Kconfig 47.1 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
51 52
	select CRYPTO_NULL2
	select CRYPTO_RNG2
53

54 55
config CRYPTO_BLKCIPHER
	tristate
56
	select CRYPTO_BLKCIPHER2
57
	select CRYPTO_ALGAPI
58 59 60 61 62

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
63
	select CRYPTO_WORKQUEUE
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97 98 99 100 101 102 103 104
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

105 106
config CRYPTO_RSA
	tristate "RSA algorithm"
107
	select CRYPTO_AKCIPHER
108
	select CRYPTO_MANAGER
109 110 111 112 113
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

114 115 116 117 118 119 120 121
config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.


H
Herbert Xu 已提交
122 123
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
124
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
125 126 127 128
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

129 130 131 132 133
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
134
	select CRYPTO_AKCIPHER2
135
	select CRYPTO_KPP2
136

137 138
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
139
	depends on NET
140 141
	select CRYPTO_MANAGER
	help
142
	  Userspace configuration for cryptographic instantiations such as
143 144
	  cbc(aes).

145 146
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
147 148
	default y
	depends on CRYPTO_MANAGER2
149
	help
150 151
	  Disable run-time self tests that normally take place at
	  algorithm registration.
152

153
config CRYPTO_GF128MUL
154
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
155
	help
156 157 158 159 160
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
161

L
Linus Torvalds 已提交
162 163
config CRYPTO_NULL
	tristate "Null algorithms"
164
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
165 166 167
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

168
config CRYPTO_NULL2
169
	tristate
170 171 172 173
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

174
config CRYPTO_PCRYPT
175 176
	tristate "Parallel crypto engine"
	depends on SMP
177 178 179 180 181 182 183
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

184 185 186
config CRYPTO_WORKQUEUE
       tristate

187 188 189
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
190
	select CRYPTO_HASH
191
	select CRYPTO_MANAGER
192
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
193
	help
194 195 196
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
197

198 199 200 201 202 203 204 205 206 207 208 209
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
210
	  their crypto request asynchronously to be processed by this daemon.
211

212 213 214 215 216 217
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
218
	select CRYPTO_NULL
L
Linus Torvalds 已提交
219
	help
220 221
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
222

223 224 225
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
226
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
227
	help
228
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
229

230
config CRYPTO_ABLK_HELPER
231 232 233
	tristate
	select CRYPTO_CRYPTD

234 235 236 237 238
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

239 240 241
config CRYPTO_ENGINE
	tristate

242
comment "Authenticated Encryption with Associated Data"
243

244 245 246 247
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
248
	help
249
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
250

251 252 253 254
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
255
	select CRYPTO_GHASH
256
	select CRYPTO_NULL
L
Linus Torvalds 已提交
257
	help
258 259
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
260

261 262 263 264 265 266 267 268 269 270 271 272
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

273 274 275 276
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
277
	select CRYPTO_NULL
278
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
279
	help
280 281
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
282

283 284 285 286
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
287
	select CRYPTO_RNG_DEFAULT
288
	default m
289 290 291 292 293
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

294
comment "Block modes"
295

296 297
config CRYPTO_CBC
	tristate "CBC support"
298
	select CRYPTO_BLKCIPHER
299
	select CRYPTO_MANAGER
300
	help
301 302
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
303

304 305
config CRYPTO_CTR
	tristate "CTR support"
306
	select CRYPTO_BLKCIPHER
307
	select CRYPTO_SEQIV
308
	select CRYPTO_MANAGER
309
	help
310
	  CTR: Counter mode
311 312
	  This block cipher algorithm is required for IPSec.

