Kconfig 45.2 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2

52 53
config CRYPTO_BLKCIPHER
	tristate
54
	select CRYPTO_BLKCIPHER2
55
	select CRYPTO_ALGAPI
56 57 58 59 60

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
61
	select CRYPTO_WORKQUEUE
62

63 64
config CRYPTO_HASH
	tristate
65
	select CRYPTO_HASH2
66 67
	select CRYPTO_ALGAPI

68 69 70 71
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

72 73
config CRYPTO_RNG
	tristate
74
	select CRYPTO_RNG2
75 76
	select CRYPTO_ALGAPI

77 78 79 80
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

81
config CRYPTO_PCOMP
82 83 84 85 86
	tristate
	select CRYPTO_PCOMP2
	select CRYPTO_ALGAPI

config CRYPTO_PCOMP2
87 88 89
	tristate
	select CRYPTO_ALGAPI2

H
Herbert Xu 已提交
90 91
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
92
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
93 94 95 96
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

97 98 99 100 101
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
102
	select CRYPTO_PCOMP2
103

104 105
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
106
	depends on NET
107 108
	select CRYPTO_MANAGER
	help
109
	  Userspace configuration for cryptographic instantiations such as
110 111
	  cbc(aes).

112 113
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
114 115
	default y
	depends on CRYPTO_MANAGER2
116
	help
117 118
	  Disable run-time self tests that normally take place at
	  algorithm registration.
119

120
config CRYPTO_GF128MUL
121
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
122
	help
123 124 125 126 127
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
128

L
Linus Torvalds 已提交
129 130
config CRYPTO_NULL
	tristate "Null algorithms"
131
	select CRYPTO_ALGAPI
132
	select CRYPTO_BLKCIPHER
H
Herbert Xu 已提交
133
	select CRYPTO_HASH
L
Linus Torvalds 已提交
134 135 136
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

137
config CRYPTO_PCRYPT
138 139
	tristate "Parallel crypto engine"
	depends on SMP
140 141 142 143 144 145 146
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

147 148 149
config CRYPTO_WORKQUEUE
       tristate

150 151 152
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
153
	select CRYPTO_HASH
154
	select CRYPTO_MANAGER
155
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
156
	help
157 158 159
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
173
	  their crypto request asynchronously to be processed by this daemon.
174

175 176 177 178 179 180
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
L
Linus Torvalds 已提交
181
	help
182 183
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
184

185 186 187
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
188
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
189
	help
190
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
191

192
config CRYPTO_ABLK_HELPER
193 194 195
	tristate
	select CRYPTO_CRYPTD

196 197 198 199 200
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

201
comment "Authenticated Encryption with Associated Data"
202

203 204 205 206
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
207
	help
208
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
209

210 211 212 213
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
214
	select CRYPTO_GHASH
215
	select CRYPTO_NULL
L
Linus Torvalds 已提交
216
	help
217 218
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
219

220 221 222 223 224 225 226 227 228 229 230 231
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

232 233 234 235
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
236
	select CRYPTO_NULL
237
	select CRYPTO_RNG
L
Linus Torvalds 已提交
238
	help
239 240
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
241

242 243 244 245 246 247 248 249 250 251
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
	select CRYPTO_RNG
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

252
comment "Block modes"
253

254 255
config CRYPTO_CBC
	tristate "CBC support"
256
	select CRYPTO_BLKCIPHER
257
	select CRYPTO_MANAGER
258
	help
259 260
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
261

262 263
config CRYPTO_CTR
	tristate "CTR support"
264
	select CRYPTO_BLKCIPHER
265
	select CRYPTO_SEQIV
266
	select CRYPTO_MANAGER
267
	help
268
	  CTR: Counter mode
269 270
	  This block cipher algorithm is required for IPSec.

