core.c 98.1 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38
#include "dummy.h"
39
#include "internal.h"
40

M
Mark Brown 已提交
41 42
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 44 45 46 47 48 49 50 51
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

52 53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72
};

73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
	int gpio;
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

99
static int _regulator_is_enabled(struct regulator_dev *rdev);
100
static int _regulator_disable(struct regulator_dev *rdev);
101 102 103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
106 107
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
108 109 110
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
111

112 113 114 115 116 117 118 119 120 121
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

122 123 124 125 126 127
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
128
 * returns the device node corresponding to the regulator if found, else
129 130 131 132 133 134 135 136 137 138 139 140 141
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
142
		dev_dbg(dev, "Looking up %s property in node %s failed",
143 144 145 146 147 148
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

149 150 151 152 153 154 155 156 157 158 159
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

160 161 162 163 164 165 166
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
167
		rdev_err(rdev, "no constraints\n");
168 169 170
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
171
		rdev_err(rdev, "operation not allowed\n");
172 173 174 175 176 177 178 179
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

180 181
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
182
			 *min_uV, *max_uV);
183
		return -EINVAL;
184
	}
185 186 187 188

	return 0;
}

189 190 191 192 193 194 195 196 197
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
198 199 200 201 202 203 204
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

205 206 207 208 209 210
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

211
	if (*min_uV > *max_uV) {
212 213
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
214
		return -EINVAL;
215
	}
216 217 218 219

	return 0;
}

220 221 222 223 224 225 226
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
227
		rdev_err(rdev, "no constraints\n");
228 229 230
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
231
		rdev_err(rdev, "operation not allowed\n");
232 233 234 235 236 237 238 239
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

240 241
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
242
			 *min_uA, *max_uA);
243
		return -EINVAL;
244
	}
245 246 247 248 249

	return 0;
}

/* operating mode constraint check */
250
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
251
{
252
	switch (*mode) {
253 254 255 256 257 258
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
259
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
260 261 262
		return -EINVAL;
	}

263
	if (!rdev->constraints) {
264
		rdev_err(rdev, "no constraints\n");
265 266 267
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
268
		rdev_err(rdev, "operation not allowed\n");
269 270
		return -EPERM;
	}
271 272 273 274 275 276 277 278

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
279
	}
280 281

	return -EINVAL;
282 283 284 285 286 287
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
288
		rdev_err(rdev, "no constraints\n");
289 290 291
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
292
		rdev_err(rdev, "operation not allowed\n");
293 294 295 296 297 298 299 300
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
301
	struct regulator_dev *rdev = dev_get_drvdata(dev);
302 303 304 305 306 307 308 309
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
310
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
311 312 313 314

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
315
	struct regulator_dev *rdev = dev_get_drvdata(dev);
316 317 318

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
319
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
320

321 322
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
323 324 325
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

326
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
327
}
328
static DEVICE_ATTR_RO(name);
329

D
David Brownell 已提交
330
static ssize_t regulator_print_opmode(char *buf, int mode)
331 332 333 334 335 336 337 338 339 340 341 342 343 344
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
345 346
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
347
{
348
	struct regulator_dev *rdev = dev_get_drvdata(dev);
349

D
David Brownell 已提交
350 351
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
352
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
353 354 355

static ssize_t regulator_print_state(char *buf, int state)
{
356 357 358 359 360 361 362 363
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
364 365 366 367
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
368 369 370 371 372
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
373

374
	return ret;
D
David Brownell 已提交
375
}
376
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
377

D
David Brownell 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
411 412 413
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
414 415 416
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
417 418 419 420 421 422 423 424
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

425 426 427
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
428
	struct regulator_dev *rdev = dev_get_drvdata(dev);
429 430 431 432 433 434

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
435
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436 437 438 439

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
440
	struct regulator_dev *rdev = dev_get_drvdata(dev);
441 442 443 444 445 446

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
447
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448 449 450 451

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
452
	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 454 455 456 457 458

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
459
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460 461 462 463

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
464
	struct regulator_dev *rdev = dev_get_drvdata(dev);
465 466 467 468 469 470

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
471
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472 473 474 475

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
476
	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 478 479 480 481
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
482
		uA += regulator->uA_load;
483 484 485
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
486
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487

488 489
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
490
{
491
	struct regulator_dev *rdev = dev_get_drvdata(dev);
492 493
	return sprintf(buf, "%d\n", rdev->use_count);
}
494
static DEVICE_ATTR_RO(num_users);
495

496 497
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
498
{
499
	struct regulator_dev *rdev = dev_get_drvdata(dev);
500 501 502 503 504 505 506 507 508