313 314 315 316 317 318 319 320 321 322 323 324 325
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
326 327 328
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
329 330 331
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
332

333
config CRYPTO_LRW
334
	tristate "LRW support"
335 336 337 338 339 340 341 342 343 344
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

345 346 347 348 349 350 351 352
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

353
config CRYPTO_XTS
354
	tristate "XTS support"
355 356 357 358 359 360 361 362
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

363 364 365 366 367 368 369
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

370 371
comment "Hash modes"

372 373 374 375 376 377 378 379 380 381 382
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

383 384 385
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
386 387
	select CRYPTO_MANAGER
	help
388 389
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
390

391 392 393 394
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
395
	help
396 397 398 399
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
400

401 402 403 404 405 406 407 408 409 410 411
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

412
comment "Digest"
M
Mikko Herranen 已提交
413

414 415
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
416
	select CRYPTO_HASH
417
	select CRC32
J
Joy Latten 已提交
418
	help
419 420
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
421
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
422

423 424 425 426 427 428 429 430 431 432 433 434
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

435 436 437 438 439 440 441 442 443
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

484 485 486
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
487
	select CRYPTO_HASH
488 489 490
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

491 492
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
493
	select CRYPTO_HASH
494 495 496 497 498 499 500
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

501
config CRYPTO_POLY1305_X86_64
502
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
503 504 505 506 507 508 509 510 511 512
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

513 514
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
515
	select CRYPTO_HASH
516
	help
517
	  MD4 message digest algorithm (RFC1320).
518

519 520
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
521
	select CRYPTO_HASH
L
Linus Torvalds 已提交
522
	help
523
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
524

525 526 527 528 529 530 531 532 533
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

534 535 536 537 538 539 540 541
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

542 543 544 545 546 547 548 549 550
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

551 552
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
553
	select CRYPTO_HASH
554
	help
555 556 557 558
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
559

560
config CRYPTO_RMD128
561
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
562
	select CRYPTO_HASH
563 564
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
565

566
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
567
	  be used as a secure replacement for RIPEMD. For other use cases,
568
	  RIPEMD-160 should be used.
569

570
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
571
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
572 573

config CRYPTO_RMD160
574
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
575
	select CRYPTO_HASH
576 577
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
578

579 580 581 582
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
583

584 585
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
586

587
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
588
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
589 590

config CRYPTO_RMD256
591
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
592
	select CRYPTO_HASH
593 594 595 596 597
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
598

599
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
600
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
601 602

config CRYPTO_RMD320
603
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
604
	select CRYPTO_HASH
605 606 607 608 609
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
610

611
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
612
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
613

614 615
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
616
	select CRYPTO_HASH
L
Linus Torvalds 已提交
617
	help
618
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
619

620
config CRYPTO_SHA1_SSSE3
621
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
622 623 624 625 626 627
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
628 629
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
630

631
config CRYPTO_SHA256_SSSE3
632
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
633 634 635 636 637 638 639
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
640 641
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
642 643 644 645 646 647 648 649 650 651

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
652 653
	  version 2 (AVX2) instructions, when available.

654 655 656 657 658 659 660 661 662
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

663 664 665 666 667 668 669 670 671
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

672 673 674 675 676 677 678
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

679 680 681 682 683 684 685
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

702 703
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
704
	select CRYPTO_HASH
L
Linus Torvalds 已提交
705
	help
706
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
707

708 709
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
710

711 712
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
713

714 715 716 717 718 719 720 721 722
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

723 724 725 726 727 728 729 730 731
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

732 733 734 735 736 737 738 739 740
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

741 742
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
743
	select CRYPTO_HASH
744
	help
745
	  SHA512 secure hash standard (DFIPS 180-2).
746

747 748
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
749

750 751
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
752

753 754 755 756 757 758 759 760 761
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

762 763 764 765 766 767 768 769 770
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

771 772 773 774 775 776 777 778 779 780
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

781 782
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
783
	select CRYPTO_HASH
784
	help
785
	  Tiger hash algorithm 192, 160 and 128-bit hashes
786

787 788 789
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
790 791

	  See also:
792
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
793

794 795
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
796
	select CRYPTO_HASH
L
Linus Torvalds 已提交
797
	help
798
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
799