271 272 273 274 275 276 277 278 279 280 281 282 283
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
284 285 286
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
287 288 289
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
290

291
config CRYPTO_LRW
292
	tristate "LRW support"
293 294 295 296 297 298 299 300 301 302
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

303 304 305 306 307 308 309 310
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

311
config CRYPTO_XTS
312
	tristate "XTS support"
313 314 315 316 317 318 319 320
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

321 322
comment "Hash modes"

323 324 325 326 327 328 329 330 331 332 333
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

334 335 336
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
337 338
	select CRYPTO_MANAGER
	help
339 340
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
341

342 343 344 345
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
346
	help
347 348 349 350
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
351

352 353 354 355 356 357 358 359 360 361 362
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

363
comment "Digest"
M
Mikko Herranen 已提交
364

365 366
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
367
	select CRYPTO_HASH
368
	select CRC32
J
Joy Latten 已提交
369
	help
370 371
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
372
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
373

374 375 376 377 378 379 380 381 382 383 384 385
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

386 387 388 389 390 391 392 393 394
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

435 436 437 438 439 440
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

441 442 443 444 445 446 447 448 449
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

450 451
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
452
	select CRYPTO_HASH
453
	help
454
	  MD4 message digest algorithm (RFC1320).
455

456 457
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
458
	select CRYPTO_HASH
L
Linus Torvalds 已提交
459
	help
460
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
461

462 463 464 465 466 467 468 469 470
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

471 472 473 474 475 476 477 478
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

479 480 481 482 483 484 485 486 487
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

488 489
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
490
	select CRYPTO_HASH
491
	help
492 493 494 495
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
496

497
config CRYPTO_RMD128
498
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
499
	select CRYPTO_HASH
500 501
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
502

503
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
504
	  be used as a secure replacement for RIPEMD. For other use cases,
505
	  RIPEMD-160 should be used.
506

507
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
508
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
509 510

config CRYPTO_RMD160
511
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
512
	select CRYPTO_HASH
513 514
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
515

516 517 518 519
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
520

521 522
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
523

524
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
525
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
526 527

config CRYPTO_RMD256
528
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
529
	select CRYPTO_HASH
530 531 532 533 534
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
535

536
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
537
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
538 539

config CRYPTO_RMD320
540
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
541
	select CRYPTO_HASH
542 543 544 545 546
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
547

548
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
549
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
550

551 552
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
553
	select CRYPTO_HASH
L
Linus Torvalds 已提交
554
	help
555
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
556

557
config CRYPTO_SHA1_SSSE3
558
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
559 560 561 562 563 564
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
565
	  Extensions (AVX/AVX2), when available.
566

567 568 569 570 571 572 573 574 575
config CRYPTO_SHA256_SSSE3
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
576 577 578 579 580 581 582 583 584 585 586
	  version 2 (AVX2) instructions, when available.

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
587 588
	  version 2 (AVX2) instructions, when available.

589 590 591 592 593 594 595 596 597
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

598 599 600 601 602 603 604 605 606
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

607 608 609 610 611 612 613
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

614 615 616 617 618 619 620
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

637 638
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
639
	select CRYPTO_HASH
L
Linus Torvalds 已提交
640
	help
641
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
642

643 644
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
645

646 647
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
648

649 650 651 652 653 654 655 656 657
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

658 659 660 661 662 663 664 665 666
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

667 668 669 670 671 672 673 674 675
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

676 677
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
678
	select CRYPTO_HASH
679
	help
680
	  SHA512 secure hash standard (DFIPS 180-2).
681

682 683
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
684

685 686
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
687

688 689 690 691 692 693 694 695 696
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

697 698 699 700 701 702 703 704 705
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

706 707
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
708
	select CRYPTO_HASH
709
	help
710
	  Tiger hash algorithm 192, 160 and 128-bit hashes
711

712 713 714
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
715 716

	  See also:
717
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
718

719 720
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
721
	select CRYPTO_HASH
L
Linus Torvalds 已提交
722
	help
723
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
724

725 726
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
727 728

	  See also:
729
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
730

731 732
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
733
	depends on X86 && 64BIT
734 735 736 737 738
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