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
509
static DEVICE_ATTR_RO(type);
510 511 512 513

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
514
	struct regulator_dev *rdev = dev_get_drvdata(dev);
515 516 517

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
518 519
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
520 521 522 523

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
524
	struct regulator_dev *rdev = dev_get_drvdata(dev);
525 526 527

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
528 529
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
530 531 532 533

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
534
	struct regulator_dev *rdev = dev_get_drvdata(dev);
535 536 537

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
538 539
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
540 541 542 543

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
544
	struct regulator_dev *rdev = dev_get_drvdata(dev);
545

D
David Brownell 已提交
546 547
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
548
}
549 550
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
551 552 553 554

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
555
	struct regulator_dev *rdev = dev_get_drvdata(dev);
556

D
David Brownell 已提交
557 558
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
559
}
560 561
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
562 563 564 565

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
566
	struct regulator_dev *rdev = dev_get_drvdata(dev);
567

D
David Brownell 已提交
568 569
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
570
}
571 572
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
573 574 575 576

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
577
	struct regulator_dev *rdev = dev_get_drvdata(dev);
578

D
David Brownell 已提交
579 580
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
581
}
582 583
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
584 585 586 587

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
588
	struct regulator_dev *rdev = dev_get_drvdata(dev);
589

D
David Brownell 已提交
590 591
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
592
}
593 594
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
595 596 597 598

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
599
	struct regulator_dev *rdev = dev_get_drvdata(dev);
600

D
David Brownell 已提交
601 602
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
603
}
604 605 606
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
628

629 630 631 632
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
633 634 635 636 637
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	NULL,
638
};
639
ATTRIBUTE_GROUPS(regulator_dev);
640 641 642

static void regulator_dev_release(struct device *dev)
{
643
	struct regulator_dev *rdev = dev_get_drvdata(dev);
644 645 646 647 648 649
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
650
	.dev_groups = regulator_dev_groups,
651 652 653 654 655 656 657 658 659 660 661 662
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
663 664 665
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
666
		return;
667 668

	/* get output voltage */
669
	output_uV = _regulator_get_voltage(rdev);
670 671 672 673
	if (output_uV <= 0)
		return;

	/* get input voltage */
674 675
	input_uV = 0;
	if (rdev->supply)
676
		input_uV = regulator_get_voltage(rdev->supply);
677
	if (input_uV <= 0)
678 679 680 681 682 683
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
684
		current_uA += sibling->uA_load;
685 686 687 688 689 690

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
691
	err = regulator_mode_constrain(rdev, &mode);
692 693 694 695 696 697 698 699
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
700 701

	/* If we have no suspend mode configration don't set anything;
702 703
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
704 705
	 */
	if (!rstate->enabled && !rstate->disabled) {
706 707
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
708
			rdev_warn(rdev, "No configuration\n");
709 710 711 712
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
713
		rdev_err(rdev, "invalid configuration\n");
714 715
		return -EINVAL;
	}
716

717
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
718
		ret = rdev->desc->ops->set_suspend_enable(rdev);
719
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
720
		ret = rdev->desc->ops->set_suspend_disable(rdev);
721 722 723
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

724
	if (ret < 0) {
725
		rdev_err(rdev, "failed to enabled/disable\n");
726 727 728 729 730 731
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
732
			rdev_err(rdev, "failed to set voltage\n");
733 734 735 736 737 738 739
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
740
			rdev_err(rdev, "failed to set mode\n");
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
771
	char buf[80] = "";
772 773
	int count = 0;
	int ret;
774

775
	if (constraints->min_uV && constraints->max_uV) {
776
		if (constraints->min_uV == constraints->max_uV)
777 778
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
779
		else
780 781 782 783 784 785 786 787 788 789 790 791
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

792 793 794 795
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

796
	if (constraints->min_uA && constraints->max_uA) {
797
		if (constraints->min_uA == constraints->max_uA)
798 799
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
800
		else
801 802 803 804 805 806 807 808 809
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
810
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
811
	}
812

813 814 815 816 817 818 819 820 821
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

822 823 824
	if (!count)
		sprintf(buf, "no parameters");

M
Mark Brown 已提交
825
	rdev_info(rdev, "%s\n", buf);
826 827 828 829 830

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
831 832
}

833
static int machine_constraints_voltage(struct regulator_dev *rdev,
834
	struct regulation_constraints *constraints)
835
{
836
	struct regulator_ops *ops = rdev->desc->ops;
837 838 839 840
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
841 842 843 844 845 846 847 848 849
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
850
	}
851

852 853 854 855 856 857 858 859 860 861 862
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

