Kconfig 51.2 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29 30 31 32
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64
	select CRYPTO_WORKQUEUE
65

66 67
config CRYPTO_HASH
	tristate
68
	select CRYPTO_HASH2
69 70
	select CRYPTO_ALGAPI

71 72 73 74
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

75 76
config CRYPTO_RNG
	tristate
77
	select CRYPTO_RNG2
78 79
	select CRYPTO_ALGAPI

80 81 82 83
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

84 85 86 87
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
88 89 90 91 92 93 94 95 96
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

97 98 99 100 101 102 103 104 105
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

106 107 108 109 110 111 112 113 114
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

115 116
config CRYPTO_RSA
	tristate "RSA algorithm"
117
	select CRYPTO_AKCIPHER
118
	select CRYPTO_MANAGER
119 120 121 122 123
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

124 125 126 127 128 129 130
config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

131 132 133
config CRYPTO_ECDH
	tristate "ECDH algorithm"
	select CRYTPO_KPP
134
	select CRYPTO_RNG_DEFAULT
135 136
	help
	  Generic implementation of the ECDH algorithm
137

H
Herbert Xu 已提交
138 139
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
140
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
141 142 143 144
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

145 146 147 148 149
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
150
	select CRYPTO_AKCIPHER2
151
	select CRYPTO_KPP2
152
	select CRYPTO_ACOMP2
153

154 155
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
156
	depends on NET
157 158
	select CRYPTO_MANAGER
	help
159
	  Userspace configuration for cryptographic instantiations such as
160 161
	  cbc(aes).

162 163
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
164 165
	default y
	depends on CRYPTO_MANAGER2
166
	help
167 168
	  Disable run-time self tests that normally take place at
	  algorithm registration.
169

170
config CRYPTO_GF128MUL
171
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
172
	help
173 174 175 176 177
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
178

L
Linus Torvalds 已提交
179 180
config CRYPTO_NULL
	tristate "Null algorithms"
181
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
182 183 184
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

185
config CRYPTO_NULL2
186
	tristate
187 188 189 190
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

191
config CRYPTO_PCRYPT
192 193
	tristate "Parallel crypto engine"
	depends on SMP
194 195 196 197 198 199 200
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

201 202 203
config CRYPTO_WORKQUEUE
       tristate

204 205 206
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
207
	select CRYPTO_HASH
208
	select CRYPTO_MANAGER
209
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
210
	help
211 212 213
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
214

215 216 217 218 219 220 221 222 223 224 225 226
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
227
	  their crypto request asynchronously to be processed by this daemon.
228

229 230 231 232 233 234
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
235
	select CRYPTO_NULL
L
Linus Torvalds 已提交
236
	help
237 238
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
239

240 241 242
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
243
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
244
	help
245
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
246

247
config CRYPTO_ABLK_HELPER
248
	tristate
249 250 251 252
	select CRYPTO_CRYPTD

config CRYPTO_SIMD
	tristate
253 254
	select CRYPTO_CRYPTD

255 256 257
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
258
	select CRYPTO_BLKCIPHER
259

260 261 262
config CRYPTO_ENGINE
	tristate

263
comment "Authenticated Encryption with Associated Data"
264

265 266 267
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
268
	select CRYPTO_HASH
269
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
270
	help
271
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
272

273 274 275 276
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
277
	select CRYPTO_GHASH
278
	select CRYPTO_NULL
L
Linus Torvalds 已提交
279
	help
280 281
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
282

283 284 285 286 287 288 289 290 291 292 293 294
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

295 296 297 298
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
299
	select CRYPTO_NULL
300
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
301
	help
302 303
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
304

305 306 307 308
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
309
	select CRYPTO_RNG_DEFAULT
310
	default m
311 312 313 314 315
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

316
comment "Block modes"
317

318 319
config CRYPTO_CBC
	tristate "CBC support"
320
	select CRYPTO_BLKCIPHER
321
	select CRYPTO_MANAGER
322
	help
323 324
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
325

326 327
config CRYPTO_CTR
	tristate "CTR support"
328
	select CRYPTO_BLKCIPHER
329
	select CRYPTO_SEQIV
330
	select CRYPTO_MANAGER
331
	help
332
	  CTR: Counter mode
333 334
	  This block cipher algorithm is required for IPSec.

