Kconfig 53.6 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29 30 31 32
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64
	select CRYPTO_WORKQUEUE
65

66 67
config CRYPTO_HASH
	tristate
68
	select CRYPTO_HASH2
69 70
	select CRYPTO_ALGAPI

71 72 73 74
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

75 76
config CRYPTO_RNG
	tristate
77
	select CRYPTO_RNG2
78 79
	select CRYPTO_ALGAPI

80 81 82 83
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

84 85 86 87
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
88 89 90 91 92 93 94 95 96
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

97 98 99 100 101 102 103 104 105
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

106 107 108
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
109
	select SGL_ALLOC
110 111 112 113 114 115

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

116 117
config CRYPTO_RSA
	tristate "RSA algorithm"
118
	select CRYPTO_AKCIPHER
119
	select CRYPTO_MANAGER
120 121 122 123 124
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

125 126 127 128 129 130 131
config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

132 133
config CRYPTO_ECDH
	tristate "ECDH algorithm"
134
	select CRYPTO_KPP
135
	select CRYPTO_RNG_DEFAULT
136 137
	help
	  Generic implementation of the ECDH algorithm
138

H
Herbert Xu 已提交
139 140
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
141
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
142 143 144 145
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

146 147 148 149 150
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
151
	select CRYPTO_AKCIPHER2
152
	select CRYPTO_KPP2
153
	select CRYPTO_ACOMP2
154

155 156
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
157
	depends on NET
158 159
	select CRYPTO_MANAGER
	help
160
	  Userspace configuration for cryptographic instantiations such as
161 162
	  cbc(aes).

163 164
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
165 166
	default y
	depends on CRYPTO_MANAGER2
167
	help
168 169
	  Disable run-time self tests that normally take place at
	  algorithm registration.
170

171
config CRYPTO_GF128MUL
172
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
173
	help
174 175 176 177 178
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
179

L
Linus Torvalds 已提交
180 181
config CRYPTO_NULL
	tristate "Null algorithms"
182
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
183 184 185
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

186
config CRYPTO_NULL2
187
	tristate
188 189 190 191
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

192
config CRYPTO_PCRYPT
193 194
	tristate "Parallel crypto engine"
	depends on SMP
195 196 197 198 199 200 201
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

202 203 204
config CRYPTO_WORKQUEUE
       tristate

205 206 207
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
208
	select CRYPTO_HASH
209
	select CRYPTO_MANAGER
210
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
211
	help
212 213 214
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
215

216 217 218 219 220 221 222 223 224 225 226 227
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
228
	  their crypto request asynchronously to be processed by this daemon.
229

230 231 232 233 234 235
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
236
	select CRYPTO_NULL
L
Linus Torvalds 已提交
237
	help
238 239
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
240

241 242 243
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
244
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
245
	help
246
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
247

248 249
config CRYPTO_SIMD
	tristate
250 251
	select CRYPTO_CRYPTD

252 253 254
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
255
	select CRYPTO_BLKCIPHER
256

257 258 259
config CRYPTO_ENGINE
	tristate

260
comment "Authenticated Encryption with Associated Data"
261

262 263 264
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
265
	select CRYPTO_HASH
266
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
267
	help
268
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
269

270 271 272 273
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
274
	select CRYPTO_GHASH
275
	select CRYPTO_NULL
L
Linus Torvalds 已提交
276
	help
277 278
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
279

280 281 282 283 284 285 286 287 288 289 290 291
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L
	tristate "AEGIS-128L AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256
	tristate "AEGIS-256 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-256 dedicated AEAD algorithm.

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L_AESNI_SSE2
	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256_AESNI_SSE2
	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.

337 338 339 340
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
341
	select CRYPTO_NULL
342
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
343
	help
344 345
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
346

347 348 349 350
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
351
	select CRYPTO_RNG_DEFAULT
352
	default m
353 354 355 356 357
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

358
comment "Block modes"
359

360 361
config CRYPTO_CBC
	tristate "CBC support"
362
	select CRYPTO_BLKCIPHER
363
	select CRYPTO_MANAGER
364
	help
365 366
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
367

368 369 370 371 372 373 374 375
config CRYPTO_CFB
	tristate "CFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

376 377
config CRYPTO_CTR
	tristate "CTR support"
378
	select CRYPTO_BLKCIPHER
379
	select CRYPTO_SEQIV
380
	select CRYPTO_MANAGER
381
	help
382
	  CTR: Counter mode
383 384
	  This block cipher algorithm is required for IPSec.