739
comment "Ciphers"
L
Linus Torvalds 已提交
740 741 742

config CRYPTO_AES
	tristate "AES cipher algorithms"
743
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
744
	help
745
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
746 747 748
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
749 750 751 752 753 754 755
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
756

757
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
758 759 760 761 762

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
763 764
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
765
	select CRYPTO_AES
L
Linus Torvalds 已提交
766
	help
767
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
768 769 770
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
771 772 773 774 775 776 777
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
778

779
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
780 781 782 783 784

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
785 786
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
787
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
788
	help
789
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
790 791 792
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
793 794 795
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
796 797 798 799 800 801 802 803 804 805 806
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
807
	depends on X86
808 809
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
810
	select CRYPTO_CRYPTD
811
	select CRYPTO_ABLK_HELPER
812
	select CRYPTO_ALGAPI
813
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
814 815
	select CRYPTO_LRW
	select CRYPTO_XTS
816 817 818 819 820 821 822 823 824 825
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
826 827 828 829
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
830

831
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
832 833 834

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

835 836 837 838
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
839

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

868 869 870 871 872 873 874 875 876 877 878 879 880
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

881 882 883 884 885 886 887 888 889 890 891
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
892 893
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
894 895 896

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
897
	select CRYPTO_BLKCIPHER
898 899 900 901 902 903 904 905 906 907 908
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
909
	select CRYPTO_BLOWFISH_COMMON
910 911 912 913 914 915 916 917 918 919
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

920 921 922 923 924 925 926 927 928
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

929 930
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
931
	depends on X86 && 64BIT
932 933 934 935 936 937 938 939 940 941 942 943
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

959 960
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
961
	depends on X86 && 64BIT
962 963
	depends on CRYPTO
	select CRYPTO_ALGAPI
964
	select CRYPTO_GLUE_HELPER_X86
965 966 967 968 969 970 971 972 973 974 975
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
976 977 978 979 980 981 982 983
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
984
	select CRYPTO_ABLK_HELPER
985 986 987 988 989 990 991 992 993 994 995 996 997
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
998 999
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1000 1001 1002 1003 1004 1005
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1006
	select CRYPTO_ABLK_HELPER
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1039 1040 1041 1042 1043 1044
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1045 1046
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1047
	select CRYPTO_ALGAPI
1048
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1049 1050 1051 1052
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1053 1054 1055 1056 1057
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1058
	select CRYPTO_ABLK_HELPER
1059
	select CRYPTO_CAST_COMMON
1060 1061 1062 1063 1064 1065 1066 1067
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1068 1069
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1070
	select CRYPTO_ALGAPI
1071
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1072 1073 1074 1075
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1076 1077 1078 1079 1080
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1081
	select CRYPTO_ABLK_HELPER
1082
	select CRYPTO_GLUE_HELPER_X86
1083
	select CRYPTO_CAST_COMMON
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1094 1095
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1096
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1097
	help
1098
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1099

1100 1101
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1102
	depends on SPARC64
1103 1104 1105 1106 1107 1108
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1122 1123
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1124
	select CRYPTO_ALGAPI
1125
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1126
	help
1127
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1128 1129 1130

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1131
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136 1137 1138 1139
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1140
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1141

1142
config CRYPTO_SALSA20
1143
	tristate "Salsa20 stream cipher algorithm"
1144 1145 1146 1147 1148 1149
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1150 1151 1152 1153 1154

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1155
	tristate "Salsa20 stream cipher algorithm (i586)"
1156 1157 1158 1159 1160 1161 1162
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1163 1164 1165 1166 1167

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1168
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1169 1170 1171 1172 1173 1174 1175
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1176 1177 1178

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1193 1194
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1195
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1196
	help
1197
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1209
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1210
	help
1211
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1212