335 336 337 338 339 340 341 342 343 344 345 346 347
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
348 349 350
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
351 352 353
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
354

355
config CRYPTO_LRW
356
	tristate "LRW support"
357 358 359 360 361 362 363 364 365 366
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

367 368 369 370 371 372 373 374
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

375
config CRYPTO_XTS
376
	tristate "XTS support"
377 378
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
379
	select CRYPTO_ECB
380 381 382 383 384
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

385 386 387 388 389 390 391
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

392 393
comment "Hash modes"

394 395 396 397 398 399 400 401 402 403 404
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

405 406 407
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
408 409
	select CRYPTO_MANAGER
	help
410 411
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
412

413 414 415 416
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
417
	help
418 419 420 421
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
422

423 424 425 426 427 428 429 430 431 432 433
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

434
comment "Digest"
M
Mikko Herranen 已提交
435

436 437
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
438
	select CRYPTO_HASH
439
	select CRC32
J
Joy Latten 已提交
440
	help
441 442
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
443
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
444

445 446 447 448 449 450 451 452 453 454 455 456
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

457
config CRYPTO_CRC32C_VPMSUM
458
	tristate "CRC32c CRC algorithm (powerpc64)"
459
	depends on PPC64 && ALTIVEC
460 461 462 463 464 465 466 467
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


468 469 470 471 472 473 474 475 476
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

517 518 519 520 521 522 523 524 525
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

526 527 528 529 530 531 532 533
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

534 535 536
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
537
	select CRYPTO_HASH
538 539 540
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

541 542
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
543
	select CRYPTO_HASH
544 545 546 547 548 549 550
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

551
config CRYPTO_POLY1305_X86_64
552
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
553 554 555 556 557 558 559 560 561 562
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

563 564
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
565
	select CRYPTO_HASH
566
	help
567
	  MD4 message digest algorithm (RFC1320).
568

569 570
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
571
	select CRYPTO_HASH
L
Linus Torvalds 已提交
572
	help
573
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
574

575 576 577 578 579 580 581 582 583
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

584 585 586 587 588 589 590 591
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

592 593 594 595 596 597 598 599 600
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

601 602
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
603
	select CRYPTO_HASH
604
	help
605 606 607 608
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
609

610
config CRYPTO_RMD128
611
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
612
	select CRYPTO_HASH
613 614
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
615

616
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
617
	  be used as a secure replacement for RIPEMD. For other use cases,
618
	  RIPEMD-160 should be used.
619

620
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
621
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
622 623

config CRYPTO_RMD160
624
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
625
	select CRYPTO_HASH
626 627
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
628

629 630 631 632
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
633

634 635
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
636

637
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
638
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
639 640

config CRYPTO_RMD256
641
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
642
	select CRYPTO_HASH
643 644 645 646 647
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
648

649
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
650
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
651 652

config CRYPTO_RMD320
653
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
654
	select CRYPTO_HASH
655 656 657 658 659
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
660

661
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
662
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
663

664 665
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
666
	select CRYPTO_HASH
L
Linus Torvalds 已提交
667
	help
668
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
669

670
config CRYPTO_SHA1_SSSE3
671
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
672 673 674 675 676 677
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
678 679
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
680

681
config CRYPTO_SHA256_SSSE3
682
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
683 684 685 686 687 688 689
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
690 691
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
692 693 694 695 696 697 698 699 700 701

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
702 703
	  version 2 (AVX2) instructions, when available.

704 705 706 707 708 709 710 711 712
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

713 714 715 716 717 718 719 720 721
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

722 723 724 725 726 727 728
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

729 730 731 732 733 734 735
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
config CRYPTO_SHA256_MB
	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
config CRYPTO_SHA512_MB
        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
        depends on X86 && 64BIT
        select CRYPTO_SHA512
        select CRYPTO_HASH
        select CRYPTO_MCRYPTD
        help
          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
          using multi-buffer technique.  This algorithm computes on
          multiple data lanes concurrently with SIMD instructions for
          better throughput.  It should not be enabled by default but
          used when there is significant amount of work to keep the keep
          the data lanes filled to get performance benefit.  If the data
          lanes remain unfilled, a flush operation will be initiated to
          process the crypto jobs, adding a slight latency.

