164 165
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

166
config CRYPTO_PCRYPT
167 168
	tristate "Parallel crypto engine"
	depends on SMP
169 170 171 172 173 174 175
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

176 177 178
config CRYPTO_WORKQUEUE
       tristate

179 180 181
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
182
	select CRYPTO_HASH
183
	select CRYPTO_MANAGER
184
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
185
	help
186 187 188
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
189

190 191 192 193 194 195 196 197 198 199 200 201
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
202
	  their crypto request asynchronously to be processed by this daemon.
203

204 205 206 207 208 209
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
210
	select CRYPTO_NULL
L
Linus Torvalds 已提交
211
	help
212 213
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
214

215 216 217
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
218
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
219
	help
220
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
221

222
config CRYPTO_ABLK_HELPER
223 224 225
	tristate
	select CRYPTO_CRYPTD

226 227 228 229 230
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

231 232 233
config CRYPTO_ENGINE
	tristate

234
comment "Authenticated Encryption with Associated Data"
235

236 237 238 239
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
240
	help
241
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
242

243 244 245 246
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
247
	select CRYPTO_GHASH
248
	select CRYPTO_NULL
L
Linus Torvalds 已提交
249
	help
250 251
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

265 266 267 268
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
269
	select CRYPTO_NULL
270
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
271
	help
272 273
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
274

275 276 277 278
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
279
	select CRYPTO_RNG_DEFAULT
280
	default m
281 282 283 284 285
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

286
comment "Block modes"
287

288 289
config CRYPTO_CBC
	tristate "CBC support"
290
	select CRYPTO_BLKCIPHER
291
	select CRYPTO_MANAGER
292
	help
293 294
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
295

296 297
config CRYPTO_CTR
	tristate "CTR support"
298
	select CRYPTO_BLKCIPHER
299
	select CRYPTO_SEQIV
300
	select CRYPTO_MANAGER
301
	help
302
	  CTR: Counter mode
303 304
	  This block cipher algorithm is required for IPSec.

305 306 307 308 309 310 311 312 313 314 315 316 317
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
318 319 320
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
321 322 323
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
324

325
config CRYPTO_LRW
326
	tristate "LRW support"
327 328 329 330 331 332 333 334 335 336
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

337 338 339 340 341 342 343 344
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

345
config CRYPTO_XTS
346
	tristate "XTS support"
347 348 349 350 351 352 353 354
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

355 356 357 358 359 360 361
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

362 363
comment "Hash modes"

364 365 366 367 368 369 370 371 372 373 374
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

375 376 377
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
378 379
	select CRYPTO_MANAGER
	help
380 381
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
382

383 384 385 386
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
387
	help
388 389 390 391
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
392

393 394 395 396 397 398 399 400 401 402 403
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

404
comment "Digest"
M
Mikko Herranen 已提交
405

406 407
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
408
	select CRYPTO_HASH
409
	select CRC32
J
Joy Latten 已提交
410
	help
411 412
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
413
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
414

415 416 417 418 419 420 421 422 423 424 425 426
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

427 428 429 430 431 432 433 434 435
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

476 477 478
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
479
	select CRYPTO_HASH
480 481 482
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

483 484
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
485
	select CRYPTO_HASH
486 487 488 489 490 491 492
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

493
config CRYPTO_POLY1305_X86_64
494
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
495 496 497 498 499 500 501 502 503 504
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

505 506
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
507
	select CRYPTO_HASH
508
	help
509
	  MD4 message digest algorithm (RFC1320).
510

511 512
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
513
	select CRYPTO_HASH
L
Linus Torvalds 已提交
514
	help
515
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
516

517 518 519 520 521 522 523 524 525
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

526 527 528 529 530 531 532 533
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

534 535 536 537 538 539 540 541 542
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

543 544
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
545
	select CRYPTO_HASH
546
	help
547 548 549 550
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
551

552
config CRYPTO_RMD128
553
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
554
	select CRYPTO_HASH
555 556
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
557

558
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
559
	  be used as a secure replacement for RIPEMD. For other use cases,
560
	  RIPEMD-160 should be used.
561

562
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
563
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
564 565

config CRYPTO_RMD160
566
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
567
	select CRYPTO_HASH
568 569
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
570

571 572 573 574
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
575

576 577
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
578

579
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
580
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
581 582

config CRYPTO_RMD256
583
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
584
	select CRYPTO_HASH
585 586 587 588 589
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
590

591
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
592
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
593 594

config CRYPTO_RMD320
595
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
596
	select CRYPTO_HASH
597 598 599 600 601
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
602

603
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
604
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
605

606 607
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
608
	select CRYPTO_HASH
L
Linus Torvalds 已提交
609
	help
610
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
611

612
config CRYPTO_SHA1_SSSE3
613
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
614 615 616 617 618 619
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
620 621
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
622

623
config CRYPTO_SHA256_SSSE3
624
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
625 626 627 628 629 630 631
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
632 633
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
634 635 636 637 638 639 640 641 642 643

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
644 645
	  version 2 (AVX2) instructions, when available.