385 386 387 388 389 390 391 392 393 394 395 396 397
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
398 399 400
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
401 402 403
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
404

405
config CRYPTO_LRW
406
	tristate "LRW support"
407 408 409 410 411 412 413 414 415 416
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

417 418 419 420 421 422 423 424
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

425
config CRYPTO_XTS
426
	tristate "XTS support"
427 428
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
429
	select CRYPTO_ECB
430 431 432 433 434
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

435 436 437 438 439 440 441
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

442 443
comment "Hash modes"

444 445 446 447 448 449 450 451 452 453 454
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

455 456 457
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
458 459
	select CRYPTO_MANAGER
	help
460 461
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
462

463 464 465 466
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
467
	help
468 469 470 471
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
472

473 474 475 476 477 478 479 480 481 482 483
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

484
comment "Digest"
M
Mikko Herranen 已提交
485

486 487
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
488
	select CRYPTO_HASH
489
	select CRC32
J
Joy Latten 已提交
490
	help
491 492
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
493
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
494

495 496 497 498 499 500 501 502 503 504 505 506
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

507
config CRYPTO_CRC32C_VPMSUM
508
	tristate "CRC32c CRC algorithm (powerpc64)"
509
	depends on PPC64 && ALTIVEC
510 511 512 513 514 515 516 517
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


518 519 520 521 522 523 524 525 526
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

548 549 550 551 552 553 554 555 556
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

576 577 578 579 580 581 582 583 584
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

585 586 587 588 589 590 591 592
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

593 594 595
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
596
	select CRYPTO_HASH
597 598 599
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

600 601
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
602
	select CRYPTO_HASH
603 604 605 606 607 608 609
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

610
config CRYPTO_POLY1305_X86_64
611
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
612 613 614 615 616 617 618 619 620 621
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

622 623
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
624
	select CRYPTO_HASH
625
	help
626
	  MD4 message digest algorithm (RFC1320).
627

628 629
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
630
	select CRYPTO_HASH
L
Linus Torvalds 已提交
631
	help
632
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
633

634 635 636 637 638 639 640 641 642
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

643 644 645 646 647 648 649 650
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

651 652 653 654 655 656 657 658 659
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

660 661
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
662
	select CRYPTO_HASH
663
	help
664 665 666 667
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
668

669
config CRYPTO_RMD128
670
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
671
	select CRYPTO_HASH
672 673
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
674

675
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
676
	  be used as a secure replacement for RIPEMD. For other use cases,
677
	  RIPEMD-160 should be used.
678

679
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
680
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
681 682

config CRYPTO_RMD160
683
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
684
	select CRYPTO_HASH
685 686
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
687

688 689 690 691
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
692

693 694
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
695

696
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
697
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
698 699

config CRYPTO_RMD256
700
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
701
	select CRYPTO_HASH
702 703 704 705 706
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
707

708
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
709
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
710 711

config CRYPTO_RMD320
712
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
713
	select CRYPTO_HASH
714 715 716 717 718
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
719

720
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
721
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
722

723 724
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
725
	select CRYPTO_HASH
L
Linus Torvalds 已提交
726
	help
727
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
728

729
config CRYPTO_SHA1_SSSE3
730
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
731 732 733 734 735 736
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
737 738
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
739

740
config CRYPTO_SHA256_SSSE3
741
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
742 743 744 745 746 747 748
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
749 750
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
751 752 753 754 755 756 757 758 759 760

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
761 762
	  version 2 (AVX2) instructions, when available.

763 764 765 766 767 768 769 770 771
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

772 773 774 775 776 777 778 779 780
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

781 782 783 784 785 786 787
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

788 789 790 791 792 793 794
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
config CRYPTO_SHA256_MB
	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
config CRYPTO_SHA512_MB
        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
        depends on X86 && 64BIT
        select CRYPTO_SHA512
        select CRYPTO_HASH
        select CRYPTO_MCRYPTD
        help
          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
          using multi-buffer technique.  This algorithm computes on
          multiple data lanes concurrently with SIMD instructions for
          better throughput.  It should not be enabled by default but
          used when there is significant amount of work to keep the keep
          the data lanes filled to get performance benefit.  If the data
          lanes remain unfilled, a flush operation will be initiated to
          process the crypto jobs, adding a slight latency.

