Kconfig 46.0 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2

52 53
config CRYPTO_BLKCIPHER
	tristate
54
	select CRYPTO_BLKCIPHER2
55
	select CRYPTO_ALGAPI
56 57 58 59 60

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
61
	select CRYPTO_WORKQUEUE
62

63 64
config CRYPTO_HASH
	tristate
65
	select CRYPTO_HASH2
66 67
	select CRYPTO_ALGAPI

68 69 70 71
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

72 73
config CRYPTO_RNG
	tristate
74
	select CRYPTO_RNG2
75 76
	select CRYPTO_ALGAPI

77 78 79 80
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

81 82 83 84
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

85
config CRYPTO_PCOMP
86 87 88 89 90
	tristate
	select CRYPTO_PCOMP2
	select CRYPTO_ALGAPI

config CRYPTO_PCOMP2
91 92 93
	tristate
	select CRYPTO_ALGAPI2

T
Tadeusz Struk 已提交
94 95 96 97 98 99 100 101 102
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

103 104
config CRYPTO_RSA
	tristate "RSA algorithm"
105
	select CRYPTO_AKCIPHER
106 107 108 109 110
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

H
Herbert Xu 已提交
111 112
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
113
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
114 115 116 117
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

118 119 120 121 122
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
123
	select CRYPTO_PCOMP2
124
	select CRYPTO_AKCIPHER2
125

126 127
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
128
	depends on NET
129 130
	select CRYPTO_MANAGER
	help
131
	  Userspace configuration for cryptographic instantiations such as
132 133
	  cbc(aes).

134 135
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
136 137
	default y
	depends on CRYPTO_MANAGER2
138
	help
139 140
	  Disable run-time self tests that normally take place at
	  algorithm registration.
141

142
config CRYPTO_GF128MUL
143
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
144
	help
145 146 147 148 149
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
150

L
Linus Torvalds 已提交
151 152
config CRYPTO_NULL
	tristate "Null algorithms"
153
	select CRYPTO_ALGAPI
154
	select CRYPTO_BLKCIPHER
H
Herbert Xu 已提交
155
	select CRYPTO_HASH
L
Linus Torvalds 已提交
156 157 158
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

159
config CRYPTO_PCRYPT
160 161
	tristate "Parallel crypto engine"
	depends on SMP
162 163 164 165 166 167 168
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

169 170 171
config CRYPTO_WORKQUEUE
       tristate

172 173 174
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
175
	select CRYPTO_HASH
176
	select CRYPTO_MANAGER
177
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
178
	help
179 180 181
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
182

183 184 185 186 187 188 189 190 191 192 193 194
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
195
	  their crypto request asynchronously to be processed by this daemon.
196

197 198 199 200 201 202
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
L
Linus Torvalds 已提交
203
	help
204 205
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
206

207 208 209
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
210
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
211
	help
212
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
213

214
config CRYPTO_ABLK_HELPER
215 216 217
	tristate
	select CRYPTO_CRYPTD

218 219 220 221 222
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

223
comment "Authenticated Encryption with Associated Data"
224

225 226 227 228
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
229
	help
230
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
231

232 233 234 235
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
236
	select CRYPTO_GHASH
237
	select CRYPTO_NULL
L
Linus Torvalds 已提交
238
	help
239 240
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
241

242 243 244 245 246 247 248 249 250 251 252 253
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

254 255 256 257
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
258
	select CRYPTO_NULL
259
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
260
	help
261 262
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
263

264 265 266 267
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
268
	select CRYPTO_RNG_DEFAULT
269
	default m
270 271 272 273 274
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

275
comment "Block modes"
276

277 278
config CRYPTO_CBC
	tristate "CBC support"
279
	select CRYPTO_BLKCIPHER
280
	select CRYPTO_MANAGER
281
	help
282 283
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
284

285 286
config CRYPTO_CTR
	tristate "CTR support"
287
	select CRYPTO_BLKCIPHER
288
	select CRYPTO_SEQIV
289
	select CRYPTO_MANAGER
290
	help
291
	  CTR: Counter mode
292 293
	  This block cipher algorithm is required for IPSec.