863 864
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
865
		if (count == 1 && !cmin) {
866
			cmin = 1;
867
			cmax = INT_MAX;
868 869
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
870 871
		}

872 873
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
874
			return 0;
875

876
		/* else require explicit machine-level constraints */
877
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
878
			rdev_err(rdev, "invalid voltage constraints\n");
879
			return -EINVAL;
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
899 900 901
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
902
			return -EINVAL;
903 904 905 906
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
907 908
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
909 910 911
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
912 913
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
914 915 916 917
			constraints->max_uV = max_uV;
		}
	}

918 919 920
	return 0;
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
	struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

951 952 953 954 955 956 957 958 959 960 961 962
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
963
	const struct regulation_constraints *constraints)
964 965 966 967
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

968 969 970 971 972 973
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
974 975
	if (!rdev->constraints)
		return -ENOMEM;
976

977
	ret = machine_constraints_voltage(rdev, rdev->constraints);
978 979 980
	if (ret != 0)
		goto out;

981
	ret = machine_constraints_current(rdev, rdev->constraints);
982 983 984
	if (ret != 0)
		goto out;

985
	/* do we need to setup our suspend state */
986
	if (rdev->constraints->initial_state) {
987
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
988
		if (ret < 0) {
989
			rdev_err(rdev, "failed to set suspend state\n");
990 991 992
			goto out;
		}
	}
993

994
	if (rdev->constraints->initial_mode) {
995
		if (!ops->set_mode) {
996
			rdev_err(rdev, "no set_mode operation\n");
997 998 999 1000
			ret = -EINVAL;
			goto out;
		}

1001
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1002
		if (ret < 0) {
1003
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1004 1005 1006 1007
			goto out;
		}
	}

1008 1009 1010
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1011 1012
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
1013 1014
		ret = ops->enable(rdev);
		if (ret < 0) {
1015
			rdev_err(rdev, "failed to enable\n");
1016 1017 1018 1019
			goto out;
		}
	}

1020 1021
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1022 1023 1024 1025 1026 1027 1028
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

1029
	print_constraints(rdev);
1030
	return 0;
1031
out:
1032 1033
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1034 1035 1036 1037 1038
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1039 1040
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1041 1042 1043 1044 1045 1046
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1047
		      struct regulator_dev *supply_rdev)
1048 1049 1050
{
	int err;

1051 1052 1053
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1054 1055
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1056
		return err;
1057
	}
1058
	supply_rdev->open_count++;
1059 1060

	return 0;
1061 1062 1063
}

/**
1064
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1065
 * @rdev:         regulator source
1066
 * @consumer_dev_name: dev_name() string for device supply applies to
1067
 * @supply:       symbolic name for supply
1068 1069 1070 1071 1072 1073 1074
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1075 1076
				      const char *consumer_dev_name,
				      const char *supply)
1077 1078
{
	struct regulator_map *node;
1079
	int has_dev;
1080 1081 1082 1083

	if (supply == NULL)
		return -EINVAL;

1084 1085 1086 1087 1088
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1089
	list_for_each_entry(node, &regulator_map_list, list) {
1090 1091 1092 1093
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1094
			continue;
1095 1096
		}

1097 1098 1099
		if (strcmp(node->supply, supply) != 0)
			continue;

1100 1101 1102 1103 1104 1105
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1106 1107 1108
		return -EBUSY;
	}

1109
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1110 1111 1112 1113 1114 1115
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1116 1117 1118 1119 1120 1121
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1122 1123
	}

1124 1125 1126 1127
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1128 1129 1130 1131 1132 1133 1134
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1135
			kfree(node->dev_name);
1136 1137 1138 1139 1140
			kfree(node);
		}
	}
}

1141
#define REG_STR_SIZE	64
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1160 1161
		regulator->dev = dev;

1162
		/* Add a link to the device sysfs entry */
1163 1164 1165
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1166
			goto overflow_err;
1167 1168 1169

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1170
			goto overflow_err;
1171 1172 1173 1174

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1175 1176
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1177
			/* non-fatal */
1178
		}
1179 1180 1181
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1182
			goto overflow_err;
1183 1184 1185 1186
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1187
	if (!regulator->debugfs) {
1188 1189 1190 1191 1192 1193 1194 1195
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1196
	}
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1207 1208 1209 1210 1211 1212 1213 1214 1215
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1216 1217
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1218 1219
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1220
	if (!rdev->desc->ops->enable_time)
1221
		return rdev->desc->enable_time;
1222 1223 1224
	return rdev->desc->ops->enable_time(rdev);
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1251
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1252 1253
						  const char *supply,
						  int *ret)
1254 1255 1256
{
	struct regulator_dev *r;
	struct device_node *node;
1257 1258
	struct regulator_map *map;
	const char *devname = NULL;
1259