784 785
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
786
	select CRYPTO_HASH
L
Linus Torvalds 已提交
787
	help
788
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
789

790 791
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
792

793 794
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
795

796 797 798 799 800 801 802 803 804
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

805 806 807 808 809 810 811 812 813
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

814 815 816 817 818 819 820 821 822
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

823 824
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
825
	select CRYPTO_HASH
826
	help
827
	  SHA512 secure hash standard (DFIPS 180-2).
828

829 830
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
831

832 833
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
834

835 836 837 838 839 840 841 842 843
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

844 845 846 847 848 849 850 851 852
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

853 854 855 856 857 858 859 860 861 862
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

863 864 865 866 867 868 869 870 871 872 873
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

874 875
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
876
	select CRYPTO_HASH
877
	help
878
	  Tiger hash algorithm 192, 160 and 128-bit hashes
879

880 881 882
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
883 884

	  See also:
885
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
886

887 888
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
889
	select CRYPTO_HASH
L
Linus Torvalds 已提交
890
	help
891
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
892

893 894
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
895 896

	  See also:
897
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
898

899 900
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
901
	depends on X86 && 64BIT
902 903 904 905 906
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

907
comment "Ciphers"
L
Linus Torvalds 已提交
908 909 910

config CRYPTO_AES
	tristate "AES cipher algorithms"
911
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
912
	help
913
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
914 915 916
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
917 918 919 920 921 922 923
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
924

925
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
926 927 928

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
	  block.

L
Linus Torvalds 已提交
946 947
config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
948 949
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
950
	select CRYPTO_AES
L
Linus Torvalds 已提交
951
	help
952
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
953 954 955
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
956 957 958 959 960 961 962
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
963

964
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
965 966 967 968 969

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
970 971
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
972
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
973
	help
974
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
975 976 977
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
978 979 980
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
981 982 983 984 985 986 987 988 989 990 991
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
992
	depends on X86
H
Herbert Xu 已提交
993
	select CRYPTO_AEAD
994 995
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
996
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
997
	select CRYPTO_BLKCIPHER
998
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
999
	select CRYPTO_SIMD
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1010 1011 1012 1013
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1014

1015
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1016 1017 1018

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1019 1020 1021 1022
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1076 1077
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1078 1079 1080

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1081
	select CRYPTO_BLKCIPHER
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1093
	select CRYPTO_BLOWFISH_COMMON
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1104 1105 1106 1107 1108 1109 1110 1111 1112
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1113 1114
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1115
	depends on X86 && 64BIT
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1143 1144
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1145
	depends on X86 && 64BIT
1146 1147
	depends on CRYPTO
	select CRYPTO_ALGAPI
1148
	select CRYPTO_GLUE_HELPER_X86
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1160 1161 1162 1163 1164 1165 1166 1167
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1168
	select CRYPTO_ABLK_HELPER
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1182 1183
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1184 1185 1186 1187 1188 1189
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1190
	select CRYPTO_ABLK_HELPER
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1223 1224 1225 1226 1227 1228
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1229 1230
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1231
	select CRYPTO_ALGAPI
1232
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1233 1234 1235 1236
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1237 1238 1239 1240 1241
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1242
	select CRYPTO_ABLK_HELPER
1243
	select CRYPTO_CAST_COMMON
1244 1245 1246 1247 1248 1249 1250 1251
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1252 1253
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1254
	select CRYPTO_ALGAPI
1255
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1256 1257 1258 1259
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1260 1261 1262 1263 1264
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1265
	select CRYPTO_ABLK_HELPER
1266
	select CRYPTO_GLUE_HELPER_X86
1267
	select CRYPTO_CAST_COMMON
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1278 1279
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1280
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1281
	help
1282
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1283

1284 1285
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1286
	depends on SPARC64
1287 1288 1289 1290 1291 1292
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1306 1307
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1308
	select CRYPTO_ALGAPI
1309
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1310
	help
1311
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1312 1313 1314

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1315
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1316 1317 1318 1319 1320 1321 1322 1323
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1324
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1325

1326
config CRYPTO_SALSA20
1327
	tristate "Salsa20 stream cipher algorithm"
1328 1329 1330 1331 1332 1333
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1334 1335 1336 1337 1338

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1339
	tristate "Salsa20 stream cipher algorithm (i586)"
1340 1341 1342 1343 1344 1345 1346
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1347 1348 1349 1350 1351

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1352
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1353 1354 1355 1356 1357 1358 1359
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1360 1361 1362

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1377
config CRYPTO_CHACHA20_X86_64
1378
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1392 1393
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1394
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1395
	help
1396
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1408
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1409
	help
1410
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1411