294 295 296 297 298 299 300 301 302 303 304 305 306
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
307 308 309
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
310 311 312
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
313

314
config CRYPTO_LRW
315
	tristate "LRW support"
316 317 318 319 320 321 322 323 324 325
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

326 327 328 329 330 331 332 333
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

334
config CRYPTO_XTS
335
	tristate "XTS support"
336 337 338 339 340 341 342 343
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

344 345
comment "Hash modes"

346 347 348 349 350 351 352 353 354 355 356
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

357 358 359
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
360 361
	select CRYPTO_MANAGER
	help
362 363
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
364

365 366 367 368
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
369
	help
370 371 372 373
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
374

375 376 377 378 379 380 381 382 383 384 385
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

386
comment "Digest"
M
Mikko Herranen 已提交
387

388 389
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
390
	select CRYPTO_HASH
391
	select CRC32
J
Joy Latten 已提交
392
	help
393 394
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
395
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
396

397 398 399 400 401 402 403 404 405 406 407 408
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

409 410 411 412 413 414 415 416 417
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

458 459 460 461 462 463
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

464 465 466 467 468 469 470 471 472
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

473 474
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
475
	select CRYPTO_HASH
476
	help
477
	  MD4 message digest algorithm (RFC1320).
478

479 480
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
481
	select CRYPTO_HASH
L
Linus Torvalds 已提交
482
	help
483
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
484

485 486 487 488 489 490 491 492 493
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

494 495 496 497 498 499 500 501
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

502 503 504 505 506 507 508 509 510
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

511 512
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
513
	select CRYPTO_HASH
514
	help
515 516 517 518
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
519

520
config CRYPTO_RMD128
521
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
522
	select CRYPTO_HASH
523 524
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
525

526
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
527
	  be used as a secure replacement for RIPEMD. For other use cases,
528
	  RIPEMD-160 should be used.
529

530
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
531
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
532 533

config CRYPTO_RMD160
534
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
535
	select CRYPTO_HASH
536 537
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
538

539 540 541 542
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
543

544 545
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
546

547
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
548
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
549 550

config CRYPTO_RMD256
551
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
552
	select CRYPTO_HASH
553 554 555 556 557
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
558

559
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
560
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
561 562

config CRYPTO_RMD320
563
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
564
	select CRYPTO_HASH
565 566 567 568 569
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
570

571
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
572
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
573

574 575
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
576
	select CRYPTO_HASH
L
Linus Torvalds 已提交
577
	help
578
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
579

580
config CRYPTO_SHA1_SSSE3
581
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
582 583 584 585 586 587
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
588
	  Extensions (AVX/AVX2), when available.
589

590 591 592 593 594 595 596 597 598
config CRYPTO_SHA256_SSSE3
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
599 600 601 602 603 604 605 606 607 608 609
	  version 2 (AVX2) instructions, when available.

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
610 611
	  version 2 (AVX2) instructions, when available.

612 613 614 615 616 617 618 619 620
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

621 622 623 624 625 626 627 628 629
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

630 631 632 633 634 635 636
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

637 638 639 640 641 642 643
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

660 661
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
662
	select CRYPTO_HASH
L
Linus Torvalds 已提交
663
	help
664
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
665

666 667
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
668

669 670
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
671

672 673 674 675 676 677 678 679 680
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

681 682 683 684 685 686 687 688 689
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

690 691 692 693 694 695 696 697 698
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

699 700
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
701
	select CRYPTO_HASH
702
	help
703
	  SHA512 secure hash standard (DFIPS 180-2).
704

705 706
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
707

708 709
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
710

711 712 713 714 715 716 717 718 719
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

720 721 722 723 724 725 726 727 728
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

729 730
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
731
	select CRYPTO_HASH
732
	help
733
	  Tiger hash algorithm 192, 160 and 128-bit hashes
734