1260 1261
	regulator_supply_alias(&dev, &supply);

1262 1263 1264
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1265
		if (node) {
1266 1267 1268 1269
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1270 1271 1272 1273 1274 1275 1276 1277 1278
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1279 1280 1281
	}

	/* if not found, try doing it non-dt way */
1282 1283 1284
	if (dev)
		devname = dev_name(dev);

1285 1286 1287 1288
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1300 1301 1302
	return NULL;
}

1303 1304
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1305
					bool exclusive, bool allow_dummy)
1306 1307
{
	struct regulator_dev *rdev;
1308
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1309
	const char *devname = NULL;
1310
	int ret = -EPROBE_DEFER;
1311 1312

	if (id == NULL) {
1313
		pr_err("get() with no identifier\n");
1314
		return ERR_PTR(-EINVAL);
1315 1316
	}

1317 1318 1319
	if (dev)
		devname = dev_name(dev);

1320 1321
	mutex_lock(&regulator_list_mutex);

1322
	rdev = regulator_dev_lookup(dev, id, &ret);
1323 1324 1325
	if (rdev)
		goto found;

1326 1327
	regulator = ERR_PTR(ret);

1328 1329 1330 1331
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1332
	if (ret && ret != -ENODEV) {
1333 1334 1335
		goto out;
	}

1336 1337 1338
	if (!devname)
		devname = "deviceless";

1339 1340 1341
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1342
	 */
1343
	if (has_full_constraints && allow_dummy) {
1344 1345
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1346

1347 1348
		rdev = dummy_regulator_rdev;
		goto found;
1349 1350
	} else {
		dev_err(dev, "dummy supplies not allowed\n");
1351 1352
	}

1353 1354 1355 1356
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1367 1368 1369
	if (!try_module_get(rdev->owner))
		goto out;

1370 1371 1372 1373
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1374
		goto out;
1375 1376
	}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1388
out:
1389
	mutex_unlock(&regulator_list_mutex);
1390

1391 1392
	return regulator;
}
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1409
	return _regulator_get(dev, id, false, true);
1410
}
1411 1412
EXPORT_SYMBOL_GPL(regulator_get);

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1436
	return _regulator_get(dev, id, true, false);
1437 1438 1439
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1465
	return _regulator_get(dev, id, false, false);
1466 1467 1468
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1469 1470
/* Locks held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
1471 1472 1473 1474 1475 1476 1477 1478
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1479 1480
	debugfs_remove_recursive(regulator->debugfs);

1481
	/* remove any sysfs entries */
1482
	if (regulator->dev)
1483
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1484
	kfree(regulator->supply_name);
1485 1486 1487
	list_del(&regulator->list);
	kfree(regulator);

1488 1489 1490
	rdev->open_count--;
	rdev->exclusive = 0;

1491
	module_put(rdev->owner);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1506 1507 1508 1509
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
					 struct device *alias_dev,
					 const char **alias_id,
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
					    const char **id,
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
	int ret;

	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
		if (pin->gpio == config->ena_gpio) {
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

	pin->gpio = config->ena_gpio;
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
		if (pin->gpio == rdev->ena_pin->gpio) {
			if (pin->request_count <= 1) {
				pin->request_count = 0;
				gpio_free(pin->gpio);
				list_del(&pin->list);
				kfree(pin);
			} else {
				pin->request_count--;
			}
		}
	}
}

1697
/**
1698 1699 1700 1701
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
			gpio_set_value_cansleep(pin->gpio,
						!pin->ena_gpio_invert);

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
			gpio_set_value_cansleep(pin->gpio,
						pin->ena_gpio_invert);
			pin->enable_count = 0;
		}
	}

	return 0;
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1751 1752 1753 1754
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, true);
		if (ret < 0)
			return ret;
1755 1756
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	/*
	 * Delay for the requested amount of time as per the guidelines in:
	 *
	 *     Documentation/timers/timers-howto.txt
	 *
	 * The assumption here is that regulators will never be enabled in
	 * atomic context and therefore sleeping functions can be used.
	 */
	if (delay) {
		unsigned int ms = delay / 1000;
		unsigned int us = delay % 1000;

		if (ms > 0) {
			/*
			 * For small enough values, handle super-millisecond
			 * delays in the usleep_range() call below.
			 */
			if (ms < 20)
				us += ms * 1000;
			else
				msleep(ms);
		}