1412 1413 1414 1415 1416 1417 1418
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1419 1420 1421 1422
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1423
	select CRYPTO_CRYPTD
1424
	select CRYPTO_ABLK_HELPER
1425
	select CRYPTO_GLUE_HELPER_X86
1426
	select CRYPTO_SERPENT
1427 1428
	select CRYPTO_LRW
	select CRYPTO_XTS
1429 1430 1431 1432 1433 1434
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1435
	  This module provides Serpent cipher algorithm that processes eight
1436 1437 1438 1439 1440
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1441 1442 1443 1444
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1445
	select CRYPTO_CRYPTD
1446
	select CRYPTO_ABLK_HELPER
1447
	select CRYPTO_GLUE_HELPER_X86
1448
	select CRYPTO_SERPENT
1449 1450
	select CRYPTO_LRW
	select CRYPTO_XTS
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1462 1463 1464 1465 1466 1467

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1468
	select CRYPTO_ABLK_HELPER
1469
	select CRYPTO_GLUE_HELPER_X86
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1484

1485 1486 1487 1488 1489
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1490
	select CRYPTO_ABLK_HELPER
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1508 1509
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1510
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1511
	help
1512
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1527
	select CRYPTO_ALGAPI
1528
	select CRYPTO_TWOFISH_COMMON
1529
	help
1530
	  Twofish cipher algorithm.
1531

1532 1533 1534 1535
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1558 1559

	  See also:
1560
	  <http://www.schneier.com/twofish.html>
1561

1562 1563 1564
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1565
	select CRYPTO_ALGAPI
1566
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1567
	help
1568
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1569

1570 1571 1572 1573 1574 1575 1576 1577
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1578 1579
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1580
	depends on X86 && 64BIT
1581 1582 1583
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1584
	select CRYPTO_GLUE_HELPER_X86
1585 1586
	select CRYPTO_LRW
	select CRYPTO_XTS
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1601 1602 1603 1604 1605
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1606
	select CRYPTO_ABLK_HELPER
1607
	select CRYPTO_GLUE_HELPER_X86
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1627 1628 1629 1630 1631
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1632
	select CRYPTO_ACOMP2
1633 1634
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1635
	help
1636 1637 1638 1639
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1640

1641 1642 1643
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1644
	select CRYPTO_ACOMP2
1645 1646 1647 1648 1649
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1650 1651
config CRYPTO_842
	tristate "842 compression algorithm"
1652
	select CRYPTO_ALGAPI
1653
	select CRYPTO_ACOMP2
1654 1655
	select 842_COMPRESS
	select 842_DECOMPRESS
1656 1657
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1658 1659 1660 1661

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1662
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1663 1664 1665 1666 1667 1668 1669 1670
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1671
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1672 1673 1674 1675
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1686 1687
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1688

1689
menuconfig CRYPTO_DRBG_MENU
1690 1691 1692 1693 1694
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1695
if CRYPTO_DRBG_MENU
1696 1697

config CRYPTO_DRBG_HMAC
1698
	bool
1699 1700
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1701
	select CRYPTO_SHA256
1702 1703 1704

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1705
	select CRYPTO_SHA256
1706 1707 1708 1709 1710 1711
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1712
	depends on CRYPTO_CTR
1713 1714 1715
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1716 1717
config CRYPTO_DRBG
	tristate
1718
	default CRYPTO_DRBG_MENU
1719
	select CRYPTO_RNG
1720
	select CRYPTO_JITTERENTROPY
1721 1722

endif	# if CRYPTO_DRBG_MENU
1723

1724 1725
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1726
	select CRYPTO_RNG
1727 1728 1729 1730 1731 1732 1733
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1734 1735 1736
config CRYPTO_USER_API
	tristate

1737 1738
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1739
	depends on NET
1740 1741 1742 1743 1744 1745
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1746 1747
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1748
	depends on NET
1749 1750 1751 1752 1753 1754
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1755 1756 1757 1758 1759 1760 1761 1762 1763
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1764 1765 1766 1767
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1768 1769
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1770 1771 1772 1773 1774
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1775 1776 1777
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1778
source "drivers/crypto/Kconfig"
1779
source crypto/asymmetric_keys/Kconfig
1780
source certs/Kconfig
L
Linus Torvalds 已提交
1781

1782
endif	# if CRYPTO