735 736 737
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
738 739

	  See also:
740
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
741

742 743
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
744
	select CRYPTO_HASH
L
Linus Torvalds 已提交
745
	help
746
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
747

748 749
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
750 751

	  See also:
752
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
753

754 755
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
756
	depends on X86 && 64BIT
757 758 759 760 761
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

762
comment "Ciphers"
L
Linus Torvalds 已提交
763 764 765

config CRYPTO_AES
	tristate "AES cipher algorithms"
766
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
767
	help
768
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
769 770 771
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
772 773 774 775 776 777 778
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
779

780
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
781 782 783 784 785

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
786 787
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
788
	select CRYPTO_AES
L
Linus Torvalds 已提交
789
	help
790
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
791 792 793
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
794 795 796 797 798 799 800
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
801

802
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
803 804 805 806 807

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
808 809
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
810
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
811
	help
812
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
813 814 815
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
816 817 818
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
819 820 821 822 823 824 825 826 827 828 829
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
830
	depends on X86
831 832
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
833
	select CRYPTO_CRYPTD
834
	select CRYPTO_ABLK_HELPER
835
	select CRYPTO_ALGAPI
836
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
837 838
	select CRYPTO_LRW
	select CRYPTO_XTS
839 840 841 842 843 844 845 846 847 848
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
849 850 851 852
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
853

854
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
855 856 857

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

858 859 860 861
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
862

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

891 892 893 894 895 896 897 898 899 900 901 902 903
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

904 905 906 907 908 909 910 911 912 913 914
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
915 916
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
917 918 919

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
920
	select CRYPTO_BLKCIPHER
921 922 923 924 925 926 927 928 929 930 931
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
932
	select CRYPTO_BLOWFISH_COMMON
933 934 935 936 937 938 939 940 941 942
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

943 944 945 946 947 948 949 950 951
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

952 953
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
954
	depends on X86 && 64BIT
955 956 957 958 959 960 961 962 963 964 965 966
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

982 983
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
984
	depends on X86 && 64BIT
985 986
	depends on CRYPTO
	select CRYPTO_ALGAPI
987
	select CRYPTO_GLUE_HELPER_X86
988 989 990 991 992 993 994 995 996 997 998
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
999 1000 1001 1002 1003 1004 1005 1006
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1007
	select CRYPTO_ABLK_HELPER
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1021 1022
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1023 1024 1025 1026 1027 1028
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1029
	select CRYPTO_ABLK_HELPER
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1062 1063 1064 1065 1066 1067
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1068 1069
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1070
	select CRYPTO_ALGAPI
1071
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1072 1073 1074 1075
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1076 1077 1078 1079 1080
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1081
	select CRYPTO_ABLK_HELPER
1082
	select CRYPTO_CAST_COMMON
1083 1084 1085 1086 1087 1088 1089 1090
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1091 1092
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1093
	select CRYPTO_ALGAPI
1094
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1095 1096 1097 1098
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1099 1100 1101 1102 1103
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1104
	select CRYPTO_ABLK_HELPER
1105
	select CRYPTO_GLUE_HELPER_X86
1106
	select CRYPTO_CAST_COMMON
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1117 1118
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1119
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1120
	help
1121
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1122

1123 1124
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1125
	depends on SPARC64
1126 1127 1128 1129 1130 1131
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1145 1146
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1147
	select CRYPTO_ALGAPI
1148
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1149
	help
1150
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1151 1152 1153

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1154
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1155 1156 1157 1158 1159 1160 1161 1162
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1163
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1164

1165
config CRYPTO_SALSA20
1166
	tristate "Salsa20 stream cipher algorithm"
1167 1168 1169 1170 1171 1172
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1173 1174 1175 1176 1177

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1178
	tristate "Salsa20 stream cipher algorithm (i586)"
1179 1180 1181 1182 1183 1184 1185
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1186 1187 1188 1189 1190

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1191
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1192 1193 1194 1195 1196 1197 1198
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1199 1200 1201

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
config CRYPTO_CHACHA20_X86_64
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3)"
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1231 1232
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1233
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1234
	help
1235
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1247
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1248
	help
1249
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1250