843 844
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
845
	select CRYPTO_HASH
L
Linus Torvalds 已提交
846
	help
847
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
848

849 850
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
851

852 853
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
854

855 856 857 858 859 860 861 862 863
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

864 865 866 867 868 869 870 871 872
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

873 874 875 876 877 878 879 880 881
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

882 883
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
884
	select CRYPTO_HASH
885
	help
886
	  SHA512 secure hash standard (DFIPS 180-2).
887

888 889
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
890

891 892
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
893

894 895 896 897 898 899 900 901 902
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

903 904 905 906 907 908 909 910 911
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

912 913 914 915 916 917 918 919 920 921
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

922 923 924 925 926 927 928 929 930 931 932
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

933 934
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
935
	select CRYPTO_HASH
936
	help
937
	  Tiger hash algorithm 192, 160 and 128-bit hashes
938

939 940 941
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
942 943

	  See also:
944
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
945

946 947
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
948
	select CRYPTO_HASH
L
Linus Torvalds 已提交
949
	help
950
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
951

952 953
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
954 955

	  See also:
956
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
957

958 959
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
960
	depends on X86 && 64BIT
961 962 963 964 965
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

966
comment "Ciphers"
L
Linus Torvalds 已提交
967 968 969

config CRYPTO_AES
	tristate "AES cipher algorithms"
970
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
971
	help
972
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
973 974 975
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
976 977 978 979 980 981 982
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
983

984
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
985 986 987

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
	  block.

L
Linus Torvalds 已提交
1005 1006
config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
1007 1008
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
1009
	select CRYPTO_AES
L
Linus Torvalds 已提交
1010
	help
1011
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1012 1013 1014
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1015 1016 1017 1018 1019 1020 1021
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1022

1023
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
1024 1025 1026 1027 1028

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
1029 1030
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
1031
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
1032
	help
1033
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
1034 1035 1036
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1037 1038 1039
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1051
	depends on X86
H
Herbert Xu 已提交
1052
	select CRYPTO_AEAD
1053 1054
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
1055
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
1056
	select CRYPTO_BLKCIPHER
1057
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1058
	select CRYPTO_SIMD
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1069 1070 1071 1072
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1073

1074
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1075 1076 1077

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1078 1079 1080 1081
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1135 1136
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1137 1138 1139

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1140
	select CRYPTO_BLKCIPHER
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1152
	select CRYPTO_BLOWFISH_COMMON
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1163 1164 1165 1166 1167 1168 1169 1170 1171
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1172 1173
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1174
	depends on X86 && 64BIT
1175
	select CRYPTO_BLKCIPHER
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1202 1203
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1204
	depends on X86 && 64BIT
1205
	depends on CRYPTO
1206
	select CRYPTO_BLKCIPHER
1207
	select CRYPTO_GLUE_HELPER_X86
1208 1209 1210 1211 1212 1213 1214 1215 1216
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1217 1218 1219 1220 1221 1222
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1223
	select CRYPTO_BLKCIPHER
1224
	select CRYPTO_CAMELLIA_X86_64
1225 1226
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1237 1238
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1271 1272 1273 1274 1275 1276
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1277 1278
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1279
	select CRYPTO_ALGAPI
1280
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1281 1282 1283 1284
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1285 1286 1287
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1288
	select CRYPTO_BLKCIPHER
1289
	select CRYPTO_CAST5
1290 1291
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1292 1293 1294 1295 1296 1297 1298
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1299 1300
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1301
	select CRYPTO_ALGAPI
1302
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1303 1304 1305 1306
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1307 1308 1309
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1310
	select CRYPTO_BLKCIPHER
1311
	select CRYPTO_CAST6
1312 1313 1314
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1315 1316 1317 1318 1319 1320 1321 1322
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1323 1324
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1325
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1326
	help
1327
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1328

1329 1330
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1331
	depends on SPARC64
1332 1333 1334 1335 1336 1337
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1338 1339 1340
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1341
	select CRYPTO_BLKCIPHER
1342 1343 1344 1345 1346 1347 1348 1349 1350
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1351 1352
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1353
	select CRYPTO_ALGAPI
1354
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1355
	help
1356
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1357 1358 1359

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1360
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1361 1362 1363 1364 1365 1366 1367 1368
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1369
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1370

1371
config CRYPTO_SALSA20
1372
	tristate "Salsa20 stream cipher algorithm"
1373 1374 1375 1376 1377 1378
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1379 1380 1381 1382 1383

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1384
	tristate "Salsa20 stream cipher algorithm (i586)"
1385 1386
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
1387
	select CRYPTO_SALSA20
1388 1389 1390 1391 1392
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1393 1394 1395 1396 1397

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1398
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1399 1400
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
1401
	select CRYPTO_SALSA20
1402 1403 1404 1405 1406
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1407 1408 1409

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1424
config CRYPTO_CHACHA20_X86_64
1425
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1439 1440
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1441
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1442
	help
1443
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1455
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1456
	help
1457
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1458