646 647 648 649 650 651 652 653 654
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

655 656 657 658 659 660 661 662 663
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

664 665 666 667 668 669 670
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

671 672 673 674 675 676 677
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

694 695
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
696
	select CRYPTO_HASH
L
Linus Torvalds 已提交
697
	help
698
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
699

700 701
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
702

703 704
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
705

706 707 708 709 710 711 712 713 714
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

715 716 717 718 719 720 721 722 723
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

724 725 726 727 728 729 730 731 732
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

733 734
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
735
	select CRYPTO_HASH
736
	help
737
	  SHA512 secure hash standard (DFIPS 180-2).
738

739 740
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
741

742 743
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
744

745 746 747 748 749 750 751 752 753
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

754 755 756 757 758 759 760 761 762
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

763 764 765 766 767 768 769 770 771 772
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

773 774
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
775
	select CRYPTO_HASH
776
	help
777
	  Tiger hash algorithm 192, 160 and 128-bit hashes
778

779 780 781
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
782 783

	  See also:
784
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
785

786 787
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
788
	select CRYPTO_HASH
L
Linus Torvalds 已提交
789
	help
790
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
791

792 793
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
794 795

	  See also:
796
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
797

798 799
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
800
	depends on X86 && 64BIT
801 802 803 804 805
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

806
comment "Ciphers"
L
Linus Torvalds 已提交
807 808 809

config CRYPTO_AES
	tristate "AES cipher algorithms"
810
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
811
	help
812
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
813 814 815
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
816 817 818 819 820 821 822
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
823

824
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
825 826 827 828 829

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
830 831
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
832
	select CRYPTO_AES
L
Linus Torvalds 已提交
833
	help
834
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
835 836 837
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
838 839 840 841 842 843 844
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
845

846
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
847 848 849 850 851

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
852 853
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
854
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
855
	help
856
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
857 858 859
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
860 861 862
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
863 864 865 866 867 868 869 870 871 872 873
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
874
	depends on X86
875 876
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
877
	select CRYPTO_CRYPTD
878
	select CRYPTO_ABLK_HELPER
879
	select CRYPTO_ALGAPI
880
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
881 882
	select CRYPTO_LRW
	select CRYPTO_XTS
883 884 885 886 887 888 889 890 891 892
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
893 894 895 896
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
897

898
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
899 900 901

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

902 903 904 905
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
906

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

935 936 937 938 939 940 941 942 943 944 945 946 947
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

948 949 950 951 952 953 954 955 956 957 958
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
959 960
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
961 962 963

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
964
	select CRYPTO_BLKCIPHER
965 966 967 968 969 970 971 972 973 974 975
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
976
	select CRYPTO_BLOWFISH_COMMON
977 978 979 980 981 982 983 984 985 986
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

987 988 989 990 991 992 993 994 995
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

996 997
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
998
	depends on X86 && 64BIT
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1026 1027
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1028
	depends on X86 && 64BIT
1029 1030
	depends on CRYPTO
	select CRYPTO_ALGAPI
1031
	select CRYPTO_GLUE_HELPER_X86
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1043 1044 1045 1046 1047 1048 1049 1050
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1051
	select CRYPTO_ABLK_HELPER
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1065 1066
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1067 1068 1069 1070 1071 1072
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1073
	select CRYPTO_ABLK_HELPER
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1106 1107 1108 1109 1110 1111
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1112 1113
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1114
	select CRYPTO_ALGAPI
1115
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1116 1117 1118 1119
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1120 1121 1122 1123 1124
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1125
	select CRYPTO_ABLK_HELPER
1126
	select CRYPTO_CAST_COMMON
1127 1128 1129 1130 1131 1132 1133 1134
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1135 1136
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1137
	select CRYPTO_ALGAPI
1138
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1139 1140 1141 1142
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1143 1144 1145 1146 1147
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1148
	select CRYPTO_ABLK_HELPER
1149
	select CRYPTO_GLUE_HELPER_X86
1150
	select CRYPTO_CAST_COMMON
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1161 1162
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1163
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1164
	help
1165
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1166

1167 1168
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1169
	depends on SPARC64
1170 1171 1172 1173 1174 1175
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1189 1190
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1191
	select CRYPTO_ALGAPI
1192
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1193
	help
1194
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1195 1196 1197