1251 1252 1253 1254 1255 1256 1257
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1258 1259 1260 1261
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1262
	select CRYPTO_CRYPTD
1263
	select CRYPTO_ABLK_HELPER
1264
	select CRYPTO_GLUE_HELPER_X86
1265
	select CRYPTO_SERPENT
1266 1267
	select CRYPTO_LRW
	select CRYPTO_XTS
1268 1269 1270 1271 1272 1273
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1274
	  This module provides Serpent cipher algorithm that processes eight
1275 1276 1277 1278 1279
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1280 1281 1282 1283
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1284
	select CRYPTO_CRYPTD
1285
	select CRYPTO_ABLK_HELPER
1286
	select CRYPTO_GLUE_HELPER_X86
1287
	select CRYPTO_SERPENT
1288 1289
	select CRYPTO_LRW
	select CRYPTO_XTS
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1301 1302 1303 1304 1305 1306

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1307
	select CRYPTO_ABLK_HELPER
1308
	select CRYPTO_GLUE_HELPER_X86
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1323

1324 1325 1326 1327 1328
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1329
	select CRYPTO_ABLK_HELPER
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1347 1348
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1349
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1350
	help
1351
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1366
	select CRYPTO_ALGAPI
1367
	select CRYPTO_TWOFISH_COMMON
1368
	help
1369
	  Twofish cipher algorithm.
1370

1371 1372 1373 1374
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1397 1398

	  See also:
1399
	  <http://www.schneier.com/twofish.html>
1400

1401 1402 1403
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1404
	select CRYPTO_ALGAPI
1405
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1406
	help
1407
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1408

1409 1410 1411 1412 1413 1414 1415 1416
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1417 1418
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1419
	depends on X86 && 64BIT
1420 1421 1422
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1423
	select CRYPTO_GLUE_HELPER_X86
1424 1425
	select CRYPTO_LRW
	select CRYPTO_XTS
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1440 1441 1442 1443 1444
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1445
	select CRYPTO_ABLK_HELPER
1446
	select CRYPTO_GLUE_HELPER_X86
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1466 1467 1468 1469 1470 1471 1472
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1473
	help
1474 1475 1476 1477
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487
config CRYPTO_ZLIB
	tristate "Zlib compression algorithm"
	select CRYPTO_PCOMP
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
	select NLATTR
	help
	  This is the zlib algorithm.

1488 1489 1490 1491 1492 1493 1494 1495
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1496 1497
config CRYPTO_842
	tristate "842 compression algorithm"
1498 1499 1500
	select CRYPTO_ALGAPI
	select 842_COMPRESS
	select 842_DECOMPRESS
1501 1502
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1529 1530
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1531

1532
menuconfig CRYPTO_DRBG_MENU
1533 1534 1535 1536 1537
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1538
if CRYPTO_DRBG_MENU
1539 1540

config CRYPTO_DRBG_HMAC
1541
	bool
1542 1543
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1544
	select CRYPTO_SHA256
1545 1546 1547

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1548
	select CRYPTO_SHA256
1549 1550 1551 1552 1553 1554 1555 1556 1557
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1558 1559
config CRYPTO_DRBG
	tristate
1560
	default CRYPTO_DRBG_MENU
1561
	select CRYPTO_RNG
1562
	select CRYPTO_JITTERENTROPY
1563 1564

endif	# if CRYPTO_DRBG_MENU
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1575 1576 1577
config CRYPTO_USER_API
	tristate

1578 1579
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1580
	depends on NET
1581 1582 1583 1584 1585 1586
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1587 1588
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1589
	depends on NET
1590 1591 1592 1593 1594 1595
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1596 1597 1598 1599 1600 1601 1602 1603 1604
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1605 1606 1607 1608 1609 1610 1611 1612 1613
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1614 1615 1616
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1617
source "drivers/crypto/Kconfig"
1618
source crypto/asymmetric_keys/Kconfig
L
Linus Torvalds 已提交
1619

1620
endif	# if CRYPTO