		/*
		 * Give the scheduler some room to coalesce with any other
		 * wakeup sources. For delays shorter than 10 us, don't even
		 * bother setting up high-resolution timers and just busy-
		 * loop.
		 */
		if (us >= 10)
			usleep_range(us, us + 100);
		else
			udelay(us);
1802 1803 1804 1805 1806 1807 1808
	}

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1809 1810 1811
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1812
	int ret;
1813 1814

	/* check voltage and requested load before enabling */
1815 1816 1817
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1818

1819 1820 1821 1822 1823 1824 1825
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1826
			ret = _regulator_do_enable(rdev);
1827 1828 1829
			if (ret < 0)
				return ret;

1830
		} else if (ret < 0) {
1831
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1832 1833
			return ret;
		}
1834
		/* Fallthrough on positive return values - already enabled */
1835 1836
	}

1837 1838 1839
	rdev->use_count++;

	return 0;
1840 1841 1842 1843 1844 1845
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1846 1847 1848 1849
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1850
 * NOTE: the output value can be set by other drivers, boot loader or may be
1851
 * hardwired in the regulator.
1852 1853 1854
 */
int regulator_enable(struct regulator *regulator)
{
1855 1856
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1857

1858 1859 1860
	if (regulator->always_on)
		return 0;

1861 1862 1863 1864 1865 1866
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1867
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1868
	ret = _regulator_enable(rdev);
1869
	mutex_unlock(&rdev->mutex);
1870

1871
	if (ret != 0 && rdev->supply)
1872 1873
		regulator_disable(rdev->supply);

1874 1875 1876 1877
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1878 1879 1880 1881 1882 1883
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

1884 1885 1886 1887
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, false);
		if (ret < 0)
			return ret;
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

	trace_regulator_disable_complete(rdev_get_name(rdev));

	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
			     NULL);
	return 0;
}

1903
/* locks held by regulator_disable() */
1904
static int _regulator_disable(struct regulator_dev *rdev)
1905 1906 1907
{
	int ret = 0;

D
David Brownell 已提交
1908
	if (WARN(rdev->use_count <= 0,
1909
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1910 1911
		return -EIO;

1912
	/* are we the last user and permitted to disable ? */
1913 1914
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1915 1916

		/* we are last user */
1917 1918
		if (_regulator_can_change_status(rdev)) {
			ret = _regulator_do_disable(rdev);
1919
			if (ret < 0) {
1920
				rdev_err(rdev, "failed to disable\n");
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
				return ret;
			}
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1935

1936 1937 1938 1939 1940 1941 1942
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1943 1944 1945
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1946
 *
1947
 * NOTE: this will only disable the regulator output if no other consumer
1948 1949
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1950 1951 1952
 */
int regulator_disable(struct regulator *regulator)
{
1953 1954
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1955

1956 1957 1958
	if (regulator->always_on)
		return 0;

1959
	mutex_lock(&rdev->mutex);
1960
	ret = _regulator_disable(rdev);
1961
	mutex_unlock(&rdev->mutex);
1962

1963 1964
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1965

1966 1967 1968 1969 1970
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1971
static int _regulator_force_disable(struct regulator_dev *rdev)
1972 1973 1974 1975 1976 1977 1978 1979
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1980
			rdev_err(rdev, "failed to force disable\n");
1981 1982 1983
			return ret;
		}
		/* notify other consumers that power has been forced off */
1984 1985
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2002
	struct regulator_dev *rdev = regulator->rdev;
2003 2004
	int ret;

2005
	mutex_lock(&rdev->mutex);
2006
	regulator->uA_load = 0;
2007
	ret = _regulator_force_disable(regulator->rdev);
2008
	mutex_unlock(&rdev->mutex);
2009

2010 2011 2012
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2013

2014 2015 2016 2017
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
2065
	int ret;
2066

2067 2068 2069
	if (regulator->always_on)
		return 0;

2070 2071 2072
	if (!ms)
		return regulator_disable(regulator);

2073 2074 2075 2076
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2077 2078 2079
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
2080 2081 2082 2083
	if (ret < 0)
		return ret;
	else
		return 0;
2084 2085 2086
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2087 2088
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2089
	/* A GPIO control always takes precedence */
2090
	if (rdev->ena_pin)
2091 2092
		return rdev->ena_gpio_state;

2093
	/* If we don't know then assume that the regulator is always on */
2094
	if (!rdev->desc->ops->is_enabled)
2095
		return 1;
2096

2097
	return rdev->desc->ops->is_enabled(rdev);
2098 2099 2100 2101 2102 2103
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2104 2105 2106 2107 2108 2109 2110
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2111 2112 2113
 */
int regulator_is_enabled(struct regulator *regulator)
{
2114 2115
	int ret;

2116 2117 2118
	if (regulator->always_on)
		return 1;