800 801
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
802 803

	  See also:
804
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
805

806 807
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
808
	depends on X86 && 64BIT
809 810 811 812 813
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

814
comment "Ciphers"
L
Linus Torvalds 已提交
815 816 817

config CRYPTO_AES
	tristate "AES cipher algorithms"
818
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
819
	help
820
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
821 822 823
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
824 825 826 827 828 829 830
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
831

832
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
833 834 835 836 837

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
838 839
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
840
	select CRYPTO_AES
L
Linus Torvalds 已提交
841
	help
842
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
843 844 845
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
846 847 848 849 850 851 852
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
853

854
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
855 856 857 858 859

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
860 861
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
862
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
863
	help
864
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
865 866 867
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
868 869 870
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
871 872 873 874 875 876 877 878 879 880 881
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
882
	depends on X86
883 884
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
885
	select CRYPTO_CRYPTD
886
	select CRYPTO_ABLK_HELPER
887
	select CRYPTO_ALGAPI
888
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
889 890
	select CRYPTO_LRW
	select CRYPTO_XTS
891 892 893 894 895 896 897 898 899 900
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
901 902 903 904
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
905

906
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
907 908 909

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

910 911 912 913
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

943 944 945 946 947 948 949 950 951 952 953 954 955
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

956 957 958 959 960 961 962 963 964 965 966
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
967 968
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
969 970 971

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
972
	select CRYPTO_BLKCIPHER
973 974 975 976 977 978 979 980 981 982 983
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
984
	select CRYPTO_BLOWFISH_COMMON
985 986 987 988 989 990 991 992 993 994
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

995 996 997 998 999 1000 1001 1002 1003
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1004 1005
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1006
	depends on X86 && 64BIT
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1034 1035
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1036
	depends on X86 && 64BIT
1037 1038
	depends on CRYPTO
	select CRYPTO_ALGAPI
1039
	select CRYPTO_GLUE_HELPER_X86
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1051 1052 1053 1054 1055 1056 1057 1058
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1059
	select CRYPTO_ABLK_HELPER
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1073 1074
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1075 1076 1077 1078 1079 1080
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1081
	select CRYPTO_ABLK_HELPER
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1114 1115 1116 1117 1118 1119
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1120 1121
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1122
	select CRYPTO_ALGAPI
1123
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1124 1125 1126 1127
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1128 1129 1130 1131 1132
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1133
	select CRYPTO_ABLK_HELPER
1134
	select CRYPTO_CAST_COMMON
1135 1136 1137 1138 1139 1140 1141 1142
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1143 1144
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1145
	select CRYPTO_ALGAPI
1146
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1147 1148 1149 1150
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1151 1152 1153 1154 1155
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1156
	select CRYPTO_ABLK_HELPER
1157
	select CRYPTO_GLUE_HELPER_X86
1158
	select CRYPTO_CAST_COMMON
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1169 1170
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1171
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1172
	help
1173
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1174

1175 1176
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1177
	depends on SPARC64
1178 1179 1180 1181 1182 1183
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1197 1198
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1199
	select CRYPTO_ALGAPI
1200
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1201
	help
1202
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1203 1204 1205

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1206
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1207 1208 1209 1210 1211 1212 1213 1214
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1215
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1216

1217
config CRYPTO_SALSA20
1218
	tristate "Salsa20 stream cipher algorithm"
1219 1220 1221 1222 1223 1224
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1225 1226 1227 1228 1229

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1230
	tristate "Salsa20 stream cipher algorithm (i586)"
1231 1232 1233 1234 1235 1236 1237
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1238 1239 1240 1241 1242

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1243
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1244 1245 1246 1247 1248 1249 1250
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1251 1252 1253

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1268
config CRYPTO_CHACHA20_X86_64
1269
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1283 1284
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1285
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1286
	help
1287
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1299
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1300
	help
1301
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1302