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1198
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1199 1200 1201 1202 1203 1204 1205 1206
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1207
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1208

1209
config CRYPTO_SALSA20
1210
	tristate "Salsa20 stream cipher algorithm"
1211 1212 1213 1214 1215 1216
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1217 1218 1219 1220 1221

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1222
	tristate "Salsa20 stream cipher algorithm (i586)"
1223 1224 1225 1226 1227 1228 1229
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1230 1231 1232 1233 1234

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1235
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1236 1237 1238 1239 1240 1241 1242
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1243 1244 1245

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1260
config CRYPTO_CHACHA20_X86_64
1261
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1275 1276
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1277
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1278
	help
1279
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1291
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1292
	help
1293
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1294

1295 1296 1297 1298 1299 1300 1301
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1302 1303 1304 1305
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1306
	select CRYPTO_CRYPTD
1307
	select CRYPTO_ABLK_HELPER
1308
	select CRYPTO_GLUE_HELPER_X86
1309
	select CRYPTO_SERPENT
1310 1311
	select CRYPTO_LRW
	select CRYPTO_XTS
1312 1313 1314 1315 1316 1317
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1318
	  This module provides Serpent cipher algorithm that processes eight
1319 1320 1321 1322 1323
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1324 1325 1326 1327
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1328
	select CRYPTO_CRYPTD
1329
	select CRYPTO_ABLK_HELPER
1330
	select CRYPTO_GLUE_HELPER_X86
1331
	select CRYPTO_SERPENT
1332 1333
	select CRYPTO_LRW
	select CRYPTO_XTS
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1345 1346 1347 1348 1349 1350

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1351
	select CRYPTO_ABLK_HELPER
1352
	select CRYPTO_GLUE_HELPER_X86
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1367

1368 1369 1370 1371 1372
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1373
	select CRYPTO_ABLK_HELPER
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1391 1392
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1393
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1394
	help
1395
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1410
	select CRYPTO_ALGAPI
1411
	select CRYPTO_TWOFISH_COMMON
1412
	help
1413
	  Twofish cipher algorithm.
1414

1415 1416 1417 1418
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1441 1442

	  See also:
1443
	  <http://www.schneier.com/twofish.html>
1444

1445 1446 1447
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1448
	select CRYPTO_ALGAPI
1449
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1450
	help
1451
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1452

1453 1454 1455 1456 1457 1458 1459 1460
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1461 1462
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1463
	depends on X86 && 64BIT
1464 1465 1466
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1467
	select CRYPTO_GLUE_HELPER_X86
1468 1469
	select CRYPTO_LRW
	select CRYPTO_XTS
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1484 1485 1486 1487 1488
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1489
	select CRYPTO_ABLK_HELPER
1490
	select CRYPTO_GLUE_HELPER_X86
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1510 1511 1512 1513 1514 1515 1516
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1517
	help
1518 1519 1520 1521
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1522

1523 1524 1525 1526 1527 1528 1529 1530
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1531 1532
config CRYPTO_842
	tristate "842 compression algorithm"
1533 1534 1535
	select CRYPTO_ALGAPI
	select 842_COMPRESS
	select 842_DECOMPRESS
1536 1537
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1564 1565
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1566

1567
menuconfig CRYPTO_DRBG_MENU
1568 1569 1570 1571 1572
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1573
if CRYPTO_DRBG_MENU
1574 1575

config CRYPTO_DRBG_HMAC
1576
	bool
1577 1578
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1579
	select CRYPTO_SHA256
1580 1581 1582

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1583
	select CRYPTO_SHA256
1584 1585 1586 1587 1588 1589
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1590
	depends on CRYPTO_CTR
1591 1592 1593
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1594 1595
config CRYPTO_DRBG
	tristate
1596
	default CRYPTO_DRBG_MENU
1597
	select CRYPTO_RNG
1598
	select CRYPTO_JITTERENTROPY
1599 1600

endif	# if CRYPTO_DRBG_MENU
1601

1602 1603
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1604
	select CRYPTO_RNG
1605 1606 1607 1608 1609 1610 1611
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1612 1613 1614
config CRYPTO_USER_API
	tristate

1615 1616
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1617
	depends on NET
1618 1619 1620 1621 1622 1623
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1624 1625
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1626
	depends on NET
1627 1628 1629 1630 1631 1632
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1633 1634 1635 1636 1637 1638 1639 1640 1641
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1642 1643 1644 1645 1646 1647 1648 1649 1650
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1651 1652 1653
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1654
source "drivers/crypto/Kconfig"
1655
source crypto/asymmetric_keys/Kconfig
1656
source certs/Kconfig
L
Linus Torvalds 已提交
1657

1658
endif	# if CRYPTO