1459 1460 1461 1462 1463 1464 1465
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1466 1467 1468
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1469
	select CRYPTO_BLKCIPHER
1470
	select CRYPTO_GLUE_HELPER_X86
1471
	select CRYPTO_SERPENT
1472
	select CRYPTO_SIMD
1473 1474 1475 1476 1477 1478
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1479
	  This module provides Serpent cipher algorithm that processes eight
1480 1481 1482 1483 1484
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1485 1486 1487
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1488
	select CRYPTO_BLKCIPHER
1489
	select CRYPTO_GLUE_HELPER_X86
1490
	select CRYPTO_SERPENT
1491
	select CRYPTO_SIMD
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1503 1504 1505 1506

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1507
	select CRYPTO_BLKCIPHER
1508
	select CRYPTO_GLUE_HELPER_X86
1509
	select CRYPTO_SERPENT
1510
	select CRYPTO_SIMD
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
config CRYPTO_SPECK
	tristate "Speck cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Speck is a lightweight block cipher that is tuned for optimal
	  performance in software (rather than hardware).

	  Speck may not be as secure as AES, and should only be used on systems
	  where AES is not fast enough.

	  See also: <https://eprint.iacr.org/2013/404.pdf>

	  If unsure, say N.

1579 1580
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1581
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1582
	help
1583
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1598
	select CRYPTO_ALGAPI
1599
	select CRYPTO_TWOFISH_COMMON
1600
	help
1601
	  Twofish cipher algorithm.
1602

1603 1604 1605 1606
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1607

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1629 1630

	  See also:
1631
	  <http://www.schneier.com/twofish.html>
1632

1633 1634 1635
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1636
	select CRYPTO_ALGAPI
1637
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1638
	help
1639
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1640

1641 1642 1643 1644 1645 1646 1647 1648
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1649 1650
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1651
	depends on X86 && 64BIT
1652
	select CRYPTO_BLKCIPHER
1653 1654
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1655
	select CRYPTO_GLUE_HELPER_X86
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1670 1671 1672
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1673
	select CRYPTO_BLKCIPHER
1674
	select CRYPTO_GLUE_HELPER_X86
1675
	select CRYPTO_SIMD
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1693 1694 1695 1696 1697
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1698
	select CRYPTO_ACOMP2
1699 1700
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1701
	help
1702 1703 1704 1705
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1706

1707 1708 1709
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1710
	select CRYPTO_ACOMP2
1711 1712 1713 1714 1715
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1716 1717
config CRYPTO_842
	tristate "842 compression algorithm"
1718
	select CRYPTO_ALGAPI
1719
	select CRYPTO_ACOMP2
1720 1721
	select 842_COMPRESS
	select 842_DECOMPRESS
1722 1723
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1724 1725 1726 1727

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1728
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1729 1730 1731 1732 1733 1734 1735 1736
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1737
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1738 1739 1740 1741
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1742

N
Nick Terrell 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1752 1753 1754 1755 1756 1757 1758 1759 1760
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1761 1762
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1763

1764
menuconfig CRYPTO_DRBG_MENU
1765 1766 1767 1768 1769
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1770
if CRYPTO_DRBG_MENU
1771 1772

config CRYPTO_DRBG_HMAC
1773
	bool
1774 1775
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1776
	select CRYPTO_SHA256
1777 1778 1779

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1780
	select CRYPTO_SHA256
1781 1782 1783 1784 1785 1786
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1787
	depends on CRYPTO_CTR
1788 1789 1790
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1791 1792
config CRYPTO_DRBG
	tristate
1793
	default CRYPTO_DRBG_MENU
1794
	select CRYPTO_RNG
1795
	select CRYPTO_JITTERENTROPY
1796 1797

endif	# if CRYPTO_DRBG_MENU
1798

1799 1800
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1801
	select CRYPTO_RNG
1802 1803 1804 1805 1806 1807 1808
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1809 1810 1811
config CRYPTO_USER_API
	tristate

1812 1813
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1814
	depends on NET
1815 1816 1817 1818 1819 1820
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1821 1822
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1823
	depends on NET
1824 1825 1826 1827 1828 1829
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1830 1831 1832 1833 1834 1835 1836 1837 1838
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1839 1840 1841 1842
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1843 1844
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1845 1846 1847 1848 1849
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1850 1851 1852
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1853
source "drivers/crypto/Kconfig"
1854
source crypto/asymmetric_keys/Kconfig
1855
source certs/Kconfig
L
Linus Torvalds 已提交
1856

1857
endif	# if CRYPTO