1213 1214 1215 1216 1217 1218 1219
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1220 1221 1222 1223
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1224
	select CRYPTO_CRYPTD
1225
	select CRYPTO_ABLK_HELPER
1226
	select CRYPTO_GLUE_HELPER_X86
1227
	select CRYPTO_SERPENT
1228 1229
	select CRYPTO_LRW
	select CRYPTO_XTS
1230 1231 1232 1233 1234 1235
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1236
	  This module provides Serpent cipher algorithm that processes eight
1237 1238 1239 1240 1241
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1242 1243 1244 1245
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1246
	select CRYPTO_CRYPTD
1247
	select CRYPTO_ABLK_HELPER
1248
	select CRYPTO_GLUE_HELPER_X86
1249
	select CRYPTO_SERPENT
1250 1251
	select CRYPTO_LRW
	select CRYPTO_XTS
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1263 1264 1265 1266 1267 1268

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1269
	select CRYPTO_ABLK_HELPER
1270
	select CRYPTO_GLUE_HELPER_X86
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1285

1286 1287 1288 1289 1290
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1291
	select CRYPTO_ABLK_HELPER
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1309 1310
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1311
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1312
	help
1313
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1328
	select CRYPTO_ALGAPI
1329
	select CRYPTO_TWOFISH_COMMON
1330
	help
1331
	  Twofish cipher algorithm.
1332

1333 1334 1335 1336
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1359 1360

	  See also:
1361
	  <http://www.schneier.com/twofish.html>
1362

1363 1364 1365
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1366
	select CRYPTO_ALGAPI
1367
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1368
	help
1369
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1370

1371 1372 1373 1374 1375 1376 1377 1378
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1379 1380
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1381
	depends on X86 && 64BIT
1382 1383 1384
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1385
	select CRYPTO_GLUE_HELPER_X86
1386 1387
	select CRYPTO_LRW
	select CRYPTO_XTS
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1402 1403 1404 1405 1406
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1407
	select CRYPTO_ABLK_HELPER
1408
	select CRYPTO_GLUE_HELPER_X86
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1428 1429 1430 1431 1432 1433 1434
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1435
	help
1436 1437 1438 1439
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449
config CRYPTO_ZLIB
	tristate "Zlib compression algorithm"
	select CRYPTO_PCOMP
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
	select NLATTR
	help
	  This is the zlib algorithm.

1450 1451 1452 1453 1454 1455 1456 1457
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1458 1459
config CRYPTO_842
	tristate "842 compression algorithm"
1460 1461 1462
	select CRYPTO_ALGAPI
	select 842_COMPRESS
	select 842_DECOMPRESS
1463 1464
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1481

1482 1483 1484 1485
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
1486
	default m
1487 1488 1489 1490 1491
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1492 1493
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1494

1495
menuconfig CRYPTO_DRBG_MENU
1496 1497 1498 1499 1500
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1501
if CRYPTO_DRBG_MENU
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

config CRYPTO_DRBG_HMAC
	bool "Enable HMAC DRBG"
	default y
	select CRYPTO_HMAC
	help
	  Enable the HMAC DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
	select CRYPTO_HASH
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1522 1523 1524 1525
config CRYPTO_DRBG
	tristate
	default CRYPTO_DRBG_MENU if (CRYPTO_DRBG_HMAC || CRYPTO_DRBG_HASH || CRYPTO_DRBG_CTR)
	select CRYPTO_RNG
1526
	select CRYPTO_JITTERENTROPY
1527 1528

endif	# if CRYPTO_DRBG_MENU
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1539 1540 1541
config CRYPTO_USER_API
	tristate

1542 1543
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1544
	depends on NET
1545 1546 1547 1548 1549 1550
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1551 1552
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1553
	depends on NET
1554 1555 1556 1557 1558 1559
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1560 1561 1562 1563 1564 1565 1566 1567 1568
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1569 1570 1571 1572 1573 1574 1575 1576 1577
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1578 1579 1580
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1581
source "drivers/crypto/Kconfig"
1582
source crypto/asymmetric_keys/Kconfig
L
Linus Torvalds 已提交
1583

1584
endif	# if CRYPTO