2119 2120 2121 2122 2123
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2124 2125 2126
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
 * can change its voltage, false otherwise. Usefull for detecting fixed
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2141 2142 2143 2144 2145 2146 2147 2148 2149
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2150 2151 2152 2153 2154

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2178
 * zero if this selector code can't be used on this system, or a
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2232
	struct regulator_dev *rdev = regulator->rdev;
2233 2234
	int i, voltages, ret;

2235 2236 2237 2238
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2239
			return (min_uV <= ret && ret <= max_uV);
2240 2241 2242 2243
		else
			return ret;
	}

2244 2245 2246 2247 2248
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2263
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2264

2265 2266 2267 2268
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2269
	int delay = 0;
2270
	int best_val = 0;
2271
	unsigned int selector;
2272
	int old_selector = -1;
2273 2274 2275

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2276 2277 2278
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2279 2280 2281 2282
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2283 2284
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2285 2286 2287 2288 2289 2290
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2291 2292 2293
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2294 2295 2296 2297 2298 2299 2300 2301 2302

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2303
	} else if (rdev->desc->ops->set_voltage_sel) {
2304
		if (rdev->desc->ops->map_voltage) {
2305 2306
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2307 2308 2309 2310 2311 2312 2313 2314 2315
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2316

2317
		if (ret >= 0) {
2318 2319 2320
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2321 2322 2323 2324 2325
				if (old_selector == selector)
					ret = 0;
				else
					ret = rdev->desc->ops->set_voltage_sel(
								rdev, ret);
2326 2327 2328
			} else {
				ret = -EINVAL;
			}
2329
		}
2330 2331 2332
	} else {
		ret = -EINVAL;
	}
2333

2334
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2335 2336
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2337

2338 2339 2340 2341 2342 2343
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2344
		}
2345

2346 2347 2348 2349 2350 2351 2352
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2353 2354
	}

2355 2356 2357
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2358
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2359 2360
				     (void *)data);
	}
2361

2362
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2363 2364 2365 2366

	return ret;
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2382
 * Regulator system constraints must be set for this regulator before
2383 2384 2385 2386 2387
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2388
	int ret = 0;
2389
	int old_min_uV, old_max_uV;
2390 2391 2392

	mutex_lock(&rdev->mutex);

2393 2394 2395 2396 2397 2398 2399
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2400
	/* sanity check */
2401 2402
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2403 2404 2405 2406 2407 2408 2409 2410
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2411 2412 2413 2414
	
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2415 2416
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2417

2418 2419
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2420
		goto out2;
2421

2422
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2423 2424 2425
	if (ret < 0)
		goto out2;
	
2426 2427 2428
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2429 2430 2431 2432
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2433 2434 2435 2436
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2482
/**
2483 2484
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2485 2486 2487 2488 2489 2490
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2491
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2492
 * set_voltage_time_sel() operation.
2493 2494 2495 2496 2497
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2498
	unsigned int ramp_delay = 0;
2499
	int old_volt, new_volt;
2500 2501 2502 2503 2504 2505 2506

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2507
		rdev_warn(rdev, "ramp_delay not set\n");
2508
		return 0;
2509
	}
2510

2511 2512 2513
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2514

2515 2516 2517 2518
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2519
}
2520
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2521

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2569 2570
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2571
	int sel, ret;
2572 2573 2574 2575 2576

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2577
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2578
	} else if (rdev->desc->ops->get_voltage) {
2579
		ret = rdev->desc->ops->get_voltage(rdev);
2580 2581
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2582 2583
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
2584
	} else {
2585
		return -EINVAL;
2586
	}
2587

2588 2589
	if (ret < 0)
		return ret;
2590
	return ret - rdev->constraints->uV_offset;
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2619
 * @min_uA: Minimum supported current in uA
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2706
	int regulator_curr_mode;
2707 2708 2709 2710 2711 2712 2713 2714 2715

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2716 2717 2718 2719 2720 2721 2722 2723 2724
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2725
	/* constraints check */
2726
	ret = regulator_mode_constrain(rdev, &mode);
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
2797
	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2798 2799
	unsigned int mode;

2800 2801 2802
	if (rdev->supply)
		input_uV = regulator_get_voltage(rdev->supply);

2803 2804
	mutex_lock(&rdev->mutex);

2805 2806 2807 2808
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2809 2810
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2811 2812
	if (ret < 0) {
		ret = 0;
2813
		goto out;
2814
	}
2815 2816 2817 2818

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2819 2820 2821 2822 2823 2824
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2825 2826 2827
	if (!rdev->desc->ops->set_mode)
		goto out;