1303 1304 1305 1306 1307 1308 1309
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1310 1311 1312 1313
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1314
	select CRYPTO_CRYPTD
1315
	select CRYPTO_ABLK_HELPER
1316
	select CRYPTO_GLUE_HELPER_X86
1317
	select CRYPTO_SERPENT
1318 1319
	select CRYPTO_LRW
	select CRYPTO_XTS
1320 1321 1322 1323 1324 1325
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1326
	  This module provides Serpent cipher algorithm that processes eight
1327 1328 1329 1330 1331
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1332 1333 1334 1335
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1336
	select CRYPTO_CRYPTD
1337
	select CRYPTO_ABLK_HELPER
1338
	select CRYPTO_GLUE_HELPER_X86
1339
	select CRYPTO_SERPENT
1340 1341
	select CRYPTO_LRW
	select CRYPTO_XTS
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1353 1354 1355 1356 1357 1358

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1359
	select CRYPTO_ABLK_HELPER
1360
	select CRYPTO_GLUE_HELPER_X86
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1375

1376 1377 1378 1379 1380
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1381
	select CRYPTO_ABLK_HELPER
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1399 1400
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1401
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1402
	help
1403
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1418
	select CRYPTO_ALGAPI
1419
	select CRYPTO_TWOFISH_COMMON
1420
	help
1421
	  Twofish cipher algorithm.
1422

1423 1424 1425 1426
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1449 1450

	  See also:
1451
	  <http://www.schneier.com/twofish.html>
1452

1453 1454 1455
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1456
	select CRYPTO_ALGAPI
1457
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1458
	help
1459
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1460

1461 1462 1463 1464 1465 1466 1467 1468
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1469 1470
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1471
	depends on X86 && 64BIT
1472 1473 1474
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1475
	select CRYPTO_GLUE_HELPER_X86
1476 1477
	select CRYPTO_LRW
	select CRYPTO_XTS
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1492 1493 1494 1495 1496
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1497
	select CRYPTO_ABLK_HELPER
1498
	select CRYPTO_GLUE_HELPER_X86
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1518 1519 1520 1521 1522 1523 1524
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1525
	help
1526 1527 1528 1529
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1530

1531 1532 1533 1534 1535 1536 1537 1538
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1539 1540
config CRYPTO_842
	tristate "842 compression algorithm"
1541 1542 1543
	select CRYPTO_ALGAPI
	select 842_COMPRESS
	select 842_DECOMPRESS
1544 1545
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1572 1573
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1574

1575
menuconfig CRYPTO_DRBG_MENU
1576 1577 1578 1579 1580
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1581
if CRYPTO_DRBG_MENU
1582 1583

config CRYPTO_DRBG_HMAC
1584
	bool
1585 1586
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1587
	select CRYPTO_SHA256
1588 1589 1590

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1591
	select CRYPTO_SHA256
1592 1593 1594 1595 1596 1597
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1598
	depends on CRYPTO_CTR
1599 1600 1601
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1602 1603
config CRYPTO_DRBG
	tristate
1604
	default CRYPTO_DRBG_MENU
1605
	select CRYPTO_RNG
1606
	select CRYPTO_JITTERENTROPY
1607 1608

endif	# if CRYPTO_DRBG_MENU
1609

1610 1611
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1612
	select CRYPTO_RNG
1613 1614 1615 1616 1617 1618 1619
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1620 1621 1622
config CRYPTO_USER_API
	tristate

1623 1624
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1625
	depends on NET
1626 1627 1628 1629 1630 1631
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1632 1633
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1634
	depends on NET
1635 1636 1637 1638 1639 1640
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1641 1642 1643 1644 1645 1646 1647 1648 1649
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1650 1651 1652 1653 1654 1655 1656 1657 1658
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1659 1660 1661
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1662
source "drivers/crypto/Kconfig"
1663
source crypto/asymmetric_keys/Kconfig
1664
source certs/Kconfig
L
Linus Torvalds 已提交
1665

1666
endif	# if CRYPTO