2828
	/* get output voltage */
2829
	output_uV = _regulator_get_voltage(rdev);
2830
	if (output_uV <= 0) {
2831
		rdev_err(rdev, "invalid output voltage found\n");
2832 2833 2834
		goto out;
	}

2835
	/* No supply? Use constraint voltage */
2836
	if (input_uV <= 0)
2837 2838
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2839
		rdev_err(rdev, "invalid input voltage found\n");
2840 2841 2842 2843 2844
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2845
		total_uA_load += consumer->uA_load;
2846 2847 2848 2849

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2850
	ret = regulator_mode_constrain(rdev, &mode);
2851
	if (ret < 0) {
2852 2853
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2854 2855 2856 2857
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2858
	if (ret < 0) {
2859
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2860 2861 2862 2863 2864 2865 2866 2867 2868
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

2869 2870 2871 2872
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
2873
 * @enable: enable or disable bypass mode
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

2922 2923 2924
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2925
 * @nb: notifier block
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2940
 * @nb: notifier block
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2952 2953 2954
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2955 2956 2957 2958
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
2959
	blocking_notifier_call_chain(&rdev->notifier, event, data);
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2990 2991
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2992 2993 2994 2995 2996 2997 2998 2999
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3000
	while (--i >= 0)
3001 3002 3003 3004 3005 3006
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3007 3008 3009 3010 3011 3012 3013
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3029
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3030
	int i;
3031
	int ret = 0;
3032

3033 3034 3035 3036 3037 3038 3039
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3040 3041 3042 3043

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3044
	for (i = 0; i < num_consumers; i++) {
3045 3046
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3047
			goto err;
3048
		}
3049 3050 3051 3052 3053
	}

	return 0;

err:
3054 3055 3056 3057 3058 3059 3060
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3074 3075
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3076 3077 3078 3079 3080 3081
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3082
	int ret, r;
3083

3084
	for (i = num_consumers - 1; i >= 0; --i) {
3085 3086 3087 3088 3089 3090 3091 3092
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3093
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3094 3095 3096 3097 3098 3099
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3100 3101 3102 3103 3104

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3165
 * @rdev: regulator source
3166
 * @event: notifier block
3167
 * @data: callback-specific data.
3168 3169 3170
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3171
 * Note lock must be held by caller.
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3198
	case REGULATOR_MODE_STANDBY:
3199 3200
		return REGULATOR_STATUS_STANDBY;
	default:
3201
		return REGULATOR_STATUS_UNDEFINED;
3202 3203 3204 3205
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
3217
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3218
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3219 3220
	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
3235
	if (rdev->ena_pin || ops->is_enabled) {
3236 3237 3238 3239
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
3240 3241 3242 3243 3244
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
3245 3246 3247 3248 3249
	if (ops->get_bypass) {
		status = device_create_file(dev, &dev_attr_bypass);
		if (status < 0)
			return status;
	}
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
3266
	if (ops->set_voltage || ops->set_voltage_sel) {
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3326 3327 3328
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3329
	if (!rdev->debugfs) {
3330 3331 3332 3333 3334 3335 3336 3337
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3338 3339
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3340 3341
}

3342 3343
/**
 * regulator_register - register regulator
3344
 * @regulator_desc: regulator to register
3345
 * @config: runtime configuration for regulator
3346 3347
 *
 * Called by regulator drivers to register a regulator.
3348 3349
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3350
 */
3351 3352
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3353
		   const struct regulator_config *config)
3354
{
3355
	const struct regulation_constraints *constraints = NULL;
3356
	const struct regulator_init_data *init_data;
3357 3358
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3359
	struct device *dev;
3360
	int ret, i;
3361
	const char *supply = NULL;
3362

3363
	if (regulator_desc == NULL || config == NULL)
3364 3365
		return ERR_PTR(-EINVAL);

3366
	dev = config->dev;
3367
	WARN_ON(!dev);
3368

3369 3370 3371
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3372 3373
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3374 3375
		return ERR_PTR(-EINVAL);

3376 3377 3378
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3379 3380
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3381 3382 3383 3384 3385 3386

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3387 3388 3389 3390
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3391

3392 3393
	init_data = config->init_data;

3394 3395 3396 3397 3398 3399 3400
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3401
	rdev->reg_data = config->driver_data;
3402 3403
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3404 3405
	if (config->regmap)
		rdev->regmap = config->regmap;
3406
	else if (dev_get_regmap(dev, NULL))
3407
		rdev->regmap = dev_get_regmap(dev, NULL);
3408 3409
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3410 3411 3412
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3413
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3414

3415
	/* preform any regulator specific init */
3416
	if (init_data && init_data->regulator_init) {
3417
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3418 3419
		if (ret < 0)
			goto clean;
3420 3421 3422
	}

	/* register with sysfs */
3423
	rdev->dev.class = &regulator_class;
3424
	rdev->dev.of_node = config->of_node;
3425
	rdev->dev.parent = dev;
3426 3427
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3428
	ret = device_register(&rdev->dev);
3429 3430
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3431
		goto clean;
3432
	}
3433 3434 3435

	dev_set_drvdata(&rdev->dev, rdev);

3436
	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3437
		ret = regulator_ena_gpio_request(rdev, config);
3438 3439 3440
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3441
			goto wash;
3442 3443 3444 3445 3446
		}

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

3447
		if (config->ena_gpio_invert)
3448 3449 3450
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3451
	/* set regulator constraints */
3452 3453 3454 3455
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3456 3457 3458
	if (ret < 0)
		goto scrub;

3459 3460 3461 3462 3463
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3464
	if (init_data && init_data->supply_regulator)
3465 3466 3467 3468 3469
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3470 3471
		struct regulator_dev *r;

3472
		r = regulator_dev_lookup(dev, supply, &ret);
3473

3474 3475 3476 3477 3478 3479 3480 3481
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			ret = 0;
			goto add_dev;
		} else if (!r) {
3482
			dev_err(dev, "Failed to find supply %s\n", supply);
3483
			ret = -EPROBE_DEFER;
3484 3485 3486 3487 3488 3489
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3490 3491

		/* Enable supply if rail is enabled */
3492
		if (_regulator_is_enabled(rdev)) {
3493 3494 3495 3496
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3497 3498
	}

3499
add_dev:
3500
	/* add consumers devices */
3501 3502 3503 3504
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3505
				init_data->consumer_supplies[i].supply);
3506 3507 3508 3509 3510
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3511
		}
3512
	}
3513 3514

	list_add(&rdev->list, &regulator_list);
3515 3516

	rdev_init_debugfs(rdev);
3517
out:
3518 3519
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3520

3521 3522 3523
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3524
scrub:
3525
	if (rdev->supply)
3526
		_regulator_put(rdev->supply);
3527
	regulator_ena_gpio_free(rdev);
3528
	kfree(rdev->constraints);
3529
wash:
D
David Brownell 已提交
3530
	device_unregister(&rdev->dev);
3531 3532 3533 3534
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3535 3536 3537 3538
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3539 3540 3541 3542 3543
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3544
 * @rdev: regulator to unregister
3545 3546 3547 3548 3549 3550 3551 3552
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3553 3554 3555
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3556
		regulator_put(rdev->supply);
3557
	}
3558
	mutex_lock(&regulator_list_mutex);
3559
	debugfs_remove_recursive(rdev->debugfs);
3560
	flush_work(&rdev->disable_work.work);
3561
	WARN_ON(rdev->open_count);
3562
	unset_regulator_supplies(rdev);
3563
	list_del(&rdev->list);
3564
	kfree(rdev->constraints);
3565
	regulator_ena_gpio_free(rdev);
3566
	device_unregister(&rdev->dev);
3567 3568 3569 3570 3571
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3572
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3595
			rdev_err(rdev, "failed to prepare\n");
3596 3597 3598 3599 3600 3601 3602 3603 3604
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
3631
			if (!_regulator_is_enabled(rdev))
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3663 3664
/**
 * rdev_get_drvdata - get rdev regulator driver data
3665
 * @rdev: regulator
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3702
 * @rdev: regulator
3703 3704 3705 3706 3707 3708 3709
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3752
#endif
3753 3754

static const struct file_operations supply_map_fops = {
3755
#ifdef CONFIG_DEBUG_FS
3756 3757 3758
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3759
};
3760

3761 3762
static int __init regulator_init(void)
{
3763 3764 3765 3766
	int ret;

	ret = class_register(&regulator_class);

3767
	debugfs_root = debugfs_create_dir("regulator", NULL);
3768
	if (!debugfs_root)
3769
		pr_warn("regulator: Failed to create debugfs directory\n");
3770

3771 3772
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3773

3774 3775 3776
	regulator_dummy_init();

	return ret;
3777 3778 3779 3780
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3781 3782 3783 3784 3785 3786 3787 3788

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

3789 3790 3791 3792 3793 3794 3795 3796 3797
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3808
		if (!ops->disable || (c && c->always_on))
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3828
			rdev_info(rdev, "disabling\n");
3829 3830
			ret = ops->disable(rdev);
			if (ret != 0) {
3831
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3832 3833 3834 3835 3836 3837 3838
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3839
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);